

Making Software Tracing Applicable and
Scalable: Experiences and Lessons Learned

 Wahab Hamou-Lhadj, PhD, P. Eng.
Software Behaviour Analysis Research (SBA) Lab

Concordia University

Montréal, QC, Canada

http://www.ece.concordia.ca/~abdelw

Ryerson University

Toronto, ON

Nov. 3, 2014

 Complexity

 Lack of structure and appropriate documentation

 Initial design no longer valid

 Initial designers no longer available

 New computing platforms do not make things easier

2

Software (Persistent) Challenges

 Complexity

 Lack of structure and appropriate documentation

 Initial design no longer valid

 Initial designers no longer available

 New computing platforms do not make things easier

3

Software (Persistent) Challenges

Investment in software analysis techniques and
tools is critical

Software Behaviour Analysis:
Simplified View

4

Tracer

Execution

Traces/Logs

Analysis

System

5

… a bit more complex

6

…very complex

Industrial projects

 Project 1: Tracing and monitoring tools for multi-core

 systems

 Project 2: Host-based anomaly detection systems

 Project 3: Tracing, debugging and configuration of

 avionic systems

7

Tracing and monitoring tools for
multi-core systems

Develop techniques and tools for the generation and

analysis of execution traces of multi-core systems

with minimum overhead and disturbance

8

TMF (Trace and Monitoring Framework)

Project vision

9

Management

Loading

Streaming

 CTF

Controller

Graphics

Reports

Controller

Statistics

Analysis

Lttng

Others

traces

Making trace analysis scalable

 Motivating Example:

A trace generated from a compiler: parsing, preprocessing,

lexical analysis, semantic analysis, etc. may contain hundred

of thousands of events.

 Typical tools will show this:

 How do you know what happens where?

 10

Automatic extraction of execution phases

Parsing Preprocessing Lexical analysis Semantic analysis Init

P1 P2 P3 P4 P5

11

P1 P2 P3 P4 P5

Phase

P3.1

Phase

P3.2

Phase

P3.3

Phase

P3.4

12

Parsing Preprocessing Lexical analysis Semantic analysis Init

TSER: Trace Segmentation through Event
Repositioning

13

Example: Repositioning based on similarity

14

Phase 1 Phase 2 Phase 3 Phase 4 Phase 5

System initialization Module loading Class

diagram

R
e
fr

e
s
h
 v

ie
w

C
lo

s
in

g

15

Start ArgoUML Create a class diagram Stop ArgoUML

Application: ArgoUML Trace

Phase 3: Add a class diagram

Phase 3.1 Phase 3.2 Phase 3.3 Phase 3.4

Creating nodes

A
d
d
in

g
 a

re
p
re

s
e
n
ta

ti
o
n
 t

o
 t

h
e

s
c
re

e
n
 Checking constraints

M
o
d
e
l
e
le

m
e
n
t

s
e
le

c
ti
o
n

16

Start ArgoUML Create a class diagram Stop ArgoUML

Aligning user and kernel spaces

t1

t2

t3

t4

Tâche

P1

P2 P3 P4 P5 P6

P7 P8 P9

P10 P11 P12 P13 P14 P15

17

Adding state information

t1

t2

t3

t4

Tâche

P1

P2 P3 P4 P5 P6

P7 P8 P9

P10 P11 P12 P13 P14 P15

|CPU|: 2

|PID|: 17

|FD|: 16

|PageFault|: 526

Ratio: 15.03%

18

|CPU|: 2

|PID|: 15

|FD|: 12

|PageFault|: 200

Ratio: 15.03%

CPU usage: 5%

Identification du contenu pertinent

t1

t2

t3

t4

Threads

P1

P2 P3 P4 P5 P6

P7 P8 P9

P10 P11 P12 P13 P14 P15

|CPU|: 2

|PID|: 17

|FD|: 16

|PageFault|: 526

Ratio: 15.03%

|CPU|: 2

|PID|: 15

|FD|: 14

|PageFault|: 453

Ratio: 60.06 %

CPU Usage: 5%

relayMessage

measureOverhead

reduceLoad

createComm

changeUser

19

Tracing and Monitoring Framework

20
20

Industrial projects

 Project 1: Tracing and monitoring tools for multi-core

 systems

 Project 2: Host-based anomaly detection systems

 Project 3: Tracing, debugging and configuration of

 avionic systems

21

Host-based Anomaly Detection-
Advanced Host-Level Surveillance

Develop modular, adaptive, and scalable Anomaly

Detection Systems (ADS) at the level of system call

traces; reduce false positives (alarms) and improve the

true positives

22

Analyze, correlate,

look for trends, etc.

Run-Time Information

(traces, profiling data)

Run-Time Information

(traces, profiling data)

No Yes

initiate repair actions

Deviation from

normal?

Decide what to do

(automatically and/or user-

guided)

System

In-Lab

continue normal execution

Yes

No

Need for repair?

continue normal execution

Model of

The System

Build a Reference Model

(normal behaviour)

In-Ops

23

Analyze, correlate,

look for trends, etc.

Run-Time Information

(traces, profiling data)

Run-Time Information

(traces, profiling data)

No Yes

initiate repair actions

Deviation from

normal?

Decide what to do

(automatically and/or user-

guided)

System

In-Lab

continue normal execution

Yes

No

Need for repair?

continue normal execution

Model of

The System

Build a Reference Model

(normal behaviour)

In-Ops

24

Advanced Host-Level Surveillance

25

Advanced Host-Level Surveillance

26

Kernel State Modeling (KSM)

 KSM is an anomaly detection technique

– Transforms system calls into kernel modules, called

states

– Detects anomalies at the level of interaction among

kernel states

– Reduces data space used in training and testing

– Favors efficiency while keeping accuracy

27

Transforming System Calls into States of Kernel
Modules

State Module in Linux Source Code # of System Calls

AC Architecture 10

FS File System 131

IPC Inter Process Communication 7

KL Kernel 127

MM Memory Management 21

NT Networking 2

SC Security 3

UN Unknown 37

[Source]: http://syscalls.kernelgork.com

28

KSM and Density Plots

29

 Anomaly Detection in Firefox

Normal Anomalous

30

Evaluation

Program # Normal Traces #Attack

Types

#Attack

Traces
Training Validation Testing

Login 4 3 5 1 4

PS 10 4 10 1 15

Stide 400 200 13126 1 105

Xlock 91 30 1610 1 2

Firefox 125 75 500 5 19

31

Program Technique TP rate FP rate

Login

KSM (alpha=0.00) 100% 0.00%

Stide (win=6) 100% 40.00%

Stide (win=10) 100% 40.00%

HMM (states=10) 100% 40.00%

PS

KSM (alpha=0.02) 100% 10.00%

Stide (win=6) 100% 10.00%

Stide (win=10) 100% 10.00%

HMM (states=5) 100% 30.00%

Xlock KSM (alpha=0.04) 100% 0.00%

Stide (win=6) 100% 1.50%

Stide (win=10) 100% 1.50%

HMM (states=5) 100% 0.00%

32

Stide KSM (alpha=0.06) 100% 0.25%

Stide (win=6) 100% 4.97%

Stide (win=10) 100% 5.25%

HMM (states=5) 100% 0.25%

Firefox KSM (alpha=0.08) 100% 0.60%

Stide (win=6) 100% 44.60%

Stide (win=10) 100% 49.20%

 HMM (states=5) 100% 1.40%

Case Study: Execution Time

 Size of All

Traces

KSM

Stide

HMM

Login 26.2KB 4.46 sec 0.03 sec 56.43 min

PS 29.6KB 5.14 sec 0.11 sec 46.24 min

Xlock 47.4MB 1.51 min 12.3 min 13.37 hr

Stide 36.2MB 5.85 min 8.53 min 2.3 day

Firefox 270.6MB 9.35 min 4.17 hr 4.03 day

33

TotalADS: Integrated Environment for ADS

Training/Detection Engine

HMM STIDE KSM

IBC Others

Trace Mgt

Loading

Streaming

 CTF

Controller

D
B

M
S

UI

Plots

Reports

Controllers

Statistics

Analysis

34

TotalADS Snapshot

35

Industrial projects

 Project 1: Tracing and monitoring tools for multi-core

 systems

 Project 2: Host-based anomaly detection systems

 Project 3: Tracing, debugging and configuration of

 avionic systems

36

Tracing, debugging and configuration of
avionic systems

Build efficient algorithms for low overhead, low

disturbance tracing of real-time embedded multi-

core systems and simulators. Develop special

purpose trace analysis debugging, and feature

location modules for avionic systems

37

CAE Simulators

38

Simulation Scenario

39

Module n

TAWS

FSS

DB

Labels

Initialize

Dispatcher

Entry Point

Entry Point

Entry Point

read/wr

ite

read/wr

ite

read/wr

ite

CAE SW Architecture

FSS: Flight Surveillance System

TAWS: Terrain Awareness and Warning System

40

The Problem

What happens when a configuration error

(missing or wrong warnings) occurs?

This should

be TRUE

41

Ask questions

Analyze

configuration

artefacts

Large

Configuration

Files

Problem

Configuration designer

Visual modeling tools

42

FELODE (Feature Location for Debugging)

43

Case Study: Selected Scenarios

Scenario Subsystem Scenario

S1
TAWS

Mode1

Aircraft is descending at high speed while flying

at low altitude.

S2
TAWS

Mode4A

The aircraft is close to the ground and is

prepared for landing, but the gears are still up.

S3
TAWS

Mode4B

Aircraft is in landing mode but the flaps are in a

flight position.

S4 TCAS
Simulate the presence of an intruder with the

intention to locate its altitude.

S5 TCAS
Simulate the presence of an intruder with the

intention to locate its speed.

44

FELODE Precision and Recall

N1: Number of labels detected using FELODE

N2: Number of valid labels using FELODE

N3: Number of valid labels relevant to each scenario (provided by the users)

Scenarios N1 N2 N3 Precision

(N2/N1)

Recall

(N2/N3)

S1 2 1 2 50% 50%

S2 6 3 3 50% 100%

S3 6 3 3 50% 100%

S4 8 3 3 38% 100%

S5 7 4 4 57% 100%

45

46

Future Directions

47

Foundations

(pattern matching,

machine learning, etc.)

48

Model Tracing

Foundations

(pattern matching,

machine learning, etc.)

49

Embedded Systems

Foundations

(pattern matching,

machine learning, etc.)
Model Tracing

50

Tracing the Cloud

Embedded Systems

Foundations

(pattern matching,

machine learning, etc.)
Model Tracing

51

Trace Analytics Tracing the Cloud

Embedded Systems

Foundations

(pattern matching,

machine learning, etc.)
Model Tracing

Thank you

