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 Complexity  

 Lack of structure and appropriate documentation 

 Initial design no longer valid 

 Initial designers no longer available 

 New computing platforms do not make things easier 
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Software (Persistent) Challenges 

Investment in software analysis techniques and 
tools is critical 

 

 

 

 



Software Behaviour Analysis:  
Simplified View 
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… a bit more complex 
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…very complex 



Industrial projects 

 Project 1: Tracing and monitoring tools for multi-core  

                     systems 

 Project 2: Host-based anomaly detection systems 

 Project 3: Tracing, debugging and configuration of  

                     avionic systems 
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Tracing and monitoring tools for 
multi-core systems 

 

Develop techniques and tools for the generation and 

analysis of execution traces of multi-core systems 

with minimum overhead and disturbance 
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TMF (Trace and Monitoring Framework) 

Project vision 
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Making trace analysis scalable 

 Motivating Example:  

 

A trace generated from a compiler: parsing, preprocessing, 

lexical analysis, semantic analysis, etc. may contain hundred 

of thousands of events. 

 

 Typical tools will show this: 

 

  

   

      How do you know what happens where?  
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Automatic extraction of execution phases 

Parsing Preprocessing Lexical analysis Semantic analysis Init 

P1 P2 P3 P4 P5 
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Parsing Preprocessing Lexical analysis Semantic analysis Init 



TSER: Trace Segmentation through Event 
Repositioning 
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Example: Repositioning based on similarity 
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Start ArgoUML Create a class diagram  Stop ArgoUML 

Application: ArgoUML Trace 



Phase 3: Add a class diagram 

Phase 3.1 Phase 3.2 Phase 3.3 Phase 3.4 

Creating nodes 
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Start ArgoUML Create a class diagram  Stop ArgoUML 



Aligning user and kernel spaces 
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Adding state information 

t1 

t2 

t3 

t4 

Tâche 

P1 

P2 P3 P4 P5 P6 

P7 P8 P9 

P10 P11 P12 P13 P14 P15 

|CPU|: 2 

|PID|: 17 

|FD|: 16 

|PageFault|: 526 

Ratio: 15.03% 

18 

|CPU|: 2 

|PID|: 15 

|FD|: 12 

|PageFault|: 200 

Ratio: 15.03% 

CPU usage: 5% 



Identification du contenu pertinent 
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Tracing and Monitoring Framework 
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Industrial projects 

 Project 1: Tracing and monitoring tools for multi-core  

                     systems 

 Project 2: Host-based anomaly detection systems 

 Project 3: Tracing, debugging and configuration of  

                     avionic systems 
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Host-based Anomaly Detection- 
Advanced Host-Level Surveillance 

 
Develop modular, adaptive, and scalable Anomaly 

Detection Systems (ADS) at the level of  system call 

traces; reduce false positives (alarms) and improve the 

true positives 
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Analyze, correlate,

look for trends, etc.
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Advanced Host-Level Surveillance 
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Advanced Host-Level Surveillance 
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Kernel State Modeling (KSM) 

 KSM is an anomaly detection technique 

– Transforms system calls into kernel modules, called 

states 

– Detects anomalies at the level of interaction among 

kernel states 

– Reduces data space used in training and testing 

– Favors efficiency while keeping accuracy 
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Transforming System Calls into States of Kernel 
Modules 

State  Module in Linux Source Code # of System Calls 

AC Architecture 10 

FS File System 131 

IPC Inter Process Communication 7 

KL Kernel 127 

MM Memory Management 21 

NT Networking 2 

SC Security 3 

UN Unknown 37 

[Source]: http://syscalls.kernelgork.com 
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KSM and Density Plots 
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 Anomaly Detection in Firefox 

Normal Anomalous 
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Evaluation 

Program # Normal Traces  #Attack 

Types 

#Attack 

Traces 
Training Validation Testing 

Login 4 3 5 1 4 

PS 10 4 10 1 15 

Stide 400 200 13126 1 105 

Xlock 91 30 1610 1 2 

Firefox 125  75  500  5 19 
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Program Technique TP rate FP rate 

Login 

  

KSM (alpha=0.00) 100% 0.00% 

Stide (win=6) 100% 40.00% 

Stide (win=10) 100% 40.00% 

HMM (states=10) 100% 40.00% 

PS 

  

KSM (alpha=0.02) 100% 10.00% 

Stide (win=6) 100% 10.00% 

Stide (win=10) 100% 10.00% 

HMM (states=5) 100% 30.00% 

Xlock KSM (alpha=0.04) 100% 0.00% 

Stide (win=6) 100% 1.50% 

Stide (win=10) 100% 1.50% 

HMM (states=5) 100% 0.00% 
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Stide KSM (alpha=0.06) 100% 0.25% 

Stide (win=6) 100% 4.97% 

Stide (win=10) 100% 5.25% 

HMM (states=5) 100% 0.25% 

Firefox KSM (alpha=0.08) 100% 0.60% 

Stide (win=6) 100% 44.60% 

Stide (win=10) 100% 49.20% 

 HMM (states=5) 100% 1.40% 



Case Study: Execution Time 

  Size of All 

Traces  

KSM 

 

Stide 

 

 

HMM 

 

Login 26.2KB 4.46 sec 0.03 sec  56.43 min  

PS 29.6KB 5.14 sec 0.11 sec 46.24 min 

Xlock 47.4MB 1.51 min 12.3 min 13.37 hr 

Stide 36.2MB 5.85 min 8.53 min 2.3 day 

Firefox 270.6MB 9.35 min 4.17 hr 4.03 day 
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TotalADS: Integrated Environment for ADS 

Training/Detection Engine 
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TotalADS Snapshot 
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Industrial projects 

 Project 1: Tracing and monitoring tools for multi-core  

                     systems 

 Project 2: Host-based anomaly detection systems 

 Project 3: Tracing, debugging and configuration of  

                     avionic systems 
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Tracing, debugging and configuration of 
avionic systems 

Build efficient algorithms for low overhead, low 

disturbance tracing of real-time embedded multi-

core systems and simulators. Develop special 

purpose trace analysis debugging, and feature 

location modules for avionic systems 
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CAE Simulators  
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Simulation Scenario 
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FSS: Flight Surveillance System 

TAWS: Terrain Awareness and Warning System 
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The Problem 

What happens when a configuration error 

(missing or wrong warnings) occurs? 

This should 

be TRUE 
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FELODE (Feature Location for Debugging) 
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Case Study: Selected Scenarios 

Scenario Subsystem Scenario 

S1 
TAWS 

Mode1 

Aircraft is descending at high speed while flying 

at low altitude. 

S2 
TAWS 

Mode4A 

The aircraft is close to the ground and is 

prepared for landing, but the gears are still up. 

S3 
TAWS 

Mode4B 

Aircraft is in landing mode but the flaps are in a 

flight position. 

S4 TCAS 
Simulate the presence of an intruder with the 

intention to locate its altitude. 

S5 TCAS 
Simulate the presence of an intruder with the 

intention to locate its speed. 
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FELODE Precision and Recall 

N1: Number of labels detected using FELODE 

N2: Number of valid labels using FELODE 

N3: Number of valid labels relevant to each scenario (provided by the users) 

 

 

Scenarios N1 N2 N3 Precision 

(N2/N1) 

Recall 

(N2/N3) 

S1 2 1 2 50% 50% 

S2 6 3 3 50% 100% 

S3 6 3 3 50% 100% 

S4 8 3 3 38% 100% 

S5 7 4 4 57% 100% 
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Future Directions 
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Foundations 

(pattern matching,  

machine learning, etc.) 
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Model Tracing 

Foundations 

(pattern matching,  

machine learning, etc.) 
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Embedded Systems 

Foundations 

(pattern matching,  

machine learning, etc.) 
Model Tracing 



50 

Tracing the Cloud 

Embedded Systems 

Foundations 

(pattern matching,  

machine learning, etc.) 
Model Tracing 
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Trace Analytics Tracing the Cloud 

Embedded Systems 

Foundations 

(pattern matching,  

machine learning, etc.) 
Model Tracing 
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