

Applications of log and trace analysis to
industrial projects

Wahab Hamou-Lhadj, PhD., ing.
Software Behaviour Analysis Research Lab

Concordia University

Montreal, QC, Canada

http://www.ece.concordia.ca/~abdelw

Université de Montréal

08/10/2015

http://www.ece.concordia.ca/~abdelw

 Software systems are inherently complex

 Many of them are poorly structured

 The development effort is human-intensive

 Software industry tends to be poorly regulated

 As a direct consequence: Maintenance, security, and other

software engineering activities are challenging and costly

2

Software engineering: current challenges

 Software systems are inherently complex

 Many of them are poorly structured

 The development effort is human-intensive

 Software industry tends to be poorly regulated

 As a direct consequence: Maintenance, security, and other

software engineering activities are challenging and costly

3

Software engineering: current challenges

This calls for advanced software

analysis techniques

Analysis of the behaviour of software

systems: a simplified view

4

Tracer

Execution

traces/logs

Trace

Analysis

System

5

… a bit more complex view

6

…a very complex tracing infrastructure

M. Couture, A. Hamou-Lhadj, M. Dagenais, A. Goel, "Online surveillance of computerized systems – Analysis of current and future needs,"

In Proc. of the NATO Symposium on Information Assurance and Cyber Defence (IST-112), Quebec City, Quebec, 2012.

Software tracing in industrial projects

Project 1: Tracing and monitoring tools for multi-core

systems

Project 2: Host-based anomaly detection systems

Project 3: Tracing, debugging and configuration of

 avionic systems

7

Tracing and monitoring tools for multi-core

systems

To develop techniques and tools for the

generation and analysis of execution traces

of multi-core systems with minimum

disturbance and overhead

8

TMF (Trace and Monitoring Framework)

Project vision

9

Management

Loading

Streaming

 CTF

Controllers

Graphics

Repports

Controllers

Statistics

Analysis

Lttng

Others

traces

Trace analysis: example and motivation

 Let’s take a look at a trace generated from running a compiler

 The trace will most likely contains the following phases: Parsing,

preprocessing, lexical analyzer, semantic analyzer, etc.

 A typical trace analysis tool will show the following:

 How do we know what happens where?

10

Automatic extraction of execution phases

Analysis Proprecessing Lexical analyzer Semantic analyzer Init

P1 P2 P3 P4 P5

11

P1 P2 P3 P4 P5

Phase

P3.1

Phase

P3.2

Phase

P3.3

Phase

P3.4

12

Analysis Proprecessing Lexical analyzer Semantic analyzer Init

TRASER: TRAce Segmentation through Event Repositioning

13

H. Pirzadeh, A. Hamou-Lhadj, "A Software Behaviour Analysis Framework Based on the Human Perception System," ICSE (NIER Track), pp. 948 - 951, 2012.

H. Pirzadeh, A. Hamou-Lhadj, M. Shah, "Exploiting Text Mining Techniques in the Analysis of Execution Traces," ICSM'12, pp. 223-232, 2012.

Inspiration: Gestalt Laws

Repositioning of trace events based on

similarity

15

16

Repositioning of trace events based on

continuity

17

Phase 1 Phase 2 Phase 3 Phase 4 Phase 5

System init. Module loading Class

diagram

R
e
fr

e
s
h

in
g

C
lo

s
in

g

18

Start ArgoUML Create a class diagram Stop ArgoUML

Application: An ArgoUML trace with hundreds of

thousands of calls

Phase 3: Adding a class diagram

Phase 3.1 Phase 3.2 Phase 3.3 Phase 3.4

Creating a node

from a UML model

subsystem
A

d
d

in
g

 a
 d

ia
g

ra
m

to
 t
h

e
 d

is
p

la
y

Checking the constraints Selecting the

added model

elements

19

Start ArgoUML Create a class diagram Stop ArgoUML

Aligning user and kernel spaces

t1

t2

t3

t4

Task

P1

P2 P3 P4 P5 P6

P7 P8 P9

P10 P11 P12 P13 P14 P15

20

Adding state information

t1

t2

t3

t4

Tâche

P1

P2 P3 P4 P5 P6

P7 P8 P9

P10 P11 P12 P13 P14 P15

|CPU|: 2

|PID|: 17

|FD|: 16

|PageFault|: 526

Ratio: 15.03%

21

|CPU|: 2

|PID|: 15

|FD|: 12

|PageFault|: 200

Ratio: 15.03%

CPU usage: 5%

Identifying most relevant content

t1

t2

t3

t4

Threads

P1

P2 P3 P4 P5 P6

P7 P8 P9

P10 P11 P12 P13 P14 P15

|CPU|: 2

|PID|: 17

|FD|: 16

|PageFault|: 526

Ratio: 15.03%

|CPU|: 2

|PID|: 15

|FD|: 14

|PageFault|: 453

Ratio: 60.06 %

CPU Usage: 5%

relayMessage

measureOverhead

reduceLoad

createComm

changeUser

22

Software tracing in industrial projects

Project 1: Tracing and monitoring tools for multi-core

systems

Project 2: Host-based anomaly detection systems

Project 3: Tracing, debugging and configuration of

 avionic systems

23

Host-based Anomaly Detection-

Advanced Host-Level Surveillance

Develop modular, adaptive, and scalable Anomaly

Detection Systems (ADS) at the level of system call

traces; reduce false positives (alarms) and improve the

true positives

24

Analyze, correlate,

look for trends, etc.

Run-Time Information

(traces, profiling data)

Run-Time Information

(traces, profiling data)

No Yes

initiate repair actions

Deviation from

normal?

Decide what to do

(automatically and/or user-

guided)

System

In-Lab

continue normal execution

Yes

No

Need for repair?

continue normal execution

Model of

The System

Build a Reference Model

(normal behaviour)

In-Ops

25

Anomaly Detection Systems

Analyze, correlate,

look for trends, etc.

Run-Time Information

(traces, profiling data)

Run-Time Information

(traces, profiling data)

No Yes

initiate repair actions

Deviation from

normal?

Decide what to do

(automatically and/or user-

guided)

System

In-Lab

continue normal execution

Yes

No

Need for repair?

continue normal execution

Model of

The System

Build a Reference Model

(normal behaviour)

In-Ops

26

Anomaly Detection Systems

Example: Sliding Approach (STIDE)

2

7

Incremental Boolean Combination of HMMs

28

Kernel State Modeling (KSM)

 KSM is an anomaly detection technique

– Transforms system calls into kernel modules, called

states

– Detects anomalies at the level of interaction among

kernel states

– Reduces data space used in training and testing

– Favors efficiency while keeping accuracy

29

Transforming System Calls into States of

Kernel Modules

State Module in Linux Source Code # of System Calls

AC Architecture 10

FS File System 131

IPC Inter Process Communication 7

KL Kernel 127

MM Memory Management 21

NT Networking 2

SC Security 3

UN Unknown 37

[Source]: http://syscalls.kernelgork.com

30

KSM and Density Plots

Density

Plot

31

 Anomaly Detection in Firefox

Normal Anomalous

32

Case Study: Execution Time

 Size of All

Traces

KSM

Stide

HMM

Login 26.2KB 4.46 sec 0.03 sec 56.43 min

PS 29.6KB 5.14 sec 0.11 sec 46.24 min

Xlock 47.4MB 1.51 min 12.3 min 13.37 hr

Stide 36.2MB 5.85 min 8.53 min 2.3 day

Firefox 270.6MB 9.35 min 4.17 hr 4.03 day

33

TotalADS: Integrated Environment for ADS

Training/Detection Engine

HMM STIDE KSM

IBC Others

Trace Mgt

Loading

Streaming

 CTF

Controller

D
B

M
S

UI

Plots

Reports

Controllers

Statistics

Analysis

34

S. S. Murtaza, A. Hamou-Lhadj, W. Khreich, M. Couture, "TotalADS: Automated Software

Anomaly Detection System," SCAM’14

S. S. Murtaza, W. Khreich, A. Hamou-Lhadj, M. Couture , "A Host-based Anomaly Detection

Approach by Representing System Calls as States of Kernel Modules," ISSRE’13

35

Software tracing in industrial projects

Project 1: Tracing and monitoring tools for multi-core

systems

Project 2: Host-based anomaly detection systems

Project 3: Tracing, debugging and configuration of

 avionic systems

36

Tracing, debugging and configuration of

avionic systems

Build efficient algorithms for low overhead, low

disturbance tracing of real-time embedded

multi-core systems and simulators. Develop

special purpose trace analysis debugging, and

feature location modules for avionic systems

37

CAE Simulators

38

Simulation Scenario

39

Module n

TAWS

FSS

DB

Labels

Initialize

Dispatcher

Entry Point

Entry Point

Entry Point

read/wr

ite

read/wr

ite

read/wr

ite

CAE SW Architecture

FSS: Flight Surveillance System

TAWS: Terrain Awareness and Warning System

40

The Problem

What happens when a configuration error

(missing or wrong warnings) occurs?

This should

be TRUE

41

Ask questions

Analyze

configuration

artefacts

Large

Configuration

Files

Problem

Configuration designer

Visual modeling tools

42

FELODE (Feature Location for Debugging)

43

Case Study: Selected Scenarios

Scenario Subsystem Scenario

S1
TAWS

Mode1

Aircraft is descending at high speed while flying

at low altitude.

S2
TAWS

Mode4A

The aircraft is close to the ground and is

prepared for landing, but the gears are still up.

S3
TAWS

Mode4B

Aircraft is in landing mode but the flaps are in a

flight position.

S4 TCAS
Simulate the presence of an intruder with the

intention to locate its altitude.

S5 TCAS
Simulate the presence of an intruder with the

intention to locate its speed.

44

FELODE Precision and Recall

N1: Number of labels detected using FELODE

N2: Number of valid labels using FELODE

N3: Number of valid labels relevant to each scenario (provided by the users)

Scenarios Precision

(N2/N1)

Recall

(N2/N3)

S1 50% 50%

S2 50% 100%

S3 50% 100%

S4 38% 100%

S5 57% 100%

45

Observations

 Tracing techniques can help solve industrial problems

 A little knowledge can go a long way

 The tool is a big part of an industrial solution

 From knowledge transfer to knowledge transition

 More research is needed in: Trace modeling, model-driven

tracing, tracing small devices, trace analytics

46

