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Recent Significant Cyber Incidents
according to CSIS

» 2011. The Canadian government reported a major cyber attack against its agencies, including
Defence Research and Development Canada, a research agency for Canada‘s Department of
National Defence.

» 2011. Cybercriminals masquerading as member of the hacktivist group “Anonymous” penetrated
the Play Station network. Sony estimated that personal information for more than 80 million users
was compromised and that the cost of the breach at over $170 million.

» 2011. Australia’s Defense Signals Directorate says that defense networks are attacked more than
30 times a day, with the number of attacks increasing by more than 350 percent by 2009.

» 2012. The Industrial Control Systems Cyber Emergency Response Team (ICS-CERT) reported
that two power plants in the U.S. suffered sophisticated malware infections.

» The head of the UK Security Service stated that a London-listed company lost an estimated £800m
($1.2 billion) as a result of state cyber attacks.

» 2013. Chinese hackers breach the Federal Election Commission’s networks while it is closed
during the U.S. government shutdown.

» 2013. An estimated 40 million holiday shoppers at a major U.S. retail Chain have debit and credit
card credentials stolen by hackers.

» 2013. Russian hackers steal personal data from 54 million Turks.

» 2014. Indian defense sources say classified material may have been compromised when around
50 computers from the armed forces and the Indian defense research organization y 3
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Intrusion Detection Systems

» Monitor computer or network activity for signs of
Intrusions and alert administrator

» Signhature based Detection

= Looks for known patterns
= Detects only known attacks

» Anomaly Detection

= | ooks for deviations from normal behavior
= Detects even unknown attacks
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Build a Reference Model

Run-Time Information
(traces, profiling data)
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Build a Reference Model
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Existing Work

» Several technigues have been used to model
the normal behaviour of a system
= Sliding window technique
= HMM

= Neural networks (two-class)

= Clustering

= Varied length n-gram technique
= Context Free Grammar




Example: Sliding Approach
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Challenges — False alarms

» ADSs generate large numbers of false alarms
-> Misclassify normal events as anomalous

» Frequent false alarms reduce the confidence and
could lead to deactivation of the ADS




Challenges — False alarms

» False alarms are caused by several reasons
iIncluding:
= Unrepresentative normal data for training and
attack data for validation and testing
= |nappropriate model or feature selection
= Poor optimization of models parameters
= Qver fitting (leads to poor generalization)

= |nadequate assumptions such as static
environments
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Assumptions

» Most of the work found In related literature
assumes:

= Representative amount of normal data provided
for training

=  Static environments: normal behavior will not
change over time
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In Practice

« ADSs are often designed using limited data

— collection and analysis of representative data from
each process (different version, OS, etc.) is costly

Normal Behavior Rare Events
(false alarms)

Anomaly detector
will have
Incomplete view
of normal system
behavior

Modeled
Behavior




In Practice

* Dynamic environment

— Changes in normal process behavior due, for
Instance, to application update

Old Normal False negatives New Normal
Behavior

False alarms Dehavior

Internal model of
normal behavior
diverges with
respect to the
underlying data

r
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ADS Requirements

» ADSs should be able to:

= Account for rare normal events (false alarms)

= Scalable and modular: can add, replace or
remove models or features over time

= Handle large data spaces
= Accommodate new data
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Advanced Host-Level Project

* Four-year NSERC-DND project (2012-2015)
« 6 PhDs, 8 Masters, 2 Postdocs, 2 RAS
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Objectives of Concordia Research
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Thread

Protect host systems against cyber-attacks

Develop modular, adaptive, and scalable Anomaly
Detection Systems (ADS) at the system call level

Reduce false positives (alarms) and improve the
true positives

Develop comprehensive test beds and evaluation
protocols

Provide preliminary analysis/recommendations for
future research and directions




Advanced Host-Level Survelllance

AHLS Track 3
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Advanced Host-Level Survelllance
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Kernel State Modeling (KSM)

« KSM is an anomaly detection technique

— Transforms system calls into kernel modules,
called states

— Detect anomalies at the level of interaction of
kernel states

— Reduces data space used in training and testing
— Favors efficiency while keeping accuracy




Transforming System Calls into
States of Kernel Modules

Module in Linux Source Code # of System Calls

State
AC Architecture 10
FS File System 131
IPC Inter Process Communication 7
KL Kernel 127
MM Memory Management 21
NT Networking 2
SC Security 3
UN Unknown 37

[Source]: http://syscalls.kernelgork.com =
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KSM and Density Plots
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Anomaly Detection in Firefox
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Anomaly Detection in Login Utility
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Automatically Detecting
Anomalies

Trace # FS KL MM Type

Normal
Normal
Normal
Normal
Normal
Normal

0.15 .19 Anomalous
@ 0.16 0.20 Anomalous

Xlock
Program ¥ Concordia
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Automatically Detecting
Anomalies

* To determine significant deviation threshold
(alpha):
— Divide normal dataset into training set, validation
set, and testing set
— Extract probabilities from training set
— Evaluate on validation set and adjust alpha
— Measure accuracy on testing set




Case Study 1: Dataset

Program # Normal Traces #Attack #Attack

Training  Validation Testing Types  Traces

Login 4 3 5 1 4
PS 10 4 10 1 15
Stide 400 200 13126 1 105
Xlock 91 30 1610 1 2
Firefox 125 75 500 5 19
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Case Study 1: Results

Program
Login

PS

Xlock

Technique
KSM (alpha=0.00)
Stide (win=6)
Stide (win=10)
HMM (states=10)
KSM (alpha=0.02)
Stide (win=6)
Stide (win=10)
HMM (states=5)
KSM (alpha=0.04)
Stide (win=6)
Stide (win=10)
HMM (states=5)

TP rate FPrate

100%
100%
100%
100%
100%
100%
100%
100%
100%
100%
100%
100%

0.00%
40.00%
40.00%
40.00%
10.00%
10.00%
10.00%
30.00%
0.00%
1.50%
1.50%
0.00%
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FP =

Case Study 1: Results

Program Technique
Stide KSM (alpha=0.06)
Stide (win=6)

Stide (win=10)
HMM (states=5)
Firefox KSM (alpha=0.08)
Stide (win=6)
Stide (win=10)
HMM (states=5)

Number of detected attacks (anomalies)

Total number of attacks (anomalies)
x 100

Equation 1. True positive rate
Number of normal traces detected

as anomalous
= x 100
Total number of noermal traces

TPrate FPrate

100%
100%
100%
100%
100%
100%
100%
100%

0.25%
4.97%
5.25%
0.25%
0.60%
44.60%
49.20%
1.40%
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Case Study 1: Execution Time

Size of All KSM Stide HMM
Traces

Login 26.2KB 4.46sec 0.03sec 56.43 min
PS 29.6KB 5.14sec 0.1l1sec 46.24 min

Xlock 474MB 151 min  12.3min 13.37 hr
Stide 36.2MB  5.85min 8.53min 2.3 day
Firefox 270.6MB 9.35min  4.17 hr 4.03 day
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Case Study 2: ADFA Linux Dataset

» A host with Ubuntu 11.04, Apache 2.2.17, PHP 5.3.5,

Tikiwiki 8.1, FTP server, MySQL 14.14 and an SSH
server

= web-based exploitation

= simulated social engineering

= poisoned executable,

= remotely triggered vulnerabilities,

= remote password brute force attacks
= system manipulation




Case Study 2: ADFA Linux Dataset

Training Set
# of training traces 833
Validation Set
# of attacks 20
# of normal traces 1000
Testing Set
# of attacks 40

# of normal traces 3373
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Recelver Operating Characteristics
(ROC) Curves

True Positive:
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detected as
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Case Study 2: ADFA Linux Dataset
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Research Threads
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Model Combination

» A single classifier or model may not provide a good
approximation to the underlying data structure or
distribution

* No dominant classifier for all data distributions (“no
free lunch” theorem)

* True data distribution is usually unknown

 Limited amount of (labeled) data is typically
provided during training




IBC: Iterative Boolean Combination
In the ROC Space

» For each threshold from the first detector and
each threshold from the second detector:

= Combine the responses using all Boolean
functions

= Select thresholds and Boolean functions that
Improve the ROC space




IBC - Example

All Boolean functions Each Boolean function
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Experimental Methodology

Training Set
# of training traces 833
Validation Set
# of attacks 20
# of normal traces 1000
Testing Set
# of attacks 40

# of normal traces 3373
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Combination of Responses from
Different HMMs

HMM e B
(N=20) N [Anomaly}

[ HMM o \[ Normal J/
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Combination Results on Validation Set

True positive rate

M. : HMM(N=200), auc=0.933
| M,: HMM(N=20), auc=0.845
/ e IBC(M1, Mz)’ auc=0.986

uuuuuuuuuu

False alarm rate
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Combination Results on Test Set

True positive rate

M1: HMM(N=200), auc=0.919
| ME: HMM(N=20), auc=0.818
/| —e—IBC(M_, M,), auc=0.977

s Creech & Hu 2013, auc=0.954
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False alarm rate
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Combination of HMM and STIDE

Responses
HMM 4 N
[(N:ZOO) N [Anomaly}
IBC >
STIDE J
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Combination Results on Validation Set
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Combination Results on Test Set

True positive rate

M. : HMM(N=200), auc=0.919
ME: STIDE(WS=5), auc=0.962
—e— IBC(M,, M,), auc=0.987

----- Creech & Hu 2013, auc=0.954
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Research Threads
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TotalADS

» TotalADS is an integrated Anomaly Detection
System Environment
= Eclipse Plug-in,
= Open Source
= Based on TMF (Tracing and Monitoring Framework)
= Supports STIDE, HMM, KSM, IBC
= Supports a combination of classifiers
= Supports trace analysis and forensic analysis
» Supports CTF (Common Trace Format)
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Architecture
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Future Plans

Continue experimenting with KSM and IBC on
other datasets (preferably generated at DRDC)

Combine additional detectors using IBC
Start working on adaptive/incremental learning
Continue improving the maturity level of TotalADS

Integrate this work with work done at other
universities

Transfer knowledge to DRDC & Ericsson
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