
Software System Observability: Challenges
and Opportunities

Prof. Wahab Hamou-Lhadj
Concordia University

Montréal, QC, Canada
wahab.hamou-lhadj@concordia.ca

Keynote Presentation

International Conference on Wireless, Intelligent, and Distributed
Environment for Communication (WIDECOM)

October 13-15, 2021

User vs. Operational Data

▪ User data describes information

about users.

▪ E.g. social media data, user

preferences, geo-location data,

images, etc.

▪ Applications include marketing

campaigns, fraud detection, image

recognition, etc.

2

User vs. Operational Data

▪ Operational (machine) data

describes information about a

system (or a machine)

▪ It is collected automatically from

devices, IT platforms, applications

with no direct user intervention.

▪ Useful for diagnosing service

problems, ensuring reliability,

detecting security threats,

improving operations, and so on.

3

Operational Data for Software-

Intensive Systems

▪ New trends in SW dev. make this

challenging:

▪ Highly distributed and parallel systems

▪ Micro-service architectures

▪ Virtualisation and containerization

▪ Device connectivity and IoT

▪ Cyber physical systems

▪ Intelligent and autonomous systems

▪ Agile, DevOps, and continuous

delivery processes

4

▪ The proper functioning of software-intensive systems

relies heavily on operational data to diagnose and

prevent problems.

Operational Data for Software-

Intensive Systems

▪ New trends in SW dev. make this

challenging:

▪ Highly distributed and parallel systems

▪ Micro-service architectures

▪ Virtualisation and containerization

▪ Device connectivity and IoT

▪ Cyber physical systems

▪ Intelligent and autonomous systems

▪ Agile, DevOps, and continuous

delivery processes

5

▪ The proper functioning of software-intensive systems

relies heavily on operational data to diagnose and

prevent problems.

We need better runtime system analysis and fault diagnosis and

prediction methods that provide full visibility of a system’s internal

states.

Software Observability

▪ In control theory:

▪ Observability is “a measure of how well internal

states of a system can be inferred from knowledge of

its external outputs” [Wikipedia]

▪ Software Observability:

▪ A set of end-to-end techniques and processes that

allow us to reason about what a software system

is doing and why by analyzing its external outputs.

6

Monitoring vs Observability

▪ Monitoring:

▪ Tracks known metrics and raises alerts when thresholds are

not met (e.g., 4 golden signals of Google SRE: latency, traffic,

errors, and saturation)

▪ Answers the question: “how is the system doing?”

▪ Helps diagnose known problems

▪ Observability:

▪ Answers the question: “what is the system doing and why?”

▪ Enables to reason about the system by observing its outputs

▪ Helps diagnose known and unknown problems

7

Building Blocks

8

Data

Collection
Execution

Profile
Analytics

Offline and/or real-time analytics

Distributed and

Complex System

in Operation

Operational Data

▪ Logs:

▪ Records of events generated from logging statements inserted

in the code to track system execution, errors, failures, etc.

▪ Different types of logs: system logs, application logs, event

logs, etc.

▪ Traces:

▪ Records of events showing execution flow of a service or a

(distributed) system with causal relationship

▪ Require additional instrumentation mechanisms

▪ Profiling Metrics:

▪ Aggregate measurements over a period of time (e.g., CPU

usage, number of user requests, etc.)

9

10

Source: https://github.com/logpai/loghub/blob/master/Hadoop/Hadoop_2k.log

11

Telecom

Healthcare

Energy

Defense

Manufacturing

Finance

Retail

Education

and more

Logging, Tracing, Profiling Mechanisms

Operational Data

Storage, Processing, Data Analytics, AI,

Visualization, Etc.

Anomaly

Detection
Security

Operational

Intelligence

Failure

Prediction

Compliance

Management

Fault Diagnosis

& Repair

In
d

u
st

ri
es E.

g.
 A

p
p

lic
at

io
n

s
Te

ch
n

o
lo

gy
 a

n
d

 P
ro

ce
ss

es

Scope of Observability

Target System

Emergence of AI for IT Operations

▪ AIOps is the application of AI to enhance IT operations

▪ An important enabler for digital transformation

▪ Building Blocks:
▪ Data collection and aggregation

▪ Pattern recognition

▪ Predictive analytics

▪ Visualization

▪ Applications:
▪ Fault detection and prediction

▪ Root cause analysis

▪ Security

▪ Regulatory compliance

▪ Operational intelligence

12

Beyond Software Systems

13

▪ Using machine data analytics to drive

operational efficiency (a Splunk success

story)

▪ Dubai airport uses machine data to

increase airport capacity

▪ Machine data sources:

▪ Flight schedules,

▪ Wi-Fi network data

▪ Metal detector data

▪ Baggage system

▪ Sensor data (doors, faucets, etc.)

Source: https://www.splunk.com/en_us/customers/success-stories/dubai-airports.html

Characteristics of Logs and Traces

▪ Velocity: the data (in some cases) must be processed in

real time

▪ Volume: mountain ranges of historical data

▪ Variety: captured data can be structured or unstructured

▪ Veracity: captured data must be cleaned

▪ Value: not all captured data is useful

14

A Quick Look at Log Analytics Research

▪ A good list of recent studies is maintained on LOGPAI

Github repository:
▪ https://github.com/logpai/awesome-log-analysis

▪ Focus:
▪ Anomaly detection, data leakage analysis, failure

prediction, failure diagnosis, regulatory compliance

(GDPR), log abstraction and parsing

▪ Techniques:
▪ Deep learning, NLP, taint flow analysis, machine learning,

statistical methods, latent error prediction, mining software

repositories, etc.

15

Our Past and Current Projects

▪ Md Shariful Islam, "On the use of Software Tracing and Boolean

Combination of Ensemble Classifiers to Support Software Reliability and

Security Tasks," Ph.D. Dissertation, 2021.

▪ Korosh K. Sabor, "Automatic Bug Triaging Techniques Using Machine

Learning and Stack Traces," Ph.D. Dissertation, 2020.

▪ Neda E. Koopaei, "Machine Learning and Deep Learning Based

Approaches for Detecting Duplicate Bug Reports with Stack Traces," Ph.D.

Dissertation, 2019.

▪ Fazilat Hojaji, "Techniques to Compact Model Execution Traces in Model

Driven Approach," Ph.D. Dissertation, 2019.

▪ Heidar Pirzadeh, "Trace Abstraction Framework and Techniques," Ph.D.

Dissertation, 2012.

▪ Luay Alawneh, "Techniques to Facilitate the Understanding of Inter-process

Communication Traces," Ph.D. Dissertation, 2012.

16

http://www.ece.concordia.ca/~abdelw/publications.html

Software Tracing and Boolean Combination of

Ensemble Classifiers to Support Software

Reliability and Security Tasks

• PhD Thesis of Shariful Islam in collaboration with Postdoc

Wael Khreich

• Contributions:

• WPIBC: A weighted pruning ensemble of homogeneous

classifiers (HMMs) applied to anomaly detection

• EnHMM: Ensemble HMMs and stack traces to predict the

reassignment of bug report fields

• MASKED: A MapReduce solution for the Kappa-pruned

ensemble-based anomaly detection system

17

WPIBC Using Ensemble HMMs Based on

Boolean Combination

18

TotalADS: Total Anomaly Detection

System Architecture

Boolean Combination Engine

SVM NN KSM

RNN Others

Machine Data

Management

Loading

Streaming

Controller

Control Center

Plots

Reports

Controllers

Statistics

Analysis

IBM CASCON
PEOPLE’S CHOICE
AWARD

S
o
ft
w

a
re

-I
n

te
n
s
iv

e

In
fr

a
s
tr

u
c
tu

re
s

Data Centers
Radio Stations
Smart Grids
IoT Devices

S. S. Murtaza, A. Hamou-Lhadj, W. Khreich, M. Couture, "TotalADS: Automated Software Anomaly Detection System," In
Proc. of the 14th IEEE International Working Conference on Source Code Analysis and Manipulation (SCAM), 201419

https://users.encs.concordia.ca/~abdelw/papers/SCAM14-SCAM.pdf

Automatic Crash/Bug Triaging Techniques

Using Machine Learning and Stack Traces

Duplicate

Bug

Report

Detection

Bug

Severity

Prediction

Route bug

report to the dev

team who is

familiar with the

product and

components

Bug Report

Bug report is

duplicate

Is resolved?

Mark the bug

report as

duplicate

Mark the bug

report as

duplicate and

route it to

developers

No

Yes

Bug report is not duplicate Bug is critical

Bug is not

critical

enough to

be routed

Put bug report

in queue to be

routed when

resources are

available

Bug

Tracking

System

20

▪ PhD Thesis of

Korosh

Koochekian

Sabor

Automatic Crash Triaging Techniques Using

Machine Learning and Stack Traces

Duplicate

Bug

Report

Detection

Bug

Severity

Prediction

Route bug

report to the dev

team who is

familiar with the

product and

components

Bug Report

Bug report is

duplicate

Is resolved?

Mark the bug

report as

duplicate

Mark the bug

report as

duplicate and

route it to

developers

No

Yes

Bug report is not duplicate Bug is critical

Bug is not

critical

enough to

be routed

Put bug report

in queue to be

routed when

resources are

available

Bug

Tracking

System

21

▪ DURFEX:

Efficient detection

of duplicate bug

reports

Automatic Crash Triaging Techniques Using

Machine Learning and Stack Traces

Duplicate

Bug

Report

Detection

Bug

Severity

Prediction

Route bug

report to the dev

team who is

familiar with the

product and

components

Bug Report

Bug report is

duplicate

Is resolved?

Mark the bug

report as

duplicate

Mark the bug

report as

duplicate and

route it to

developers

No

Yes

Bug report is not duplicate Bug is critical

Bug is not

critical

enough to

be routed

Put bug report

in queue to be

routed when

resources are

available

Bug

Tracking

System

22

▪ Automatic

prediction of bug

report severity

Automatic Crash Triaging Techniques Using

Machine Learning and Stack Traces

Duplicate

Bug

Report

Detection

Bug

Severity

Prediction

Route bug

report to the

dev team who

is familiar with

the product

and

components

Bug Report

Bug report is

duplicate

Is resolved?

Mark the bug

report as

duplicate

Mark the bug

report as

duplicate and

route it to

developers

No

Yes

Bug report is not duplicate Bug is critical

Bug is not

critical

enough to

be routed

Put bug report

in queue to be

routed when

resources are

available

Bug

Tracking

System

23

▪ Automatic

prediction of bug

report faulty

products

components

Detection of Duplicate Bug Reports with

Stack Traces and Sequential Learners

▪ PhD Thesis of Neda E. Koopaei

24

Hidden Markov Models

Generalizable

Automata

Bug/Crash

Report

Repositories

Building datasets of

duplicate bug reports

and their traces

Deep Learning

Algorithms

Trace Abstraction Framework and

Techniques for Program Comprehension

▪ PhD Thesis of Heidar (Amir) Pirzadeh

▪ Goal: To reduce the size of traces while keeping as

much of their content as possible.

▪ Contributions:

▪ Trace segmentation using clustering and Gestalt

principles

▪ Stratified sampling of execution traces

▪ Identification of relevant events of a trace using trace

segmentation and NLP

▪ End-to-end trace abstraction framework

25

26

Trace Abstraction Framework and Techniques

for Program Comprehension

26

Histogram

0

50

100

150

200

250

300

1 5001 10001 15001 20001 25001 30001 35001

Phase 1 Phase 2 Phase 3 Phase 4 Phase 5

Initialization of the system

behind the splash screen

≈ 15000 calls

Loading modules

from input string

≈ 10000 calls

Add a class

diagram

≈ 5000 calls R
e
fr

e
s
h

≈
 2

5
0
0
 c

a
lls

T
e
rm

in
a
te

≈
 2

5
0
0
 c

a
lls

27

Trace Abstraction Framework and

Techniques for Program Comprehension

27

Techniques to Facilitate the Understanding

of Inter-process Communication Traces

▪ PhD thesis of Luay Alawneh

▪ Contributions:

▪ MTF: A scalable exchange format for MPI Traces

▪ A techniques for extracting communication Patterns from

large MPI traces

▪ MPI Trace segmentation using execution phase detection

28

29

About the Practice of Logging

Key Findings

▪ Software logging is pervasive (e.g., around 1 logging

statement in every 30 LOCs).

▪ The average change rate of logging code is almost two

times compared to the entire code.

▪ Logging code is modified very often with one third of

the modifications are after-thoughts.

▪ Developers often have to adjust the verbosity level of

log messages.

▪ Developers do not seem to be aware of the cost of

logging.

30

What about tracing?

▪ There are no known guidelines on when, how, and

where to trace.
▪ Tracing is like doing a detective’s job!

▪ Tracing incurs overhead and requires external

instrumentation tools.
▪ It is often done after the fact depending on the problem.

▪ Continuous tracing is not possible because of the huge

amount of data generated
▪ Sampling is commonly used to reduce the size but causes

other problems.

31

Challenges

▪ Standards and Best Practices:

▪ Lack of guidelines and best practices for logging,

tracing, and profiling

▪ Lack of standards for representing logs, traces, and

metrics (not the OpenTelemetry initiative)

▪ Data Characteristics

▪ Mainly unstructured data

▪ Size is a problem

▪ Not all data is useful

▪ High velocity

32

▪ Analytics and Tools:

▪ Mainly descriptive analytics

▪ Predictive analytics not fully explored

▪ Mainly offline analysis techniques

▪ Lack of usable end-to-end observability tools

▪ Cost and Management Aspects

▪ Cost vs. benefits not well understood

▪ No clear alignment of observability with other initiatives

▪ Roles and responsibilities are not well defined

33

Challenges

▪ Analytics and Tools:

▪ Mainly descriptive analytics

▪ Predictive analytics not fully explored

▪ Mainly offline analysis techniques

▪ Lack of usable end-to-end observability tools

▪ Cost and Management Aspects

▪ Cost vs. benefits not well understood

▪ No clear alignment of observability with other initiatives

▪ Roles and responsibilities are not well defined

34

Challenges

There is a need for systematic and engineering

approaches to software observability that promote best

practices throughout the entire software development

lifecycle

Observability By Design

▪ Bringing observability to early stages of the software

development lifecycle.

▪ Defining a set of observability patterns, best

practices, and reusable solutions to be used as

guiding principles for developers.

▪ A systematic approach to tracing, logging and

profiling of software systems that considers different

phases of the software process.

35

Observability By Design and SDLC

▪ Bringing

observability to

early stages of the

software

development

lifecycle

▪ Cost of

observability can

be assessed during

project planning

36

Requirement
Analysis

Design

Implemen-
tation

Testing

Deployment

Maintenance

OBSERVABILITY

Observability By Design and SDLC

▪ Observability as a

non-functional

requirement

▪ What aspects of

system functional

requirements should

be observable and

how?

37

Requirement
Analysis

Design

Implemen-
tation

Testing

Deployment

Maintenance

OBSERVABILITY

Observability By Design and SDLC

▪ Support of

observability at the

architectural level

▪ Detailed design for

observability

▪ Observability

patterns and best

practices

38

Requirement
Analysis

Design

Implemen-
tation

Testing

Deployment

Maintenance

OBSERVABILITY

Observability By Design and SDLC

▪ What, where, and

how to log and/or

trace?

▪ Use of libraries and

frameworks

▪ Patterns and best

practices

39

Requirement
Analysis

Design

Implemen-
tation

Testing

Deployment

Maintenance

OBSERVABILITY

Observability By Design and SDLC

▪ Testing and

inspection strategies

for logging/tracing

code

40

Requirement
Analysis

Design

Implemen-
tation

Testing

Deployment

Maintenance

OBSERVABILITY

Observability By Design and SDLC

▪ Deployment,

configuration, and

maintenance

aspects of

observability code

such as updates,

performance

analysis, testing,

persistence, etc.

41

Requirement
Analysis

Design

Implemen-
tation

Testing

Deployment

Maintenance

OBSERVABILITY

A Governance Framework for

Observability By Design

42

Governance

People Process Technology

Goals and objectives, Strategic alignment, KPIs,

Training

Roles &

responsibilities

(observability

specialists)

Process maps

Process

compliance

AI

Big data

Tools &

platforms

Continuous

Improvement
Best

Practices

Maturity Level

Assessment

Conclusion

▪ Complex systems require sound mechanisms to ensure

that they operate as intended and to detect/predict

problems.

▪ I presented SW system observability as one such

mechanism.

▪ Observability relies on processing and analyzing

operational data

▪ The current practice is ad hoc and to take full advantage

of operational data, we need to move towards

systematic approaches for observability.

▪ Observability By Design with its governing framework is

one possible solution

43

44

Contribution 1: Weighted Pruning Boolean Combination Rules that1.1. enforces the diversities among the combined soft and crisp detectors

1.2. can be used with both pair-wise and iterative Boolean combination techniques

1.4. outperforms BBC2, IBC, and PBC Boolean combination techniques

Wahab Hamou-Lhadj, PhD, ing.

Professor

Dept. of Electrical and Computer Engineering

Gina Cody School of Engineering and
Computer Science

Concordia University

wahab.hamou-lhadj@concordia.ca

http://www.ece.concordia.ca/~abdelw

Contact Information

