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User vs. Operational Data

▪ User data describes information 

about users. 

▪ E.g. social media data, user 

preferences, geo-location data, 

images, etc.

▪ Applications include marketing 

campaigns, fraud detection, image 

recognition, etc.
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User vs. Operational Data

▪ Operational (machine) data 

describes information about a 

system (or a machine)

▪ It is collected automatically from 

devices, IT platforms, applications 

with no direct user intervention.

▪ Useful for diagnosing service 

problems, ensuring reliability, 

detecting security threats, 

improving operations, and so on.
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Operational Data for Software-

Intensive Systems

▪ New trends in SW dev. make this 

challenging:

▪ Highly distributed and parallel systems

▪ Micro-service architectures

▪ Virtualisation and containerization 

▪ Device connectivity and IoT

▪ Cyber physical systems

▪ Intelligent and autonomous systems

▪ Agile, DevOps, and  continuous         

delivery processes

4

▪ The proper functioning of software-intensive systems 

relies heavily on operational data to diagnose and 

prevent problems.
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▪ The proper functioning of software-intensive systems 

relies heavily on operational data to diagnose and 

prevent problems.

We need better runtime system analysis and fault diagnosis and 

prediction methods that provide full visibility of a system’s internal 

states.



Software Observability

▪ In control theory: 

▪ Observability is “a measure of how well internal 

states of a system can be inferred from knowledge of 

its external outputs” [Wikipedia]

▪ Software Observability:

▪ A set of end-to-end techniques and processes that  

allow us to reason about what a software system 

is doing and why by analyzing its external outputs.
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Monitoring vs Observability

▪ Monitoring: 

▪ Tracks known metrics and raises alerts when thresholds are 

not met  (e.g., 4 golden signals of Google SRE: latency, traffic, 

errors, and saturation)

▪ Answers the question: “how is the system doing?” 

▪ Helps diagnose known problems

▪ Observability: 

▪ Answers the question: “what is the system doing and why?” 

▪ Enables to reason about the system by observing its outputs

▪ Helps diagnose known and unknown problems
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Building Blocks

8

Data 

Collection
Execution 

Profile
Analytics

Offline and/or real-time analytics

Distributed and 

Complex System 

in Operation



Operational Data

▪ Logs: 

▪ Records of events generated from logging statements inserted 

in the code to track system execution, errors, failures, etc.

▪ Different types of logs: system logs, application logs, event 

logs, etc.

▪ Traces:

▪ Records of events showing execution flow of a service or a 

(distributed) system with causal relationship

▪ Require additional instrumentation mechanisms

▪ Profiling Metrics:

▪ Aggregate measurements over a period of time (e.g., CPU 

usage, number of user requests, etc.)
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Source: https://github.com/logpai/loghub/blob/master/Hadoop/Hadoop_2k.log
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Emergence of AI for IT Operations

▪ AIOps is the application of AI to enhance IT operations

▪ An important enabler for digital transformation

▪ Building Blocks:
▪ Data collection and aggregation

▪ Pattern recognition 

▪ Predictive analytics

▪ Visualization

▪ Applications: 
▪ Fault detection and prediction

▪ Root cause analysis

▪ Security

▪ Regulatory compliance

▪ Operational intelligence
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Beyond Software Systems
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▪ Using machine data analytics to drive 

operational efficiency (a Splunk success 

story)

▪ Dubai airport uses machine data to 

increase airport capacity 

▪ Machine data sources:

▪ Flight schedules, 

▪ Wi-Fi network data

▪ Metal detector data

▪ Baggage system

▪ Sensor data (doors, faucets, etc.)

Source: https://www.splunk.com/en_us/customers/success-stories/dubai-airports.html



Characteristics of Logs and Traces

▪ Velocity: the data (in some cases) must be processed in 

real time

▪ Volume: mountain ranges of historical data

▪ Variety: captured data can be structured or unstructured 

▪ Veracity: captured data must be cleaned

▪ Value: not all captured data is useful
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A Quick Look at Log Analytics Research

▪ A good list of recent studies is maintained on LOGPAI 

Github repository: 
▪ https://github.com/logpai/awesome-log-analysis

▪ Focus: 
▪ Anomaly detection, data leakage analysis, failure 

prediction, failure diagnosis, regulatory compliance 

(GDPR), log abstraction and parsing

▪ Techniques: 
▪ Deep learning, NLP, taint flow analysis, machine learning, 

statistical methods, latent error prediction, mining software 

repositories, etc.
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Our Past and Current Projects

▪ Md Shariful Islam, "On the use of Software Tracing and Boolean 

Combination of Ensemble Classifiers to Support Software Reliability and 

Security Tasks," Ph.D. Dissertation, 2021. 

▪ Korosh K. Sabor, "Automatic Bug Triaging Techniques Using Machine 

Learning and Stack Traces," Ph.D. Dissertation, 2020. 

▪ Neda E. Koopaei, "Machine Learning and Deep Learning Based 

Approaches for Detecting Duplicate Bug Reports with Stack Traces," Ph.D. 

Dissertation, 2019. 

▪ Fazilat Hojaji, "Techniques to Compact Model Execution Traces in Model 

Driven Approach," Ph.D. Dissertation, 2019.

▪ Heidar Pirzadeh, "Trace Abstraction Framework and Techniques," Ph.D. 

Dissertation, 2012.

▪ Luay Alawneh, "Techniques to Facilitate the Understanding of Inter-process 

Communication Traces," Ph.D. Dissertation, 2012. 
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Software Tracing and Boolean Combination of 

Ensemble Classifiers to Support Software 

Reliability and Security Tasks

• PhD Thesis of Shariful Islam in collaboration with Postdoc 

Wael Khreich

• Contributions:

• WPIBC: A weighted pruning ensemble of homogeneous 

classifiers (HMMs) applied to anomaly detection

• EnHMM: Ensemble HMMs and stack traces to predict the 

reassignment of bug report fields

• MASKED: A MapReduce solution for the Kappa-pruned 

ensemble-based anomaly detection system  
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WPIBC Using Ensemble HMMs Based on 

Boolean Combination
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Automatic Crash/Bug Triaging Techniques 

Using Machine Learning and Stack Traces

Duplicate 

Bug 

Report 

Detection

Bug

Severity 

Prediction

Route bug 

report to the dev  

team who is 

familiar with the 

product and 

components

Bug Report 

Bug report is 

duplicate

Is resolved?

Mark the bug 

report as 

duplicate

Mark the bug

report as 

duplicate and 

route it to 

developers

No

Yes

Bug report is not duplicate Bug is critical

Bug is not 

critical 

enough to 

be routed

Put bug report 

in queue to be 

routed when 

resources are 

available

Bug 

Tracking 

System 

20

▪ PhD Thesis of 

Korosh

Koochekian

Sabor



Automatic Crash Triaging Techniques Using 

Machine Learning and Stack Traces

Duplicate 

Bug 

Report 

Detection

Bug

Severity 

Prediction

Route bug 

report to the dev  

team who is 

familiar with the 

product and 

components

Bug Report 

Bug report is 

duplicate

Is resolved?

Mark the bug 

report as 

duplicate

Mark the bug

report as 

duplicate and 

route it to 

developers

No

Yes

Bug report is not duplicate Bug is critical

Bug is not 

critical 

enough to 

be routed

Put bug report 

in queue to be 

routed when 

resources are 

available

Bug 

Tracking 

System 

21

▪ DURFEX: 

Efficient detection 

of duplicate bug 

reports
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▪ Automatic 

prediction of bug 

report severity
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Detection of Duplicate Bug Reports with 

Stack Traces and Sequential Learners

▪ PhD Thesis of Neda E. Koopaei
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Trace Abstraction Framework and 

Techniques for Program Comprehension

▪ PhD Thesis of Heidar (Amir) Pirzadeh

▪ Goal: To reduce the size of traces while keeping as 

much of their content as possible.

▪ Contributions:

▪ Trace segmentation using clustering and Gestalt 

principles

▪ Stratified sampling of execution traces 

▪ Identification of relevant events of a trace using trace 

segmentation and NLP

▪ End-to-end trace abstraction framework
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Trace Abstraction Framework and Techniques 

for Program Comprehension
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Trace Abstraction Framework and 

Techniques for Program Comprehension
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Techniques to Facilitate the Understanding 

of Inter-process Communication Traces

▪ PhD thesis of Luay Alawneh

▪ Contributions:

▪ MTF: A scalable exchange format for MPI Traces

▪ A techniques for extracting communication Patterns from 

large MPI traces

▪ MPI Trace segmentation using execution phase detection
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About the Practice of Logging



Key Findings

▪ Software logging is pervasive (e.g., around 1 logging 

statement in every 30 LOCs).

▪ The average change rate of logging code is almost two 

times compared to the entire code.

▪ Logging code is modified very often with one third of 

the modifications are after-thoughts.

▪ Developers often have to adjust the verbosity level of 

log messages.

▪ Developers do not seem to be aware of the cost of 

logging.
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What about tracing?

▪ There are no known guidelines on when, how, and 

where to trace.
▪ Tracing is like doing a detective’s job!

▪ Tracing incurs overhead and requires external 

instrumentation tools.
▪ It is often done after the fact depending on the problem. 

▪ Continuous tracing is not possible because of the huge 

amount of data generated
▪ Sampling is commonly used to reduce the size but causes 

other problems.
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Challenges

▪ Standards and Best Practices:

▪ Lack of guidelines and best practices for logging, 

tracing, and profiling

▪ Lack of standards for representing logs, traces, and 

metrics (not the OpenTelemetry initiative)

▪ Data Characteristics

▪ Mainly unstructured data

▪ Size is a problem

▪ Not all data is useful

▪ High velocity
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▪ Analytics and Tools:

▪ Mainly descriptive analytics

▪ Predictive analytics not fully explored

▪ Mainly offline analysis techniques

▪ Lack of usable end-to-end observability tools

▪ Cost and Management Aspects

▪ Cost vs. benefits not well understood 

▪ No clear alignment of observability with other initiatives

▪ Roles and responsibilities are not well defined

33
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Challenges

There is a need for systematic and engineering 

approaches to software observability that promote best 

practices throughout the entire software development 

lifecycle



Observability By Design

▪ Bringing observability to early stages of the software 

development lifecycle.

▪ Defining a set of observability patterns, best 

practices, and reusable solutions to be used as 

guiding principles for developers.

▪ A systematic approach to tracing, logging and 

profiling of software systems that considers different 

phases of the software process.
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Observability By Design and SDLC

▪ Bringing 

observability to 

early stages of the 

software 

development 

lifecycle

▪ Cost of 

observability can 

be assessed during 

project planning
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Observability By Design and SDLC

▪ Observability as a 

non-functional 

requirement

▪ What aspects of 

system functional 

requirements should 

be observable and 

how?
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Observability By Design and SDLC

▪ Support of 

observability at the 

architectural level

▪ Detailed design for 

observability

▪ Observability 

patterns and best 

practices
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Observability By Design and SDLC

▪ What, where, and 

how to log and/or 

trace?

▪ Use of libraries and 

frameworks

▪ Patterns and best 

practices
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Observability By Design and SDLC

▪ Testing and 

inspection strategies 

for logging/tracing 

code
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Observability By Design and SDLC

▪ Deployment, 

configuration, and 

maintenance 

aspects of 

observability code 

such as updates, 

performance 

analysis, testing, 

persistence, etc.
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A Governance Framework for 

Observability By Design
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Conclusion

▪ Complex systems require sound mechanisms to ensure 

that they operate as intended and to detect/predict 

problems. 

▪ I presented SW system observability as one such 

mechanism.

▪ Observability relies on processing and analyzing 

operational data 

▪ The current practice is ad hoc and to take full advantage 

of operational data, we need to move towards 

systematic approaches for observability.

▪ Observability By Design with its governing framework is 

one possible solution
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Contribution 1: Weighted Pruning Boolean Combination Rules that1.1. enforces the diversities among the combined soft and crisp detectors

1.2. can be used with both pair-wise and iterative Boolean combination techniques

1.4. outperforms BBC2, IBC, and PBC Boolean combination techniques
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