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Abstract

Most of the existing switching control techniques consider only finite dimensional linear time-invariant systems. In many
practical applications, however, this is not a realistic assumption, and it is essential to take time-delay into consideration in
the modelling as the system to be controlled can be highly sensitive to the delay. In this paper, a multi-model switching
control algorithm is proposed for retarded time-delay systems. It is assumed that the plant is represented by a family of known
multi-input multi-output, controllable and observable linear time-invariant models with multiple delays in the states, and that
a bound on the magnitude of the external inputs and disturbances is available. It is shown that under some mild conditions,
output tracking can be achieved in the given problem setting.

I. INTRODUCTION

In conventional adaptive control design, it is typically assumed that the actual plant is fixed, and can be described by a
linear time-invariant (LTI) model which is unknown, but that a good deal of a priori information on the plant is known;
this information typically includes a knowledge of the upper bound on plant’s order, the relative degree, the sign of the
high-frequency gain, and minimum phase property. There have been some developments made to relax some of the classical
assumptions adopted in conventional adaptive control. For example, some improvements have been made to remove the
required information on the sign of the high-frequency gain [1], [2], [3], and to weaken the other assumptions [4], [5].
However, certain assumptions on the right-half plane zeros are required [6].

The adaptive control of systems via switching methods is a relatively new line of research which was motivated to
weaken the classical a priori information, and can be traced back to [7], in which a number of questions about the classical
assumptions in conventional adaptive control were raised. Switching controllers are nonlinear controllers, which can be
used to stabilize and regulate systems with highly uncertain plant models. This is accomplished by using a dictionary of
controllers, and by switching from one controller to another at appropriate time instants. There has been a considerable
amount of interest towards switching control methods and its applications in the literature recently; e.g., see [8], [9], [10],
[11], [12], [13], [14].

In the adaptive switching control approach using a family of plants, it is typically assumed that the plant is not necessarily
fixed, i.e. the plant may change from one plant model to another; in this case, it is assumed that the plant model belongs
to a known set of models, and so, to implement the adaptive controller, the first step required, is to design (using either a
model based, or an experimental approach) a finite set of controllers which provide the required performance for this set of
plant models [8], [10], [12], [15], [16], [17]. Then, on applying a so called “switching scheme”, each controller is applied
to the plant sequentially, and eventually, in finite time, the switching controller stops switching. This implies that as long as
the plant remains unchanged, the switching controller will remain locked on one of the appropriate controllers which fulfills
the closed-loop performance requirements.

Fu and Barmish [15] considered a compact set of LTI models to represent a plant and imposed an a priori upper bound
on the order of plants in this set. They showed that Lyapunov stability can be achieved in this case, by applying a finite
set of controllers. Davison and Miller [8] reduced this a priori information, to the knowledge required about the order of a
LTI stabilizing compensator. They then simplified the compactness assumption required on the set of possible plant models
to just a finite set of plant models. As a result of this, one can design a high-performance LTI controller, e.g. an optimal
controller, for each plant model in the known set.

In [12], a class of multi-variable switching control algorithms was introduced which does not require a knowledge of the
actual family of plant models. Using this procedure, the only information which is required to be known, is a set of controllers
corresponding to the set of plant models, which contains a stabilizing controller for each plant model. A comprehensive
survey of switching control systems is presented in [18]. These methods can be very effective when wide-band tracking or
disturbance rejection of a physical plant, which can be described by a family of plant models, is required.

All methods described above, assume that the model of the LTI plant being studied is finite dimensional, which is
unrealistic in many “real world” applications, such as chemical processes, biological systems, power networks, formation
flying, communication networks, to name only a few. One should take the effect of delay into account in control design, as
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the stability margin of the overall system can be highly sensitive to delay. In other words, neglecting the effect of delay in
the model of the system can cause degradation of the system performance and may lead to instability. This gives motivation
to the present work, which studies the switching control of LTI plants with uncertain delay.

Controller design for fixed model time-delay systems has extensively been investigated in the literature recently [19],
[20], [21]. In this paper, it is assumed that the plant is described by a continuous-time retarded time-delay LTI model,
which is contained in a specified family of plant models. It is also assumed that a family of controllers has been found
to satisfactorily control the models contained in the known set. A switching control scheme is then proposed that uses the
input-output information of the candidate controllers. The present work is an extension of the switching control scheme
proposed by Miller and Davison in [8] for finite dimensional LTI systems.

This paper is organized as follows. The problem formulation is given in Section II. Then, in Section III, a method is
proposed to obtain an upper-bound signal for the error in two phases. This upper-bound signal is essential in finding the
switching instants which are later used to develop the switching scheme. An illustrative example is presented in Section IV,
which demonstrates the effectiveness of the proposed switching technique. Finally, the concluding remarks are given in
Section V.

II. PROBLEM FORMULATION

Consider a family of p plants P := {P1, . . . ,Pp}. Suppose that each plant Pi, i ∈ p̄ := {1,2, . . . , p}, in the family is a time-
delay, controllable, observable linear time-invariant (LTI) system which is represented by the following retarded differential
equation

ẋ(t) = A0
i x(t)+

m

∑
j=1

A j
i x(t−h j

i )+Biu(t)+Eiω(t)

y(t) = Cix(t)+Fiω(t)

(1)

where x(t) ∈ Rni is the state, u(t) ∈ Rv is the control input, y(t) ∈ Rr is the output, and ω(t) ∈ Rζ is the exogenous
disturbance. h j

i ’s are the delays in the state of the plant Pi, which are assumed to be constant, known and satisfy the
inequality 0 < h1

i < .. . < hm
i := hi . It is also assumed that ω(t) is a bounded piecewise continuous disturbance signal.

Assume now that for each Pi, i ∈ p̄, a high-performance LTI controller Ki is designed with the following state-space
representation (for example, one may use the techniques introduced in [23] and [24])

ż(t) = Giz(t)+Hiy(t)+ Jiyre f (t)
u(t) = Kiz(t)+Liy(t)+Miyre f (t)

(2)

where z(t) ∈ Rl is the state of the controller (it is assumed without loss of generality, that all controllers have the same
order [8]), and yre f is a bounded reference signal. Define also the following vectors

x̃ :=
[

x
z

]
, ũ :=

[
u
ż

]
, ỹ :=

 y
z

yre f


The dynamic feedback control problem corresponding to the pair (Pi, Ki) can now be expressed as the the static feedback
control problem corresponding to the pair (P̃i, K̃i), where P̃i and K̃i are defined by (3) and (4), respectively

ũ = K̃iỹ (3)

˙̃x(t) = Ã0
i x̃(t)+

m

∑
j=1

Ã j
i x̃(t−h j

i )+ B̃iũ(t)+ Ẽiω(t)

ỹ(t) = C̃ix̃(t)+ D̃iyre f (t)+ F̃iω(t)

(4)

where

Ã0
i =

[
A0

i 0
0 0

]
, Ã j

i =
[

A j
i 0

0 0

]
, B̃i =

[
Bi 0
0 I

]

C̃i =

Ci 0
0 I
0 0

 , D̃i =

0
0
I

 , F̃i =

Fi
0
0


Ẽi =

[
Ei
0

]
, K̃i =

[
Li Ki Mi
Hi Gi Ji

]



It is to be noted that all of the roots of the following characteristic equation

∆̃i(s) = det(sI− Ã0
i − B̃iK̃iC̃i−

m

∑
j=1

Ã j
i e−h j

i s) = 0 (5)

lie in the open left-half of the complex plane. The objective of this paper is to propose a switching mechanism so that output
tracking is achieved in the presence of external disturbances. In other words, it is desired to switch between the feedback
gains K̃i at appropriate time instants so that the output error approaches zero as t → ∞.

Remark 1: Throughout this paper and prior to Corollary 2, the only requirement for designing high-performance controllers
is that each Ki stabilizes the corresponding plant Pi. For the stability of time-delay systems, see [22]-[24]. To have exact
tracking results (Corollary 2), more requirements on Ki are expected (Assumption 3).

III. PRELIMINARIES

It is known from the functional differential equations theory [25] that the solution of the retarded state equation

ẋ(t) = A0
i x(t)+

m

∑
j=1

A j
i x(t−h j

i )+ f (t) (6a)

φ(r) = x(r), −hi ≤ r ≤ 0 (6b)

in terms of f (t) and initial function φ(r) can be written as

x(t) = x(φ ,0)+
∫ t

0
Xi(t− τ) f (τ)dτ (7)

where the homogenous part of the solution in (7), i.e. x(φ ,0), is given by

x(φ ,0) = Xi(t)φ(0)+
m

∑
j=1

∫ 0

−h j
i

Xi(t− r−h j
i )A

j
i φ(r)dr (8)

Xi(t) in (7) and (8) is the fundamental matrix for the corresponding retarded state equation which satisfies the following
matrix differential equation [26]

Ẋi(t) = A0
i Xi(t)+

m

∑
j=1

A j
i Xi(t−h j

i )

with the initial condition given by

Xi(r) =

{
Iqi , r = 0
0qi , r ∈ [−hi ≤ r < 0)

, qi := ni + l, i ∈ p̄

where Iqi denotes the qi × qi identity matrix, and 0qi is the qi × qi zero matrix. Furthermore, it is known that there exist
constants αi and λi, so that [25]

‖Xi(t)‖ ≤ αieλit , ∀t > 0, i ∈ p̄ (9)

where ‖.‖ represents the 2-norm of a vector, or the corresponding induced 2-norm of a matrix. As a result, it can be easily
concluded that there exists a constant σi, such that

‖x(φ ,0)‖ ≤ σieλit × max
−hi≤r≤0

‖φ(r)‖, ∀t > 0, i ∈ p̄ (10)

Moreover, consider the characteristic equation corresponding to the retarded state equation (6a) as follows

∆i(s) = det(sI− Ã0
i −

m

∑
j=1

Ã j
i e−h j

i s) = 0

and define λ0i as
λ0i = max{Re{s} : ∆i(s) = 0} (11)

Then, it can be easily verified that λi in (9) is greater than or equal to λ0i [25]. Consequently, If the system given by (6a)
is asymptotically stable, then one can choose λi in (9) as a strictly negative value.

IV. MAIN RESULTS

In this section, the switching control scheme given in [8] is modified to account for the delay in the state of the system.



A. Finding an Upper Bound on the Initial Function

Lemma 1: Suppose that the system (1) is observable. Let the initial function be denoted by φ(r), where r ∈ [−hi,0]. Then
for every arbitrary T > 0 and i ∈ p̄, the matrix Qi(r,T ) defined by

Qi(r,T ) :=
∫ T

0

∫ 0+

−hi

Θi
′(t,τ)Ci

′CiΘi(t,r)dτ dt (12)

is invertible, where

Θi(t,r) := Xi(t− r)δ (r)+
m

∑
j=1

Xi(t− r−h j
i )A

j
i u−1(r−h j

i ) (13)

and Xi(t) is the fundamental matrix for the corresponding retarded differential equation of plant Pi (δ (.) and u−1(.) are
Dirac delta and unit step functions, respectively).

Proof: If u(t) and ω(t) are identically zero in the interval [0,T ], the output of the system (1) can be obtained as follows

y(t) = Ci(Xi(t)φ(0)+
m

∑
j=1

∫ 0

−h j
i

Xi(t− r−h j
i )A

j
i φ(r)dr) (14)

Using (13) and the sifting property of Dirac delta, y(t) can be rewritten as

y(t) = Ci

∫ 0+

−hi

Θi(t,r)φ(r)dr (15)

Multiplying both sides of (15) by Θi
′(t,τ)Ci

′ and integrating over t and τ result in∫ 0+

−hi

∫ T

0
Θi

′(t,τ)Ci
′y(t)dt dτ =

∫ 0+

−hi

∫ T

0
Θi

′(t,τ)Ci
′Ci

∫ 0+

−hi

Θi(t,r)φ(r)dr dt dτ

=
∫ 0+

−hi

[
∫ T

0

∫ 0+

−hi

Θi
′(t,τ)Ci

′CiΘi(t,r)dτ dt]φ(r)dr

From the definition given by (12), the following can be obtained∫ 0+

−hi

∫ T

0
Θi

′(t,r)Ci
′y(t)dt dr =

∫ 0+

−hi

Qi(r,T )φ(r)dr (16)

Suppose now, that Qi(r,T ) is not full-rank for some r0 ∈ [−hi,0]. Then a nonzero vector ϕ0 exists, such that Qi(r0,T )ϕ0 = 0.
Therefore, if y(t) is identically zero for all t ∈ [0,T ], then φ(r) = ϕ0δ (r− r0) and φ(r) = 0 will be two different solutions
for (16). On the other hand, since the system (1) is observable, the equation (16) will have a unique solution for φ(r). This
means that the observability assumption is violated and thus, it can be concluded that Qi(r,T ) should be invertible for all
r ∈ [−hi,0].

Corollary 1: Suppose that the system (1) is observable. If u(t) and ω(t) are identically zero in the interval [0,T ], it
follows that the vector φ(r) given by

φ(r) = Qi
−1(r,T )

∫ T

0
Θi

′(t,r)Ci
′y(t)dt (17)

is the unique solution of (16).
Proof: It follows from Lemma 1 that the inverse of Qi(r,T ) exists and thus, (17) gives a solution for φ(r) in (16). In

addition, from the observability assumption, it can be concluded that this solution must be unique.
It is to be noted that Lemma 1 provides only a sufficient condition for non-singularity of the matrix (12). The matrix

Qi(r,T ) is known as the observability gramian for the time-delay system (1). One can use the methods given in [27] and
[28] to check the observability of time-delay systems.

Lemma 2: Consider the observable system (1), and assume that u(t) = 0 for all t ∈ [0,T ], where T is any arbitrary
positive nonzero value. Then, there exists a constant βi, so that for any arbitrary continuous initial condition φ(r) and every
disturbance ω(t)

max
−hi≤r≤0

‖φ(r)‖ ≤ βi sup
t≥0

‖ω(t)‖+ sup
−hi≤r<0

1
ηi(r)

‖
∫ T

0
Θi

′(t,r)Ci
′y(t)dt‖

where ηi(r) is the smallest singular value of Qi(r,T ), and

βi = sup
−h̄i≤r<0

1
ηi(r)

∫ T

0
‖(

∫ T

t
Θi

′(τ,r)Ci
′CiXi(τ − t)Eidτ)+Θi

′(t,r)Ci
′Fi‖dt (18a)

ϒi(y) = ‖
∫ T

0
Θi

′(t,r)Ci
′y(t)dt‖ (18b)



Proof: Using an approach similar to the proof of Lemma 1, it can be shown that∫ 0+

−hi

∫ T

0
Θi

′(t,r)Ci
′(y(t)−Fiω(t))dt dr =

∫ 0+

−hi

Qi(r,T )φ(r)dr +
∫ 0+

−hi

∫ T

0

∫ t

0
Θi

′(t,r)Ci
′CiXi(t− τ)Eiω(τ)dτ dt dr

Since the system (1) is observable, it follows from Lemma 1 that

φ(r) = Qi
−1(r,T )[

∫ T

0
Θi

′(t,r)Ci
′y(t)dt−

∫ T

0
Θi

′(t,r)Ci
′Fiω(t)dt−ξ (r)]

where
ξ (r) =

∫ T

0

∫ t

0
Θi

′(t,r)Ci
′CiXi(t− τ)Eiω(τ)dτ dt]

or equivalently,

ξ (r) =
∫ T

0

∫ T

τ

Θi
′(t,r)Ci

′CiXi(t− τ)Eiω(τ)dt dτ

=
∫ T

0
[
∫ T

τ

Θi
′(t,r)Ci

′CiXi(t− τ)Eidt]ω(τ)dτ

=
∫ T

0
[
∫ T

t
Θi

′(τ,r)Ci
′CiXi(τ − t)Eidτ]ω(t)dt

Consequently, φ(r) can be obtained as follows

φ(r) =
∫ T

0
Qi

−1(r,T )Θi
′(t,r)Ci

′y(t)dt

−
∫ T

0
Qi

−1(r,T )[Θi
′(t,r)Ci

′Fi +
∫ T

t
Θi

′(τ,r)Ci
′CiXi(τ − t)Eidτ]ω(t)dt

where r ∈ [−hi,0]. By taking the norm of both sides of the above equation, using the related inequalities, and noting that
‖Q−1

i (r,T )‖ = 1/ηi(r), the upper bound for ‖φ(r)‖ given in Lemma 2 is obtained. Note that since the function φ(r) is
assumed to be continuous

max
−hi≤r≤0

φ(r)≤ sup
−hi≤r<0

φ(r)

Remark 2: To find the upper bound function given in Lemma 2, it is not required to obtain the inverse of the observability
gramian matrix Qi(r,T ). This reduces the computational complexity of the proposed switching algorithm. Nevertheless,
integration of matrix exponentials is numerically difficult, in general. It is shown in the following two propositions that the
upper bounds on βi and ϒi(y) in (18) can be found directly without matrix integration.

Proposition 1: The constant βi defined in Lemma 2 satisfies the following inequality

βi ≤ sup
−hi≤r<0

1
ηi(r)

[
∫ T

0

∫ T

t

m

∑
j=1

u−1(r−h j
i )‖A j

i
′
‖αieλi(τ−r−h j

i )u−1(τ − r−h j
i )‖Ci

′‖‖Ci‖αieλi(τ−t)‖Ei‖dτ dt

+
∫ T

0

m

∑
j=1

u−1(r−h j
i )‖A j

i
′
‖αieλi(t−r−h j

i )u−1(t− r−h j
i )‖Ci

′‖‖Fi‖dt]

Proof: Applying triangle inequality to (18a) yields

βi ≤ sup
−hi≤r<0

1
ηi(r)

[
∫ T

0
‖

∫ T

t
Θi

′(τ,r)Ci
′CiXi(τ − t)Eidτ‖dt +

∫ T

0
‖Θi

′(t,r)Ci
′Fi‖dt]

Thus
βi ≤ sup

−hi≤r<0

1
ηi(r)

[
∫ T

0

∫ T

t
‖Θi

′(τ,r)‖‖Ci
′‖‖Ci‖‖Xi(τ − t)‖‖Ei‖dτ dt +

∫ T

0
‖Θi

′(t,r)‖‖Ci
′‖‖Fi‖dt]

It follows from (13) that

βi ≤ sup
−hi≤r<0

1
ηi(r)

[
∫ T

0

∫ T

t

m

∑
j=1

u−1(r−h j
i )‖A j

i
′
‖‖Xi

′(τ − r−h j
i )‖‖Ci

′‖‖Ci‖‖Xi(τ − t)‖‖Ei‖dτ dt

+
∫ T

0

m

∑
j=1

u−1(r−h j
i )‖A j

i
′
‖‖Xi

′(t− r−h j
i )‖‖Ci

′‖‖Fi‖dt]



The following inequality is then resulted from (9)

βi ≤ sup
−hi≤r<0

1
ηi(r)

[
∫ T

0

∫ T

t

m

∑
j=1

u−1(r−h j
i )‖A j

i
′
‖αieλi(τ−r−h j

i )u−1(τ − r−h j
i )‖Ci

′‖‖Ci‖αieλi(τ−t)‖Ei‖dτ dt

+
∫ T

0

m

∑
j=1

u−1(r−h j
i )‖A j

i
′
‖αieλi(t−r−h j

i )u−1(t− r−h j
i )‖Ci

′‖‖Fi‖dt]

Proposition 2: ϒi(y) defined in Lemma 2 satisfies the following inequality

ϒi(y)≤
∫ T

0

m

∑
j=1

u−1(r−h j
i )‖A j

i
′
‖αieλi(t−r−h j

i )u−1(t− r−h j
i )×‖Ci

′‖‖y(t)‖dt

Proof: Applying triangle inequality to (18b) yields

ϒi(y)≤
∫ T

0
‖Θi

′(t,r)‖‖Ci
′‖‖y(t)‖dt

It follows from (13) that

ϒi(y)≤
∫ T

0

m

∑
j=1

u−1(r−h j
i )‖A j

i
′
‖‖Xi

′(t− r−h j
i )‖‖Ci

′‖‖y(t)‖dt

The following inequality can then be obtained from (9),

ϒi(y)≤
∫ T

0

m

∑
j=1

u−1(r−h j
i )‖A j

i
′
‖αieλi(t−r−h j

i )u−1(t− r−h j
i )‖Ci

′‖‖y(t)‖dt

It is shown in the next proposition that the proper choice of T can be very important in computing of Qi(r,T ) more
efficiently.

Proposition 3: If the time interval T is chosen smaller than the smallest delay in the states of each of the models, i.e.
T < min{h1

1,h
1
2, . . . ,h

1
p}, then the matrix Qi(r,T ), −hi ≤ r < 0, can be obtained as follows

Qi(r,T ) = ψ1
i(r,T )+ψ2

i(r,T )

where

ψ1
i(r,T ) =

m

∑
l=1

u−1(r +hl
i)u−1(T −hl

i − r)× [
∫ T

r+hl
i

eA0
i
′tCi

′CieA0
i tdt]e−A0

i re−A0
i hl

i Al
i (19a)

ψ2
i(r,T ) = [A0

i
′
]−1

m

∑
j=1

m

∑
l=1

u−1(r +hl
i)u−1(T −hl

i − r)A j
i
′
× [

∫ T

r+hl
i

eA0
i
′tCi

′CieA0
i tdt−

∫ T

r+hl
i

Ci
′CieA0

i tdt]e−A0
i (r+hl

i)Al
i (19b)

Proof: By substituting (13) into (12), the matrix Qi(r,T ), for −h ≤ r < 0, can be rewritten as

Qi(r,T ) :=
m

∑
l=1

∫ T

0
Xi
′(t)Ci

′CiXi(t− r−hl
i)A

l
iu−1(r +hl

i)dt

+
m

∑
j=1

m

∑
l=1

∫ T

0

∫ 0

−h̄i

u−1(τ +h j
i )A

j
i
′
Xi
′(t− τ −h j

i )Ci
′CiXi(t− r−hl

i)A
l
iu−1(r +hl

i)dτ dt
(20)

If ψ̄ i
1(r) and ψ̄ i

2(r) are defined as below

ψ̄
i
1(r) :=

m

∑
l=1

∫ T

0
Xi
′(t)Ci

′CiXi(t− r−hl
i)A

l
iu−1(r +hl

i)dt

ψ̄
i
2(r) :=

m

∑
j=1

m

∑
l=1

∫ T

0

∫ 0

−h̄i

u−1(τ +h j
i )A

j
i
′
Xi
′(t− τ −h j

i )Ci
′CiXi(t− r−hl

i)A
l
iu−1(r +hl

i)dτ dt
(21)

Qi(r,T ) can be written as ψ̄ i
1(r)+ ψ̄ i

2(r). On the other hand, it is known that for t < h1
i ,

Xi(t) = eA0
i tu−1(t) (22)

Substituting Xi(t) given by (22) into (21), one can easily verify that ψ̄ i
1(r) = ψ1

i(r). In addition, ψ̄ i
2(r) can be simplified as

ψ̄
i
2(r) =

m

∑
j=1

m

∑
l=1

A j
i
′
∫ T

0
(
∫ t−h j

i

−h j
i

e−A0
i
′(τ+h j

i )dτ)eA0
i
′tCi

′CieA0
i (t−r−hl

i)Al
iu−1(r +hl

i)dt



or equivalently,

ψ̄
i
2(r) =

m

∑
j=1

m

∑
l=1

A j
i
′
∫ T

0
(
∫ t−h j

i

−h j
i

e−A0
i
′(τ+h j

i )dτ)eA0
i
′tCi

′CieA0
i (t−r−hl

i)u−1(t− r−hl
i)A

l
iu−1(r +hl

i)dt

It follows then by integrating with respect to τ that

ψ̄
i
2(r) =

m

∑
j=1

m

∑
l=1

A j
i
′
∫ T

0
[A0

i
′
]−1(eA0

i
′t − I)Ci

′CieA0
i (t−r−hl

i)u−1(t− r−hl
i)A

l
iu−1(r +hl

i)dt

It can be concluded that

ψ̄
i
2(r) = [A0

i
′
]−1

m

∑
j=1

m

∑
l=1

u−1(r +hl
i)A

j
i
′
[
∫ T

r+hl
i

eA0
i
′tCi

′CieA0
i tu−1(t− r−hl

i)dt−
∫ T

r+hl
i

Ci
′CieA0

i tu−1(t− r−hl
i)dt]e−A0

i (r+hl
i)Al

i

Therefore, ψ̄ i
2(r) = ψ2

i(r). This completes the proof.
Remark 3: The expression obtained for Qi(r,T ) in Proposition 3 involves the standard matrix exponential integrals, for

which a computationally efficient method is introduced in [29]. This substantially reduces the computational requirements
for finding the matrix Qi(r,T ).

B. Finding an Upper Bound for the State

Lemma 3: There exist constants γi1 , γi2 , γi3 , and λi < 0, so that the solution of (4) satisfies

‖x̃(t)‖ ≤ γi1eλit max
−h≤r≤0

‖φ̃(r)‖+
∫ t

0
eλi(t−τ)

γi3‖ω̃(τ)‖dτ +
∫ t

0
eλi(t−τ)[γi2‖ũ(τ)− K̃i(ỹ(τ)− D̃iyre f (τ))‖]dτ

Proof: The retarded differential equation for x̃(t) given by (4) can be rewritten as

˙̃x(t) = (Ãi + B̃iK̃iC̃i)x̃(t)+(Ẽi + B̃iK̃iF̃i)ω̃(t)+ B̃i[ũ(t)− K̃i(ỹ(t)− D̃iyre f (t))]+
m

∑
j=1

Ã j
i x̃(t−h j

i ) (23)

One can express x̃(t) using an equation similar to (7), as follows

x̃(t) = x̃(φ̃ ,0)+
∫ t

0
X̃i(t− τ){(Ẽi + B̃iK̃iF̃i)ω̃(τ)+ B̃i[ũ(τ)− K̃i(ỹ(τ)− D̃iyre f (τ))]}dτ

where X̃i(t), i ∈ p̄ is the fundamental matrix for the retarded state equation in (23). Consequently, it can be concluded that
‖x̃(t)‖ satisfies the following inequality

‖x̃(t)‖ ≤ ‖x̃(φ̃ ,0)‖+
∫ t

0
‖X̃i(t− τ)‖‖Ẽi + B̃iK̃iF̃i‖‖ω̃(τ)‖dτ +

∫ t

0
‖X̃i(t− τ)‖‖B̃i‖‖ũ(τ)− K̃i(ỹ(τ)− D̃iyre f (τ))‖dτ

It is known that there exist constants αi, λi, and σi such that the following inequalities hold

‖X̃i(t)‖ ≤ αieλit (24)

‖x̃(φ ,0)‖ ≤ σieλit × max
−hi≤r≤0

‖φ̃(r)‖ (25)

Since the closed-loop system in (23) is asymptotically stable (because it corresponds to the pair (P̃i, K̃i)), all of its poles
given by the roots of the characteristics equation of (5) lie in open right-half plane. Therefore, λi can be chosen strictly
negative. The upper bound for ‖x̃(t)‖ is then obtained from (24) and (25), as follows

‖x̃(t)‖ ≤σieλit max
−hi≤r≤0

‖φ̃(r)‖+
∫ t

0
αieλi(t−τ)‖Ẽi + B̃iK̃iF̃i‖‖ω̃(τ)‖dτ

+
∫ t

0
αieλi(t−τ)‖B̃i‖‖ũ(τ)− K̃i(ỹ(τ)− D̃iyre f (τ))‖dτ

The proof follows by choosing

γi1 = σi

γi2 = αi‖B̃i‖
γi3 = αi‖Ẽi + B̃iK̃iF̃i‖

Lemma 4: Assume that σi and λi satisfy (25) and let αi be equal to
√

qiσi. Then the following inequality holds

‖X̃i(t)‖ ≤ αieλit



Proof: It is known that
‖X̃i(t)‖ ≤ ‖X̃i(t)‖F (26)

where ‖.‖F denotes the Frobenius norm. On the other hand,

‖X̃i(t)‖2
F =

qi

∑
s=1

‖x̃(φ̃ s
i ,0)‖2 (27)

where φ̃ s
i , s = 1,2, . . . ,qi and i ∈ p̄, is defined as follows

φ̃
s
i (r) =

{
es, r = 0
0qi , r ∈ [−hi,0)

The vector es in the above definition is the sth column of the qi×qi identity matrix. In addition, from (25)

‖x̃(φ̃s,0)‖2 ≤ σ
2
i e2λit (28)

for all s = 1, . . . ,qi. The following inequality is directly obtained from (27) and (28)

‖X̃i(t)‖2
F ≤ qiσ

2
i e2λit (29)

The proof follows immediately from (26) and (29).
The following procedure can be used to obtain the constants λi, σi, and αi such that the inequalities (24) and (25) in

Lemma 3 hold.
1) Use the Mikhailov diagram [30] to find the smallest negative value for λi.
2) Find the constant σi, based on the value obtained for λi in step 1 and by using the following relations [30]:

σi =
√

αi2
αi1

, αi1 = λmin(Ri),

αi2 = λmax(Ri)+
m

∑
j=1

h j
i λmax(S

j
i )

where Ri and Q j
i , j = 1, . . . ,m, which are real qi×qi positive-definite matrices, satisfy the LMI conditions given below

M(Ri,S1
i , . . . ,S

m
i )−2λiN(Ri) < 0, i ∈ p̄

The matrices M and N in the left side of the above inequality are given by

M(Ri,S1
i , . . . ,S

m
i ) := Ai

′RiEi +Ei
′RiAi +diag

{
m

∑
j=1

S j
i ,−e−2λih1

i S1
i , . . . ,−e−2λihm

i Sm
i

}
and

N(Ri) := diag{Ri,0qi , . . . ,0qi}

where
Ai = [Ã0

i + B̃iK̃iC̃i Ã1
i · · · Ãm

i ], Ei = [Iqi 0qi · · · 0qi ]

3) Use the results of Lemma 4 and σi given in step 2, find αi.

C. Switching Algorithm

It is desired now to develop a switching control strategy. Suppose that the constants α j, β j, σ j, λ j, γ j1 , γ j2 and γ j3 , j ∈ p̄,
are all chosen such that Lemmas 2 and 3 both hold. Assume also that h := max{h1, . . . ,hp}. The proposed switching scheme
consists of two phases.

Phase 1: Finding the bound on the initial function. It is assumed that ũ(t) = 0 for t ∈ [0,T ] for any arbitrary positive
(nonzero) T and, z(0) = 0. Define

ρ j := sup
−h j≤r<0

1
η j(r)

‖
∫ T

0
Θ j

′(t,r)C j
′y(t)dt‖

where j ∈ p̄. Suppose that ‖ω(t)‖ ≤ b̄, and let the following auxiliary signals for t ∈ [0,T ] be defined

ṙ j = λ jr j(t)+ γ j2‖K̃ j(ỹ(t)− D̃ jyre f (t))‖+ γ j3 b̄

with the initial condition r j(0) = 0 . Define also
µ j := ρ j +β jb̄ (30)



If the plant is P j, then it follows from Lemma 2 that

max
−h j≤r≤0

‖φ̃(r)‖ ≤ µ j

Phase 2: Searching the gains. Let the control input be

ũ(t) = K̃iỹ(t), t ∈ (ti, ti+1]

Consider the following p auxiliary signals

ṙ j(t) = λ jr j(t)+ γ j2‖ũ(t)− K̃ j(ỹ(t)− D̃ jyre f (t))‖+ γ j3 b̄

with r j(T +) = r j(T )+ γ j1eλ jT µ j, j ∈ p̄, and let the filtered signal be given by

˙̃r(t) = λ̃ r̃(t)+(λ − λ̃ )‖ỹ(t)− D̃yre f (t)‖, r̃(T ) = 0

where λ := min{λi : i ∈ p̄} and λ̃ < λ . It is to be noted that since the matrix D j is considered the same for all plant models,
it is simply denoted by D̃ in the above equation. r j(t) gives an upper bound on the norm of the state for t ≥ T when the
plant is P j. Moreover, r̃ filters ỹ− D̃yre f to obtain a smooth error signal. Therefore, the switching instants are recursively
defined as follow: set t1 := T , and for any i ∈ {2, . . . , p+1} define ti as

min{t ≥ ti−1| there exist a time t̃ ∈ [T, t], for which r̃(t̃) = ‖C̃i−1‖ri−1(t̃)+‖F̃i−1‖b̃+ ε}

where ε is any arbitrary (small) positive number.

D. Properties of the Proposed Switching Controller

Lemma 5: Suppose that λ̃ < λ ≤ λ j < 0, γ1 ≥ 0, γ2 ≥ 0, φ1(.)≥ 0, φ2(.)≥ 0,

v̇1(t) = λ jv1(t)+φ1(t), v1(0)≥ 0

v̇2(t) = λ̃v2(t)+(λ − λ̃ )φ2(t), v2(0) = 0.

If φ2(t)≤ γ1v1(t)+ γ2 for t ≥ 0, then v2(t)≤ γ1v1(t)+ γ2 for t ≥ 0 as well.
Theorem 1: Suppose that yre f (t) and ω(t) are bounded piecewise continuous signals, and that ‖ω(t)‖ ≤ b̄ for t ≥ 0. For

any continuous initial function φ(r), r ∈ [−h,0], the closed-loop system under the proposed switching algorithm has the
following properties:

i) the gain eventually remains constant at an element of {K̃i : i ∈ p̄}.
ii) the state x̃(t) is bounded.

Proof: Let yre f (t), ω(t) be piecewise continuous signals. Assume that ‖ω(t)‖ ≤ b̄ for t ≥ 0. Let φ(r) be any arbitrary
initial function. Suppose now that the real plant is P j, j ∈ p̄. It follows from Lemma 2 and the definition of µ j in (30), that
max−h j≤r≤0 ‖φ̃(r)‖ ≤ µ j. Now, using the result of Lemma 3

‖x̃(t)‖ ≤ γ j1eλ jt max
−h≤r≤0

‖φ̃(r)‖+
∫ t

0
eλ j(t−τ)[γ j2‖ũ(τ)− K̃ j(ỹ(τ)− D̃ jyre f (τ))‖+ γ j3‖ω̃(τ)‖]dτ

for t > T . Consequently,

‖x̃(t)‖ ≤ γ j1 µ jeλ jt +
∫ t

0
eλ j(t−τ)[γ j2‖ũ(τ)− K̃ j(ỹ(τ)− D̃ jyre f (τ))‖+ γ j3 b̄]dτ

Thus, for t > T
‖x̃(t)‖ ≤ r j(t) (31)

and hence
‖ỹ(t)− D̃ jyre f (t)‖ ≤ ‖C̃ j‖r j(t)+‖F̃j‖b̃

It follows from Lemma 5 that for t > T ,
r̃(t)≤ ‖C̃ j‖r j(t)+‖F̃j‖b̃

Therefore, it can be concluded that the first property holds. It remains to show that x̃(t) is bounded. From (31) it follows
that one suffices to show that r j is bounded. Let the final gain be K̃i. Since yre f (t), ω(t) are bounded piecewise signals,
ri(t) is also bounded. This leads to the boundedness of r̃(t). On the other hand, for t ≥ T∫ t

T
eλ j(t−τ)(λ − λ̃ )‖ỹ(τ)− D̃yre f (τ)‖dτ = r̃(t)+(λ j − λ̃ )

∫ t

T
eλ j(t−τ)r̃(τ)dτ

Thus,
sup
t>T

∫ t

T
eλ j(t−τ)‖ỹ(τ)‖dτ < ∞



This results in the boundedness of r j(t).
The following two assumptions will be used to achieve zero tracking error for a pre-specified set of reference inputs and

disturbances.
Assumption 1: The entries of yre f (t) and ω(t) are assumed to be described by the following differential equation

(.)(ν) +ξν−1(.)(ν−1) + . . .+ξ1(.)(1) +ξ0(.) = 0 (32)

with independent initial conditions. Moreover, the roots of

sν +ξν−1sν−1 + . . .+ξ1s+ξ0 = 0 (33)

are assumed to be distinct and purely imaginary.
Assumption 2: For every i, l ∈ p̄, the matrix K̃l has the property that the roots of the following equation do not lie on the

imaginary axis

∆i(s) = det(sI− Ã0
i − B̃iK̃lC̃i−

m

∑
j=1

Ã j
i e−h j

i s) = 0

Condition of Assumption 2 implies that K̃l is designed such that the error signal, when the plant is P̃i, can be written in
terms of strictly growing or strictly decaying exponentials and not sinusoids or constants.

Assumption 3: Suppose that controllers Ki are designed such that each of them solves the servomechanism problem for
the corresponding plant Pi, i.e. Ki is chosen in such a way that exact tracking of yre f is achieved despite the existence of
external disturbances in the system. Similar to finite-dimensional case [31], one should first design a servo-compensator,
which in fact augments the poles of (32) to the open loop system, and then try to find a stabilizing controller for the
plant and servo-compensator combination. It can be shown for both finite and infinite-dimensional cases such a controller
configuration has the property that the zeros of each entry in the transfer function from the reference and the disturbance to
the error includes all the roots of (33).

Corollary 2: Consider the system (1) and suppose that the conditions of Assumptions 1, 2 and 3 hold. In addition, assume
that ‖ω(t)‖≤ b̄ for t ≥ 0. Then, for any continuous initial function φ(r), r ∈ [−h,0], the error signal e(t) resulted by applying
the proposed switching scheme approaches zero as t → ∞.

Proof: Let yre f and ω be such that any of its elements satisfies (32). It is known from theorem 1 that the gain eventually
remains constant and x̃ and ỹ are bounded. By Assumption 2, the final gain, say K̃i, is such that the final LTI closed loop
system has no poles on the imaginary axis. In addition, from Assumption 3, it follows that E(s) (the Laplace transform
of e(t)) does not have any pole at each root of (33). Therefore, the error is a sum of weighted exponentials corresponding
to poles of the closed loop system, none of which lie on the imaginary axis. Then, it follows from the boundedness of e
(which follows from the boundedness of ỹ) that only the exponentials which decay to zero have non-zero weights. Hence,
e(t)→ 0 as t → ∞, as required.

Remark 4: It is to be noted that the system may lock onto a stabilizing controller, which is not necessarily the high-
performance controller designed for the corresponding plant model. However, to avoid this problem, one may use an approach
similar to [32] to design the controllers such that each one stabilizes only one of the plant models.

V. NUMERICAL EXAMPLE

Consider the following single-input single-output system

ẋ1(t) = x2(t)+ x2(t−h0)+u(t)+ω(t)
ẋ2(t) =−2x1(t)−3x2(t)
y(t) = cx1(t)

(34)

A family of three plant models is considered as follows

P1 : h0 = 0.1, c = 1
P2 : h0 = 0.6, c = 1
P3 : h0 = 0.1, c =−1

yre f is assumed to be a square wave of magnitude 1 and period 4 sec. Let the following PI controllers be used to achieve
reference tracking and disturbance rejection

K1 : ż = e, u = 12z+6e

K2 : ż = e, u = 16z+8e

K3 : ż = e, u =−12z−6e
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Fig. 1. Output response for the system (34), using the proposed switching scheme.
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Fig. 2. Switching control sequence for the numerical example.

Suppose that ω(t) = 0, and choose T in phase 1 equal to 0.1 sec. This implies that for t ∈ [0,0.1] (i.e., during phase 1),
the control signal applied to the system is identical to zero, and immediately after that different controllers are examined.
The system will first switch to the controller K1. Since this is not the stabilizing controller for P3, the error will hit the
upper bound signal and thus, the system will switch to the controller K2. This will also destabilize the plant and eventually
at time 0.29 sec, the system will switch to the stabilizing controller K3. Figure 1 depicts the output response of the system
and Figure 2 gives the switching sequence. It is to be noted that in the above switching sequence, the plant will examine
two destabilizing controllers K1 and K2 but as it can be seen from Figure 1, the resultant transient magnitude is about 3.5
which is good.

Assume now that at t = 5 sec, the plant changes from P3 to P1. As a result, the error will hit its corresponding upper
bound signal in about 0.15 sec and the system will then switch to K1, which is the stabilizing controller for P1. It is to be
noted that one of the shortcomings of most switching control schemes is the large magnitude of the transient response. One
can use the multi-layer switching mechanism introduced in [33] to improve the transient response.

VI. CONCLUSIONS

In this paper, adaptive switching control of retarded time-delay LTI systems is considered. A switching control scheme is
proposed to stabilize and regulate the system, which is an extension of the method introduced by [8] for finite dimensional
LTI systems. In this switching control scheme, it is assumed that the plant can be described by a family of retarded time-
delay LTI models, and that a set of high-performance controllers has been obtained, so that the actual plant model can be
stabilized and regulated by at least one controller contained in this set. The simulation results demonstrate the effectiveness
of the proposed scheme.
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