Final April 13, 2002
Answer all questions
Calculators are allowed
Use The SPICE parameters and the Design rules provided in all of your calculations when needed

```
================================================================
```

Question 1 (10 Marks)
a) Layout the smallest inverter according to the design rules given in Appendix 1. Place a contact to each of the drain, source and gate to Metal 1. Identify each layer clearly. Indicate all dimensions on the layout.
b) Determine the effective gate capacitance.
c) Determine the effective drain capacitance.

Question 2 (12 Marks)

A Voltage Transfer Characteristic (VTC) of a CMOS inverter is shown in Fig. 1 Determine:
a) $\mathrm{V}_{\mathrm{OH}}, \mathrm{V}_{\mathrm{oL}}, \mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{IL}}$ and the Noise Margins of the gate
b) If the Temperature is increased by $\Delta \mathrm{T}$, how the shape of the VTC will change ? Explain your answer in terms of βn and β p.
c) Sketch the switching current on the VTC and determine its maximum value in terms of $\beta \mathrm{n}$ and $\beta \mathrm{p}$.

Fig. 1 VTC of the given gate

Question 3 (12 Marks)

a) A vertical cross section of a device is shown in Fig.2. What is this device.
b) Draw the layout of the device, identifying all layers clearly.
c) What would be the conductor width of power and ground wires to a 200 Mhz clock buffer that drives 20 pF load on-chip load to satisfy the metal migration consideration of $\mathrm{J}_{\mathrm{a}}=0.5 \mathrm{~mA} / \mu$? (J_{a} is the current density)
d) What is the ground bounce with the chosen conductor size.?

The module is 500μ from both the power and ground path and the supply voltage is 3.3 volts. Rs= $0.1 \Omega / \square$

Fig. 2, The structure of Q. 3

Question 4 (12 Marks)

Design a 4-input NAND gate giving all transistor dimensions use mobility ratio, $\mu_{\mathrm{r}}=3$.
a) Using complementary CMOS logic. Make $t_{r}=t_{f}$ (ie rise time= fall time)
b) Pseudo nmos using minimum area as objective function. (delay is not important).
c) Using CASCADE logic.

Question 5 (12 Marks)
Fig. 3 is a conditional pass gate. Sizes of transistors are $\mathrm{M} 1=\mathrm{M} 2=$ Wn/Ln=3.6/0.6.
Determine the truth table of the structure.
Assume 0 and 3.3 volts inputs, size M3 transistor for Vol= 0.3 volt. What purpose M3 serves?

Fig. 3 Controlled passgate of Q5
Question 6 (12 Marks)
a) A dynamic register is shown in Fig. 4. Determine the set up time, the hold time and the propagation delay of the register.
b) Design a 4 input Domino Logic AND gate.
c) Using registers similar to Fig. 5 and your designed AND gate design a pipe and determine its speed of operation.

Fig. 4 Dynamic Master-Slave Register of Q6
APPENDIX I
Some CMOSIS 5 design Rules (ALL dimensions in micron, μ)
Poly
Min width 0.6
Min Spacing 0.6
Poly overlap of n/p island over field 0.45
n- island (diffusion)
min width 0.6
max length 50
spacing 0.8
minimum width butting with p-island 0,8
p-island (diffusion)
min width 0.6
max length 50
spacing 0.8
minimum spacing butting with n-island 1.0
n-well
min width 2.2
Active area to n-well spacing 1.5
Contact 1
Required size 0.8 * 0.8
Min enclosure by p or n island. 0.2
Spacing 0.6
Metal 1
Min width 0.6
Min spacing 0.8
Min overlap of contact 1 0.2
Contact 2
Required size 0 .8 * 0.8
Min spacing 0.6
Min spacing to contact 1 0.3
Min enclosure by metal 1 0.2
Metal 2
Min width 0.6
Min spacing 0.8
Min overlap of contact 2 0.2

Appendix II
 SPICE PARAMETERS

$$
\begin{aligned}
& \text {.MODEL CMOSN mos3 type=n } \\
& \text { + PHI=0.700000 TOX=9.6000E-09 XJ=0.200000U TPG=1 } \\
& \text { + VTO=0.6566 DELTA=6.9100E-01 LD=4.7290E-08 KP=1.9647E-04 } \\
& \text { + UO=546.2 THETA=2.6840E-01 RSH=3.5120E+01 GAMMA=0.5976 } \\
& \text { + NSUB=1.3920E+17 NFS=5.9090E+11 VMAX=2.0080E }+05 \\
& \text { ETA=3.7180E-02 } \\
& \text { + KAPPA=2.8980E-02 CGDO=3.0515E-10 CGSO=3.0515E-10 } \\
& \text { + CGBO=4.0239E-10 CJ=5.62E-04 MJ=0.559 CJSW=5.00E-11 } \\
& \text { + MJSW=0.521 PB=0.99 } \\
& \text { + XW=4.108E-07 } \\
& \text { + CAPMOD=bsim XQC=0.5 XPART=0.5 } \\
& \text { * Weff = Wdrawn - Delta_W } \\
& \text { * The suggested Delta_W is 4.1080E-07 } \\
& \text {.MODEL CMOSP mos3 type=p } \\
& \text { + PHI=0.700000 TOX=9.6000E-09 XJ=0.200000U TPG=-1 } \\
& \text { + VTO=-0.9213 DELTA=2.8750E-01 LD=3.5070E-08 KP=4.8740E-05 } \\
& \text { + UO=135.5 THETA=1.8070E-01 RSH=1.1000E-01 GAMMA=0.4673 } \\
& \text { + NSUB=8.5120E+16 NFS=6.5000E+11 VMAX=2.5420E+05 } \\
& \text { ETA=2.4500E-02 } \\
& \text { + KAPPA=7.9580E+00 CGDO=2.3922E-10 CGSO=2.3922E-10 } \\
& \text { + CGBO=3.7579E-10 CJ=9.35E-04 MJ=0.468 CJSW=2.89E-10 } \\
& \text { + MJSW=0.505 PB=0.99 } \\
& \text { + XW=3.622E-07 } \\
& \text { + CAPMOD=bsim XQC=0.5 XPART=0.5 } \\
& \text { + Weff = Wdrawn - Delta_W } \\
& \text { * The suggested Delta_W is 3.6220E-07 }
\end{aligned}
$$

Some Useful Equations

PMOS:
$\left|\boldsymbol{V}_{\boldsymbol{G S}}\right|\left\langle\boldsymbol{V}_{\boldsymbol{t} \boldsymbol{p}}\right|$ - Cut-off,

$$
\beta=\frac{\mu_{n, p} \varepsilon}{t_{O X}}\left(\frac{W_{n, p}}{L_{n, p}}\right)
$$

NMOS:
$\overline{V_{\boldsymbol{G S}}\left\langle V_{\boldsymbol{t n}}\right.}$ - Cut-off

$$
\begin{aligned}
& V_{G S}-V_{t n} \leq V_{D S} \text { - Saturation } \\
& I_{D S}=\frac{1}{2} K_{n}^{\prime} \frac{W}{L}\left(V_{G S}-V_{t n}\right)^{2}\left(1+\lambda V_{D S}\right)
\end{aligned}
$$

$\left|V_{\boldsymbol{G S}}\right|-\left|V_{\boldsymbol{t p}}\right| \leq\left|V_{\boldsymbol{D S}}\right|$ - Saturation
$\left|I_{D S}\right|=\frac{1}{2} K_{P}^{\prime} \frac{W}{L}\left(\left|V_{G S}\right|-\left|V_{t}\right|\right)^{2}\left(1+|\lambda|\left|V_{D S}\right|\right)$
$\boldsymbol{V}_{\boldsymbol{G S}}-\boldsymbol{V}_{\boldsymbol{t n}} \geq \boldsymbol{V}_{\boldsymbol{D S}}$ - Linear
$\left|V_{G S}\right|-\left|V_{t p}\right| \geq\left|V_{D S}\right|-$ Linear $\quad \quad I_{D S}=K_{n}{ }_{n} \frac{W}{L}\left[\left(V_{G S}-V_{t n}\right) V_{D S}-\frac{1}{2} V_{D S}{ }^{2}\right]$
$\left.\left|I_{D S}\right|=K^{\prime}{ }_{P} \frac{W}{L}\left[\left(\left|V_{G S}\right|-\mid V_{t p}\right)\right)\left|V_{D S}\right|-\frac{1}{2}\left|V_{D S}\right|^{2}\right]$

Delay and Power:

$\mathrm{R}=\left(\frac{L}{W}\right)\left(\frac{1}{K\left(V_{G S}-V_{t}\right)}\right):$ Linear region
$\mathrm{R}=\left(\frac{2}{K}\right)\left(\frac{L}{W}\right)\left(\frac{1}{\lambda\left(V_{G S}-V_{t}\right)^{2}}\right):$ Saturation
Body effect equation:
$V_{t(n, p)}=V_{t o(n, p)}+\gamma\left(\sqrt{\left|V_{S B}\right|}\right)$ or expanded below
$\boldsymbol{V}_{t(n, p)}=V_{t o(n, p)}+\gamma\left(\sqrt{2 \phi_{f}+\left|V_{S B}\right|}-\sqrt{2 \phi_{f}}\right)$
$\boldsymbol{t}_{\boldsymbol{r}}=\boldsymbol{K} \frac{C_{L}}{\boldsymbol{\beta}_{\boldsymbol{p}} V_{D D}}, \boldsymbol{t}_{f}=\boldsymbol{K} \frac{C_{L}}{\boldsymbol{\beta}_{\boldsymbol{n}} V_{D D}}, \mathrm{~K}=3 \quad 4$
$t_{d r}=\frac{t_{r}}{2}=A_{P} \frac{C_{L}}{\beta_{p}}, t_{d f}=\frac{t_{f}}{2}=A_{n} \frac{C_{L}}{\beta_{n}}$,
$t_{d}=\frac{t_{d r}+t_{d f}}{2}$, Power: (1) Static: $i_{p} V_{D D}$
(2) Dynamic: (a) switching: $\boldsymbol{P}_{\boldsymbol{d}}=\boldsymbol{C}_{\boldsymbol{L}} \boldsymbol{V}_{\boldsymbol{D} \boldsymbol{D}}{ }^{2} \boldsymbol{f}_{\boldsymbol{p}}$
(b) Short circuit: $\quad P_{s c}=\frac{\beta}{19}\left(V_{D D}-2 V_{t}\right)^{3} \frac{t_{r, f}}{t}$

Delay with Input slope:

$t_{d r}=t_{d r_{-} \text {step }}+\frac{t_{i / p_{-} \text {fall }}}{6}[1-2 p], \quad \mathrm{p}=\frac{V_{t p}}{V_{D D}} \quad t_{d f}=t_{d f_{-} \text {step }}+\frac{t_{i / p_{-} \text {rise }}}{6}[1-2 n], \quad \mathrm{n}=\frac{V_{t n}}{V_{D D}}$
Stage ratio Equations: $\mathrm{F} / \mathrm{O} \mathrm{Y}=\frac{C_{L}}{C_{i n}}=\boldsymbol{S}^{N}, \mathrm{~N}=$ No. of stages, $\mathrm{S}=$ delay between stages

Noise Margins:

$\mathrm{NM}_{\mathrm{L}}=\mathrm{V}_{\text {ILmax }}-\mathrm{V}_{\text {OLmax }}$
$\mathrm{NMH}=\mathrm{V}_{\mathrm{OHmin}}-\mathrm{V}_{\text {Ihmin }}$

Values of some useful constants

Boltzman constant	k	$1.38 * 10^{-23}$	$\mathrm{~J} / \mathrm{K}$
Electron charge	q	$1.6 * 10^{-19}$	C
Thermal voltage	ϕ_{T}	26	$\mathrm{mv}(\mathrm{at} 300 \mathrm{~K})$
Electrical permittivity (vacuum)	ε_{0}	$8.85 * 10^{-14}$	$\mathrm{~F} / \mathrm{cm}$
Permittivity of Si O2	$\varepsilon_{\mathrm{ox}}$	$3.5 * 10^{-13}$	$\mathrm{~F} / \mathrm{cm}$
Permittivity of Si	$\varepsilon_{\mathrm{si}}$	$1.05 * 10^{-12}$	$\mathrm{~F} / \mathrm{cm}$
Magnetic permeability	μ_{o}	$12.6 * 10^{-7}$	$\mathrm{~Wb} / \mathrm{Am}$
Room Temperature	T	$300\left(=27^{0} \mathrm{C}\right)$	K

Winter 2002 — ASIC DESIGN COEN 6511 (solution)

$$
\begin{aligned}
\mathrm{C}_{\mathrm{g}} & =\mathrm{C}_{\mathrm{ox}} \cdot\left(\mathrm{~W}_{\text {eff }} \cdot \mathrm{L}_{\text {eff }}\right)_{\mathrm{n}}+\left(\mathrm{W}_{\text {eff }} \cdot \mathrm{L}_{\text {eff }}\right)_{\mathrm{p}} \\
& =\mathrm{C}_{\mathrm{ox}}\left\{\left[(\mathrm{~W}-\Delta \mathrm{W})_{\mathrm{n}} \cdot(\mathrm{~L}-2 \mathrm{LD})_{\mathrm{n}}\right]+\left[(\mathrm{W}-2 \Delta \mathrm{~W})_{\mathrm{p}} \cdot(\mathrm{~L}-2 \mathrm{LD})_{\mathrm{p}}\right]\right\} \\
& =\left(\varepsilon_{0} \cdot \varepsilon_{\text {sio } 2} / \mathrm{t}_{\mathrm{ox}}\right) \times\{[(1.2-0.4) \times(0.52 \times 0.047)]+[(1.2-2 \mathrm{x} 0.36) \cdot(0.6-2 \times 0.35)]\}
\end{aligned}
$$

Note the $\Delta \mathrm{W}_{\mathrm{p}} \neq \Delta \mathrm{W}_{\mathrm{n}}$ and $\mathrm{LD}_{\mathrm{n}} \neq \mathrm{LD}_{\mathrm{p}}$
$\mathrm{C}_{\mathrm{ox}}=3.5 \times 10^{-15} / \mu \mathrm{m}^{2}$ approximately
$\mathrm{Cg}=3.5 \mathrm{fF} / \mu \mathrm{m}^{2} \times\{(0.8 \times 0.5)+(0.84 \times 0.53)\}$
For p \& n, Drawn L $=0.6 \mathrm{~W}=0.8+0.2+0.2$

Practical minimum size transistor (Drawn)

* Alternatively a value of $\mathrm{W}=0.6 \mu$ could have been chosen

Absolute minimum size Drawn transistor

Q1 c. Area of Drain of p or n transistors
$1.2 \times 1.2 \mu^{2}=1.44 \mu \mathrm{~m}^{2}$ Drawn
Perimeter of Drain pf p or n transistors

$$
\begin{aligned}
& 1.2 \times 4=4.8 \mu \mathrm{~m} \text { Drawn } \\
& \mathrm{Cd}= \mathrm{Cdn}+\mathrm{Cdp} \\
&= {\left[\left(\mathrm{C}_{\mathrm{JA}} \times \mathrm{AD}\right)_{\mathrm{n}}+\left(\mathrm{C}_{\mathrm{JSW}} \times \mathrm{PD}\right)_{\mathrm{n}}\right]+\left[\left(\mathrm{C}_{\mathrm{JA}} \times \mathrm{AD}\right)_{\mathrm{p}}+\left(\mathrm{C}_{\mathrm{JSW}} \times \mathrm{PD}\right)_{\mathrm{p}}\right] } \\
&= {\left[\left(5.62 \times 10^{-4} \times 0.1 .44 \times 10^{-12}\right)+\left(5 \times 10^{-11} \times 34.8 \times 10^{-6}\right)+\left(9.35 \times 10^{-4} \times 1.44 \times\right.\right.} \\
&\left.\left.\quad 10^{-12}\right)+\left(2.9 \times 10^{-10} \times 4.8 \times 10^{-6}\right)\right]
\end{aligned}
$$

Note that $\mathrm{C}_{\mathrm{JAn}} \neq \mathrm{C}_{\mathrm{JAp}}$ and $\mathrm{C}_{\mathrm{JSW}} \neq \mathrm{C}_{\mathrm{JSW}}$
Q2 a. $\quad \mathrm{V}_{\text {OHmin }}=3.3 \mathrm{~V}$ minimum $\quad \mathrm{NM}_{\mathrm{L}}=\left|\mathrm{V}_{\text {ILmax }}-\mathrm{V}_{\text {OLmax }}\right|=1.2-0.7=0.5$
$\mathrm{V}_{\text {OLmax }}=3.3 \mathrm{~V}$ maximum $\mathrm{NM}_{\mathrm{H}}=\left|\mathrm{V}_{\text {OHmin }}-\mathrm{V}_{\text {IHmin }}\right|=3.3-2.2=1.1$
$\mathrm{V}_{\mathrm{IH} \text { min }}=2.1 \mathrm{~V}$ minimum
$\mathrm{V}_{\text {ILmax }}=1.2 \mathrm{~V}$ maximum
Above values are approximate obtained at 2 points

1) $V_{\text {in }}=V_{\text {IH }} \cong 1.2$ and $V_{\text {out }}=V_{\mathrm{OH}} \cong 3.3 \quad d V_{\text {out }} / d V_{\text {in }}=-1$
2) $\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}} \cong 2.1$ and $\mathrm{V}_{\text {out }}=\mathrm{V}_{\text {OL }} \cong 0.7 \quad \mathrm{~d} \mathrm{~V}_{\text {out }} / \mathrm{d} \mathrm{V}_{\text {in }}=-1$

Q2 b. As temperature increases the carrier mobility decreases. Consequently $\beta \mathrm{n} \& \beta \mathrm{p}$ are reduced i.e. $\beta \propto \mathrm{T}^{-1.5}$.
However, VTC depends on $\beta_{\mathrm{n}} / \beta_{\mathrm{p}}$ therefore is not affected greatly keeping the shape the same. However $\mathrm{V}_{\mathrm{tn}} \& \mathrm{~V}_{\mathrm{tp}}$ decrease as temperature increases, therefore VTC moves slightly to the left as temperature increases.

Maximum current occurs at Vinv; Vin = Vo, where both transistors are in saturation region.
$\mathrm{I}_{\mathrm{n}}=-\mathrm{I}_{\mathrm{p}}=1 / 2 \beta_{\mathrm{n}}\left(\mathrm{V}_{\mathrm{gsn}}-\mathrm{V}_{\mathrm{tn}}\right)^{2}$
From VTC, $V_{\text {inv }}=1.5$ (nn 0.65
$\mathrm{I}_{\text {nmax }}=1 / 2 \beta_{\mathrm{n}}\left(1.65-\mathrm{V}_{\text {tn }}\right)^{2}$
If we use the SPICE parameters given, the $\mathrm{I}_{\mathrm{nmax}} \cong 0.5 \beta_{\mathrm{n}}$

Q3 a) According to the cross section. It forms a pn junction, hence it should be a pn diode.
Q3 b)

Q3 c) $\mathrm{f}=200 \mathrm{MHz}, \mathrm{CL}=20 \mathrm{pF} \mathrm{J}_{\mathrm{AL}}=0.5 \mathrm{~mA} / \mu \mathrm{m}$
$\mathrm{P}_{\text {dynamic }}=\mathrm{C}_{\mathrm{TL}} . \mathrm{V}_{\mathrm{DD}} . f$, where $\mathrm{C}_{\mathrm{TL}}=\mathrm{C}_{\mathrm{p}}$ diffusion $+\mathrm{C}_{\mathrm{L}}$
Since we don't know the dimension of the P diffusion and it should be less than C_{L}
(i.e. C_{p} diffusion $\ll C_{L}=20 \mathrm{pF}$), We can ignore C_{p} diffusion and take $C_{T L}=C_{L}=20 \mathrm{pF}$
$\mathrm{P}_{\text {dynamic }}=\mathrm{C}_{\mathrm{L}} . \mathrm{V}_{\mathrm{DD}} . \mathrm{f}=20 \times 10^{-12} \times 3.3^{2} \times 200 \times 10^{6}$ $=0.04356 \mathrm{~W}$
$\mathrm{I}_{\text {dynamic }}=\mathrm{P}_{\text {dynamic }} / \mathrm{V}_{\text {supply }}=0.04356 \mathrm{~W} / 3.3 \mathrm{~V}=0.0132 \mathrm{~A}$

The width of bus (minimum) $=\mathrm{I}_{\text {dynamic }} / \mathrm{J}_{\mathrm{AL}}=0.0132 \mathrm{~A} / 0.5 \mathrm{~mA} / \mu=26.4 \mu \mathrm{~m}$
To be more conservative, take the width of bus $=30 \mu \mathrm{~m}$

Q3 d) The ground bounce is given by $\Delta V=I . R$, where I is the bus current and R is the bus resistance.
$\mathrm{I}=$ Idynamic $=0,0132 \mathrm{~A}$
$\mathrm{R}=\mathrm{R} 0 \times \mathrm{L}_{\text {bus }} / \mathrm{W}_{\text {bus }}=0.1 \Omega \times 500 \mu / 30 \mu=1.67 \Omega$
$\Delta \mathrm{V}=\mathrm{I} . \mathrm{R}=0.0132 \mathrm{~A} \times 1.67 \Omega=0.022 \mathrm{~V}$
Thus, the ground bounce is 0.022 V .
Q4 a) CMOS logic: $\mathrm{F}=(\mathrm{ABCD})^{\prime}$

Consider an equivalent inverter first, $\mu_{\mathrm{r}}=3$. In order to make $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}, \mathrm{W}_{\text {pinv }}=\mu_{\mathrm{r}} \mathrm{W}_{\text {ninv }}$ Take $\mathrm{W}_{\text {ninv }}=\mathrm{W}_{\text {min }}$, then $\mathrm{W}_{\text {pinv }}=3 \mathrm{~W}_{\text {min }}$
All length $\mathrm{L}_{\mathrm{inv}}=\mathrm{L}_{\text {min }}$
Then size the 4-input NAND gate and get the dimensions as following:
$\mathrm{W}_{\mathrm{p}}=3 \mathrm{~W}_{\text {min }}, \mathrm{L}_{\mathrm{p}}=\mathrm{L}_{\text {min }}$, according to the worst case when only one PMOS is "on" to give the logic high output
$\mathrm{W}_{\mathrm{n}}=4 \mathrm{~W}_{\text {min }}, \mathrm{L}_{\mathrm{n}}=\mathrm{L}_{\text {min }}$ because 4 NMOS need to simultaneously be "on" to give the logic low output.

Q4. b) This is a pseudo nmos. A ratioed logic. We have been told that area is important and delay is not important at all. Therefore we aim to minimize area by taking smallest dimension. For the pseudo nmos to work $\mathrm{V}_{\text {OL }}<\mathrm{V}_{\mathrm{tn}}$. In this process $\mathrm{V}_{\mathrm{tn}} \cong$ 0.65 Therefore selecting $\mathrm{V}_{\mathrm{OL}}=0.5$ volt would satisfy our criteria.

Select $\mathrm{W}_{\mathrm{n}}=\mathrm{W}_{\text {min }}$ for all transistors.
then $\mathrm{W}_{\mathrm{n}}=\mathrm{W}_{\text {min }} / 4$ due to series connection
W_{p} effective $=\mathrm{W}_{\text {min }} / 4$ due to $\mu_{\mathrm{r}}=4$
The only parameter that can change without affecting area is L_{p}.

Now for the pseudo nmos to work properly, approximately we say
$\left[R_{n} /\left(R_{n}+R_{p}\right)\right] \times 3.3=0.5$ volts
or $\left\{\left(\mathrm{L}_{\text {min }} / \mathrm{W}_{\text {min }} / 4\right) /\left[\left(\mathrm{L}_{\text {min }} / \mathrm{W}_{\text {min }} / 4\right)+\left(\mathrm{L}_{\mathrm{p}} / \mathrm{W}_{\text {min }} / 4\right)\right]\right\} \times 3.3=0.5$ volt
$[\mathrm{Lmin} /(\mathrm{Lmin}+\mathrm{Lp})] \times 3.3=0.5$
or $\mathrm{L}_{\mathrm{p}}=5.6 \mathrm{~L}_{\text {min }}$ approximately
Q4. c) CASCODE logic

If we want $\mathrm{tr}=\mathrm{tf}$, that is sizing the gate according to the equivalent inverter below:

and $\mathrm{W}_{\mathrm{nA}}=\mathrm{W}_{\mathrm{nB}}=\mathrm{W}_{\mathrm{nC}}=\mathrm{W}_{\mathrm{nD}}=4 \mathrm{~W}_{\text {min }}$
$\mathrm{W}_{\mathrm{nA}}{ }^{\prime}=\mathrm{W}_{\mathrm{nB}}{ }^{\prime}=\mathrm{W}_{\mathrm{nC}}{ }^{\prime}=\mathrm{W}_{\mathrm{nD}}{ }^{\prime}=\mathrm{W}_{\text {min }}$
All lengths of nmoc are $\mathrm{L}_{\text {min }}$
If we want minimum area, then we can size all the transistors with
$\mathrm{W}_{\mathrm{n}}=\mathrm{W}_{\mathrm{p}}=\mathrm{W}_{\text {min }} \& \mathrm{~L}_{\mathrm{n}}=\mathrm{L}_{\mathrm{p}}=\mathrm{L}_{\text {min }}$
But in this case the delay will be larger.
Q5. a) Truth table

X	Y	output
0	0	1
0	1	0
1	0	0
1	1	1

Q5. b) Assume $\mathrm{X}=0, \mathrm{Y}=1(3.3 \mathrm{~V})$, then M 1 "off", M2 is "on" that makes the output be logic
low, and the current acts as pseudo nmos inverter. In this case, M2 is saturated and M2 is linear, according to the conclusion of previous question for an pseudo nmos

$$
\begin{aligned}
& \text { inverter when } \mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{OL}} \\
& \mathrm{~W}_{\mathrm{p}} / \mathrm{W}_{\mathrm{n}}=\left\{2 \mathrm{~K}_{\mathrm{n}}{ }^{\prime}\left[\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{tn}}\right) \times \mathrm{V}_{\mathrm{OL}}-\mathrm{V}_{\mathrm{OL}}{ }^{2} / 2\right]\right\} / \mathrm{K}_{\mathrm{p}}{ }^{\prime} \cdot\left(\mathrm{V}_{\mathrm{DD}}-\left|\mathrm{V}_{\mathrm{tp}}\right|\right)^{2} \\
& \mathrm{When} \mathrm{~V}_{\mathrm{OL}}=0.3 \mathrm{~V}, \\
& \quad \mathrm{~W}_{\mathrm{p}} / \mathrm{W}_{\mathrm{n}}=2 \times 3 \times\left[(3.3-0.6566) \times 0.3-0.3^{2} / 2\right] /(3.3-0.51213)^{2} \cong 0.8 \\
& \text { since } \mathrm{W}_{\mathrm{n}} / \mathrm{L}_{\mathrm{n}}=3.6 / 0.6, \mathrm{~W}_{\mathrm{p}} / \mathrm{L}_{\mathrm{p}}=0.8 \mathrm{~W}_{\mathrm{n}} / \mathrm{L}_{\mathrm{n}}=2.88 / 0.6
\end{aligned}
$$

Thus for M3, in order to get $\mathrm{V}_{\mathrm{OL}}=0.3 \mathrm{~V}, \mathrm{~W}_{\mathrm{M} 3} / \mathrm{L}_{\mathrm{M} 3}=2.88 / 0.6$
Q5. c) The purpose of M3 is that it helps to confirm the output logic "1". If M3 does not exist, then when $\mathrm{X}=0$ and $\mathrm{Y}=0$ the output is not known. Also it acts as a current source. In the same time, nmos pass transistor is not good for transmission of " 1 ". V_{OH} will $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{tn}}$ without M 3 .
When X Y change for $1 \rightarrow 0 \mathrm{M} 3$ keeps output high by compensating the leakage current. Side effects $V_{\text {OL }} \neq 0$ but 0.3 volt.

Q6.

a) $\mathrm{t}_{\text {_set up }}=\mathrm{T} 1+\mathrm{G} 3 \cong \mathrm{G} 3$
$\mathrm{t}_{\text {_hold }}=\mathrm{G} 1+\mathrm{G} 2$ also G 1 above is acceptable $\mathrm{t}_{\mathrm{p}}=\mathrm{t}_{\text {_setup }}+\mathrm{t}_{\text {_hold }}+\mathrm{G} 4$

Q6. b)

Sizing series transistors approximately to obtain $2 \mathrm{~W}_{\text {min }}$ inverter with $\mu_{\mathrm{r}}=3$

$$
\mathrm{t}_{\text {precharge }}=2.2 \mathrm{~T}_{\mathrm{p}}=2.2 \mathrm{R}_{\mathrm{p}} \mathrm{C}_{0}
$$

$$
\mathrm{t}_{\text {AND_series }}=2.2\left[\mathrm{R}_{\mathrm{A}} \mathrm{C}_{0}+\mathrm{R}_{\mathrm{B}} \mathrm{C}_{\mathrm{B}}+\mathrm{R}_{\mathrm{C}} \mathrm{C}_{\mathrm{C}}+\mathrm{R}_{\mathrm{D}} \mathrm{C}_{\mathrm{D}}+\mathrm{R}_{\mathrm{CLK}} \mathrm{C}_{\mathrm{CLK}}\right]
$$

$$
\mathrm{t}_{\text {AND }}=\mathrm{t}_{\text {precharge }}+_{\text {tAND_series }}
$$

Q6. c) Evaluation sampling CLK (during CLK')

Data is transferred \rightarrow to this side during precharge of AND \max frequency $=1 / \tau_{\text {min }}$
$\tau_{\min }=\mathrm{t}_{\text {setup_reg }}+\mathrm{t}_{\text {p_reg }}+\left[\mathrm{t}_{\text {AND_series }}+\mathrm{t}_{\text {precharge }}\right]$
min frequency $=1 / \mathrm{dt}$, where dt is the time for V_{0} to reduce to V_{IH}

$$
\mathrm{C}_{0} \mathrm{dv} / \mathrm{dt}=\mathrm{I}_{\text {leakage }}
$$

$\mathrm{Qrdt}=\mathrm{C}_{0} \mathrm{dv} / \mathrm{I}_{\text {leakage }}$

$$
\mathrm{f}_{\min }=\mathrm{I}_{\text {leakage }} / \mathrm{C}_{0}\left(\mathrm{~V}_{\mathrm{dd}}-\mathrm{V}_{\mathrm{IH}}\right)
$$

*Canadian Microelectronicd Corporation
*CMOSIS5 Design Kit V2.1 for Cadence Analog Artist
*Run=n5bo
*date=1-Feb-1996
*MOS3 models for use in spectre
\#ifdef n5bo

```
.MODEL CMOSN mos3 type=n
+PHI=0.700000 TOX=9.6000E-09 XJ=0.200000U TPG=1
+VTO=0.6566 DELTA=6.9100E-01 LD=4.7290E-08 KP=1.9647E -04
+UO=546.2 THETA=2.6840E-01 RSH=3.5120E+01 GAMMA=0.5976
+NSUB=1.3920E+17 NFS=5.9090E+11 VMAX=2.0080E+05 ETA=3.7180E-02
+KAPPA=2.8980E-02 CGDO=3.0515E-10 CGSO=3.0515E-10
+CGBO=4.0239E-10 CJ=5.62E-04 MJ=0.559 CJSW=5.00E-11
+MJSW=0.521 PB=0.99
+XW=4.108E-07
+CAPMOD=bsim XQC=0.5 XPART=0.5
*Weff = Wdrawn - Delta_W
*The suggested Delta_W is 4.1080E-07
.MODEL CMOSP mos3 type=p
+PHI=0.700000 TOX=9.6000E-09 XJ=0.200000U TPG=-1
+VTO=-0.9213 DELTA=2.8750E-01 LD=3.5070E-08 KP=4.8740E-5
+UO=135.5 THETA=1.8070E-01 RSH=1.1000E-01 GAMMA=0.4673
+NSUB=8.5120E+16 NFS=6.5000E+11 VMAX=2.5420E+05 ETA=2.4500E-02
+KAPPA=7.9580E+00 CGDO=2.3933E-10 CGSO=2.3922E-10
+CGBO=3.7579E-10 CJ=9.35E-04 MJ=0.468 CJSW=2.89E-10
MJSW=0.505 PB=0.99
+XW=3.622E-07
+CAPMOD=bsim XQC=0.5 XPART=0.5
*Weff = Wdrawn -Delta_W
*The suggested Delta_W is 3.220E-07
#endif
```


APPENDIXI

Some CMOSIS 5 design Rules (ALL dimensions in micron, μ)

Poly

Min width ..0.6
Min Spacing ...0.6
Poly overlap of n / p island over field 0.45
n-island (diffusion)
Min width 0.6
Max length 50
Spacing 0.8
Minimum spacing butting with p-island 1.0
n-well
Min width 2.2
Active area to n-well spacing 1.5
Contact 1
Required size 0.8×0.8
Min enclosure by p or n island 0.2
Spacing 0.6
Metal 1
Min width 0.6
Min spacing 0.8
Min overlap of contact 1 0.2
Contact 2
Required size $.0 .8 \times 0.8$
Min spacing 0.6
Min spacing to contact 1 0.3
Min enclosure by metal 1 0.2
Metal 2
Min width 0.6
Min spacing 0.8
Min overlap of contact 2 0.2

Simplified Cmosp35 Design Rules

Thin Oxide Mask (OD) - as a Active or Diffusion Mask
OD.W. 1 Min diffusion width $=0.4 \mu$

OD.S. 1 Spacing between diffusion areas $=0.6 \mu$

Nwell Mask (NW)

NW.W. $1 \quad$ Min Nwell width $=1.7 \mu$

OD.C. 4 Min overlap over diffusion $=1.2 \mu$
OD.C. 3 Min spacing to external diffusion $=2.6 \mu$
(Not Shown)
NW.S. 1 Min Nwell spacing $($ different potential $)=3 \mu$
NW.S. 2 Min Nwell spacing $($ same potential $)=1 \mu$

Polysilicon Mask (PO)

PO.Q. 1 Min poly width $=0.35 \mu$
PO.S. $1 \quad$ Min poly spacing $=0.45 \mu$
PO.O. 1 Min poly gate extension $=0.4 \mu$
PO.C. $1 \quad$ Min poly to diffusion spacing $=0.2 \mu$

$$
|0.35 \mu| 0.45 \mu \mid
$$

P-plus Mask (PP) or N-plus Mask (NP)
PP/NP.O. $1 \quad$ Min overlap over diffusion $=0.45 \mu$
PP/NP.W. $1 \quad$ Min width of PP or $N P=0.6 \mu$
PP/NP.S. $1 \quad$ Min spacing between PP and/or NP $=0.6 \mu$
PP/NP.C. $1 \quad$ Min spacing to unrelated diffusion $=0.35 \mu$

PO.C. $2 \quad$ Min source $/$ drain extension $=0.5 \mu$

Contact Mask (CO)

CO.W. 1
CO.S. 1
CO.E. 2
Min overlap poly or diffusion $=0.2 \mu$
Min $/$ Max contact size $=0.4 \mu \times 0.4 \mu$
Min contact spacing $=0.4 \mu$
$|0.4 \mu|$

$|0.4 \mu|$

CO.C. $1 \quad$ Min spacing to gate poly $=0.3 \mu$

Via 1 Mask (VIAI)

Metal 1 Mask (M1)

$\left.\right|^{0.15 \mu}$

M1.W.1	Min metal width $=0.5 \mu$
M1.S.1	Min metal spacing $=0.45 \mu$
M1.E.1	Min metal extension over contact $=0.15 \mu$

Metal 2 Mask (M2)

M2.W. 1
M2.S. 1
Min metal spacing $=0.5 \mu$
M2.E. 1
Min metal extension over contact $=0.15 \mu$

Poly2 Mask (PO2) — Used for Poly1/poly2 capacitors

