
1

Power Control of High Speed Network
Interconnects in Data Centers

Krishna Kant
Intel Research

Abstract—With continuing speed increases of communication
links found both inside and outside the servers in a data center,
link power management is becoming an important issue. In this
paper we examine width control of such links and show that
it provides substantial benefits over other methods for latency
sensitive applications. The paper also presents the design of a
specific width control algorithm called DWCA (dynamic width
control algorithm) that is effective and easily implemented in
hardware at high data rates.

Keywords: Serial links, power management, link width mod-
ulation, exponential smoothing, latency, performance

I. INTRODUCTION

The communication links deployed in data centers have
continued their march towards higher and higher speeds in
tune with the speed of other elements. This, coupled with the
proliferation of links both inside and outside a server has made
link power management an important issue. Although the topic
of link power control has been dealt with in the literature
(See related work), much of the work relates to shutting
down inactive links at a relatively low rate. In this paper, we
consider the problem of dynamic power control that attempts
to squeeze out power savings for relatively active links without
introducing substantial performance impact. In particular, we
consider dynamic power control of emerging bit-serial ultra
high speed links intended to carry server to server traffic in a
data center. This traffic is likely to be generated by a variety of
applications, some of which could be highly latency sensitive.
Consequently, we examine not only the power savings but also
the power-latency tradeoffs closely.

To put the communication link power consumption in
perspective, note that while the power consumption of a 1 Gb/s
Ethernet is only 1-2 watts, the power consumption of 10 Gb/s
Ethernet can easily exceed 10 watts. In the next several years,
Ethernet speeds are expected to scale up to 40 or 100 Gb/s,
thereby making the power consumption of Ethernet interface
(and associated switching infrastructure) very substantial. At
the same time, the average link utilization – already quite low
– is only expected to go down as the link speeds increase.
This coupled with the fact that the link power consumption
is relatively insensitive to traffic intensity implies that without
aggressive power control links, will burn near 100% of their
rated power while doing very little.

Although Ethernet remains the dominant networking fabric
in data centers, it is by no means the only one to focus upon.
Infiniband has made substantial strides in the data center and
is already available at speeds of 48 Gb/s [5]. Since Infiniband

was designed from ground up to as a data center networking
fabric, it is better suited than the traditional TCP/IP/Ethernet
for high performance applications [8]. PCI-Express (or PCI-E)
was originally designed as a replacement for the aging “inside-
the-box” PCI interconnect [14] and has become universal in
that space. Extensions of PCI-E with capabilities such as
multi-root addressing and peer-to-peer communications make
it useful as an “outside-the-box” fabric as well.1 Fiber Channel
(FC) remains a dominant fabric for storage in data centers and
has already surpassed 10 Gb/s [11]. There are also other niche
fabrics such as Myrinet and QsNet that continue to scale up
in speed and power.

In general, communication links can support three ways of
doing power control: (1) use of one or more (non-operational)
low power states, (2) link width control, where only a portion
of the link is put into a low-power mode, and (3) multiple
operational speeds. In this paper, we focus primarily on (2) and
show that for emerging high-speed links, this technique can
achieve the most power savings with the smallest performance
impact. This focus is justified since all of these fabrics
mentioned above have already moved towards the bit-serial
technology for which width control comes naturally. To the
best of our knowledge, this is the first comprehensive design
and evaluation of dynamic link width control for emerging bit-
serial links and its comparison against the traditional power-
state control.

Although our focus in this paper is on networking fab-
rics, the power management techniques discussed here apply
equally well to interconnects that proliferate inside a server,
e.g., CPU cores interconnect, processor-memory interconnect,
PCI-E links connecting NICs, graphics card, and SAS/SATA
adapters, etc. Power reduction and careful attention to latency
are even more critical for these internal links.

Section II of the paper introduces essential characteristics of
power control algorithms and performance metrics. Section III
discusses design issues for link width control. Section V
discusses the evaluation methodology and shows detailed
performances. Section VI discusses the related work.

II. POWER CONTROL BASICS

A. Serial Links and Networking Fabrics

Until about a decade ago most multi-conductor intercon-
nects (e.g., twisted pair Ethernet, PCI bus, processor-memory

1These and many other capabilities such as packet tunneling were originally
promoted as PCI-E advanced switching. [12] but that did not get much traction
due to inter-operability issues.



2

bus, etc.) used a parallel interface where multiple bits (e.g.,
4, 8, 16, or 32) are transmitted at a time. As the link speeds
increased, the parallel interface became untenable because of a
host of problems including excessive cross-talk between bits,
high capacitance, skew between bit timings, reflections, etc. As
a result, links started a slow transition to bit-serial technologies
with differential signaling. Differential signaling (where the
signal and its complement are sent along a twisted pair of wires
and the receiver detects their difference) can improve signal
quality substantially. With this technology, link BW scaling
is done by running multiple “lanes”. Serial links also admit
dynamic width changes (by putting certain lanes in low power
mode), something that is not practical with parallel links.

Most of the link types mentioned above are already using
bit-serial technology, which has moved rapidly from the orig-
inal GEN1 (2.0 Gb/s) to GEN2 (4.0 or 5.0 Gb/s) to GEN3(8.0
or 10.0 Gb/s). Gen1 uses 8b/10b encoding which makes
the raw speeds of 2.5 GHz deliver only 2.0 Gb/s, but later
generations may or may not using this encoding. However,
running 10 Gb/s over copper is extremely challenging, and
further speed bumps w/o repeaters and signal conditioners
may be questionable at least over long lengths. Therefore, the
BW increases are more likely to be achieved via multi-laning.
For example, the PCI-Express is routinely available in up to
16 lane configurations (denoted as x16). Infiniband has been
available in x4 and x12 configurations. The 10 Gb/s copper
implementations of Ethernet (CX-4 and KX-4) already use
four 2.5 Gb/s lanes. Although the upcoming 40 Gb/s Ethernet
can work with 4 lanes of Gen3 links in the optical domain,
copper implementations may be forced to use 10 lanes of Gen2
links. The 100 Gb/s Ethernet almost surely will have to use
10 lanes of Gen3.

With all networking technologies adopting the serial inter-
face, PHYs are increasingly becoming “re-purposable”, i.e.,
an appropriate set of configurable parameters can make a link
behave like a PCI-E, Infiniband, Ethernet, Fiber-Channel, etc.
This unification implies that it should be possible to provide
a standard set of link power management capabilities for all
link types. In practice, however, the nature and availability of
power management mechanisms will depend on the extent to
which the lower level capabilities are exploited and enabled
at the MAC and perhaps higher layers.

B. Nonoperational Link Power States

The most important aspect in terms of idle power control is
the existence of non-operational, low-power states that can be
entered whenever the resource in question is idle. Generally
there are 3 link power states, usually denoted as L0, L0s and
L1. In the following, we shall denote the power consumption
in state Lx as P (Lx).

1) L0: This is the normal operational state. For most links,
P (L0) has very little dependence on the utilization level,
i.e., an idle link dissipates nearly as much power as one
bursting data at full rate.

2) L0s: This is a non-operational state with P (L0s) <
P (L0) and fairly low latency to enter into or exit from

L0s. We henceforth denote the entry+exit latency for
L0s state as η0. Typically, each direction of the link can
be put in L0s state independently.

3) L1: This is an even lower power state (often much
lower than L0s) but with a significantly higher entry+exit
latency η1. L1 requires a handshake between the two
directions of a bi-directional link. If either side refuses
to go into L1, L1 will not be entered.

Not all links provide both L0s and L1, but when both states
are available, L0s is entered first and if no acitivity is observed
for a period significantly longer than η1, the link is promoted
to L1. It is to be noted that with many links, even η0 is quite
large (e.g., at least 100’s of ns). Thus, without a careful design,
power management of links could result in significant latency
penalty. Of course, the performance impact of the latency
depends on myriad details including the type of link and the
workload [7].

Link width control – or putting certain lanes in L0s state –
comes naturally for multilane serial links. The main advantage
of link width control is that so long some lanes are “up”, the
non-zero communication bandwidth significantly reduces the
impact of high entry+exit latencies.

The PCI-E specification explicitly includes the definition of
L0s and L1 states for each lane. With PHY unification, L0s
and L1 states (and link width control) should be feasible even
for other link types, however, the current availability is spotty
at best. For example, IEEE is currently engaged in an effort
called Energy Efficient Ethernet or EEE that has examined link
state control [4]. However, the currently defined low power
state corresponds to L1 (bidirectional control) and the focus is
more towards slow changes so that the interfaces can be placed
in low power model during long-idle periods. Consequently
the issue of minimizing exit latencies has not been addressed
adequately at this point.

C. Operational Link Power States

When the link is lightly loaded, a potential method for
saving power is to run the link at a lower frequency. The link
speed change impacts both directions of a bidirectional link
and requires negotiation between the ends. Auto-negotiation of
speeds is already available in some link types (e.g., Ethernet),
however, speed bumps may not be simply a matter of changing
clock rate. For example, in case of Ethernet, the original
10 Mb/s version evolved through 100 Mb/s, 1 Gb/s and
then 10 Gb/s with significant changes in terms of collision
detection/avoidance and retry. Thus Ethernet speed change
really amounts to PHY switching, which can be very slow.
The Energy Efficient Ethernet (EEE) project has considered
a rapid PHY switching (RPS) scheme that is more suited for
dynamic speed changes, but it too is designed for dealing with
low traffic over longish intervals (at least a few seconds) [1].

In addition to the long switching latency, speed switching
has two inherent problems that make it less attractive than
link power state and link width control. First, it is generally
better to transmit packets at a high speed and then go into a
low power state instead of “trickling” at a low rate. Second,



3

running a link at very low speed simply because there isn’t
enough traffic could be disastrous. For example, down-rating
a 10 Gb/s link to 100 Mb/s means a 100-fold increase in
packet transmission latency. Such a huge increase in commu-
nication latency could result in significant performance impact
irrespective of the bandwidth utilized.

D. Power Control Effectiveness

When evaluating power control, the two basic metrics to
consider are average efficiency (E) and average additional
latency (L) introduced by the power control. The efficiency
E is defined as the fraction of idle period (or “gap”) for
which an algorithm is able to keep the resource in low power
state (excluding entry and exit periods, which typically burn
L0 level power). Efficiency directly translates into the power
savings. That is, P ′

idle, the average idle power with power
control, can be related to L0 and L0s mode power consumption
by the trivial equation:

P ′
idle = [1− E(Ursrc)]PL0 + E(Ursrc)PL0s (1)

The power control latency L can be anywhere between 0 and
the entry + exit latency η. The upper bound is realized when
the traffic arrives just when the resource begins to enter the
low power state. Generally, there is no way to short-circuit the
process – the resource must enter and then immediately exit
low power state in this case.

For any well designed power control algorithm, a higher
efficiency almost always comes at the cost of a higher latency.
The additional latency is important only to the extent of its
performance impact; thus an appropriate metric is performance
per watt (PpW), where the performance can be defined as the
appropriate measure of workload throughput.

Relating latency to workload throughput is well studied for
certain types of links such as processor-memory links, but
not necessarily for others (e.g., Ethernet links). In all cases,
however, the mechanism is the same: additional latency results
in CPU stall if none of the HW threads can make any progress
due to data or control dependency. Following the standard
approach used in architectural modeling, we can write the
following equation for the workload throughput λ in terms
of the overall data access latency L [6]:

λ =
C Ucpu

1 + βL
(2)

where C and β are appropriate constants. Thus PpW can be
estimated for specific systems and workloads. In this paper,
we however stay at latency control itself, by assuming that
tolerable latencies have been estimated from performance
impact considerations.

E. Link State Control

A power state control algorithm has to make two crucial
decisions: (a) when to go into low-power state, and (b) when
to exit it [15]. Because of the finite entry/exit time to/from
low-power mode, it is undesirable to go into low-power mode
for small gaps (or idle periods). Since the gap duration is not
known in advance, the general technique is to monitor it for

some period, henceforth called runway, and if the resource is
still idle, start transition into low-power mode. The mechanism
to set runway is one aspect of designing power state control
algorithms.

The exit from low power state could be either reactive or
proactive. A reactive exit is directly driven by the arrival of
packets to transmit, and is trivial to implement but results in
full exit latency hit every time. A proactive exit is driven by a
prediction model of future packet arrivals and initiation of exit
in anticipation of arrival. The motivation for a proactive exit is
to minimize exit latency; however, its success depends on how
well future events can be predicted based on the past history.
Reference [7] examines in detail the comparison of proactive
and reactive power control, and presents a comprehensive
evaluation of a simple but effective proactive algorithm called
exponential smoothing algorithm or ESA. The algorithm is
based on exponentially smoothed estimate of next “gap” based
on the past history. The ESA algorithm can be easily designed
to behave as either proactive or reactive algorithm and shows
better behavior than pure reactive algorithms [7]. It can be
implemented in HW with about 4000 gates.

It is important to note here that in order to achieve a
fine granularity power control of multi-Gb/s links, any usable
algorithms must be extremely simple and easily implementable
in HW (e.g., no multiplications/divisions). Moreover, the al-
gorithms should only use information that is readily available
to the interface (e.g., number of waiting requests), instead of
something that needs to be fetched from elsewhere (e.g., cur-
rent CPU utilization). These considerations are also reflected
in the width control algorithm described in the next section.

III. LINK WIDTH CONTROL

A. Width Management Considerations

A multilane link usually allows for certain feasible widths,
and the width control algorithm needs to decide how to
transition between them. For example, for a x10 link, the
possible widths are x1 through x10, but in reality the supported
widths may be only x10, x4, x2 and x1. For convenience in
description, we assume that successive steps are represented
by multiplicative factors between adjacent widths. (In an actual
implementation, additive factors may be more convenient.) We
denote the decrease and increase factors by the vectors δ and
∆ respectively. For example, for the set [x1, x2, x4, x10],
we have ∆ = {2.0, 2.0, 2.5, 1.0} and δ = {1.0, 0.5, 0.5, 0.4}
where the 1.0 entry really means that no change is possible.
Obviously, ∆i = 1/δi+1. Often, it is convenient to talk about
a delta value for a given width W , we shall denote this as
δ(W ) and ∆(W ).

The fundamental decision in link width control is when to
decrease or increase the width. These decisions are based on
an estimate of idle and busy periods in the recent past. We
estimate these via simple exponential smoothing. That is, if
Gn is an estimate of the gap at nth step, gn the actual gap,
and 0 < α < 1 the smoothing constant, we have:

Gn = (1− α) Gn−1 + αgn (3)



4

Similarly, for the busy period Bn, we can write: Bn =
(1 − α) Bn−1 + αbn where bn is the latest busy period. The
parameter α is chosen by considering a tradeoff between
responsiveness and jitteriness of the estimate. A value of
around 1/16 is usually reasonable.

One parameter of interest in width control is the recent link
utilization, which is given by Un = Bn/(Bn + Gn). The
other parameter of interest is the current residual work, i.e.,
time needed to transmit all accumulated packets. Depending on
the link type, residual work may be measured either in terms
of number of packets or number of bytes to be transmitted.
For ease of reference, we shall call both as “queue length”
(denoted Qn at step n) with appropriate interpretation being
implementation dependent.

Let Wn denote the width of the link at nth step, and Wmin,
Wmax the minimum and maximum widths. Usually, Wmin =
1. (Note that Wmin excludes the case where the entire link
will be shut down.) Then the condition for width decrease is
given by:

Wn > Wmin & Gn > γ1 Bn (4)

where γ1 is a constant. The first part of the condition is obvious
and the second part requires the current link utilization to
be sufficiently small, i.e., Un < 1/(1 + γ1). Note that since
queue length is an instantaneous measure, it is inappropriate
to include it in the width decrease condition.

For link width increase, we need an emergency provision; if
a lot of packets arrive suddenly, we must increase the width.
This is done by having a high queue threshold (QHT ). In
normal cases, we require the transmit queue to have some
minimum number of packets [defined by the low threshold
(QLT )] and a sufficiently high link utilization estimate. This
leads to the following width increase condition:

Wn <Wmax &
[
Q>

QHT Wn

Wmax

∣∣∣∣ Q>
QLT Wn

Wmax
& Gn <γ2Bn

]
(5)

where γ2 is another constant (to be addressed shortly). Note
that the equation does not use the queue length thresholds
QHT and QLT directly; instead it scales them by the current
width. The effect of this scaling is to maintain the same latency
threshold as the link width goes down (e.g., 1/2 width link
means double the packet service time but then halving the
queue length threshold means no net impact). Of course, this
mechanism may not have much role to play for small queue
length threshold choices.

An important question in width control is by how much
should the width be changed at each step. For example, if
the current width is x10 and the “right” width to transition
to is x2, we can either jump to x2 directly or go through
the intermediate width of x4. During the development of
the algorithm we considered the following 3 strategies for
changing the width:

1) Cut to Wmin in one step, but increase gradually in steps
given by the vector ∆.

2) Decrease gradually according to the vector δ but increase
to Wmax in one step.

3) Increase and decrease gradually according to the vectors
∆ and δ respectively.

The first scheme is motivated by power consumption being
prioritized over performance, i.e., we immediately cut the
width to minimum value when conditions are ripe, and then
“float up” to the correct width. The second scheme has the
opposite motivation – minimize latency at the cost of power
consumption by restoring the link to full width immediately
and then letting the width “float down”. Finally, the third
scheme balances the two. Based on extensive experimentation
we deemed the last scheme as most suitable and will be used
henceforth (details omitted due to lack of space). Hence only
this scheme is described in the following.

The parameters γ2 and γ1 in the equations above need to be
related for the algorithm to work properly. Suppose that we are
right at the point where Gn/Bn = γ1. Now, if the prevailing
utilization Un dips ever so slightly, we decrease the width by
the factor of δ(W ) (i.e., the δ value at the current width W )
thereby bumping up the utilization by 1/δ(W ). Thus if there
is no further change, the ratio Gn/Bn – after both Gn and
Bn have adjusted to the change – no longer equals γ1, but
something else, say γ′1. It is easy to see:

γ′1 =
1− U/δ(W )

U/δ(W )
, where U =

1
1 + γ1

(6)

Simplifying, we get γ′1 = δ(W )(1 + γ1) − 1. Now, we can
choose γ2 = hγ′1 where h < 1 is the hysterisis parameter
that ensures that the link will not flip-flop. To simplify
multiplication by h, we can assume it to be 1−2−k for k = 1
or k = 2.

As an example, suppose that γ1 = 4 and δ(W ) = 0.5.
Thus when the link utilization hits 1/(1 + γ1) = 20% on its
way down, we halve its width. With no material change in
traffic, the link utilization will now increase to 40%. In this
case, γ′1 = 1.5 and with h = 0.5, the link width will increase
only when Gn > 0.75Bn, or Un > 1/(1 + 0.75) = 57%.
If the width does increase, the resulting utilization would be
28.5% and the utilization would again have to go down to 20%
for a downshift to occur. Thus no link flip-flop can occur.
Although this safety margin may seem somewhat low, note
that the condition Q > QLT Wn/Wmax further protects against
flip-flops.

IV. COMPLETE WIDTH CONTROL ALGORITHM

In this section we use the equations above to craft a
complete dynamic width control algorithm or DWCA. Width
control, as described above, is inadequate by itself for a
complete link power control algorithm for two reasons: (a)
Even at extremely low traffic, it will keep one lane active,
and (b) If the traffic stops suddenly for some long period of
time, the link will get “stuck” at its current width W , i.e., W
lanes will continue to consume full power. To handle both of
these issues, we need a simple power-state control as well. In
particular, whenever the interface goes idle, we start a runway
timer. If the runway expires, the entire link is transitioned to
the low power state. The exit from low power state will be
triggered by packet arrival, at which time the link can go into
its previous width state.

One issue in implementing width control is the conditions
under which width control is invoked. Width decrease is best



5

invoked at the end of a busy period, since there is little reason
to slow down while the packets are still queued up. On the
other hand, the need for width increase should be checked
each time some number, say N , new packets arrive at the
interface. In a HW implementation, however, choosing N > 1
only complicates the implementation w/o offering much in
efficiency. One other point note is that width decrease and
increase behave slightly differently: width decrease can happen
almost immediately after the decrease decision has been made,
but the actual increase happens only after the sleeping lanes
have exited the low power state. The actual width change does
require reconfiguring the multiplexer which makes the entire
link inoperational for a very brief period (1-2 ns).

In order to simplify implementation, multiple simultaneous
increases and decreases may need to be disallowed. For
example, consider a x4 link which can operate in x4, x2 and
x1 modes. Because of long exit latencies, it is possible that
while x1→x2 transition is in progress, the conditions signal
the need for x2→x4 transition. While there is no conflict
between two separate sets of lanes exiting the low power
state concurrently, the HW needs to be either designed to
manage these concurrent exits or concurrent events should be
disallowed. In theory, the same could apply to downshifts as
well, except that entry latencies are typically rather small. It is
even possible that during a x2→x4 transition, the traffic drops
fast enough to trigger a x2→x1 transition. Such a parallel
transition should be disallowed to avoid link flip-flops.

In a HW implementation it is important to avoid expensive
operations such as arbitrary multiplications and divisions.
This requires a judicious choice of parameters such as γ1,
h, QHT /Wmax and QLT /Wmax for equations (4) and (5).
Also, even though in the description we simply called δ as
a “vector”, it is not useful to try to implement it like an
arbitrary array; instead, the implementation will be specific
to the number of distinct δ’s required. By making appropriate
optimizations, it is possible to implement the entire algorithm
in less than 10000 gates, which is reasonably small for most
situations. In particular, a detailed design that we did for the
special case where all delta values are 0.5 takes only 6000
gates and a power consumption in 30-60 milliwatt range with
65nm process.

V. POWER CONTROL PERFORMANCE

For evaluating various power control algorithms, we
designed a comprehensive simulation model called
LMPOWER[9]. LMPOWER represents two platforms
connected via a communication link with each system using
an abstract model of CPU cores and a rather detailed model of
the memory and the interconnect. The model does represent
the impact of latencies on CPU stalls; however, this aspect is
not important for the results shown here. The model could
be driven both using analytically generated traffic as well as
actual link traces. The results shown here focus on analytic
traffic with a finite horizon Zipf(α = 2.25) inter-arrival time
distribution (inter-arrivals times are integers). The actual link
traces show varying degrees of correlational properties in the
traffic; however, to keep the power saving results conservative,

no correlation was dialed into the traffic used here. This is
because positive correlation improves predictability and hence
yields better results.

For the results, we emulated a 40 Gb/s Ethernet link
assuming 10 lanes of serial copper link, each providing 5.0
Gb/s. (With Gen2 technology using 8b/10b encoding, this
means that the link will run at 6.25 GHz rate). Since we are
interested in latency sensitive situations, we consider transfer
of small control packets of size 128B. Only the link power
and link latency are considered here even though the model
can produce system level numbers. The actual power numbers
are somewhat uncertain since no real 40 Gb/s Ethernet exists
today; however, the absolute numbers are really not of interest
in the discussion that follows. In the plots, we use request
interarrival time (IAT) on the x-axis (instead of link utiliza-
tion). It is, of course, inversely related to link utilization and
IAT=100 approximately corresponds to 47% link utilization.

Figs 1 and 2 show power consumption and Latency for
the DWCA algorithm against ESA (the proactive power-state
control algorithm). The two were parameterized so that they
will have roughly the same and rather low latency at high link
utilizations. For width control, we used 1x, 2x, 4x and 10x
widths, γ1 = 6, QLT = 4 and QHT = 8 (both in terms of
packets). The runway to transition the entire link to the low
power state was assumed to be 4x the entry+exit latency (as
opposed to 1x for power state control). It is seen that width
control easily outperforms ESA in both power consumption
and latency in much of the range. This is significant since in
most situations, one can merely tradoff power against latency.

We shall refer to the case above with 4 possible widths
as fine grain control. Figs 3 and 4 compare this against the
coarse grain control where the only possible widths are 1x,
2x, and 10x. It turns out that with the “nominal” γ1 value of
6, the difference between the two is rather small; hence, we
chose to show the situation with γ1 = 4. A lower γ1 means
a more aggressive width control and hence larger latency. In
particular, the starting latency is now 105 ns as opposed to
70 ns. In this case, a finer grain control is a definite plus in
terms of power (and very marginally so in terms of latency).
Of course, the finer grain control will be a bit more complex
in gate count, but the additional complexity seems worthwhile.

Finally, Figs 5 and 6 show power and latency for 3 sets
of DWCA parameters: (a) “Normal”, by which we mean
γ1 = 6, QLT = 4, QHT = 8, (b) High utilization threshold
where γ1 is reduced to 4 (i.e., the first width cut happens at
20% utilization instead of 14%), and (c) High queue length
threshold, i.e., QLT = 16, QHT = 32. Here we see the typical
power-latency tradeoff – lower power means higher latency
and vice-versa. Interestingly, however, at moderate utilizations,
case (c) provides lower power than (b) but at about the same
latency. Thus, choosing higher queue length thresholds is more
desirable than a lower γ1 value.

VI. RELATED WORK

Although the link width control or simple algorithms to
accomplish it are not new, we are not aware of a compre-
hensive treatment of link width control in the open literature.



6

Fig 1. Power Consumption: Link Width &
Power-state Controls

Fig 2. Transfer Latency: Link Width &
Power-state Controls

Fig 3. Power Consumption: Fine vs. Coarse
Grain Width Control

Fig 4. Transfer Latency: Fine vs. Coarse
Grain Width Control

Fig 5. Power Consumption: Sensitivity to
Utilization & QL Threshold

Fig 6. Transfer Latency: Sensitivity to Uti-
lization & QL Threshold

There is work in the literature on other link power schemes,
but it is directed primarily towards shutting down nearly idle
links. For example, both [3] and [2] make the case for shutting
down idle links and switch/router ports in order to save energy
until certain number of packets have accumulated. Dynamic
voltage frequency scaling (DVFS) – a popular scheme for CPU
power state control – has been explored for links [16] and can
be exploited in designing PHYs that switch between multiple
modes. Simultaneous DVFS control for both processors and
links is considered in [10]. Reference [13] proposes redesign-
ing OS to increase the burstiness of the workload and thereby
elongate low power periods. References [15] provides a survey
of techniques for energy-efficient on-chip communication,
and reference [17] is a survey of various power reduction
techniques for microprocessors including putting components
in low power mode.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we studied the power saving potential of
dynamic link width management for emerging high speed
communication links that are invariably based on the serial-
link technology. We showed that link width control is highly
desirable when available, especially in terms of its potential
to mitigate power state switching latencies. Link width control
can be combined with power-state and link speed control in
more sophisticated ways so that it is possible to take advantage
of whatever power control capabilities are available for a given
link. It is also interesting to explore end-to-end traffic shaping
(as in [13]) to increase the effectiveness of link power control.

Acknowledgements: The author would like to acknowledge numer-
ous discussions with Sebastian Herbert and Alexander Jimbo in the
design and evaluation of DWCA.

REFERENCES

[1] F. Blanquicet & K. Christensen, “An Initial Performance Evaluation of
Rapid PHY Selection (RPS) for Energy Efficient Ethernet”, IEEE Conf
on local computer networks, Oct. 2007, pp223-225

[2] M. Gupta and S. Singh, ” Dynamic Ethernet Link Shutdown for
Power Conservation on Ethernet Links”, Proc. of IEEE Intl Conf on
Communications 2007, June 2007.

[3] M. Gupta, S. Grover and S. Singh, ” A Feasibility Study for Power
Management in LAN Switches”, Proc of 12th IEEE ICNP, Oct 2004.

[4] IEEE task group 802.3.az, “Energy Efficienct Ethernet”, www.ieee802.
org/3/az/public/nov07/hays 1 1107.pdf.

[5] Infiniband Trade Association, “Infiniband Architecture Specification
1.2.1”, Vols 1 & 2. Available at www.infinibandta.org/specs/

[6] K. Kant and Y. Won, “Server Capacity Planning for Web Traffic
Workload”, IEEE trans. on knowledge and data engineering, Oct 1999,
pp 731-747.

[7] K. Kant and J. Alexander, “Proactive vs. Reactive Idle Power Control”,
Proc. of DTTC, Aug 2008.

[8] K. Kant, “Towards a Virtualized Data Center Transport Protocol”, Proc.
of 2008 INFOCOM workshop on High Speed Networks, Phoenix, AZ,
April 2008,

[9] K. Kant, “LMPOWER – A Comprehensive Link-Memory Power Man-
agement Simulator”, Unpublished report.

[10] J. Luo, N. Jha, Li-S Peh, “Simultaneous dynamic voltage scaling of
processors & communication links in real-time distributed embedded
systems”, IEEE Trans on VLSI, 15, 4, April 2007.

[11] Z. Meggyesi, “Fiber Channel Overview”, Available at hsi.web.cern.ch/
HSI/fcs/spec/overview.htm.

[12] T. Miller, “PCI Express and Advanced Switching: Data Movement
Protocols”, COTS Journal, Oct 2003, pp 76-79.

[13] A. Papathanasiou and M. Scott, ”Energy Efficiency through Burstiness”,
Proc of the 5th IEEE Workshop on Mobile Computing Systems and
Applications (WMCSA’03), pp. 44-53, Oct 2003.

[14] PCI Special Interest Group, “PCI-Express Base 2.0 Specification”,
available at www.pcisig.com/specifications/pciexpress/base2/

[15] V. Raghunathan, M. B. Srivastava, and R. K. Gupta. A survey of
techniques for energy efficient on-chip communication. In Proc. the 40th
Conference on Design Automation, 2003.

[16] L. Shang, Li-S Peh, N. Jha, “Dynamic voltage scaling with links for
power optimization of interconnection networks”, Proc of HPCA 2003.

[17] V. Venkatachalam and M. Franz, “Power Reduction Techniques for
Microprocessors”, ACM computing surveys, Vol 37, NO 3, Sept 2005,
pp 195-237. (http://www.ics.uci.edu/ vvenkata/finalpaper.pdf)


