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PROBLEM-SOLVING




Problem-solving Agents

Restricted form of general agent:

function SIMPLE-PROBLEM-SOLVING-AGENT( p) returns an action
inputs: p. a percept
static: s. an action sequence, initially empty
state, some description of the current world state
g, & goal. initially null
problem, a problem formmlation

state ¢~ UPDATE-STATE( state, p)

if s is empty then
g ¢ FORMULATE-GOAL(sfale)
problem « FORMULATE-PROBLEM( stale, g)
s4= SEARCH( problem)

action ¢~ RECOMMENDATION s, state)

s 4~ REMAINDER( s, state)

return action

Note: this is offline problem solving.

Online problem solving involves acting without complete knowledge of
the problem and solution.




‘ Example: Romania

On holiday in Romania; currently in Arad.
Flight leaves tomorrow from Bucharest

Formulate goal:
be in Bucharest

Formulate problem:
states: various cities
operators: drive between cities

Find solution:
sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest




Example: Romania

Arad C \
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PROBLEM-TYPES




Problems Types

= Deterministic, fully observable = single-state
problem

o Agent knows exactly which state it will be in; solution is a
sequence

= Non-observable = conformant problem

o Agent may have no idea where it is; solution (if any) is a
sequence

= Nondeterministic and/or partially observable =
contingency problem
o percepts provide new information about current state
o solution is a contingent plan or a policy
o often interleave search, execution

= Unknown state space = exploration problem (“online”)




Example: Vacuum World

Single-state, start in #5. Solution??
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‘ Example: Vacuum World (Cont’d)

Single-state, start in #5. Solution??
[Right, Suck]

Conformant, start in {1,2,3,4,5,6,7,8}
e.g., Right goes to {2,4,06,8}. Solution??
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‘ Example: Vacuum World (Cont’d)

Single-state, start in #5. Solution??
|[Right, Suck]

Conformant, start in {1,2,3,4,5,6,7,8}
e.g., Right goes to {2,4,6,8}. Solution??
|Right, Suck, Le ft, Suck]

Contingency, start in #5

Murphy's Law: Suck can dirty a clean carpet .

Local sensing: dirt, location only.
Solution??

SIRSIL SRS

SELSER SRS
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Example: vacuum world (Cont’d)

Single-state, start in #5. Solution??

|[Right, Suck] 1 (=] 2 =]
BR | 2R BR | IR

Conformant, start in {1,2,3,4,5,6,7,8}
e.g., Right goes to {2,4,6,8}. Solution?? 3 gﬂ ! o8 =4
|Right, Suck, Left, Suck]

5 AQ 6 AQ
Contingency, start in #5 2R o2R
Murphy's I._aw: Suck can dirty a clean carpet . 4 o 0
Local sensing: dirt, location only.

Solution??
|Right,if dirt then Suck]
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PROBLEM FORMULATION




‘ Single-state problem formulation

A problem is defined by four items:

initial state e.g., “at Arad”

operators (or successor function S(x))
e.g., Arad — Zerind Arad — Sibiu etc.

goal test, can be
erplicit, e.g., r = “at Bucharest”
implicit, e.g., NoDirt(x)

path cost (additive)
e.g., sum of distances, number of operators executed, etc.

A solution is a sequence of operators
leading from the initial state to a goal state
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‘ Selecting a State Space

Real world is absurdly complex
= state space must be abstracted for problem solving

(Abstract) state = set of real states

(Abstract) operator = complex combination of real actions
e.g., ‘Arad — Zerind” represents a complex set
of possible routes, detours, rest stops, etc.
For guaranteed realizability, any real state “in Arad”
must get to some real state “in Zerind”

(Abstract) solution =
set of real paths that are solutions in the real world

Each abstract action should be “easier” than the original problem!
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EXAMPLE OF PROBLEMS




Example: The 8-Puzzle

5] 4
6 1 8
7 3 2

1 2 3
8 4
7 6 5]

Start State

states??

operators??
goal test??
path cost??

Goal State
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Example: The 8-puzzle

5 4 1 2 3

6 1 8 8 4

7 3 2 7 6 5
Start State Goal State

states??: integer locations of tiles (ignore intermediate positions)
operators??: move blank left, right, up, down (ignore unjamming etc.)
goal test??: = goal state (given)

path cost??: 1 per move

[Note: optimal solution of n-Puzzle family is NP-hard]
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Example: Vacuum World State Space Graph

S S
LCE@ . E@QR LCE@ : E@QR
o8 | o3R R |
LCE@ : E@QR
@ aiiN

states??

operators??
goal test??

path cost??
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Example: Vacuum World State Space Graph

=
LCAQ% " ggga chg i‘@ AQQR
=)

L
&
states??: integer dirt and robot locations (ignore dirt amounts)
operators??: Left, Right, Suck
goal test??: no dirt
path cost??: 1 per operator
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Example: Robotic Assembly

- R R

R

R

NE

states??: real-valued coordinates of

robot joint angles

parts of the object to be assembled

operators??: continuous motions of robot joints

goal test??: complete assembly with no robot included!

path cost??: time to execute
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BASIC SEARCH ALGORITHMS




‘ Search Algorithms

Basic idea:
offline, simulated exploration of state space
by generating successors of already-explored states
(a.k.a. expanding states)

function GENERAL-SEARCH( problem, strateqy) returns a solution, or failure
initialize the search tree using the nitial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strateqgy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end
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‘ General Search Example




Search Tree (Cont’d)

«‘o" 6‘@;’00
‘ofo%;of X
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Search Tree (Cont’d)
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Search Tree (Cont’d)
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‘ Implementation of Search Algorithms

function GENERAL-SEARCH( problem. QUEUING-FXN) returns a solution. or failure

nodes ¢ MAKE-QUEUE(MAKE-NODE(INITIAL-STATE[problem]) )
loop do
if nodes 1s empty then return failure
node ¢~ REMOVE-FRONT| nodes)
if GoAL-TEST[problem] applied to STATE(node) succeeds then return node
nodes ¢~ QUEVING-FXN( nodes. EXPAND(node, OPERATORS| problem]))
end
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Implementation (Cont’d): states vs. nodes

A state is a (representation of ) a physical configuration

A node is a data structure constituting part of a search tree
includes parent, children, depth, path cost g(x)

States do not have parents, children, depth, or path cost!

parent
State || 5 4 Node depth =6
g==6
6 1 8
7l 3l 2 sta / \
children

The EXPAND function creates new nodes, filling in the various fields and

using the OPERATORS (or SUCCESSORF'N) of the problem to create the
corresponding states.
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Search Strategies

A strategy is defined by picking the order of node expansion

Strategies are evaluated along the following dimensions:
completeness—does it always find a solution if one exists?
time complexity—number of nodes generated/expanded
space complexity—maximum number of nodes in memory
optimality—does it always find a least-cost solution?

Time and space complexity are measured in terms of
b—maximum branching factor of the search tree
d—depth of the least-cost solution
m—maximum depth of the state space (may be o)
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GRAPH SEARCH




‘ Graph search

"] Oradea
Neamt
- 7
M lasi
. Q2
Sibiu oo Fagamas
an MVaslui
| Timisoara Fhrnnlcu Vilcea
142
: : 211
Ll - Lugoj Pitesti
70 - 08 .
_ a5 Hirsova
MIMehadia 101 . Jrziceni
L 25
. B - 138 Bucharest
Dobreta -
obreta [ ve 20
Craiova Eforie
M Giurgiu

Get from Arad to Bucharest as quickly as possible
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‘ Graph search

= Falilure to detect repeated states can turn a linear
problem into an exponential one!

= Very simple fix: never expand a node twice
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‘ Graph search

function Graph-Search(problem, fringe) returns a solution, or failure
fringe < Insert(Make-Node(Initial-State(problem)), fringe);
closed < an empty set
while (fringe not empty)
node <— RemoveFirst(fringe);
if (Goal-Test(problem, State(node))) then return Solution(node);
if (State(node) is not in closed then
add State(node) to closed
fringe < InsertAll(Expand(node, problem), fringe);
end if
end
return failure;

= Never expand a node twice!




‘ Straight Line Distances

Zerind 87

75

Arad

118

[ ] Vaslui

Pitesti

98
] Hirsova

86

] Mehadia Urziceni

75

Bucharest
Dobreta [

Craiova Eforie

] Giurgiu

Straight—lne distance

to Bucharest
Arad
Bucharest
Craiova
Dobreta
Etorie
Fagaras
Giurgiu
Hirsova
Iasi
Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

366
0
160
242
161
178
77
151
226
244
241
234
380
98
193
253
329
80
199
374
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Best-first search

ldea: use an evaluation function f(n) for each node
o estimate of "desirability”
> Expand most desirable unexpanded node

Order the nodes in fringe in decreasing order of
desirability

Special cases:
o greedy best-first search
o A’ search
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Zerind 87

75

Arad 5

118

[ Vaslui

] Hirsova

] Mehadia Urziceni

75

Dobreta [

=l Craiova Eforie

] Giurgiu

Straight—line distance

to Bucharest
Arad
Bucharest
Craiova
Dobreta
Etorie
Fagaras
Giurgiu
Hirsova
Iasi
Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

366
0
160
242
161
178
77
151
226
244
241
234
380
98
193
253
329
80
199
374
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Greedy Best-First Search

Evaluation function f(n) = h(n) (heuristic)

= estimate of cost from n to goal

e.g., hg p(n) = straight-line distance from n to
Bucharest

Greedy best-first search expands the node
that appears to be closest to goal
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‘ Greedy best-first search example

(e

366
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‘ Greedy best-first search example

366

253 329 374
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‘ Greedy best-first search example

366

253 329 374
176 380 193

41
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Greedy best-tirst search example

366
253 329 374
380

366 176\

Com ) oo

253 0
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Greedy Best-First Search

Complete? No — can get stuck in
loops, e.g., lasi 2 Neamt - lasi
- Neamt - ...

Time? O(b™), but a good heuristic
can give dramatic improvement

Space? O(b™) -- keeps all nodes
INn memory

Optimal? No

m

What do we need to do to make it complete?
= A* search
Can we make it optimal? - No
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A* search

|dea: Expand unexpanded node with lowest evaluation
value

Evaluation function f(n) = g(n) + h(n)

g(n) = cost so far to reach n

h(n) = estimated cost from n to goal

f(n) = estimated total cost of path through n to goal

Nodes are ordered according to f(n).
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‘ A" search example

(e

366 = 0 + 366
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‘ A" search example

366 = 0 ¥ 366

D

393=40+253 447=118+329

449=75+374
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A" search example

366 = 0 +\366

447=118+329 449=75+374

646=280+366 415=239+176 671=291+380  413=220+193
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A" search example @

366 = 0 +\366

447=118+329 449=75+374

=220+193

526=366+160 417=317+100 553=300+253

646=280+366 415=239+176 671=291+380
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A" search example @

366 = 0 +\366

447=118+329 449=75+374

415= 239 176

646=280+366 22(0+193

591=338+253 450=450+0 526=366+160 417=317+100 953=300+253

671=291+380
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A" search example @

366 = 0 +\366

447=118+329 449=75+374

646=280+366 _~415= 239 176 220+193

591=338+253 450=450+0 526=366+160 _—417=31+100 953=300+253

418=418+0 615=455+160 607=414+193

671=291+380




'Can we Prove Anything?

= If the state space is finite and we avoid repeated
states, the search is complete, but in general is not
optimal

= If the state space is finite and we do not avoid
repeated states, the search is in general not
complete

= If the state space is infinite, the search is in general
not complete
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‘ Admissible heuristic

= Let h*(N) be the true cost of the optimal path
from N to a goal node

= Heuristic h(N) is admissible (lower bound)
If:
0 <h(N) <h*(N)

= An admissible heuristic is always optimistic
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Admissible heuristics

The 8-puzzle:
h,(n) = number of misplaced tiles
h,(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)

5 4 1 2

6 1 8 8

7 3 2 7 6
Start State Goal State

h(S)=7? V4
h(S)=7 2+3+3+2+4+2+0+2 =18



Heuristic quality

Effective branching factor b*

o Is the branching factor that a uniform tree of depth d would
have in order to contain N+171 nodes.

N +1=1+b*+(b*)* + ...+ (b*)"

o Measure is fairly constant for sufficiently hard problems.
Can thus provide a good guide to the heuristic’s overall usefulness.
A good value of b* is 1.
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5 1200 random problems with solution lengths from 2 to 24

Heuristic quality and dominance

If h,(n) = h,(n) for all n (both admissible)

then h, dominates h, and is better for search

Search Cost Effective Branching Factor

d IDS Af(hy) A*(hs) IDS A*(hy) A*(hs)

2 10 6 O 2.45 .79 1.79

-+ 112 13 12 2.87 1.48 1.45

6 680 20 18 2.73 1.34 1.30

8 | 6384 39 25 2.80 1.33 1.24
10 47127 93 39 279 1.38 1.22
12 || 3644035 227 73 2.78 1.42 1.24
14 - 539 113 — 1.44 1.23
16 ~ 1301 211 - 1.45 1.25
18 - 3056 363 - 1.46 1.26
20 | - 7276 676 - 1.47 1.27
22 | - 18094 1219 - 1.48 [.28
24 - 39135 1641 — 1.48 1.26

|
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Inventing admissible heuristics

Admissible heuristics can be derived from the exact solution cost
of a relaxed version of the problem:
o Relaxed 8-puzzle for h,: a tile can move anywhere
As a result, h,(n) gives the shortest solution
o Relaxed 8-puzzle for h, : a tile can move to any adjacent square.
As a result, h,(n) gives the shortest solution.

The optimal solution cost of a relaxed problem is no greater than the
optimal solution cost of the real problem.
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‘ Optimality of graph-search and of A’

= The tree-search version of A" is optimal if h(n)
IS admissible

= The graph-search is optimal if h(n) is
consistent
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Optimality of A*(standard proot)

START

O/P\
AR

Suppose suboptimal goal G, in the queue.
Let n be an unexpanded node on a shortest to optimal

goal G.
f(G,) =9(G,) since h(G,)=0
>9(G) since G, is suboptimal
>= f(n) since h is admissible

Since f(G,) > f(n), A* will never select G, for expansion
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‘ Optimality for graphs?

» Admissibility is not sufficient for graph search

o In graph search, the optimal path to a repeated state could be discarded if it
is not the first one generated

o Can fix problem by requiring consistency property for h(n)

» Aheuristic is consistent if for every successor n'of a node n generated
by any action a,

h(n) < c(n,a,n’) + h(n’)
c(n,a,n’) = step cost n —» n’with action a c(n,a,n’)
(aka “monotonic”)

= consistent heuristics are also admissible
» admissible heuristics are not always consistent




A* 1s optimal with consistent heuristics

If h is consistent, we have

f(n’) =g(n’) + h(n’) c(n,a,n’)
= g(n) + c(n,a,n') + h(n")
2 g(n) + h(n)
=1f(n)

l.e., f(n) is non-decreasing along any path.

h(n’)

Thus, first goal-state selected for expansion must be optimal

Theorem:
o If h(n) is consistent, A* using GRAPH-SEARCH is optimal

Q
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‘ Contours of A™ Search

= A’ expands nodes in order of increasing f value
= Gradually adds "f-contours" of nodes
= Contour / has all nodes with =f, where f, < f.,,
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‘ Contours of A™ Search

= With uniform-cost (h(n) = 0, contours will be circular

= With good heuristics, contours will be focused around optimal
path
= A* will expand all nodes with cost f(n) < C*

62



A* search, evaluation

Completeness: YES
o Since bands of increasing f are added
o Unless there are infinitely many nodes with 7<f(G)
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A* search, evaluation

Completeness: YES
Time complexity:

2 Number of nodes expanded is still exponential in the
length of the solution.
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A* search, evaluation

Completeness: YES

Time complexity: (exponential with path length)
Space complexity:

o It keeps all generated nodes in memory

o Hence space is the major problem not time
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A* search, evaluation

Completeness: YES

Time complexity: (exponential with path length)
Space complexity:(all nodes are stored)
Optimality: YES

o Cannot expand £, until f; is finished.

o A* expands all nodes with f(n)< C*

o A* expands some nodes with f(n)=C*
o A* expands no nodes with f(n)>C*

Also optimally efficient (not including ties)

66



‘ Compare Uniform Cost and A*

= Uniform-cost expanded in = A* expands mainly toward the
all directions goal, but does hedge its bets
to ensure optimality

Goal @Goal

~

s tiers <

-
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‘ Reading and Suggested Exercises

= Chapter 3
= Exercises 3.2, 3.7, 3.9, 3.26
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Exercise 7

Consider the unbounded regular 2D grid state space shown below. The start
state is the origin (marked) and the goal state is at (x,y).

1.

2.

What is the branch factor b in this state space?
How many distinct states are there at depth k (for (k > 0)?
(i) 4K (i) 4k (iii) 4k?
Breadth-first search without repeated-state checking expand at most
(i) (1 =1)/3)-1 (i) 4(x+y) - 1 (iii) 2(x+y)(x+y+1) — 1
nodes before terminating
Breadth-first search with repeated-state checking expand up to
(i) (1 =1)/3)-1 (i) 4(x+y) - 1 (iii) 2(x+y)(x+y+1) — 1
nodes before terminating
Is h =|u - x| + |v - y| an admissible heuristic for a state at (u, v)?

A" search with repeated-state checking using h expands O(x+y) nodes before
terminating: True or false?

h remains admissible if some links are removed: True or False?

h remains admissible if some links are added between nonadjacent states:

True or False?
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Exercise 8

Consider the problem of moving k knights from k starting squares s,
S,, ..., S, to k goal squares g;,...,8,, on an unbounded chessboard,
subject to the rule that no two knights can land on the same square
at the same time. Each action consists of moving up to k knights
simultaneously. We would like to complete the maneuver in the
smallest number of actions.
1. What is the maximum branching factor b in this state space?
« (i) 8k, (ii)9k, (iii) 8,  (iv) 9X
2. Suppose h;is an admissible heuristic for the problem of moving
knight i to goal g; by itself. Which of the following heuristics are
admissible for the k-knight problem?

+ (i) min{h,...,h}, (i) max{h,,...,h}, (i) ¥, h;
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Exercise 9

Suppose there are two friends living in different cities on a map. On every turn,
we can move each friend simultaneously to a neighboring city on the map. The
amount of time needed to move from city i to neighbor j is equal to the road
distance d(i, j) between the cities, but on each turn the friend that arrives first
must wait until the other one arrives (and calls the first on his/her cell phone)
before the next turn can begin. We want the two friends to meet as quickly as
possible. Let us formulate this as a search problem.

1. What is the state space? (You will find it helpful to define some formal notation
here.)

2. What is the successor function?
3. What is the goal?
2. What is the step cost function?

5. Let SLD(i, j) be the straight-line distance between any two cities i and j. Which,
if any, of the following heuristic functions are admissible? (If none, write
NONE.) (i) SLD(i, j) (ii) 2 - SLD(i, j) (iii) SLD(i, j)/2

6. lTrue/False: There are completely connected maps for which no solution exists
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