
1

Artificial Intelligence

Brigitte Jaumard
Dept of Computer Science and Software 
Engineering
Concordia University
Montreal (Quebec) Canada

Lecturer 3 – Search Algorithms



2
2

Outline

n Problem-Solving Agents
n Problem Types
n Problem Formulation
n Example Problems
n Basic Search Algorithms

q Graph search
q Best-first search
q A* search 



PROBLEM-SOLVING

3



Problem-solving Agents

4



Example: Romania

5



Example: Romania

Giurgiu

Urziceni
Hirsova

Eforie

Neamt
Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

6



PROBLEM-TYPES

7



Problems Types
n Deterministic, fully observable ⇒ single-state 

problem
q Agent knows exactly which state it will be in; solution is a 

sequence 
n Non-observable ⇒ conformant problem

q Agent may have no idea where it is; solution (if any) is a 
sequence 

n Nondeterministic and/or partially observable ⇒
contingency problem 
q percepts provide new information about current state
q solution is a contingent plan or a policy
q often interleave search, execution 

n Unknown state space ⇒ exploration problem (“online”) 

8



Example: Vacuum World
Example: vacuum world

Single-state, start in #5. Solution??
1 2

3 4

5 6

7 8

Chapter 3 8

9



Example: Vacuum World (Cont’d)

10

Example: vacuum world

Single-state, start in #5. Solution??
[Right, Suck]

Conformant, start in {1, 2, 3, 4, 5, 6, 7, 8}
e.g., Right goes to {2, 4, 6, 8}. Solution??

1 2

3 4

5 6

7 8

Chapter 3 9



Example: Vacuum World (Cont’d)

11

Example: vacuum world

Single-state, start in #5. Solution??
[Right, Suck]

Conformant, start in {1, 2, 3, 4, 5, 6, 7, 8}
e.g., Right goes to {2, 4, 6, 8}. Solution??
[Right, Suck, Left, Suck]

Contingency, start in #5
Murphy’s Law: Suck can dirty a clean carpet
Local sensing: dirt, location only.
Solution??

1 2

3 4

5 6

7 8

Chapter 3 10



Example: vacuum world (Cont’d)

12

Example: vacuum world

Single-state, start in #5. Solution??
[Right, Suck]

Conformant, start in {1, 2, 3, 4, 5, 6, 7, 8}
e.g., Right goes to {2, 4, 6, 8}. Solution??
[Right, Suck, Left, Suck]

Contingency, start in #5
Murphy’s Law: Suck can dirty a clean carpet
Local sensing: dirt, location only.
Solution??
[Right, if dirt then Suck]

1 2

3 4

5 6

7 8

Chapter 3 11



PROBLEM FORMULATION

13



Single-state problem formulation

14



Selecting a State Space

15



EXAMPLE OF PROBLEMS

16



Example: The 8-Puzzle

Start State Goal State

2

45

6

7

8

1 2 3

4

67

81

23

45

6

7

81

23

45

6

7

8

5

17



Example: The 8-puzzle

Start State Goal State

2

45

6

7

8

1 2 3

4

67

81

23

45

6

7

81

23

45

6

7

8

5

18



Example: Vacuum World State Space Graph
R

L

S S

S S

R

L

R

L

R

L

S

SS

S

L

L

LL R

R

R

R

19



Example: Vacuum World State Space Graph

R

L

S S

S S

R

L

R

L

R

L

S

SS

S

L

L

LL R

R

R

R

20



Example: Robotic Assembly

R

RR
P

R R

21



BASIC SEARCH ALGORITHMS

22



Search Algorithms

23



General Search Example

24

Arad



Search Tree (Cont’d)

Zerind Sibiu Timisoara

Arad

25



Search Tree (Cont’d)

Arad Oradea Rimnicu
 VilceaFagaras

Zerind Sibiu Timisoara

Arad

26



Search Tree (Cont’d)

Sibiu Bucharest

Arad Oradea Rimnicu
 VilceaFagaras

Zerind Sibiu Timisoara

Arad

27



Implementation of Search Algorithms

28



Implementation (Cont’d): states vs. nodes

1

23

45

6

7

81

23

45

6

7

8

State Node

parent

depth = 6

g = 6

children
state

29



Search Strategies

30



GRAPH SEARCH

31



32

Graph search

Get from Arad to Bucharest as quickly as possible



33

Graph search
n Failure to detect repeated states can turn a linear 

problem into an exponential one!

n Very simple fix: never expand a node twice



34

Graph search

n Never expand a node twice!



35

Straight Line Distances



36

Best-first search

n Idea: use an evaluation function f(n) for each node
q estimate of "desirability"
à Expand most desirable unexpanded node

n Order the nodes in fringe in decreasing order of 
desirability

n Special cases:
q greedy best-first search
q A* search



37



38

Greedy Best-First Search

n Evaluation function f(n) = h(n) (heuristic)
= estimate of cost from n to goal

n e.g., hSLD(n) = straight-line distance from n to 
Bucharest

n Greedy best-first search expands the node 
that appears to be closest to goal



39

Greedy best-first search example

Arad

366



40

Greedy best-first search example

Arad

366

Sibiu

253

Timisoara

329

Zerind

374



41

Greedy best-first search example

Arad

366

Sibiu

253

Timisoara

329

Zerind

374

Arad

366

Fagaras

176

Oradea

380

Rimnicu Vicea

193



42

Greedy best-first search example
Arad

366

Sibiu

253

Timisoara

329

Zerind

374

Arad

366

Fagaras

176

Oradea

380

Rimnicu Vicea

Sibiu

253

Bucharest

0



43

Greedy Best-First Search

n Complete? No – can get stuck in 
loops, e.g., Iasi à Neamt à Iasi 
à Neamt à …

n Time? O(bm), but a good heuristic 
can give dramatic improvement

n Space? O(bm) -- keeps all nodes 
in memory

n Optimal? No 

n What do we need to do to make it complete?
Þ A* search
n Can we make it optimal? à No



44

A* search

n Idea: Expand unexpanded node with lowest evaluation 
value

n Evaluation function f(n) = g(n) + h(n)
n g(n) = cost so far to reach n
n h(n) = estimated cost from n to goal
n f(n) = estimated total cost of path through n to goal

n Nodes are ordered according to f(n).



45

A* search example

Arad

366 = 0 + 366



46

A* search example

Arad

366 = 0 + 366

Sibiu

393= 40+253

Timisoara

447=118+329

Zerind

449=75+374



47

A* search example

Arad

366 = 0 + 366

Sibiu

393= 40+253

Timisoara

447=118+329

Zerind

449=75+374

Arad

646=280+366

Fagaras

415=239+176

Oradea

671=291+380

Rimricu Vicea

413=220+193



48

A* search example
Arad

366 = 0 + 366

Sibiu

393= 40+253

Timisoara

447=118+329

Zerind

449=75+374

Arad

646=280+366

Fagaras

415=239+176

Oradea

671=291+380

Rimricu Vicea

413=220+193

Craiova

526=366+160

Pitesti

417=317+100

Sibiu

553=300+253



49

A* search example
Arad

366 = 0 + 366

Sibiu

393= 40+253

Timisoara

447=118+329

Zerind

449=75+374

Arad

646=280+366

Fagaras

415=239+176

Oradea

671=291+380

Rimricu Vicea

413=220+193

Craiova

526=366+160

Pitesti

417=317+100

Sibiu

553=300+253

Sibiu

591=338+253

Bucharest

450=450+0



A* search example Arad

366 = 0 + 366

Sibiu

393= 40+253

Timisoara

447=118+329

Zerind

449=75+374

Arad

646=280+366

Fagaras

415=239+176

Oradea

671=291+380

Rimricu Vicea

413=220+193

Craiova

526=366+160

Pitesti

417=317+100

Sibiu

553=300+253

Sibiu

591=338+253

Bucharest

450=450+0

Bucharest

418=418+0

Craiova

615=455+160

Rimricu Vicea

607=414+193



51

Can we Prove Anything?

n If the state space is finite and we avoid repeated 
states, the search is complete, but in general is not 
optimal

n If the state space is finite and we do not avoid 
repeated states, the search is in general not 
complete

n If the state space is infinite, the search is in general 
not complete



52

Admissible heuristic

n Let h*(N) be the true cost of the optimal path 
from N to a goal node

n Heuristic h(N) is admissible (lower bound)
if: 

0 £ h(N) £ h*(N)

n An admissible heuristic is always optimistic



53

Admissible heuristics
The 8-puzzle:
n h1(n) = number of misplaced tiles
n h2(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)

n h1(S) = ? 
n h2(S) = ?

7
2+3+3+2+4+2+0+2 = 18



54

Heuristic quality

n Effective branching factor b*
q Is the branching factor that a uniform tree of depth d would 

have in order to contain N+1 nodes.

q Measure is fairly constant for sufficiently hard problems.
n Can thus provide a good guide to the heuristic’s overall usefulness.
n A good value of b* is 1.

 

N +1=1+ b*+(b*)2 + ...+ (b*)d



Heuristic quality and dominance
n

55



56

Inventing admissible heuristics

n Admissible heuristics can be derived from the exact solution cost 
of a relaxed version of the problem:
q Relaxed 8-puzzle for h1 : a tile can move anywhere

As a result, h1(n) gives the shortest solution
q Relaxed 8-puzzle for h2 : a tile can move to any adjacent square.

As a result, h2(n) gives the shortest solution.

The optimal solution cost of a relaxed problem is no greater than the 
optimal solution cost of the real problem.



Optimality of graph-search and of A*

n The tree-search version of A* is optimal if h(n)
is admissible

n The graph-search is optimal if h(n) is 
consistent

57



58

Optimality of A*(standard proof)

n Suppose suboptimal goal G2 in the queue.
n Let n be an unexpanded node on a shortest to optimal 

goal G.
f(G2 ) = g(G2 ) since h(G2 )=0

> g(G) since G2 is suboptimal
>= f(n) since h is admissible

Since f(G2) > f(n), A* will never select G2 for expansion



59

Optimality for graphs?



60

A* is optimal with consistent heuristics

n If h is consistent, we have

f(n') = g(n') + h(n') 
= g(n) + c(n,a,n') + h(n') 
≥ g(n) + h(n) 
= f(n)

i.e., f(n) is non-decreasing along any path.

Thus, first goal-state selected for expansion must be optimal

n Theorem: 
q If h(n) is consistent, A* using GRAPH-SEARCH is optimal
q



61

Contours of A* Search
n A* expands nodes in order of increasing f value
n Gradually adds "f-contours" of nodes 
n Contour i has all nodes with f=fi, where fi < fi+1



62

Contours of A* Search

n With uniform-cost (h(n) = 0, contours will be circular
n With good heuristics, contours will be focused around optimal 

path
n A* will expand all nodes with cost f(n) < C*



63

A* search, evaluation

n Completeness: YES
q Since bands of increasing f are added
q Unless there are infinitely many nodes with f<f(G)



64

A* search, evaluation

n Completeness: YES
n Time complexity:

q Number of nodes expanded is still exponential in the 
length of the solution.



65

A* search, evaluation

n Completeness: YES
n Time complexity: (exponential with path length)
n Space complexity:

q It keeps all generated nodes in memory
q Hence space is the major problem not time



66

A* search, evaluation

n Completeness: YES
n Time complexity: (exponential with path length)
n Space complexity:(all nodes are stored)
n Optimality: YES

q Cannot expand fi+1 until fi is finished.
q A* expands all nodes with f(n)< C*
q A* expands some nodes with f(n)=C*
q A* expands no nodes with f(n)>C*

Also optimally efficient (not including ties)



67

Compare Uniform Cost and A*
n Uniform-cost expanded in 

all directions
n A* expands mainly toward the 

goal, but does hedge its bets 
to ensure optimality



Reading and Suggested Exercises

n Chapter 3
n Exercises 3.2, 3.7, 3.9, 3.26

68



Exercise 7
n Consider the unbounded regular 2D grid state space shown below. The start 

state is the origin (marked) and the goal state is at (x,y).
1. What is the branch factor b in this state space?
2. How many distinct states are there at depth k (for (k > 0)?

n (i) 4k (ii) 4k        (iii) 4k2

3. Breadth-first search without repeated-state checking expand at most
n (i) ((4x+y+1 – 1) /3) -1      (ii) 4(x+y) - 1        (iii) 2(x+y)(x+y+1) – 1

nodes before terminating
4. Breadth-first search with repeated-state checking expand up to

n (i) ((4x+y+1 – 1) /3) -1      (ii) 4(x+y) - 1        (iii) 2(x+y)(x+y+1) – 1
nodes before terminating

5. Is h = |u - x| + |v - y| an admissible heuristic for a state at (u, v)?
6. A* search with repeated-state checking using h expands O(x+y) nodes before 

terminating: True or false?
7. h remains admissible if some links are removed: True or False?
8. h remains admissible if some links are added between nonadjacent states: 

True or False?
69



Exercise 8

70

n



Exercise 9
n Suppose there are two friends living in different cities on a map. On every turn, 

we can move each friend simultaneously to a neighboring city on the map. The 
amount of time needed to move from city i to neighbor j is equal to the road 
distance d(i, j) between the cities, but on each turn the friend that arrives first 
must wait until the other one arrives (and calls the first on his/her cell phone) 
before the next turn can begin. We want the two friends to meet as quickly as 
possible. Let us formulate this as a search problem. 
1. What is the state space? (You will find it helpful to define some formal notation 

here.) 
2. What is the successor function?
3. What is the goal?
4. What is the step cost function?
5. Let SLD(i, j) be the straight-line distance between any two cities i and j. Which, 

if any, of the following heuristic functions are admissible? (If none, write 
NONE.) (i) SLD(i, j) (ii) 2 · SLD(i, j) (iii) SLD(i, j)/2

6. True/False: There are completely connected maps for which no solution exists

71


