
Discrete Mathematics 311 (2011) 2143–2147

Contents lists available at SciVerse ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Finite Sholander trees, trees, and their betweenness
Vašek Chvátal a, Dieter Rautenbach b,∗, Philipp Matthias Schäfer b
a Department of Computer Science and Software Engineering, Concordia University, Montréal, Québec, Canada
b Institut für Optimierung und Operations Research, Universität Ulm, D-89069 Ulm, Germany

a r t i c l e i n f o

Article history:
Received 30 November 2009
Received in revised form 8 June 2011
Accepted 14 June 2011
Available online 23 July 2011

Keywords:
Graph
Tree
Interval function
Betweenness
Convexity

a b s t r a c t

We provide a proof of Sholander’s claim [M. Sholander, Trees, lattices, order, and
betweenness, Proceedings of the American Mathematical Society 3 (1952) 369–381]
concerning the representability of collections of so-called segments by trees, which yields
a characterization of the interval function of a tree. Furthermore, we streamline Burigana’s
characterization [L. Burigana, Tree representations of betweenness relations defined by
intersection and inclusion, Mathematics and Social Sciences 185 (2009) 5–36] of tree
betweenness and provide a relatively short proof.

© 2011 Published by Elsevier B.V.

1. Introduction

Trees form one of the most simple yet important classes of graphs with countless applications ranging from data
structures and very-large-scale integration (VLSI) design over mathematical psychology to gardening. Here, we consider
two closely related papers on trees: one by Sholander [19], published in 1952, and the other by Burigana [4], published in
2009. Both of these papers include characterizations of certain ternary relations associated with trees.

We use the term tree in the sense defined by Kőnig [11, p. 47]: a finite, simple, undirected, and connected graph without
cycles. Sholander [19] used this term in a different sense: he studied collections of so-called segments, which are subsets
of a set V indexed by all ordered pairs of elements of V , and he referred to such a collection as a tree if it satisfies certain
postulates. He stated without a proof that these postulates characterize the function that assigns to every pair of vertices of
a tree in the sense of Kőnig the set of vertices on the path joining these two vertices; nowadays, this function is called the
interval function of the tree [13]. Interval functions of Kőnig trees are easily seen to be trees in Sholander’s sense, but it is
not obvious that all finite Sholander trees are representable as interval functions of Kőnig trees. In Section 2, we supply the
missing proof of this claim.

The tree betweenness of a tree T is defined as the set of all ordered triples (x, y, z) such that x, y, z are (not necessarily
distinct) vertices of T and y belongs to the path in T that joins x and z; the strict tree betweenness of T is defined as the set
of all ordered triples (x, y, z) such that x, y, z are pairwise distinct vertices of T and y belongs to the path in T that joins x
and z. It is a routine matter to restate Sholander’s characterization of the interval function of a tree as a characterization of
tree betweenness; this was done, with refinements, by Sholander himself in the same paper [19]; subsequently, Defays [6]
found another characterization of tree betweenness. Burigana (Theorem 1 in [4]) characterized strict tree betweenness by a
list of five properties that do not involve the notion of a tree. His proof is spread over some seven pages; in Section 3, we give
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a shorter proof; actually, we prove a simpler theorem, of which Burigana’s is an instant corollary. In addition, we restate the
simplified characterization of strict tree betweenness in terms of tree betweenness.

Before proceeding to our results, let us put their subject in a broader context by mentioning a few related references.
Mulder and Nebeský [13–15] studied interval functions of arbitrary graphs. Tree betweenness is a special kind of metric
betweenness that, for a prescribed metric space (V , dist), consists of all ordered triples (x, y, z) such that x, y, z are
(not necessarily distinct) points of V and dist(x, y) + dist(y, z) = dist(x, z). This concept was first studied by Menger [12]
in 1928; references to subsequent work on it can be found in [5]. Another special kind of metric betweenness is Euclidean
betweenness, where themetric space is a Euclidean space or some subspace of it. In his development of geometry, Euclid used
the notion of betweenness only implicitly; its explicit axiomatization was first carried out by Pasch [16] and then gradually
refined by Peano [17], Hilbert [8], Veblen [20], and Huntington and Kline [9]. In particular, Huntington and Kline suggested
the study of other ternary relations (meaning subsets of V 3, where V is some set) that resemble Euclidean betweenness: for
example, they mention the set of all ordered triples (x, y, z) such that x, y, z are natural numbers and y = xz. Pitcher and
Smiley [18] continued in this direction. Another particular kind of betweenness is order betweenness that, for a prescribed
partially ordered set (V , ≼), consists of all ordered triples (x, y, z) such that x, y, z are (not necessarily distinct) points of
V and x ≼ y ≼ z or z ≼ y ≼ x. This concept was first studied by Birkhoff [3] in 1948; Altwegg [2] characterized order
betweenness by a list of six properties that do not involve the notion of a partially ordered set; subsequently, Sholander [19]
and Düntsch and Urquhart [7] found other characterizations of order betweenness.

2. Finite Sholander trees are trees

Sholander studies mappings that assign to each ordered pair (a, b) of elements of a set V a subset of V , which we denote
as [ab]. From postulates

(S) ∀a, b, c ∈ V : ∃d ∈ V : [ab] ∩ [bc] = [bd],
(T) ∀a, b, c ∈ V : [ab] ⊆ [ac] ⇒ [ab] ∩ [bc] = {b},

he derives a number of corollaries that include

(1.2) ∀a, b ∈ V : b ∈ [ab],
(1.4) ∀a, b ∈ V : [ab] = [ba],
(1.5) ∀a, b, c ∈ V : b ∈ [ac] ⇔ [ab] ⊆ [ac],
(1.7) ∀a, b, c ∈ V : (b ∈ [ac] ∧ c ∈ [ab]) ⇒ b = c ,

(1.10) ∀a, b, c, d ∈ V : [ab] ∩ [bc] = [bd] ⇒ [ad] ∩ [dc] = {d}.

(The labels (S), (T), (1.2), etc., used in this section are copied directly from [19] for ease of reference.) Then he defines a tree
as a mapping (u, v) → [uv] from V 2 to 2V that satisfies (S), (T), and

(U1) ∀a, b, c ∈ V : [ab] ∩ [bc] = {b} ⇒ [ab] ∪ [bc] = [ac].

Having noted that Kőnig defined a tree as a finite connected graph that contains no cycles, he states [19, p. 370] that ‘‘Trees
in our sense which are finite are trees in Kőnig’s sense.’’. In formalizing this statement, we let [uv]T denote the set of all vertices
on the path in a tree T that joins a vertex u and a vertex v.

Theorem 1. Let V be a finite set. A mapping (u, v) → [uv] from V 2 to 2V satisfies (S), (T), and (U1) if and only if there is a tree
T with vertex set V such that [vw]T = [vw] for all pairs v, w of its vertices.

Sholander does not prove this theorem, but goes on to derive from the conjunction of (S), (T), and (U1) a number of corollaries
that include

(2.1) ∀a, b, c ∈ V : b ∈ [a, c] ⇔ [a, b] ∩ [b, c] = {b} ⇔ [a, b] ∪ [b, c] = [a, c],
(5.2) ∀a, b, x, y ∈ V : x, y ∈ [a, b] ⇒ (x ∈ [a, y] ∧ y ∈ [x, b]) ∨ (y ∈ [a, x] ∧ x ∈ [y, b]).

We are going to derive Theorem 1 from Sholander’s results.
The following fact is well known (for instance, Exercise 12 in Section 2.3., p. 314, of [10], and the answer on p. 558). We

give its straightforward proof just for the sake of completeness.

Lemma 2. Let V be a finite set, and let r be an element of V . If ≼ is a partial order on V such that

(i) ∀w ∈ V : r ≼ w,
(ii) ∀u, v, w ∈ V : (u ≼ w ∧ v ≼ w) ⇒ (u ≼ v ∨ v ≼ u),

then there is a tree T with vertex set V such that u ≼ x ⇔ u ∈ [rx]T .

Proof. The proof is carried out by induction on |V |. If |V | = 1, then T consists of a single vertex. If |V | > 1, then enumerate
the minimal elements of V \ {r} as r1, r2, . . . , rk, and set Vi = {x ∈ V : ri ≼ x}. Property (ii) guarantees that the sets
V1, V2, . . . , Vk form a partition of V \ {r}. By the induction hypothesis, there are trees T1, T2, . . . , Tk such that each Ti has Vi
for its vertex set and such that elements u, x of Vi satisfy u ≼ x if and only if u is on the path from ri to x in Ti. The union of
T1, T2, . . . , Tk along with vertex r and the k edges rr1, rr2, . . . , rrk has the property required of T . �
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Proof of Theorem 1. The ‘‘if’’ part is clear. To prove the ‘‘only if’’ part, choose an arbitrary element of V , call it r , and write
u ≼ x if and only if u ∈ [rx]. This binary relation is a partial order: (1.2) with a = r means that ≼ is reflexive, (1.7) with
a = r means that ≼ is antisymmetric, and (1.5) with a = r implies that ≼ is transitive. By (1.2) and (1.4) with b = r, a = x,
this partial order has property (i) of Lemma 2; by (5.2) with a = r, b = w, x = u, y = v, it has property (ii) of Lemma 2.
This lemma guarantees that there is a tree T with vertex set V such that

(α) [rx]T = [rx] for all vertices x of T .

We will prove that this T has the property specified in the theorem. To begin, let us generalize (α) to

(β) if u ∈ [rx]T , then [ux]T = [ux].

To verify this, note that (2.1) with a = r , b = u, and c = x implies that [ru] ∩ [ux] = {u} and [ru] ∪ [ux] = [rx], and so
[ux] = ([rx] \ [ru]) ∪ {u} = ([rx]T \ [ru]T ) ∪ {u} = [ux]T . The conclusion of the theorem is a generalization of (β):

(γ ) [vw]T = [vw] for all pairs v, w of vertices of T .

To verify (γ ), consider an arbitrary pair v, w of vertices of T . Since T contains no cycle, there is a vertex u such that
[rv]T∩[rw]T = [ru]T and [vw]T = [vu]T∪[uw]T . By (1.4),we have [vr]∩[rw] = [rv]∩[rw] = [rv]T∩[rw]T = [ru]T = [ru],
and so (1.10) with a = v, b = r , c = w, and d = u guarantees that [vu] ∩ [uw] = {u}. Now (2.1) with a = v, b = u, and
c = w implies that [vu] ∪ [uw] = [vw]; using (β) and (1.4), we conclude that [vw]T = [vu]T ∪ [uw]T = [uv]T ∪ [uw]T =

[uv] ∪ [uw] = [vu] ∪ [uw] = [vw]. �

Our proofs of Lemma 2 and Theorem 1 yield an efficient way of reconstructing a tree from its collection of segments [uv].
Of course, the simplest way of doing that is to make distinct u and v adjacent if and only if [uv] = {u, v}.

3. Strict tree betweenness and tree betweenness

A ternary relation on a set V means a subset of V 3; a ternary relation B is called strict if (x, y, z) ∈ B implies that x, y,
and z are pairwise distinct. Given a ternary relation B on a set V , we follow Burigana [4] in writing N(u, v, w) to mean that
u, v, and w are pairwise distinct elements of V , and (u, v, w) ∉ B, (v,w, u) ∉ B, (w, u, v) ∉ B.

Theorem 3. Let V be a finite set. A strict ternary relation B on V is a strict tree betweenness if and only if it satisfies

(S1) ∀u, v, w ∈ V : (u, v, w) ∈ B ⇒ (w, v, u) ∈ B ,
(S2) ∀u, v, w, z ∈ V : (u, v, w), (v, w, z) ∈ B ⇒ (u, w, z) ∈ B ,
(S3) ∀u, v, w, z ∈ V : (u, v, w), (u, w, z) ∈ B ⇒ (v, w, z) ∈ B ,
(S4) ∀u, v, w ∈ V : N(u, v, w) ⇒ ∃ c ∈ V : (u, c, v), (u, c, w) ∈ B .

Proof. The ‘‘only if’’ part is clear. To prove the ‘‘if’’ part, we first derive from (S1)–(S4) a few corollaries:

(S5) ∀u, v, w, z ∈ V : (u, v, w), (u, w, z) ∈ B ⇒ (u, v, z) ∈ B,
(S6) ∀u, v, w, z ∈ V : (u, v, z), (v,w, z) ∈ B ⇒ (u, v, w), (u, w, z) ∈ B,
(S7) ∀u, v, w ∈ V : (u, v, w) ∈ B ⇒ (v, u, w) ∉ B,
(S8) ∀u, v, w, z ∈ V : (u, v, z), (u, w, z) ∈ B ⇒ v = w ∨ (u, v, w) ∈ B ∨ (u, w, v) ∈ B,
(S9) ∀u, v, w, z ∈ V : (u, v, z), (u, w, z) ∈ B ⇒ v = w ∨ (w, v, u) ∈ B ∨ (w, v, z) ∈ B,

(S10) ∀r, u, x, y, z ∈ V : (r, u, x), (r, u, z), (x, y, z) ∈ B ⇒ y = u ∨ (r, u, y) ∈ B.

In these derivations, we will invoke (S1) only tacitly whenever we use it. (Whenever we invoke reversed (Si) we mean that
we invoke the conjunction of (S1) and (Si).)

Property (S5) comes directly out of (S3) followed by (S2). Property (S6) comes directly out of reversed (S3) followed
by (S2). To derive (S7), note that (w, v,w) ∉ B as B is strict and that (u, v, w) ∈ B, (w, v, w) ∉ B implies that
(w, u, v) ∉ B by (S2).

We will derive (S8) and (S9) along the lines of Burigana’s proof [4] of his Lemma 1(i). Similar properties were considered
by Adeleke and Neumann in [1].

To derive (S8), assume the contrary: (u, v, z), (u, w, z) ∈ B but (u, v, w) ∉ B, (u, w, v) ∉ B for some u, v, w, z in
V such that v ≠ w. From (u, v, z) ∈ B, we get (v, u, z) ∉ B by (S7); in turn, from (z, w, u) ∈ B and (z, u, v) ∉ B,
we get (w, u, v) ∉ B by (S2). Now N(u, v, w), and so two different applications of (S4) give points c and d such that
(w, c, u), (w, c, v) ∈ B and (v, d, u), (v, d, w) ∈ B. From (u, c, w) ∈ B and (u, w, z) ∈ B, we get (c, w, z) ∈ B by (S3);
in turn, from (v, c, w) ∈ B and (c, w, z) ∈ B, we get (v, w, z) ∈ B by (S2). Similarly, from (u, d, v) ∈ B and (u, v, z) ∈ B,
we get (d, v, z) ∈ B by (S3); in turn, from (w, d, v) ∈ B and (d, v, z) ∈ B, we get (w, v, z) ∈ B by (S2). But then (S7) is
contradicted by (v, w, z), (w, v, z) ∈ B.

Property (S9) comes out of (S8) followed by (S3) with v and w switched.
To derive (S10), assume that (r, u, x), (r, u, z), (x, y, z) ∈ B, and write a ≺ b if and only if (r, a, b) ∈ B. This

binary relation is a strict partial order: it is irreflexive since B is strict and it is transitive by (S5). By assumption, the set
{v : v ≺ x, v ≺ z} is nonempty; consider any of its maximal elements and denote it w. By (S8) and by maximality of w, we
have w = u or u ≺ w, and so (S5) reduces proving y = u ∨ (r, u, y) ∈ B to proving y = w ∨ (r, w, y) ∈ B. By maximality
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of w, no c with w ≺ c satisfies c ≺ x, c ≺ z; from reversed (S5), it follows that no c satisfies (w, c, x), (w, c, z) ∈ B;
sinceB is strict,w, x, z are pairwise distinct; now (S4) implies that at least one of (w, x, z), (x, z, w), (z, w, x) belongs toB.
Interchangeability of x and z allows us to assume that at least one of (w, x, z), (z, w, x) belongs to B. When (w, x, z) ∈ B,
we get first (w, x, y) ∈ B by (S6) and then (r, w, y) ∈ B by reversed (S2). When (z, w, x) ∈ B, property (S9) guarantees
that y = w or (w, y, x) ∈ B or (w, y, z) ∈ B; if (w, y, x) ∈ B or (w, y, z) ∈ B, then (r, w, y) ∈ B by reversed (S3).

Now (S5)–(S10) are established, and we proceed to prove the ‘‘if’’ part of the theorem by induction on |V |. If |V | = 1,
then the statement is trivial. If |V | > 1, then we choose an arbitrary element of V , call it r , and write a ≺ b if and only
if (r, a, b) ∈ B. This binary relation is a strict partial order: it is irreflexive since B is strict and it is transitive by (S5).
Enumerate the minimal elements of V \ {r} as r1, r2, . . . , rk, and set Vi = {ri} ∪ {b ∈ V : ri ≺ b}. Property (S8) guarantees
that the sets V1, V2, . . . , Vk form a partition of V \ {r}. By the induction hypothesis, there are trees T1, T2, . . . , Tk such that
each Ti has Vi for its vertex set and such that elements x, y, z of each Vi satisfy (x, y, z) ∈ B if and only if y is an internal vertex
of the path in Ti that joins x and z. Let T denote the union of T1, T2, . . . , Tk alongwith vertex r and the k edges rr1, rr2, . . . , rrk.
We claim that elements x, y, z of V satisfy (x, y, z) ∈ B if and only if y is an internal vertex of the path in T that joins x and
z. Interchangeability of x and z allows us to distinguish between three cases:

Case 1: x, z ∈ Vi for some i. In this case, the path P in T that joins x and z is a path in Ti. If y is an internal vertex of P , then
y ∈ Vi, and so the induction hypothesis guarantees that (x, y, z) ∈ B; conversely, if (x, y, z) ∈ B, then y ∈ Vi (by reversed
(S3) if ri is one of x, z and by (S10) otherwise), and so the induction hypothesis guarantees that y is an internal vertex of P .

Case 2: x = r, z ∈ Vi for some i.
Subcase 2.1: z = ri. In this subcase, the path in T that joins x and z consists of a single edge, and so it has no internal

vertex. Minimality of ri guarantees that there is no y such that (x, y, z) ∈ B.
Subcase 2.1: z ≠ ri. In this subcase, y is an internal vertex of the path in T that joins x and z if and only if y = ri or y

is an internal vertex of the path in Ti that joins ri and z; our analysis of Case 1 shows that this occurs if and only if y = ri
or (ri, y, z) ∈ B; reversed property (S5) guarantees that y = ri ∨ (ri, y, z) ∈ B implies that (x, y, z) ∈ B; property (S9)
combined with the minimality of ri guarantees that (x, y, z) ∈ B implies that y = ri ∨ (ri, y, z) ∈ B.

Case 3: x ∈ Vi, z ∈ Vj for some distinct i and j. In this case, we claim that (x, r, z) ∈ B; to justify this claim, let us
assume the contrary. Since x ∈ Vi and (r, ri, z) ∉ B, property (S5) implies that (r, x, z) ∉ B; similarly, since z ∈ Vj
and (r, rj, x) ∉ B, property (S5) implies that (r, z, x) ∉ B; now (S4) gives a c such that (r, c, x) ∈ B, (r, c, z) ∈ B.
Since z ∉ Vi, we have (r, ri, z) ∉ B; in particular, c ≠ ri. Since (r, c, z) ∈ B and (r, ri, z) ∉ B, we have (r, ri, c) ∉ B
by (S5). Since (r, c, x) ∈ B, minimality of ri implies that x ≠ ri; in turn, x ∈ Vi implies that (r, ri, x) ∈ B. Now
(r, c, x) ∈ B, (r, ri, x) ∈ B, c ≠ ri, (r, ri, c) ∉ B, and so (S8) implies that (r, c, ri) ∈ B, contradicting minimality of
ri. This contradiction proves that (x, r, z) ∈ B.

A vertex y is an internal vertex of the path in T that joins x and z if and only if y = r or y is an internal vertex of the path in Ti
that joins x and r or y is an internal vertex of the path in Tj that joins r and z; our analysis of Case 2 shows that this occurs if and
only if y = r or (x, y, r) ∈ B or (r, y, z) ∈ B; property (S5) and its reversal guarantee that y = r∨(x, y, r) ∈ B∨(r, y, z) ∈ B
implies that (x, y, z) ∈ B; property (S9) guarantees that (x, y, z) ∈ B implies that y = r ∨ (x, y, r) ∈ B ∨ (r, y, z) ∈ B. �

Our proof of Theorem 3 yields an efficient way of reconstructing a tree from its strict betweennessB. Of course, the simplest
way of doing that is to make distinct u and w adjacent if and only if no v satisfies (u, v, w) ∈ B.

Corollary 4 (Burigana [4]). Let V be a finite set. A strict ternary relation B on V is a strict tree betweenness if and only if it
satisfies
• ∀u, v, w ∈ V : (u, v, w) ∈ B ⇒ (w, v, u) ∈ B ,
• ∀u, v, w ∈ V : (u, v, w) ∈ B ⇒ (v, u, w) ∉ B ,
• ∀u, v, w, z ∈ V : (u, v, w), (v, w, z) ∈ B ⇒ (u, w, z) ∈ B ,
• ∀u, v, w, z ∈ V : (u, v, w), (u, w, z) ∈ B ⇒ (v, w, z) ∈ B ,
• ∀u, v, w ∈ V : N(u, v, w) ⇒ ∃ c ∈ V : (u, c, v), (u, c, w), (v, c, w) ∈ B . �

Clearly, a ternary relation C on a finite set V is a tree betweenness if and only if it is the union of ternary relations A and
B such thatA consists of all triples (u, v, w) in V 3 that satisfy u = v or v = w (or both) andB is the strict tree betweenness
of a tree with vertex set V . This observation enables us to translate our characterization of strict tree betweenness into a
characterization of tree betweenness.

Corollary 5. Let V be a finite set. A ternary relation C on V is a tree betweenness if and only if it satisfies
(T1) ∀u, v, w ∈ V : (u, v, w) ∈ C ⇒ (w, v, u) ∈ C,
(T2) ∀u, v, w, z ∈ V : (u, v, w), (v, w, z) ∈ C, v ≠ w ⇒ (u, w, z) ∈ C,
(T3) ∀u, v, w, z ∈ V : (u, v, w), (u, w, z) ∈ C ⇒ (v, w, z) ∈ C,
(T4) ∀u, v, w ∈ V : N(u, v, w) ⇒ ∃ c ∈ V : c ≠ u and (u, c, v), (u, c, w) ∈ C.
(T5) ∀u, v, w ∈ V : (u, v, w), (v, u, w) ∈ C ⇔ u = v.

Proof. The ‘‘only if’’ part is clear. To prove the ‘‘if’’ part, assume that C satisfies (T1)–(T5), let B denote the set of all triples
(u, v, w) in C such that u, v, w are pairwise distinct, and set A = C \ B. Clearly, B satisfies (S1)–(S4), and so it is a strict
tree betweenness. By (T5), all triples (u, v, w) in V 3 that satisfy u = v belong to A; in turn, by (T1), all triples (u, v, w) in
V 3 that satisfy v = w belong to A; now (T5) guarantees that all triples (u, v, u) in A satisfy v = u. �
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None of the four conditions (S1)–(S4) of Theorem 3 is implied by the conjunction of the other three, and none of the five
conditions (T1)–(T5) of Corollary 5 is implied by the conjunction of the other four. To verify this, consider V = {u, v, w, z}
and the following five ternary relations on V :

B1 = {(u, v, w), (u, v, z), (u, w, z), (v,w, z)},
B2 = {(u, v, w), (v, w, z), (w, z, u), (z, u, v), (w, v, u), (z, w, v), (u, z, w), (v, u, z)},
B3 = {(u, v, w), (u, v, z), (u, w, z), (w, v, z), (w, v, u), (z, v, u), (z, w, u), (z, v, w)},

B4 = {(u, z, v), (u, z, w), (v, z, w), (v, z, u), (w, z, u), (w, z, v)},

B5 = V 3.

For each i = 1, 2, 3, 4, relation Bi satisfies all nine conditions except (Si) and (Ti); relation B5 satisfies all nine conditions
except (T5).
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