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The problem of controller design for constrained robots with 
the consideration of computational efficiency is addressed. An 

effident adaptive variable structure control algorithm, based 
on a reduced dynamics formulation, is presented for trajectory 
tracking of an end-effector on a constrained surface with specified 

constraint forces. Lt is shown that the objective can be achieved 
without exact knowledge of robot dynamics and on-line calculation 
of nonlinear dynamic functions. The control algorithm is 

constructed with at nmst three control parameters to be adjusted 
adaptively, and that number is determined independently of the 

number of degrees of freedom of the robotic manipulators. A 

numerical example is presented to illustrate the developed method 
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In order to achieve a wider class of tasks which 
involve contact with a manipulator environment, 
issues of appropriate modeling and of effective 
new control strategies arise since such a contact 
usually results in the generation of external forces 
acting on the endeffector of a manipulator and 
modifies the dynamic behavior of the manipulator. 
Mathematical model of a robot system in contact with 
its environment, when it is described by a holonomic 
smooth manifold, gives rise to a mathematical system 
composed of differential and algebraic equations [3, 7. 
The control of such systems is called constrained robot 
control (see, e.g. [S, 91). The objective of control is 
to determine the input torques to achieve tracking 
for a desired trajectory on a constrained surface with 
specified constraint forces. 

The initial study on controlling a constrained 
robot was in [3], where the control law w a s  derived 
by expressing the constraint forces as a explicit 
function of the state and the input, then linearizing 
the system and stabilizing the linearized system by state 
feedback. Later the problem was addressed by using 
the theory of descriptor variable systems [9]. However, 
these methods are valid only in a neighborhood 
about the point of linearization. Recently, a general 
theoretical framework of constrained motion control 
was rigorously developed in [SI, where a mathematical 
model was developed for constrained robots that 
explicitly incorporate the constraint description. This 
model was then used to develop a modified computed 
torque controller that gives global asymptotic stability 
for the position and force tracking error. However, 
this modified computed torque controller required 
exact knowledge of robot dynamics. To deal with 
uncertainties in the constrained robot model, adaptive 
controls [l ,  61 and variable structure control [4] were 
developed respectively, based on the model given by 
[SI. Other works concerning constrained robots include 
[17-201. But in these cases either the accurate models 
are required or the control of constraint forces is not 
included. 

In [13, 141, an alternative mathematical model 
was developed for the constrained robots which 
embedded the constraint equation into the dynamic 
equation, resulting in an affine nonlinear system 
without constraints. Then the adaptive control [13] 
and variable structure control [14] were proposed, 
respectively. However, the control laws require on-line 
calculation of nonlinear functions of the dynamical 
model, hence, the computational complexity for their 
implementations is considerably high. 

Based on the model of constrained robots 
established in [13, 141, a computationally efficient 
adaptive variable structure control strategy is proposed 
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here to achieve trajectory tracking of the endeffector 
on the constrained surface with specified constraint 
forces for rigid robot manipulators. Compared with 
other adaptive methods [l, 6, 131, the proposed 
controller does not require on-line calculation of 
robot dynamics (regressor matrix). Furthermore, the 
control algorithm is constructed with, at most, three 
control parameters to be adjusted adaptively, and that 
number is determined independently of the number 
of degrees of freedom of the robotic manipulators. 
Compared also with robust design methods [4, 191, the 
novelty of our result lies in the fact that uncertainty 
bounds, needed to derive the control law and to 
prove the stable tracking, are generated by simple 
adaptation laws. Previous results [4, 191 explicitly rely 
on uncertainty bounds that depend not only on the 
unknown robot parameters but also on the reference 
trajectory and on the robot state vector. As a result, 
precise bounds on the uncertainty have been difficult 
to compute. Therefore, the so-designed controller 
turns out to be very general and structurally simple 
as well as computationally fast, and easily extendable 
to a higher number of links. The robustness analysis 
has shown that in the presence of a class of dynamic 
(state-dependent) uncertainties, the control law still 
provides stable tracking. 

This work is organized as follows: In Section 11, the 
reduced dynamical model and its properties are briefly 
overviewed. Section I11 presents the control algorithm, 
and its robustness analysis is given in Section IV 
Section V provides illustrative examples using the 
proposed approach. In Section VI, some conclusions 
are presented. 

II. CONSTRAINED ROBOT DYNAMICS 

Based on Euler-Lagrangian formulation, the 
motion equation of an n-link rigid constrained robot 
can be expressed in joint space as 

D(q)ii + B(q,q)q + G(q) = U + f (1) 

where q E R" is the generalized coordinates (joint 
positions); U E R" is the vector of applied joint torques; 
f E R" is the vector of constraint forces in joint space; 
D(q) E RnX" is the symmetric, bounded, positive 
definite inertia matrix; vector B(q,q)q E R" presents 
the centripetal and Coriolis torques; G(q) E R" is the 
vector of gravitational torques, which is bounded C' 
function. 

this dynamic structure. 

the matrix (B - 2B) skew-symmetric [lo], i.e., 

Two simplifying properties should be noted about 

Propert>, 1. A suitable definition of B(q,q) makes 

xT(B - 2B)x = 0, V x E R". 

In particular, this is true if the elements of B(q,q) are 

defined as 

Property 2. Since D(q), G(q), B(q,q) are bounded 
in q and B(q,q) is linear in q, there exist positive 
constants pi ,  i = 1,2,3, such that [15] 

Ilwl>ll 5 PI 

IlG(s)ll I &* 
IIB(nJi)ll I hllilll (3) 

Let p E R" denote the generalized position vector 
of the end-effector, in terms of a fixed workspace 
coordinate system. If the constraints imposed are 
described by a holonomic smooth manifold, then the 
algebraic equation for the constraints can be written as 

= o  (4) 

where the mapping $ : R" + R" is twice continuously 
differentiable. 

Assuming that the vector p can be expressed in 
joint space by the relation 

P = H(q) (5) 
where the mapping H : R" + R" is twice continuously 
differentiable. Then, the constrained equation in joint 
space can be written as 

$(s) = +(H(q)) = 0. (6) 
The Jacobian matrix of the constrained equation 

(6) is 

(7) 

Since $(q) = 0 is identically satisfied, it is evident 
that Jq = 0. Thus, the effect of the constraints on the 
end-effector can be viewed as restricting the robot 
dynamics to the manifold R defined by 

R = {(q,4) : $(SI = 0; J(q)il= 0) 

rather than the space Rh. 

constrained surface, the constraint force in joint space 
is then given by 

where X E R" is the contact forces [7, 81. 
Since the presence of m constraints causes the 

manipulator to lose m degrees of freedom, the 
manipulator is left with only n - m degrees of freedom. 
In this case, n - m linear independent coordinates 
are sufficient to characterize the constrained motion. 
Following [13,14], choosing n - m out of n joint 
variables, denoted by 

When the end-effector is moving along the 

f = JT(q)X (8) 

q1 = [ q : . . . q L f  
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to be the generalized coordinates describes the 
constrained motion of the manipulator. The remaining 
joint variables are denoted by 

q2 = [q?. . . q y .  

By the implicit function theorem, the constraint 
equation (6) can always be expressed explicitly as [SI 

q2 = a(q1). (9) 

It is assumed that the elements of q1 are chosen to be 
the first n - m components of q. If this is not the case, 
(1) can always be reordered so that the first n - m 
equations correspond to q1 and the last m equations 
to q? 

Still following [13, 141, by defining 

then, the dynamic model (1) of robots, when restricting 
to the constraint surface, can be expressed in a 
reduced form as [13, 141 

D(q')L(q')q' + &(q',q')q' + G(q') = U + f (11) 

where B1 is defined as 

B1(q',q1) = w l ' ) 4 1 1 )  + qh-i1)W4'). 

Two fundamental properties of the dynamic 
equation (11) have been established in [13, 141 and are 
presented as follows. 

Propert>, 3. Define the matrix A(q') = 
LT(q')D(q')L(q'), then A(,') - 2 ~ ~ ( q ' ) ~ l ( q ' , q ' )  is 
skew-symmetric. 

Propert>, 4. 

J(q')L(q') = LT(q'>JT(q') = 0. 

The above properties are fundamental for designing 
the force/motion control law. 

Ill. ADAPTIVE VARIABLE STRUCTURE 
CONTROLLER DESIGN 

A. Controller Structure 

The considered adaptive variable structure 
controller (AVSC) design problem is stated as follows: 
Given a desired joint trajectory qd and desired 
constraint force fd, or identically desired multiplier Ad, 

satisfymg the imposed constraints, i.e., ?,b(qd) = 0 and 
fd = JT(qd)Ad, determine a sliding mode control law 
such that for all (q(O),q(O)) E R, q -+ qd, and f -, fd as 
t -+co. 

required to find a control law to satisfy q1 -, q: as 
t+m.  

In the subsequent discussion we need the following 
notation and definition. Specifically, the norm of vector 
x is defined as llxll = (Cy='=, $)'I2 and that of matrix A 
is defined as the corresponding induced norm llAll = 
(maXeigenvalue A ~ A ) ' / ~ .  The singular value of matrix A 
is defined as y(A) = (eigenvalue(ATA))1/2. ymb(A) 
denotes the smallest singular value. The relation 
X*AX 2 ymh(A>llxl12, for A = 
is useful in deriving the control algorithm. 

required. 

chosen such that qd, qd, and qd are all bounded signals. 

It should be noted that, since q2 = c(ql), it is only 

> o concerning ?(A) 

To derive the AVSC, the following assumptions are 

Assumption Al. The desired trajectory qd(t) is 

Assumption A2. The matrix L(q') satisfies 

IILTLII 2 p1, llLTLll I P2 
where p1 and p2 are positive constants. 

REMARK The assumption llLTLll 2 P1 can always be 
held due to the structure property of L. 

p3 such that Ildd(q')/aq'l( 5 aj. Then, for all (q',q') E 
R2("-"), the matrices D(q'), &(q',q'), and G(ql) 
satisfy 

Assumption A3. There exists a positive constant 

IILTwl')LII I P1P2 (12) 

l l ~ T ~ l ~ ~ 1 4 i 1 ~ l l  I P2hlli l ' l l  (13) 

IILTG(q')ll 5 P 3 h  (14) 

where pi, i = 1,2,3, are positive constants. 

REMARK Due to Property 1 of the robotic 
dynamics, and the definition of Bl(ql,ql) (where L = 
(a6(q1)/aq')q1 is also linear in q'), the inequalities are 
valid. 

hyperplane 

where e,,, = q1 - qi  denotes the tracking error, and 
A is a positive definite matrix whose eigenvalues are 
strictly in the right-half complex plane. 

A sliding manifold SI = 0 E R" is defined as a 

s1 = e, +ne, (15) 

The AVSC is then defined as 

SU & STEPANENKO ADAPTIVE VARIABLE STRUCTURE TRACKING CONTROL FOR CONSTRAINED ROBOTS 495 



where & E R n x n  is a positive definite matrix; pi, 
i = 1,2,3, are the adaptive control gains; q; E R"-" 
is a vector of auxiliary signals defined by 

[5]. Differences exist, however, because no explicit 
reference model is needed, and the control of the 
constraint forces are included. 

q: = qi - Adem (17) B. Stability Analysis 

the force term A, in (16) is defined as Based on the sliding surface (15), using (ll), and 
after some calculations, then the following is obtained: (18) 

where KA E Rmxm is a constant matrix of force control 
feedback gains, eA = A - Ad. 

The control gains p;, i = 1,2,3, are adjusted by the 
following adaptation law 

A, = Ad - KAeA 
DLSl = DL(q' - q:) 

= U - DLq; - Blq; - G - Blsl + J T A .  

According to Property 4, the above equation 
becomes 

 AS^ = L ~ D L S ~  = L ~ U -  - L ~ B ~ ~ ;  

lj2 = w11s111 llillll Il4:ll (20) - L ~ G  - L ~ B ~ s ~ .  (22) 
1 3  = ~ I I S l l l  (21) We now present the following stability theorem. 

where 7; > 0, i = 1,2,3, are arbitrary constants which 
determine the rate of adaptation. 

The control law (16) consists of three terms. The 
first term actually contains two terms representing 
potential diference (PD) control. In the second term 
the adaptive control gains j?;, i = 1,2,3, are introduced 
to compensate the nonlinear dynamic terms DL, B1, 
and G. The last term represents the force control. The 
above AVSC only requires position, velocity, and force 
feedbacks. 

Discussions. The controllers given in [l, 6, 131 
actually belong to the linear parameterization approach, 
where on-line calculation of the modeled part of the 
plant dynamics (regressor matrix) is required. It is 
a very calculation-intensive process for a plant with 
many degrees of freedom [12]. On the other hand, 
the proposed control law (16) avoids this difficulty. 
Furthermore, the control algorithm (16), with the help 
of the robot properties, is constructed with at most 
three control parameters to be adjusted adaptively, 
and that number is determined independently of 
the number of degrees of freedom of the robotic 
manipulators. 

novelty of our result lies in the fact that uncertainty 
bounds, needed to derive the control law and to 
prove the stable tracking, are generated by simple 
adaptation laws. Previous results [4, 191 explicitly 
rely on uncertainty bounds that depend not only 
on the unknown robot parameters but also on the 
reference trajectory and on the robot state vector. 
As a result, precise bounds on the uncertainty have 
been difficult to compute. A n  improved scheme [14], 
however, still needs the upper bounds of the unknown 
robot parameters. Other works [17, 18, 201 on the 
constrained motion control use quite different control 
laws, and require exact knowledge of robot dynamics. 

It should be noticed that the control laws , given 
in (16) and (19)-(21), is somewhat similar to that in 

Compared with the robust methods [4, 191, the 

THEOREM 1 Consider the control law (16) with 
the update laws (19)-(21) in closed loop with the 
constrained manipulator modeled in the reduced f o r d  
(11). Then, the following holds: 

1) q -+ qd as t -+ 00. 

2) Steady-state force (f - fd) is bounded and inversely 
proportional to the norm of matrix (KA + I ) .  

PROOF. Let us consider the nonnegative function 

V ( t )  = +;As1 + ; C(p; - pi)2/rl; P2 (23) 
( 3  i = l  1 

where p; > 0, i = 1,2,3, are defined in (14). 

solution of (22) and using Properties 3 and 4 give 
Differentiating (23) with respect to time along the 

1 

i = l  

i=l 
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From (23) and (Z), it is evident that s1 E L&-, n 
L;-" and pi E L, , i = 1,2,3. Moreover, e, --* 0 as 
t -+ 00. Also q i  = r(qfi), which implies q2 -+ q$ if 
q' -+ qi, therefore, q 4 qd as t --* a. 

it follows that that 91, ql, qi, and qi are all bounded. 
Therefore, all signals on the right side of (22) are 
bounded and we can conclude that S1 is bounded. 
Using (15) allows us to conclude that ql is bounded. 
Substituting the control (16) into reduced-order 
dynamic model (11) yields 

Since SI, therefore, e, and e,, and pi are bounded, 

J T ( A  - A,) 

= [D(ql)L(ql)ql + B1(ql,ql)ql + G(ql) + &Lsl 

of Theorem 1. The control input will rise to whatever 
level is necessary to ensure the stability of the overall 
system. 

3) P1 and p2 given in Assumption A2 should be 
chosen in such a way so as to reduce the magnitudes 
of P1/p2. This, in turn, reduces the magnitude of the 
control law. 

Nevertheless, eA has a particular value, because 
improved steady-state constraint force accuracy is 
obtained with sufficiently high force gain. This result 
is similar to the results presented in [l]. 

law (16) is discontinuous across the sliding surface 
SI, which leads to control chattering. Chattering is, in 
general, highly undesirable in practice, since it involves 
extremely high control activity and, further, may excite 
high-frequency dynamics neglected during modeling 
[ll]. This can be remedied by smoothing out the 
control discontinuities in a boundary layer neighboring 
the sliding surface. That is 

4) No perfect force tracking objective is warranted. 

5) While assuring the desired behavior, the control 

Therefore, 50 is a bounded function. Using the 
definition of qi and p i  again allows CO to be rewritten 
as 

1 . I  " 1  J T ( A  - = <(ql,ql,ql,qd,qd,qd) (27) 

where 5 is a bounded function. Thus 

JTeA = (KA + I)-'< (2) 

and the force tracking error (f - fd) are bounded and 
can be adjusted by changing the feedback gain KA. 
Thus, the theorem is proved. 

REMARKS 
1) Except the knowledge of constraint functions 

(4) and forward kinematics (5),  which are invariably 
assumed in the literature, the proposed control 
laws (16) and (19)-(21) do not require the detailed 
description of the robot dynamics, and avoid the 
difficulty linked to the calculations of nonlinear 
dynamic functions. So the controller is very general 
and structurally simple as well as computationally 
fast. 

2) For the control design, the existence of pi, 

i = 1,2,3, is necessary to guarantee the stability of 
the closed-loop system. However, these constants 
are not explicitly involved in the control inputs; the 
existence of pi, i = 1,2,3, is sufficient for the validity 

where E > 0. By applying (29), we guarantee the 
attractiveness of the boundary layer. For the region 
inside the boundary, it can be proved that this will 
guarantee the ultimate boundedness of the system to 
within any neighborhood of the boundary layer [2]. 

IV. ROBUSTNESS TO INPUT DISTURBANCES 

Consider now the situation where disturbances are 
added to the control input. Let the robot dynamics (11) 
now be represented as 

D(q')L(q')q' + B1(ql,ql)ql + G(q') = U 4- f 4- Ud 

(30) 

where ud E R" is the vector of uncertainties 
representing torque disturbances. 

Generally, in the variable structure controller 
design the disturbances are assumed to be bounded. 
But this assumption may be restrictive since such 
disturbances may appear as a result of unmodeled 
robot forces such as friction. Generally speaking, 
the disturbances are functions of the system states 
and may grow beyond any constant bounds if the 
system becomes unstable [12]. Therefore, we make the 
following assumption. 
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Assumption A4. The effects of input disturbances 
are assumed to satisfy the following: 

ilLTUdll 5 h 6 0  + hslllslll (31) 

where 60 2 0, 61 2 0 are constants. 

REMARK This assumption is quite reasonable as far 
as the effects of friction forces or some other causes 
are concerned since it is assumed to be unbounded 
and fast varying. 

is presented. 
Concerning the disturbances, the following theorem 

THEOREM 2 Consider the control law (16) with 
the updated laws (19)-(21) in closed-loop with the 
constrained manipulator modeled in (30) If Kd in 
(16) is chosen such that Ymh(LTKdL) > p 2 6 ~  then, the 
following still holak 

1) q-qd as t -oa  
2) Steady-state force (f - f d )  is bounded and inversely 

proportional to the norm of the matrix (Kx + I). 

PROOF. Similar to the derivation in the proof of 
Theorem 1, we have 

 AS^ = L ~ D L S ~  = L ~ U  - ~ i j j  - ~ ~ ~ ~ 4 j  

- L ~ G  - L ~ B ~ S ~  + L ~ u ~ .  (32) 

Reconsidering the nonnegative function 

V ( t )  = isTAs1 + 4 
where p1 = p i  > 0, p2 = p2 > 0, p3 = p3 + do > 0, pi, 
i = 1,2,3, are defined in (14). 

solution of (32) and using Properties 3 and 4 give 
Differentiating (33) with respect to time along the 

3 

ti = syASl + isy.isl + p2 - ,&)(-&)/Vi 
i = l  

i= l  

+ - 2LTBl)sl 

i= l  

Using Assumptions A2, A3, and A4, (34) becomes 

+ P3P211S111 + P z ~ O l l S l l l +  P2~111s1112 

+ PZ XGji - Pi)(-i j i) /qi 

3 

i=l 

5 -(rmin(LTKdL)- hal)llsll12 5 0. (35) 

then using the same argument as that in the Proof of 
Theorem 1, we have the conclusion. 

V. SIMULATION RESULTS 

A two-link robotic manipulator with a circular path 
constraint, as given in [19, 13, 141, is used to verify 
the validity of the control approach outlined here. The 
original model, in the form of (l), can be written as 

where 

~ l l ( q 2 )  = ( M I  + m2)C + m21; + 2m21mcos(q2) 

D12(q2) = m21; + m2h12cos(q2) 

Dz(q2) = m21; 

F12(q2) = m21112sin(q2) 

g l (q~q2)  = - ( M I  + m2)h cos(q1) - m2hcos(ql + q2) 

g2(q1,q2) = -m212cos(q1 + q2). 

11 = 1, 

The parameter values used are the same as those [14]. 

12 = 0.8; 

m2 = 0.5 kg; ml = 0.5 kg, 

51 = 5 kg.m, J2 = 5 Kg.m. 

The constraint is a circle in the work space (the x - y 
plane) whose center coincides with the axis of rotation 
of the first link. Fig. 1 depicts the two-link manipulator 
and the constraint. The constraint surface is expressed 
mathematically as 

$@) = x2 + y 2  - r2 = 0, p = [x ylT. (37) 
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Therefore the matrix L defined in (10) is P 

ircle constraint 

Fig. 1. no-link manipulator and circle constraint. 

The transformation from work space to joint space is 
given by 

L(q1) = [ l  oy.  (42) 

The constrained robot motion equation (l l) ,  when 
restricted to the circle, can be expressed as 

0 

= [::I + [-21112sin(q;) O ] A .  

The constraint forces are 

fi  =o,  
f2 = -21112sin(q2’)A, 

(43) 

The control objective is to determine a feedback 
control so that the joint q1 tracks the desired trajectory 
qld and maintains the constraint force f2 to the desired 
fd, where q1d and fd are assumed to be consistent with 

(38) the imposed constraint. 
Since X + Ad means f2 + fd, hence in this 

simulation, qld and fd are chosen as 

llcOs(q1) + /2cos(q1 + q2) 

11 sin(q1) + 12 sin(q1 + q2) 

The constraint, when expressed in terms of joint space, 
is q l d  = -90 + 52.5(1 - cos(1.26t)) 

$(q)  = 1; + 1; + 21112cosq2 - r2 = 0 

92 = cos-1 

(39) (45) 
Ad = 10. 

which has an unique constant solution for 42 
The two control parameters /31 and ,& are chosen 
as /31 = p2 = 1. The position control gain is chosen 
as & = 5, and the force control gain K~ = 0.8. The 
adaptive gain are chosen as ql = 4.5, = 4.5, 72 = 4.5. 

Since trajectory tracking on the constrained surface 
with specified constraint force is of interest, the initial 
position and velocity of manipulator are chosen on the 
desired trajectory. 

12 

The Jacobian matrix of (39) is 

(41) 

Position(Rad) 

I ’  I I I I 

0.20 

-0.00 

-0.20 

-0.40 

-0.60 

-0.80 

-3.00 

- 1.20 

- 1.40 

-1.60 

0.00 1 .oo 2.00 3.00 4.00 5.00 

Fig. 2. Desired trajectory. 

T(Sec) 
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Position(Rad) 

I 1 I 1 I 1 
0.00 - 
-5.00 - 
-10.00 - 
-15.00 - 
-20.00 - 
-25.00 - 
-30.00 - 
-35.00 - 
-40.00 - 
-45.00 - 
-50.00 - 
-55.00 - 
-60.00 - 
-65.00 - 
-70.00 - 
-75.00 - 

- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

0.20 

-0.00 

-0.20 

-0.40 

-0.60 

-0.80 

-1.00 

- 1.20 

- 1.40 

-1.60 
T(Sec) 

0.00 1.00 2.00 3.00 4.00 5.00 

Fig. 3. Actual trajectory. 

0.00 1.00 2.00 3.00 4.00 5.00 

Fig. 4. 'Racking error. 

T(Sec) 

q1(0) = -90; q2(0) = 80; 

&(O) = 0; &(O) = 0. 

The initial constraint force is assumed as f2 = 0, i.e., 
X = 0. The initial control gain p;(O) ,  i = 1,2,3, are 
taken as pl(0) = 2, p2(0 )  = 1, )3(0) = 1. In order to 
reduce the control chattering, the boundary layer is 
chosen as E = 0.05. 

The results of the simulation are shown in Figs. 
2-8. Fig. 2 shows the desired joint trajectory, Fig. 3 
shows the actual trajectory of joint 1, and Fig. 4 shows 
its tracking error. Fig. 5 shows contact force A. The 
final maximum error with Ad is 1.5N. Figs. 6 and 7 

show the torques exerted at manipulator joints, and 
sliding surface is shown in Fig. 8. These results show 
that the control objective is achieved successfully. 

VI. CONCLUSIONS 

Based on the reduced formulation of constrained 
robots given in [13, 141, an efficient adaptive variable 
structure tracking control algorithm, to achieve 
trajectory tracking of an end-effector on a constrained 
holonomic smooth surface with specified constraint 
forces, is presented in this paper. In the method, no 
exact knowledge about robot dynamics is needed, 
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Force(N) 
17.00 

16.00 

15.00 

14.00 

13.00 

12.00 

11.00 

10.00 

9.00 

8.00 

7.00 

6.00 

5.00 

4.00 

3.00 

9.00 

8.00 

7.00 

6.00 

s.OO 

4.00 

3.00 

2.00 

1.00 

0.00 

-1.00 

t-' I I I I 

- ' I I I I I 1  

- - 

- - 

- - 
- - 

- - 

- - 

- - 
- - 

- - 

- - 
I I 1 I I 

0.00 1 .OO 2.00 3.00 4.00 5.00 

T(Sec) 

Fig. 5. Actual contact force. 

T(Sec) 

and the calculation of nonlinear dynamic functions 
(regressor matrix) is avoided. Furthermore, the number 
of the control parameters needed for nonlinear 
compensation is three at most, and that number is 
determined independently of the number of degrees 
of freedom of the robotic manipulator. The robustness 
analysis has shown that in the presence of a class of 
dynamic (statedependent) uncertainties, the control 
law still provides stable tracking. A simple two-link 
manipulator and a circle constraint has been used to 
illustrate the methodology developed in this paper, and 
the simulation results are quite satisfactory. 

In developing the control strategy, it is assumed 
that the description of constraint functions are exact. 
However, in some situations, the constraint functions 

may not be known exactly. Hence, extension of the 
results to the case in which constraint functions are 
not totally known is an interesting further research 
topic. 
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