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Reduced Order Model and Robust Control
Architecture for Mechanical Systems

with Nonholonomic Pfaffian Constraints
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Abstract—The position/force control of mechanical systems
subject to a set of Pfaffian constraints is addressed in this paper.
A reduced order dynamical description of such nonholonomic
mechanical systems, including the constraints, is developed. Some
properties of the dynamic model are then exploited to facilitate
the controller design. Based on theory of guaranteed stability
of uncertain systems, a robust control algorithms is derived,
guaranteeing the uniform ultimate boundedness of the tracking
errors. A detailed numerical example is presented to illustrate
the developed method.

Index Terms—Mechanical systems, nonholonomic constraints,
robust control.

I. INTRODUCTION

I N RECENT years, the control of mechanical systems
with nonholonomic constraints is a subject that has gen-

erated significant interest for numerous practical applications.
It is well known that in mobile robots, multifingered hands
manipulating a grasped object, and space robots, the kine-
matic constraint equations are nonholonomic [9], and the
dynamics of such systems are well understood (see, e.g.,
[9], [13]). Control of mechanical systems, with nonholonomic
constraints, has been described through the special cases of
mobile wheeled robots in [14], [15], [18], [19]. Early work
that deals with control of nonholonomic systems is described
in [8]. However, a theoretic framework which can serve as a
basis for the study of mechanical systems with nonholonomic
constraints is quite recent [1], [2], [4], [5]. Nevertheless, all of
those discussions are only focused on a special case (Pfaffian
catastatic constraints) [10].

As discussed in [9], [10], different types of constraints
may occur in different physical contests. The constraints
for coupled rigid bodies, for example, is different from the
constraints occurred in rolling and cutting motions [7], [12].
It is known that nonholonomic Pfaffian constraints represent a
broad class of constraints [10]. An example which illustrates
the Pfaffian constraints is a homogeneous ball on a rotating
plate [11]. In this paper, our attention is focused on the
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general Pfaffian constraints, and analyses are given from
the Lagrangian point of view. As for the Hamiltonian case
with other forms of nonholonomic constraints, the reader
may refer to [3]. By assuming complete knowledge of the
constraint manifold, and taking the internal dynamics of the
systems into account due to nonholonomic constraints, a
reduced order dynamics description suitable for motion and
force control is derived. Then by exploiting the particular
structure of the dynamics, several fundamental properties are
obtained to facilitate the controller design. Finally, with the
specification of a desired manifold, a robust control algorithm
is derived, where the control of the constraint force due to the
existence of Pfaffian constraints is also included, using only the
measurements of joint position, velocity, and constraint force.
Stability analysis shows the stabilization of the manifold in the
sense that tracking errors are uniformly ultimately bounded.

II. DYNAMIC EQUATION WITH PFAFFIAN CONSTRAINTS

In this section, we consider a mechanical system with
degree-of-freedom whose generalized coordinates are

The Lagrange equations describing the motion
of the system are

(1)

where and are the kinetic and potential energy
respectively, and is the generalized force. The kinetic energy
can be expressed as [10], [13]

(2)

where is a function of the generalized coordinates.
Let us consider the situation where the system is subjected

to additional independent nonintegrable kinematic
constraints of the form [10], [13]

(3)

where and are (at least once piecewise differen-
tiable) functions of the generalized coordinates and time. The
constraint equation (3) is called Pfaffian form [10]. When

these constraints are called catastatic, otherwise
they are acatastatic [10]. The geometric interpretation of
catastatic and acatastatic constraints is illustrated in [10]. In
the following development, we will focus on the general form
of (3). It should be noted that since (3) is nonintegrable, one
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cannot solve for of the variables in in
terms of those remaining to reduce its dimension through
direct substitution into (1). It is important to note that the
constraints (3) is nonintegrable. Otherwise, the constraints can
be integrated into holonomic constraints and in this case they
can be used to reduce the system dimension by eliminating
some generalized coordinates. The conditions for checking this
nonintegrability are given in [22].

When the nonholonomic constraints (3) are imposed on the
mechanical systems (1), these constraints may be thought of
as imposing additional constraint forces, on the system,
thereby altering the set of (1) to [10]

(4)

where

(5)

and quantities are Lagrangian multipliers
[9].

In the following, we denote then
Lagrange’s equation (4) can be manipulated to derive

(6)

where the matrix is positive definite and symmetric,
and is related to the inertial properties of system [10], the
vector function is in general a nonlinear function of
its arguments and is denoted by the

matrix and is the associated
Lagrangian multipliers.

In the following development we only consider the systems
with the following two simplifying properties.

Property 1: A suitable definition of makes the
matrix skew-symmetric. In particular, this is true if
the elements of are defined as

(7)

Property 2: There exists a -vector with components
depending on mechanical parameters (masses, moments of
inertia, etc.), such that

(8)

where is a matrix of known functions of and
is the -vector of inertia parameters.
It should be noted that the first property is related to the

passivity of the mechanical dynamics and the second prop-
erty says that the Lagrangian dynamic equation are linearly
parameterizable.

The constraints (3) can be written in matrix form as

(9)

where, as in (5), we have denoted bythe matrix
and by the vector containing the remainder of the terms
in (3). As in [1], we assume that the matrix has full rank

which means that the number of constraint equations (3) is
unchanged for all and

Performing a -like decomposition of the constraint ma-
trix one obtains

(10)

where are nonsingular; the
columns of are orthonormal and are constructed from
linearly independent columns of so that
the columns of are chosen from the orthogonal complement
of so that Then we have

Note that in this paper, denote range and null
spaces, respectively.

Based on the above decomposition, the following property
could be obtained.

Property 3:

(11)

(12)

(13)

In the following development, we assume that there exists
a minor of having the same rank of for all
values of so that Property 3 is valid globally. In view of
the decomposition (10), the constraint equations (9) can be
rewritten as

(14)

It can easily be seen that the general solution to (9) or
equivalently (14) can then be expressed as

(15)

where and is
an arbitrary vector, which will be explained later. It should be
noted that the first part of the solution (15) is the homogeneous
solution lying in and the other is a particular solution
to (9). can be thought of as the magnitude
of generalized velocity along tangent directions defined by
columns of

In (15), a new vector is introduced and constitute
a reduced set of generalized velocities. We should note that
similar vectors have also been introduced, for example, in [20],
[7] (acatastatic constraints) and [2], [6] (catastatic constraints),
though different methods are used. Sinceis the same with
that in [6] if we also call as pseudo-
velocities. We should note that choice of is related to the
form of constraint equations (9) and may or may not be a
physical quantity (see the simulation example). In this paper,
we assume that there exists a vector of so that

is the derivative of Without losing generality, we also
assume that the components ofare smooth, and
the set is linearly independent for all

where is defined as the gradient of
Choosing out of coordinates denoted by

(16)
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such that the set
is linearly independent for all Therefore, for

there exist a global diffeomorphism

(17)

which changes coordinates form the basis ofto the basis of
It should be noted that the expression of the diffeomorphism

depends on the form of constraint equations (9) and the
choices of

Due to (17) and (15), the state can be replaced by
i.e., is sufficient to describe the constrained

motion. Since and are measurable directly, in the following
development we still use and as arguments in etc.
However, we should remember thatand are related to
and through (17) and (15). Differentiating (15), we obtain

(18)

Therefore, the dynamic equation (4), when satisfying the
nonholohomic constraint (3), can be expressed in terms of
states as

(19)

where

It should be noted that the reduced state space is
dimensional. The system can be described by the-vector
of variables [or due to (17)] and the -vector of
variables

Remark: We note the derived equations for the system in-
clude the effects of the Pfaffian constraints. They can therefore
be thought of as the equivalent equations of motion. A possible
disadvantage of the present formulation is that
may not be a physical quantity. Using similar definitions of

various reduced order models have also been obtained in
[7], [20] (acatastatic constraint case) and [2], [6] (catastatic
constraint case). As will become clear later, in this paper we
do not aim at linearizing the system dynamics as, for example,
in [7], but instead exploit the physical structure of the systems
for the subsequent development.

By exploiting the structure of (19), three properties are
obtained.

Property 4: The matrix is symmetric and pos-
itive definite.

Remark: Property 4 can be easily obtained by observing
that is of full column rank and is positive definite.

Property 5: Define Using the same
definition of the matrix as in Property 1, and

satisfy

i.e., is a skew symmetric matrix.
Proof: Directly, by using the definition of and and

by considering the skew symmetry of in Property 2.

Property 6: The dynamic structure (19) is linear in terms
of the same suitably selected set of inertia parameters as used
in Property 2

(20)

where is a regressor matrix; is the -vector
of inertia parameters.

Remark: Property 6 may be easily understood by observing
that the transformations do not change the linearity in terms of
constant parameters established for model (6) by Property 2.

The aforementioned properties are fundamental for design-
ing the force/motion control law.

III. ROBUST CONTROLLER DESIGN

FOR MOTION/FORCE TRACKING

It has been proved (see [1] and [8]) that the nonholonomic
systems cannot be stabilized to a single point using pure
smooth state feedback. It can only be stabilized to a manifold
of dimension due to the existence of nonholonomic
constraints. The objective of stabilizing the systems to a point
has been achieved by open-loop control [5], nonsmooth feed-
back law [1], [18] and time-varying feedback laws [15]–[17].
However, it is fair to say that these approaches are not yet
fully general and only focused on the catastatic constraints.
It is worth mentioning that different control objectives may
also be pursued, such as stabilization to manifolds of equilib-
rium points [1], [2], [4] (as opposed to a single equilibrium
position).

By assuming that variables are physically motivated,
the objective of the control can be specified as: given a
desired and desired constraint force or identically
desired multiplier determine a control law such that for any

then and asymptotically converge
to a manifold defined as

Now, assume that the parameters of the mechanical systems
are not exactly known. To synthesize the robust controller, we
define

(21)

(22)

(23)

where is a positive definite matrix whose eigenvalues are
strictly in the right-hand complex plane.

Before giving the control law, the following assumptions
are required.

Assumption A1:The desired trajectory is chosen such
that and are all bounded signals.

Assumption A2: and are bounded in
and is linear in therefore, there exist positive

constants such that

(24)
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where the norm of vector is defined as and
that of matrix is defined as the corresponding induced norm.
Throughout this paper, we adopt this definition for the norm.

Assumption A3:The matrix can be
bounded above and below, i.e.,

where and are positive constants.
Remark: The remarks about this set of assumptions are

worth making at this juncture. Assumption A1 is common
to most tracking schemes. Assumption A2 is valid for a wide
class of mechanical systems, for example, robots with revolute
joints. Assumption A2 can be extended to a more general case.
However, our goal in this paper is to develop the new control
strategy in a simpler setting that reveals its essential features.
This is the motivation for simply stating it as an assumption.
Also, the exact values of are not necessary
for the controller design. As for Assumption A3, since the
matrix is always bounded above and below, and
depend only on the constraint equation (9), Assumptions A3
can always be satisfied for a class of Pfaffian constraints.

Defining as a -vector, containing the unknown elements
in the suitably selected set of equivalent dynamic parameters,
then the linear parameterizability of the dynamics (Property
6) leads to

(25)

where is the regressor matrix.
The robust control law is then synthesized as

(26)

if

if
(27)

where is defined in (25); is defined in (10); is an
positive definite matrix, used in (27) is the

upper bounds of inertia parameter i.e., which is
assumed known; is an constant; the vector which can be
thought of as a sliding surface, is defined as

(28)

the force term is defined as

(29)

where is a constant force control feedback gain.
Based on the above, the following theorem can be stated.
Theorem: Consider the constrained mechanical system

(19) with the control laws (26), (27), satisfying Assumptions
A1–A3. Then the following holds for any

1) and are uniformly ultimately bounded.
2) is uniformly ultimately bounded and inversely pro-

portional to

Proof: From the dynamic equation (19) and relationships
(28), using (25) and (26) after some calculations, the following
is obtained:

(30)

According to Property 3, the above equation becomes

(31)

Thus, we define a Lyapunov function candidate for system
(31) as

(32)

A simple calculation shows that along solutions of (31)

(33)

where we have used Property 5 to eliminate the term
Using an argument similar to [21], if

the second term in (33) is

(34)

from the Cauchy-Schwartz inequality and our assumption on
If we have

(35)

The last term achieves a maximum value of when
Thus we have that

(36)

where From above we can
obtain a larger upper bound of as

(37)

where and and are positive scalars
defined in Assumption A3. Therefore,is uniformly ultimately
bounded. By standard linear control arguments and the defi-
nition of in (28), it can be shown that and are also
uniformly ultimately bounded.

Since and are bounded, it follows that
and are all bounded. Based on Assumption A2, one can
conclude that all signals on the right side of (31) are bounded.
Thus, we obtain that and therefore are bounded. Equation
(30) can be rewritten as

(38)

where is a bounded function. Thus

are bounded and can be adjusted by changing the feedback
gain Thus, the theorem is proved.
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Remarks:

1) In the theorem, the control law is, in a simple fashion,
related to the bounds of inertia parametersso that
the parameter variations in the plant can be taken into
account easily.

2) From (37), it is shown how decreasingthe size of
the ball within which is ultimately confined. If

then and therefore and
exponentially. In such a case, in (26)

becomes which is a typical sliding
mode control law. As a matter of fact, the control law
(27) is just a smoothing realization of the switch function

so as to overcome chattering, which
is undesirable in practice.

3) Suppose in (26) is replaced by representing es-
timation of and is updated by
This leads to an adaptive control law, similar to the
one given in [23]. With this algorithm, the closed loop
system is globally convergent. However, the question
of whether to use robust control or adaptive control
does not have an obvious answer. Clearly the adaptive
control is easier to design and would be expected to
work better if the uncertainty is large. But, it is known
that adaptive control performs poorly in the presence of
external disturbance and unmodeled dynamics unless the
algorithm is modified. Such a modification will result in
a more complicated design comparable to the present
robust design.

IV. SIMULATED EXAMPLE

For simplicity, consider a two-degree-of-freedom mechan-
ical system described by

(39)

where

and let it
be constrained in such a way that the velocity of the second
link satisfies

(40)

which is obviously a Pfaffian nonholonomic constraint.
Then

(41)

In this case, (15) becomes

(42)

where is just and physically motivated. Thus, (18)
becomes

(43)

The constrained dynamic equation (19) can be expressed as

(44)

The desired manifold is chosen as

where is chosen as In
this case, should be

The robust control law (26) with (27) is used so that
and approach

As in [24], one parameterization of (39) is given by

(45)

Then, the regressor matrix defined in (25) can be written
as

(46)

where and is the acceleration of gravity.
The values used in the simulation are selected as m

m kg kg Thus, is chosen
as The parameters and are chosen as and

The control gain and the force control gain are
chosen as

Since the trajectory tracking satisfying the constraint is of
interest, the initial positions and velocities of the mechanical
system are chosen on desired trajectories, i.e.,

Using the control law (26) with (27), the results of the
simulation are shown in Figs. 1–6. Fig. 1 shows the trajectory
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Fig. 1. Position trajectory ofq1:

Fig. 2. Velocity of q1:

Fig. 3. Velocity of q2:

of Figs. 2 and 3 show the trajectories of and Fig. 4
shows the tracking error of Figs. 5 and 6 shows the torques
exerted on the system. These results show that the control
objective is achieved.

V. CONCLUSION

In this paper, the issue of appropriate modeling and control
is addressed for mechanical systems with Pfaffian nonholo-

Fig. 4. Contact force error.

Fig. 5. Input �1:

Fig. 6. Input �2:

nomic constraints. By specifying a pseudo-state vector, a novel
dynamic model, suitable for simultaneous force and motion
control, is established. A robust control formulations are then
proposed, ensuring that a system withnonholonomic con-
straints can be stabilized to a-dimensional desired manifold.
However, the definition of the desired manifold depends on
the specific choice of pseudo-state vector, which is related to
the form of the constraint equations. Given the pseudo-state
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vector, the developed method provides a solution for the robust
force and motion control of nonholonomic systems. A simple
mechanical system with a Pfaffian nonholonomic constraint
has been used to illustrate the methodology developed in this
paper.
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