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Abstract—The position/force control of mechanical systems general Pfaffian constraints, and analyses are given from
subject to a set of Pfaffian constraints is addressed in this paper. the Lagrangian point of view. As for the Hamiltonian case

A reduced order dynamical description of such nonholonomic it other forms of nonholonomic constraints, the reader
mechanical systems, including the constraints, is developed. Some

properties of the dynamic model are then exploited to facilitate may refer to [3]' By assum_ing Complete k”OW'edge of the
the controller design. Based on theory of guaranteed stability constraint manifold, and taking the internal dynamics of the

of uncertain systems, a robust control algorithms is derived, systems into account due to nonholonomic constraints, a
guaranteeing the uniform ultimate boundedness of the tracking reduced order dynamics description suitable for motion and
errors. A detailed numerical example is presented to illustrate ,.ca control is derived. Then by exploiting the particular
the developed method. . .
structure of the dynamics, several fundamental properties are
Index Terms—Mechanical systems, nonholonomic constraints, gbtained to facilitate the controller design. Finally, with the
robust control. specification of a desired manifold, a robust control algorithm
is derived, where the control of the constraint force due to the
existence of Pfaffian constraints is also included, using only the
I N RECENT years, the control of mechanical systemgeasurements of joint position, velocity, and constraint force.
with nonholonomic constraints is a subject that has gegyapility analysis shows the stabilization of the manifold in the

erated significant interest for numerous practical applicationganse that tracking errors are uniformly ultimately bounded.
It is well known that in mobile robots, multifingered hands

manipulating a grasped object, and space robots, the kine-
matic constraint equations are nonholonomic [9], and the Il. DYNAMIC EQUATION WITH PFAFFIAN CONSTRAINTS

dynamics of such systems are well understood (see, €.g.n this section, we consider a mechanical system with
[9], [13]). Control of mechanical systems, with nonholonomig, degree-of-freedom whose generalized coordinates are

I. INTRODUCTION

constraints, has been described through the special caseg, 0f, ... ¢,. The Lagrange equations describing the motion
mobile wheeled robots in [14], [15], [18], [19]. Early workef the system are

that deals with control of nonholonomic systems is described d [ or oL

in [8]. However, a theoretic framework which can serve as a 7 <aq,,> ~ o =T, r=12--.,n (1)

basis for the study of mechanical systems with nonholonomic o )
constraints is quite recent [1], [2], [4], [5]. Nevertheless, all ofnereL = T'—P, T"and P’ are the kinetic and potential energy

those discussions are only focused on a special case (PfafféfPectively, and; is the generalized force. The kinetic energy
catastatic constraints) [10]. can be expressed as [10], [13]

As discussed in [9], [10], different types of constraints 1 = 2
may occur in different physical contests. The constraints T'=3 Z @ij4id; (2)
for coupled rigid bodies, for example, is different from the _ ) =t ) _
constraints occurred in rolling and cutting motions [7], [12]Vherea;; is a function of the generalized coordinates.
It is known that nonholonomic Pfaffian constraints represent al-€t US consider the situation where the system is subjected
broad class of constraints [10]. An example which illustratd® additionalp(p < n) independent nonintegrable kinematic
the Pfaffian constraints is a homogeneous ball on a rotatifgnstraints of the form [10], [13]
plate [11]. In this paper, our attention is focused on the Z e dan 4 o df = 0, F—19.p @)
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cannot solve forp of the variables ing. (» = 1,---n) in Performing a@Q R-like decomposition of the constraint ma-
terms of those remaining to reduce its dimension througtix L(g), one obtains

direct substitution into (1). It is important to note that the LT (q) = Q(q)R(q)

constraints (3) is nonintegrable. Otherwise, the constraints can R

be integrated into holonomic constraints and in this case they =[Q1(g)Q=2(q)] [ 10(Q)}

can be used to reduce the system dimension by eliminating

some generalized coordinates. The conditions for checking this =Q1(g)Ri(q) (10)
nonintegrability are given in [22]. where Q(¢g) € R*"*", Ri(gq) € RP*P are nonsingular; the

When the nonholonomic constraints (3) are imposed on thelumns ofQ; are orthonormal and are constructed frgm
mechanical systems (1), these constraints may be thoughtinéarly independent columns @f'" so thatR(Q;) = R(L?),
as imposing additional constraint forces, on the system, the columns of), are chosen from the orthogonal complement

thereby altering the set of (1) to [10] of R(Q1) so thatR(Q») = N(L). Then we have
di <g£> _gﬁ :7_7"’_7_1/*7 7):1727"'771 (4) mn:R(Ql)e}R(QQ)
t \ 9 ar Note that in this paperR(-), N(-) denote range and null
where spaces, respectively.
» Based on the above decomposition, the following property
_ Aetior 5) could be obtained.
o kz_;l Btk ®) Property 3:
Qf(@Q1(g) =1, (11)
and quantities\,, (k = 1,---,p) are Lagrangian multipliers QT (@)Q2(g) =0 (12)
[9]. _
In the following, we denoteg = [q1 ¢2---¢.]%, then _ La)Q2(g) =0. (13) _
Lagrange’s equation (4) can be manipulated to derive In the following development, we assume that there exists

B N _ T a minor of L(g) having the same rank of(g) for all
D(ga+ F(g9q+Glg) =7+ LA 6)  values ofg, so that Property 3 is valid globally. In view of
where then xn matrix D(q) is positive definite and symmetric,the decomposition (10), the constraint equations (9) can be
and is related to the inertial properties of system [10], thewritten as
vector functionF(q, ¢)¢ is in general a nonlinear function of T, N\ T
. ’ ) =R W(q(t),t). 14
its arguments and = [r, 72, - 7,]%, L is denoted by the _ @ (0d(®) 1 (@Wle),?) _ (14)
p X n matrix [1];;, and A = [Ay,---A,]7 is the associated It can easily be seen that the general solution to (9) or

Lagrangian multipliers. equivalently (14) can then be expressed as
In the foIIowi.ng develgpmgn_t we only cpnsider the systems g = Q)" + Q1 ()R (W (q(t), 1)
with the following two simplifying properties. — Qs (q)9" + H(g,?) (15)

Property 1: A suitable definition of F'(¢,¢4) makes the

-7 -a n—p i
matrix (1) — 2F) skew-symmetric. In particular, this is true ifWhere H(g,t) = Qu(@) R, " (@)W(g(?),7) ando” € R 7 is
the elements of7(¢,¢) are defined as an arbitrary vector, which will be explained later. It should be

N noted that the first part of the solution (15) is the homogeneous
qT% n Z <3Dik _ aDjk)(jk . (7) solution lying inA(QT) and the other is a particular solution
aq — dg; ag; to (9). »* € R"P can be thought of as the magnitude
Property 2: There exists am-vector a with components of generalized velocity along tangent directions defined by

depending on mechanical parameters (masses, momentEQ¢MnS of Q2. N o ,
inertia, etc.), such that In (15), a new vectoi® € R™~ 7 is introduced and constitute

a reduced set of generalized velocities. We should note that

1

D(@)a+ Fle: 9g+ Gle) = 2(g:4. 9o (8)  similar vectors have also been introduced, for example, in [20],
where® is an x m matrix of known functions of, ¢, ¢; and [7] (acatastatic constraints) and [2], [6] (catastatic constraints),
« is the m-vector of inertia parameters. though different methods are used. Sirceis the same with

It should be noted that the first property is related to thbat in [6] if W{(q(t),t) = 0, we also callo® as pseudo-
passivity of the mechanical dynamics and the second proglocities We should note that choice @f is related to the
erty says that the Lagrangian dynamic equation are lineaftym of constraint equations (9) and may or may not be a

parameterizable. physical quantity (see the simulation example). In this paper,
The constraints (3) can be written in matrix form as we assume that there exists a vectowdfg) € R" P so that
Lq(t) = W(q(t), 1) (9) v® is the derivative ofy™. Without losing generality, we also

i _ assume that the componentsu6fare smoothy®(0) = 0, and
where, as in (5), we have d?DOted bythe p X matrix [tii  the set{dvi(q),-- -, dv;,_,(qg)} is linearly independent for all
and by W the vector containing the remainder of the term& € R, wheredvg(q)’is defined as the gradient of(q).
in (3). As in [1], we assume that the matrix has full rank Choosingp out of n coordinatesy, denoted by
p, which means that the number of constraint equations (3) is \

unchanged for alf € R* and¢ € R. v* = [i(g) v (@)]” (16)
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such that the sefdv{(q),- - ,dvg_p(q),dv‘l’(q), e ,dv;’)(q)} Property 6: The dynamic structure (19) is linear in terms

is linearly independent for aly € ™. Therefore, forv™ = of the same suitably selected set of inertia parameters as used
[v*Tv*T]T there exist a global diffeomorphism in Property 2

v = T(q)7 T(O) = 07 vE §Rn (17) D(q)QQ(q)Ua + Fl (q7 Q)i]a + G(q) + P(q7 Q7 t)
which changes coordinates form the basig tif the basis of. = 01(g, ¢, 0", v%, ) (20)

It should be noted that the expression of the diffeomorphiswhere ®; is a (n x m) regressor matrixyv is the m-vector

T depends on the form of constraint equations (9) and tbé inertia parameters.

choices ofv’. Remark: Property 6 may be easily understood by observing
Due to (17) and (15), the statg,q¢) can be replaced by that the transformations do not change the linearity in terms of

(v,v"), i.e., (v,9") is sufficient to describe the constrainedonstant parametets established for model (6) by Property 2.

motion. Sincey andq are measurable directly, in the following The aforementioned properties are fundamental for design-

development we still usge and ¢ as arguments i), F, etc. ing the force/motion control law.

However, we should remember thatand ¢ are related ta

and#“ through (17) and (15). Differentiating (15), we obtain
Ill. RoBUST CONTROLLER DESIGN

q= Qa(q)v" + % (Q2(g))v" + iH(q7 t). (18) FOR MOTION/FORCE TRACKING

dt .
Therefore, the dynamic equation (4), when satisfying the It has been proved (see [1] and [8]) that the nonholonomic

nonholohomic constraint (3), can be expressed in terms BfSEMS cannot be stabilized to a single point using pure
statesi® as smooth state feedback. It can only be stabilized to a manifold

of dimensionn — p due to the existence gf nonholonomic
D(q)Q2(q)0" + Fi(q,9)v" + G(g) + P(q,4.t) constraints. The objective of stabilizing the systems to a point
=71+ LY ()X (19) has been achieved by open-loop control [5], nonsmooth feed-
back law [1], [18] and time-varying feedback laws [15]-[17].

where it i
However, it is fair to say that these approaches are not yet

Fi(q,9) ID(Q)% (Q2(q)) + F(q,9)Q2(q) fully general and only focused on the catastatic constraints.
d It is worth mentioning that different control objectives may

P(q,9,t) =D(q) pr H(q,t)+ F(q,9)H(q,1)- also be pursued, such as stabilization to manifolds of equilib-
rium points [1], [2], [4] (as opposed to a single equilibrium

It should be noted that the reduced state spac@nis- p
dimensional. The system can be described by sthector
of variablesv [or ¢ due to (17)] and th€n — p)-vector of
variablesv®.

Remark: We note the derived equations for the system i
clude the effects of the Pfaffian constraints. They can theref
be thought of as the equivalent equations of motion. A possi
disadvantage of the present formulation is thate R"»—?
may not be a physical quantity. Using similar definitions of Q4 ={(q, 4, N)|[v" = v, 9" =03, A = \a}.

v”, various reduced order models have also been obtained if\ow, assume that the parameters of the mechanical systems

[7], [20] (acatastatic constraint case) and [2], [6] (catastatifre not exactly known. To synthesize the robust controller, we
constraint case). As will become clear later, in this paper Wgsfine

do not aim at linearizing the system dynamics as, for example,

position).

By assuming that variables® are physically motivated,
the objective of the control can be specified as: given a
rg_esiredug, ©%, and desired constraint foreg,, or identically
&%sired multiplier\;, determine a control law such that for any
t;%(o),q(o)) € Q, thenv®, ¥, and A asymptotically converge
to a manifold€?,; defined as

in [7], but instead exploit the physical structure of the systems Co =V TV (21)
for the subsequent development. ex=A— Ay (22)
By exploiting the structure of (19), three properties are ¥, =93 — Ae, (23)
obtained. P . . where A is a positive definite matrix whose eigenvalues are
Property 4: The matrix()3 D(q)@2 is symmetric and pos- strictly in the right-hand complex plane.
itive definite.

Before giving the control law, the following assumptions
Sre required.

Assumption Al:The desired trajectoryg is chosen such
that +$, v, and ¢ are all bounded signals.

Assumption A2:D(q), F(q,q), and G(q) are bounded in
g, and F'(q,q) is linear in g, therefore, there exist positive
constantss;, ¢ = 1,2,3, such that

Remark: Property 4 can be easily obtained by observin
that Q2 (g) is of full column rank and)(q) is positive definite.

Property 5: Define D (q) = Q% D(g)Q-. Using the same
definition of the matrixF'(¢,¢) as in Property 1:(q) and
Iy (v, q) satisfy

d .
z’ <% Di(g) — 203 Fi(g, q))iv =0
i.e.,((d/dt)D1(q)—2QT Fi(g,q)) is a skew symmetric matrix. IP(@)]] < i1

Proof: Directly, by using the definition ab; andF; and 1£(q, )|l < r2llql|
by considering the skew symmetry @D — 2F") in Property 2. IG(@)|] < ~r3 (24)
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where the norm of vector is defined ad|x|| = X, |z;| and According to Property 3, the above equation becomes
that of matrixA is defined as the corresponding induced noerQTDQQS _ Q%“(I)l(p _ QQT(I)la _ QQTKQQS _ 2TFls_ (31)

Throughout this paper, we adopt this definition for the norm. h defi ¢ . didate f
Assumption A3:The matrix D1 (q) = QT D(q)Q» can be Thus, we define a Lyapunov function candidate for system

bounded above and below, i.e., (31) as
Bmd < Di(q) £yl VgeR"
where 3,, and 3, are positive constants.

V=1s"Dss. (32)
A simple calculation shows that along solutions of (31)

Remark: The remarks about this set of assumptions are v =s"( 5‘1’19 — Q3 ®ra— Q3 KQas)
worth making at this juncture. Assumption Al is common +s7 (% D —QTF)s
to most tracking schemes. Assumption A2 is valid for a wide = —sTQTK Qo5+ 5TQTd (¢ — ) (33)

class of mechanical systems, for example, robots with revolute

joints. Assumption A2 can be extended to a more general caSg,” T . I )
However, our goal in this paper is to develop the new contrpl (T§D1 - @ 14;;])3 Usm% tan ar.gun;gnt. similar to [21], if
strategy in a simpler setting that reveals its essential featur ‘2_1 Q23]| > ¢, the second term in (33) is

ere we have used Property 5 to eliminate the term

This is the motivation for simply stating it as an assumption. (@1 Q28)" (¢ — )

Also, the exact values of; (¢ = 1,2,3) are not necessary _ (g7 T T Qys

for the controller design. As for Assumption A3, since the = (21 Qas)" | —a - |0F Q5|

matrix D(q) is always bounded above and below, apglq) < |97 Qus||([lal| — p) < 0 (34)

depend only on the constraint equation (9), Assumptions A3 ) i _
can always be satisfied for a class of Pfaffian constraints. oM the Cauchy-Schwartz inequality and our assumption on

T
Defining « as am-vector, containing the unknown elementd@ll- If |21 @25l < ¢, we have
in the suitably selected set of equivalent dynamic parameters, (@1 Q28)" (¢ — «)

then the linear parameterizability of the dynamics (Property T < T (Qss
< (2T Qe8)" | pri— + w)
6) leads to (@@ P oT o
D 7+F 7..T+G +P ,‘,t (I)T
(@)Q2(q)p + 1(? Qor +G(g) + Plg,4,1) — (7 Qys)T <p 1TQ23 B 3@’{(323). 35)
= (I)l(qv q, Urvvr)a (25) ||(I)1 QQSH €
where ®, is the (n x m) regressor matrix. The last term achieves a maximum value g2p when
The robust control law is then synthesized as |91 Q25]| = ¢/2. Thus we have that
T =®1(g, § B0 ) — KQos — LA, (26) V< —s"QFKQas+¢/2p
Qs oo s < —nllsl* +6 (36)
o= r |2 Qas]’ Le2sll =< (27) Wwheren = A\uin(Q5 KQ2), § = ¢/2p. From above we can
_P 3T Qys, if |OTQas|| < ¢ obtain a larger upper bound efas
¢ 1/2
where ¢, |s define_d .in (25);Q2 is defined in (10);K i; an Ils|| < ﬁﬂ HS(O)HQG_Qm I _5 [— e_m] (37)
n x n positive definite matrixpy € R4 used in (27) is the Brm nPm

upper bounds of inertia parameter i.e., ||a]| < p, which is where7; = /8y, and 3, and 3, are positive scalars
assumed knowry, is an constant; the vectar which can be defined in Assumption A3. Thereforgis uniformly ultimately

thought of as a sliding surface, is defined as bounded. By standard linear control arguments and the defi-
s=é, + Ae, (28) nition of s in (28), it can be shown that, and e, are also
uniformly ultimately bounded.
the force term\, is defined as Sinces, é,, ande, are bounded, it follows thai®, ¥*, ,.,
Ao = Mg — Koen (29) and, are all bounded. Based on Assumption A2, one can

conclude that all signals on the right side of (31) are bounded.

where K, is a constant force cont_rol feedback gain. hus, we obtain that and therefor@® are bounded. Equation
Based on the above, the following theorem can be state

Theorem: Consider the constrained mechanical syste 30) can be rewritten as
(19) with the control laws (26), (27), satisfying Assumptions
Al1-A3. Then the following holds for angg(0), ¢(0)) € ©:

1) ¢, ande, are uniformly ultimately bounded.

2) ex i_s uniformly ultimately bounded and inversely pro_where<p is a bounded function. Thus

portional to (1 + K3).
Proof: From the dynamic equation (19) and relationships LTey = (1+ Kyt
(28), using (25) and (26) after some calculations, the following

is obtained: are bounded and can be adjusted by changing the feedback
DQys = @10 — Pra— KQys — Fis — LT (\. — ). (30) gain K. Thus, the theorem is proved. oOoOd

LT()\C — )\) I‘Pl(p — ‘I>104 — KQQS — F18 — DQQS
= 90(% Q7 ijav " ; i’ra 7]1) (38)
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Remarks:

1)

2)

3)

For simplicity, consider a two-degree-of-freedom mechan-
ical system described by

311

(42)

i= oo 9] eostavini (43

The constrained dynamic equation (19) can be expressed as

D[Hi}—i—F[Hz}—i—G—i—F[ﬂ m

In this case, (15) becomes
In the theorem, the control law is, in a simple fashion,
related to the bounds of inertia parametersso that q= {1};+ [0} ;
the parameter variations in the plant can be taken into 0 1] 2+sin(q1)
account easily.
From (37), ityis shown how decreasingthe size of where v is just ¢; and physically motivated. Thus, (18)
the ball within which ||s|| is ultimately confined. If P€COMES
e — 0, thens — 0 and thereforez, — 0 ande, — 0,
(¢,9, ) — 4 exponentially. In such a case, in (26)
becomesy = sgn(®?'Qss), which is a typical sliding
mode control law. As a matter of fact, the control law
(27) is just a smoothing realization of the switch function
¢ = sgn(®¥'Q»s) so as to overcome chattering, which
is undesirable in practice.

Supposey in (26) is replaced bya, representing es- _ D[O} cos(q1) i @2

timation of o, and & is updated bya = —I'®TQss. 1 2

This leads to an adaptive control law, similar to the Tl 0

one given in [23]. With this algorithm, the closed loop = [TJ {2 —i—sin(ql)} (44)

system is globally convergent. However, the question

of whether to use robust control or adaptive control The desired manifold2,; is chosen as

does not have an obvious answer. Clearly the adaptive

control is easier to design and would be expected @, = {(¢,4, A)|g1 = q1a = v§, @1 = qra = 05, A = Ay = 10}

work better if the uncertainty is large. But, it is known

that adaptive control performs poorly in the presence ofherev is chosen a®§ = —90° + 52.5(1 — cos(1.26t)). In

external disturbance and unmodeled dynamics unless this caseqy should begy = 1/(2 + sin(g1q4)).

algorithm is modified. Such a modification will result in  The robust control law (26) with (27) is used so that ¢]

a more complicated design comparable to the presemtd A approachs},.

robust design. As in [24], one parameterization of (39) is given by
IV. SIMULATED EXAMPLE a1 = (my +ma)ri

a2 :my’%

(45)

Q3 = MaT17T2.

Du(g2)  Dra(g2) @ Then, the regressor matrik; defined in (25) can be written
Di3(q2) Dao(q2) | |G as
[—Fm(@)@ —Fia(q2)(d1 + éz)} |:‘j1:|
Fi2(g2)d1 0 o $11 = + 0 cos(g2)
N |:91(QI7 QQ)9:| P12 =0 — @5 cos(qr)
92(41,22)9 $13 =2 cos(q2), — sin(g2)G2vr + 0 cos(qr + g2)

_ T1 0

o |:7'2:| + [2 + sin{q1) } A (39)
where Dy (g2) = (my + m2)r? +mar3 + 2maori7e cos(ga);
Dis(¢p) = mard 4+ moriry  cos(qa); Daa(p) = mard;
F12(¢) = marir2 sin(g2); 91(6, ¢) = (m1+ma)r1 cos(g2)+
mary cos(qr + q2); g2(0, ) = mary cos(qr + ¢2), and let it

— sin(g2)ga(d1 + ¢2) — cos(g2) cos(q1)d1d3
P21 =0
P22 = P12

a3 = cos(q2)¥r +sin(gz2) g1y + 0 cos(qr +q2)  (46)

whereg = g/r1, andg is the acceleration of gravity.

be constrained in such a way that the velocity of the secondrhe values used in the simulation are selectedias 1 m

link satisfies
(2+sin(q1))g2 =1 (40)

which is obviously a Pfaffian nonholonomic constraint.
Then

L' = {2 + S(i)n(ql)}

i pre)

(41)

ro = 0.8 m, m; = 0.5 kg, mo = 0.5 kg. Thus, p is chosen
asp = 3. The parameterd ande are chosen ad = 10 and
¢ = 5. The control gainK and the force control gai&’, are
chosen ask’ = diag(20,20), K, = 200.

Since the trajectory tracking satisfying the constraint is of
interest, the initial positions and velocities of the mechanical
system are chosen on desired trajectories, ¢g0) = 0,

Using the control law (26) with (27), the results of the
simulation are shown in Figs. 1-6. Fig. 1 shows the trajectory
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Position(Rad) x 10-3 Force(N) x 1073
500.00 500.00
400.00 400.00
300.00 300.00
200.00 200.00
100.00 100.00
-0.00 [ -0.00
-100.00 -100.00
-200.00 -200.00
-300.00 -300.00
-400.00 -400.00
-500.00 -500.00
T(Sec) T(Sec)
0.00 5.00 10.00 0.00 5.00 10.00
Fig. 1. Position trajectory of . Fig. 4. Contact force error.
Velocity(Rad/s) Torque(INm)
1.00 15.00 )
14.00
0.80 13.00 \\ //
0.60 12.00 AN
11.00
0.40 10.00 \\ 7/
0.20 9.00 X va
B N\ /
-0.00 — —— 7.00 AN
-0.20 6.00
5.00
-0.40 4.00
-0.60 3.00
2.00
-0.80 1.00
-1.00 0.00
T(Sec) T(Sec)
0.00 5.00 10.00 0.00 5.00 10.00
Fig. 2. Velocity of ;. Fig. 5. Input7;.
Velocity(Rad/s) Torque(Nm)
1.60
N

1.40 -16.00 \ /
1.20 -17.00
100 N\ /
-18.00
0.80 \
-19.00 /
0.60 \ /
0.40 -20.00 \ /
0.20 -21.00 \ /
-0.00 -22.00
-0.20 /
-23.00

-0.40
-0.60 T(Sec) -24.00 T(Sec)
0.00 5.00 10.00 0.00 5.00 10.00
Fig. 3. Velocity of ¢2. Fig. 6. Inputs.

of g1, Figs. 2 and 3 show the trajectories @fanddz, Fig. 4 omic constraints. By specifying a pseudo-state vector, a novel
shows the tracking error of. Figs. 5 and 6 shows the torquesjynamic model, suitable for simultaneous force and motion
exerted on the system. These results show that the confghyg is established. A robust control formulations are then

objective is achieved. proposed, ensuring that a system wjtmonholonomic con-
straints can be stabilized togadimensional desired manifold.
V. CONCLUSION However, the definition of the desired manifold depends on

In this paper, the issue of appropriate modeling and conttble specific choice of pseudo-state vector, which is related to
is addressed for mechanical systems with Pfaffian nonhotbe form of the constraint equations. Given the pseudo-state
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vector, the developed method provides a solution for the robi*~*
force and motion control of nonholonomic systems. A simpl
mechanical system with a Pfaffian nonholonomic constrai
has been used to illustrate the methodology developed in t
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