ASSIGNMENT PROBLEMS

for
ELEMENTARY NUMERICAL METHODS
with Solutions

PROBLEM 1:

Let $\mathbf{x} \in \mathbb{R}^{3}$ be given by $\mathbf{x}=(3,4,-5)^{T}$.

What is the value of $\|\mathbf{x}\|_{2}$?

SOLUTION: $\sqrt{50}$.

PROBLEM 2:

Use the Banach Lemma (with the matrix infinity norm) to prove that the n by n matrix \mathbf{T}_{n} given below is invertible for all positive integers n :

$$
\mathbf{T}_{n}=\operatorname{diag}[1,1,5,1,1] \equiv\left(\begin{array}{ccccccc}
5 & 1 & 1 & & & & \\
1 & 5 & 1 & 1 & & & \\
1 & 1 & 5 & 1 & 1 & & \\
& 1 & 1 & 5 & 1 & 1 & \\
& & . & . & . & . & . \\
& & & 1 & 1 & 5 & 1 \\
& & & & 1 & 1 & 5
\end{array}\right)
$$

Hint: First rewrite \mathbf{T}_{n} as $\mathbf{T}_{n}=c \tilde{\mathbf{T}}_{n}$, where c is a constant, chosen so that the Banach Lemma can be applied to $\tilde{\mathbf{T}}_{n}$.

Also use the Banach Lemma to derive an upper bound on the infinity norm of the inverse matrix \mathbf{T}_{n}^{-1}, and on the condition number of \mathbf{T}_{n}.

SOLUTION :

Take $c=5$ (the number along the main diagonal of \mathbf{T}_{n}).
Then

$$
\mathbf{T}_{n}=5\left(\mathbf{I}_{n}+\mathbf{B}_{n}\right),
$$

where \mathbf{I}_{n} is the n by n identity matrix, and

$$
\mathbf{B}_{n}=\operatorname{diag}\left[\frac{1}{5}, \frac{1}{5}, 0, \frac{1}{5}, \frac{1}{5}\right] \equiv\left(\begin{array}{ccccccc}
0 & \frac{1}{5} & \frac{1}{5} & & & & \\
\frac{1}{5} & 0 & \frac{1}{5} & \frac{1}{5} & & & \\
\frac{1}{5} & \frac{1}{5} & 0 & \frac{1}{5} & \frac{1}{5} & & \\
& \frac{1}{5} & \frac{1}{5} & 0 & \frac{1}{5} & \frac{1}{5} & \\
& & . & \frac{1}{5} & \frac{1}{5} & . & \\
& & & & \frac{1}{5} & 0 & 0 \\
& & & & \frac{1}{5} & \frac{1}{5} & 0
\end{array}\right)
$$

Here $\left\|\mathbf{B}_{n}\right\|_{\infty}=\frac{4}{5}<1$, so $\mathbf{I}_{n}+\mathbf{B}_{n}$ is invertible, and

$$
\left\|\left(\mathbf{I}_{n}+\mathbf{B}_{n}\right)^{-1}\right\|_{\infty} \leq \frac{1}{1-\left\|\mathbf{B}_{n}\right\|_{\infty}}=\frac{1}{1-\frac{4}{5}}=5
$$

From

$$
\mathbf{T}_{n}=5\left(\mathbf{I}_{n}+\mathbf{B}_{n}\right),
$$

it also follows that

$$
\mathbf{T}_{n}^{-1}=\frac{1}{5}\left(\mathbf{I}_{n}+\mathbf{B}_{n}\right)^{-1},
$$

so that

$$
\left\|\mathbf{T}_{n}^{-1}\right\|_{\infty}=\frac{1}{5}\left\|\left(\mathbf{I}_{n}+\mathbf{B}_{n}\right)^{-1}\right\|_{\infty} \leq \frac{1}{5} \cdot 5=1
$$

and

$$
\operatorname{cond}\left(\mathbf{T}_{n}\right) \equiv\left\|\mathbf{T}_{n}\right\|_{\infty}\left\|\mathbf{T}_{n}^{-1}\right\|_{\infty} \leq 9 \cdot 1=9
$$

PROBLEM 3:

Use the Banach Lemma (with the matrix infinity norm) to prove that the n by n matrix \mathbf{S}_{n} given below is invertible for all positive integers n :
$\mathbf{S}_{n}=\operatorname{diag}\left[h_{i}, 2\left(h_{i}+h_{i+1}\right), h_{i+1}\right] \equiv$

$$
\left(\begin{array}{cccccc}
2\left(h_{0}+h_{1}\right) & h_{1} & & & & \\
h_{1} & 2\left(h_{1}+h_{2}\right) & h_{2} & & & \\
& h_{2} & 2\left(h_{2}+h_{3}\right) & h_{3} & & \\
& & h_{3} & 2\left(h_{3}+h_{4}\right) & h_{4} & \\
& & \cdot & \cdot & \cdot & \\
& & & h_{n-2} & 2\left(h_{n-2}+h_{n-1}\right) & h_{n-1} \\
& & & & h_{n-1} & 2\left(h_{n-1}+h_{n}\right)
\end{array}\right)
$$

where $h_{i}>0$, for all i. (This matrix arises in cubic spline interpolation.)
Hint: First rewrite \mathbf{S}_{n} as $\mathbf{S}_{n}=\mathbf{D}_{n} \tilde{\mathbf{S}}_{n}$, where \mathbf{D}_{n} is a diagonal matrix, chosen so that the Banach Lemma can be applied to $\tilde{\mathbf{S}}_{n}$.

SOLUTION :

The solution of this problem is actually given on the page that follows Page 68 of the "slides-with-solutions".

PROBLEM 4 :

Use Gauss elimination to compute (pencil and paper) the LU-decomposition of the matrix

$$
\mathbf{A}=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 0 & 1 \\
0 & 1 & 2
\end{array}\right)
$$

After having computed \mathbf{L} and \mathbf{U}, use them to solve for x in

$$
\mathrm{Ax}=\mathrm{f},
$$

where $\mathbf{f}=(2,2,1)^{T}$.

Check your answer !

SOLUTION :

$$
\mathbf{L}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & -\frac{1}{2} & 1
\end{array}\right), \quad \mathbf{U}=\left(\begin{array}{ccc}
1 & 2 & 3 \\
0 & -2 & -2 \\
0 & 0 & 1
\end{array}\right)
$$

From $\mathbf{L g}=\mathbf{f}$ we get

$$
\mathbf{g}=\left(\begin{array}{l}
2 \\
0 \\
1
\end{array}\right)
$$

and backsubstitution in $\mathbf{U x}=\mathrm{g}$ gives

$$
\mathbf{x}=\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right)
$$

The purpose of this exercise is to understand use of the $L U$-decomposition algorithm.

PROBLEM 5:

Give an example of a singular 2×2 matrix \mathbf{A} :

that has an LU-decomposition.

Show L and U.

SOLUTION :

One of infinitely many possible examples of a singular 2×2 matrix \mathbf{A} that has an LU-decomposition:

$$
\mathbf{A}=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
$$

for which

$$
\mathbf{L}=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right), \quad \mathbf{U}=\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right) .
$$

PROBLEM 6 :

Give an example of a nonsingular 2×2 matrix \mathbf{A} :
that does not have an LU-decomposition.

Explain why not.

SOLUTION :

One of infinitely many possible examples of a nonsingular 2×2 matrix \mathbf{A} that does not have an LU-decomposition:

$$
\mathbf{A}=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)
$$

The reason is that a zero-division occurs right at the first elimination step.
This problem can be fixed by using pivoting, i.e., interchanging rows.

PROBLEM 7 :

A square matrix \mathbf{A} is said to be ill-conditioned if the condition number

$$
\operatorname{cond}(\mathbf{A}) \equiv\|\mathbf{A}\|\left\|\mathbf{A}^{-1}\right\|
$$

is large.

Give an example of a nonsingular 2×2 matrix \mathbf{A} that is ill-conditioned, with

$$
\operatorname{cond}(\mathbf{A}) \geq 10^{6}
$$

but where the multiplier that arises in the LU-decomposition is not big in absolute value.

SOLUTION :

An example of a nonsingular 2×2 matrix \mathbf{A} that is ill-conditioned, where the multiplier that arises in the LU-decomposition is not big in absolute value:

$$
\mathbf{A}=\left(\begin{array}{cc}
10^{4} & 0 \\
0 & 10^{-4}
\end{array}\right)
$$

with inverse

$$
\mathbf{A}^{-1}=\left(\begin{array}{cc}
10^{-4} & 0 \\
0 & 10^{4}
\end{array}\right) .
$$

Here

$$
\operatorname{cond}(\mathbf{A}) \equiv\|\mathbf{A}\|_{\infty}\left\|\mathbf{A}^{-1}\right\|_{\infty}=10^{8}
$$

and the sole multiplier that arises is zero !

PROBLEM 8 :

Give an example of a 2×2 matrix \mathbf{A} that is not ill-conditioned, with

$$
\operatorname{cond}(\mathbf{A}) \leq 10,
$$

but where the multiplier that arises in the $\mathbf{L U}$-decomposition is of very large magnitude, i.e., is big in absolute value.

SOLUTION :

An example of a 2×2 matrix \mathbf{A} that is not ill-conditioned, where the multiplier that arises in the $\mathbf{L U}$-decomposition is of large magnitude:

Consider the matrix

$$
\mathbf{A}=\left(\begin{array}{ll}
c & 1 \\
1 & 0
\end{array}\right)
$$

which has inverse

$$
\mathbf{A}^{-1}=\left(\begin{array}{cc}
0 & 1 \\
1 & -c
\end{array}\right) .
$$

Take c to be small, for example, $c=10^{-9}$. Then

$$
\operatorname{cond}(\mathbf{A}) \equiv\|\mathbf{A}\|\left\|\mathbf{A}^{-1}\right\|=(c+1)(1+c)=(1+c)^{2} \approx 1
$$

whereas the sole multiplier that arises is $1 / c=10^{9}$.

PROBLEM 9 :

Compute (pencil and paper) the LU-decomposition of the $n \times n$ Hilbert matrix \mathbf{H}_{n} whose entries in the i th row and j th column are

$$
h_{i, j}=1 /(i+j-1), \quad i, j=1, \cdots, n,
$$

for the case $n=2$.
What can you say about the size of the multiplier?

Use the LU-decomposition to compute the inverse of \mathbf{H}_{2}.

Verify your answer.
What is the condition number of \mathbf{H}_{2} ?

SOLUTION : Here

$$
\mathbf{H}_{2}=\left(\begin{array}{cc}
1 & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{3}
\end{array}\right)
$$

for which

$$
\mathbf{L}=\left(\begin{array}{cc}
1 & 0 \\
\frac{1}{2} & 1
\end{array}\right) \quad, \quad \mathbf{U}=\left(\begin{array}{cc}
1 & \frac{1}{2} \\
0 & \frac{1}{12}
\end{array}\right), \quad \text { and } \quad \mathbf{H}_{2}^{-1}=\left(\begin{array}{cc}
4 & -6 \\
-6 & 12
\end{array}\right)
$$

The sole multiplier that arises in the $\mathbf{L U}$-decomposition has value $\frac{1}{2}$, and

$$
\operatorname{cond}\left(\mathbf{H}_{2}\right)=\left\|\mathbf{H}_{2}\right\|_{\infty}\left\|\mathbf{H}_{2}^{-1}\right\|_{\infty}=\frac{3}{2} \cdot 18=27
$$

PROBLEM 10 :

Compute (pencil and paper) the LU-decomposition of the $n \times n$ Hilbert matrix \mathbf{H}_{n} whose entries in the i th row and j th column are

$$
h_{i, j}=1 /(i+j-1), \quad i, j=1, \cdots, n,
$$

for the case $n=3$.

Use the LU-decomposition to solve

$$
\mathbf{H}_{3} \mathrm{x}=\mathrm{f},
$$

for \mathbf{x}, when $\mathbf{f}=(0,0,1)^{T}$, i.e., first solve

$$
\mathbf{L} \mathrm{g}=\mathbf{f},
$$

followed by solving $\mathrm{Ux}=\mathrm{g}$.

SOLUTION : Here

$$
\mathbf{H}_{3}=\left(\begin{array}{ccc}
1 & \frac{1}{2} & \frac{1}{3} \\
\frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\
\frac{1}{3} & \frac{1}{4} & \frac{1}{5}
\end{array}\right),
$$

for which

$$
\mathbf{L}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
\frac{1}{2} & 1 & 0 \\
\frac{1}{3} & 1 & 1
\end{array}\right), \quad \text { and } \quad \mathbf{U}=\left(\begin{array}{ccc}
1 & \frac{1}{2} & \frac{1}{3} \\
0 & \frac{1}{12} & \frac{1}{12} \\
0 & 0 & \frac{1}{180}
\end{array}\right)
$$

The solution of $\mathbf{H}_{3} \mathbf{x}=\mathbf{f}$, when $\mathbf{f}=(0,0,1)^{T}$, is $\mathbf{x}=(30,180,180)^{T}$.

The matrix \mathbf{H}_{n} becomes very ill-conditioned as its dimension n increases.

PROBLEM 11 :

Suppose that solving a general linear system of equations of dimension n requires 0.1 second on a given computer when $n=10^{2}$.

Based on the number of operations (multiplications and divisions only) estimate how much time it will take to multiply two general square matrices of dimension 10^{3} on this computer.

SOLUTION :

The leading term of the number of "operations" (multiplications and divisions) for solving a system of linear equations is $n^{3} / 3$.

Solving a linear system of dimension $n=100$ takes 0.1 second.
Thus each operation takes $0.1 /\left(10^{6} / 3\right)=3 \cdot 10^{-7}$ seconds.
Multiplying two n by n matrices takes n^{3} operations (multiplications).
Multiplying two matrices of dimension $n=1000$ takes 10^{9} operations.
The estimated time to multiply two matrices of dimension $n=1000$ is

$$
10^{9} \cdot 3 \cdot 10^{-7}=300 \text { seconds. }
$$

PROBLEM 12 :

Let \mathbf{T}_{n} be the specific n by n tridiagonal matrix $\mathbf{T}_{n}=\operatorname{diag}[2,5,2]$.

What upper bound on $\operatorname{cond}\left(\mathbf{T}_{n}\right)$ is obtained, when making use of the Banach Lemma?

SOLUTION :

$$
\operatorname{cond}\left(\mathbf{T}_{n}\right) \leq 9
$$

PROBLEM 13 :

Let \mathbf{T}_{n} be any general n by n tridiagonal matrix.

What is the total of the number of multiplications and divisions needed to determine the $\mathbf{L U}$-decomposition of \mathbf{T}_{n} ?
(Note that there is no right-hand side vector \mathbf{f}.)

SOLUTION :

The total number of "operations" (multiplications and divisions) is $2 n-2$.

PROBLEM 14 :

If Newton's method is used to compute the cube root of 3, with initial guess $x^{(0)}=1$, then what will be the value of $x^{(1)}$?

SOLUTION : $x^{(1)}=\frac{5}{3}$.

PROBLEM 15 :

Use the methods below to compute $\sqrt{2}$, i.e., solve the equation

$$
x^{2}-2=0,
$$

for its positive root.

In particular, determine the number of iterations k needed so that the residual $\left|\left(x^{(k)}\right)^{2}-2\right|$ is less than 10^{-5}.

- Newton's method with $x^{(0)}=1$.
- The Chord method with $x^{(0)}=1$.

SOLUTION :

For Newton's Method:

k	x	residual
1	$0.15000000 \mathrm{D}+01$	$0.25000000 \mathrm{D}+00$
2	$0.14166667 \mathrm{D}+01$	$0.69444444 \mathrm{D}-02$
3	$0.14142157 \mathrm{D}+01$	$0.60073049 \mathrm{D}-05$

For the Chord Method:

k	x	residual
1	$0.15000000 \mathrm{D}+01$	$0.25000000 \mathrm{D}+00$
2	$0.13750000 \mathrm{D}+01$	$-0.10937500 \mathrm{D}+00$
3	$0.14296875 \mathrm{D}+01$	$0.44006348 \mathrm{D}-01$
4	$0.14076843 \mathrm{D}+01$	$-0.18424838 \mathrm{D}-01$
5	$0.14168967 \mathrm{D}+01$	$0.75963863 \mathrm{D}-02$

[^0]
PROBLEM 16 :

Given $x^{(0)}$, say, $x^{(0)}=2.0$, compute the sequence

$$
x^{(1)}, x^{(2)}, x^{(3)}, \cdots, x^{(N)}
$$

up to a large value of N, e.g., $N=10$, using the recurrence relation

$$
x^{(k+1)}=f\left(x^{(k)}\right), \quad k=0,1,2,3, \cdots,
$$

where

$$
f(x)=\frac{x^{2}+5}{2 x} .
$$

Describe in a few words the observed behavior of the sequence.
In particular, does the sequence approach a limiting value?
If yes, then do you recognize what this limiting value is?
Does the limiting value depend on $x^{(0)}$?

SOLUTION : The sequence quickly converges :

k	x
1	$0.30000000 D+01$
2	$0.23333333 D+01$
3	$0.22380952 D+01$
4	$0.22360689 D+01$
5	$0.22360680 D+01$
6	$0.22360680 D+01$
7	$0.22360680 D+01$

The limiting value $x^{*} \approx 2.2360680$ is a fixed point, i.e., $f\left(x^{*}\right)=x^{*}$. Thus x^{*} is a solution of

$$
x=\frac{x^{2}+5}{2 x}
$$

from which we find that $x^{2}=5$.
Indeed the limiting value 2.2360680 is the positive square root of 5 , and we recognize the iteration as Newton's method for the root of 5 .

PROBLEM 17 :

Consider the recurrence relation

$$
x^{(k+1)}=c x^{(k)}\left(1-x^{(k)}\right), \quad k=0,1,2,3, \cdots .
$$

Prove that if $c \in[0,4]$ and $x^{(0)} \in[0,1]$ then $x^{(k)} \in[0,1]$ for all k.

SOLUTION :

$$
x^{(k+1)}=f\left(x^{(k)}\right), \quad \text { where } \quad f(x)=c x(1-x) .
$$

The curve $y=f(x)$ is a parabola, with $f(x)=0$ at $x=0$ and $x=1$.
Furthermore, $f^{\prime}(x)=0$ at $x=\frac{1}{2}$, where $f(x)$ reaches its maximum value, namely, $f\left(\frac{1}{2}\right)=\frac{c}{4}$.
(Draw the graph of $y=f(x)$ in the $x-y$-plane !)
Thus if c has value in the interval $[0,4]$, and if $x^{(k)}$ is in the interval $[0,1]$, then $x^{(k+1)}=f\left(x^{(k)}\right)$ also is in the interval $[0,1]$.

Since $x^{(0)}$ is taken in the interval $[0,1]$ it follows by induction that $x^{(k)}$ lies in the interval $[0,1]$, for all k.

PROBLEM 18 :

Consider the recurrence relation

$$
x^{(k+1)}=c x^{(k)}\left(1-x^{(k)}\right), \quad k=0,1,2,3, \cdots
$$

For each of these values of c :

$$
c=0.5,1.5,3.5,
$$

- analytically determine all fixed points.
- analytically determine whether or not they are attracting.

SOLUTION :

The fixed points are the solutions of $x=f(x)$
i.e., of

$$
x=c x(1-x),
$$

namely,

$$
x^{*}=0, \quad \text { and } \quad x^{*}=1-\frac{1}{c}
$$

A fixed point x^{*} is "attracting" (or "stable") if $\left|f^{\prime}\left(x^{*}\right)\right|<1$.
Here

$$
f(x)=c x(1-x), \quad \text { and } \quad f^{\prime}(x)=c(1-2 x),
$$

The conclusions are given in the Table on the following page.

c	x^{*}	$\left\|f^{\prime}\left(x^{*}\right)\right\|$	stable?	x^{*}	$\left\|f^{\prime}\left(x^{*}\right)\right\|$	stable?
0.5	0	0.5	Yes			
1.5	0	1.5	No	$\frac{1}{3}$	0.5	Yes
3.5	0	3.5	No	$\frac{5}{7}$	1.5	No

PROBLEM 19 :

For given $x^{(0)}$, say, $x^{(0)}=3.10$, compute

$$
x^{(1)}, x^{(2)}, x^{(3)}, \cdots, x^{(N)}
$$

up to a suitably large value of N, using the recurrence relation

$$
x^{(k+1)}=\tan \left(x^{(k)}\right), \quad k=0,1,2, \cdots .
$$

Does this sequence have a limit?
Can you explain the observed behavior?

Do the same for $x^{(0)}=6.2828$.

SOLUTION :

A reasonably accurate graph will explain the seemingly complex behaviour of this fixed point iteration:

- Draw a graph that includes several of the "branches" of the tangent function $f(x)=\tan (x)$.
- Note the zero intercepts of the branches, namely at $x=k \pi$, for $k=\cdots-3,-2,-1,0,1,2, \cdots$.
- Also note the vertical asymptotes at $x=(2 k+1) \pi / 2$.
- Include the line $\ell(x)=x$ in the graph, and observe its intersects with each of the infinitely many branches of $f(x)=\tan (x)$.
- Thus there are infinitely many fixed points, including $x=0$.
- Note that $f^{\prime}(x)=1$ at the fixed point $x=0$, i.e., the derivative test is inconclusive for $x=0$.
- However, graphical interpretation of the iteration shows that the fixed point $x=0$ is repelling, albeit weakly repelling.
- Note that all of the other infinitely many fixed points are repelling.
- Thus all infinitely many fixed points are repelling, which explains the complex behavior.
- Finally note that if $x^{(k)}$ is close to $x=0$ for some k, then it can take many more iterations before they leave the neighborhood of $x=0$.

PROBLEM 20 :

Determine all fixed points of this iteration:

$$
x^{(k+1)}=f\left(x^{(k)}\right)
$$

where

$$
f(x)=e^{x} .
$$

SOLUTION :

A graph of $f(x)=e^{x}$ and $\ell(x)=x$, shows that there is no fixed point.

PROBLEM 21 :

Determine all fixed points of this iteration:

$$
x^{(k+1)}=f\left(x^{(k)}\right)
$$

where

$$
f(x)=e^{-x} .
$$

SOLUTION :

A graph of $f(x)=e^{-x}$ and $\ell(x)=x$ shows that there is one fixed point, namely,

$$
x^{*} \approx 0.56714329,
$$

and that x^{*} is attracting, with

$$
\left|f^{\prime}\left(x^{*}\right)\right|<1,
$$

but

$$
f^{\prime}\left(x^{*}\right) \neq 0 .
$$

Thus for sufficiently close $x^{(0)}$ there will be linear convergence .

PROBLEM 22 :

Determine all fixed points of this iteration:

$$
x^{(k+1)}=f\left(x^{(k}\right)
$$

where

$$
f(x)=\frac{1+x^{2}}{1+x}
$$

For each fixed point determine whether it is attracting.

SOLUTION : A fixed point of

$$
x^{(k+1)}=f\left(x^{(k)}, \quad \text { with } \quad f(x)=\frac{1+x^{2}}{1+x}\right.
$$

satisfies

$$
x=\frac{1+x^{2}}{1+x}
$$

which can be rewritten as

$$
x+x^{2}=1+x^{2},
$$

from which it follows that $x^{*}=1$ is the only fixed point.
The derivative is seen to be

$$
f^{\prime}(x)=\frac{x^{2}+2 x-1}{(x+1)^{2}}, \quad \text { with } \quad\left|f^{\prime}\left(x^{*}\right)\right|=\frac{1}{2}<1
$$

Thus $x^{*}=1$ is attracting for sufficiently close $x^{(0)}$.

PROBLEM 23 :

Consider the Chord method for solving the equation $x^{2}-2=0$:

$$
x^{(k+1)}=x^{(k)}-\frac{\left(x^{(k)}\right)^{2}-2}{2 x_{c}}
$$

Here x_{c} is a constant, $x_{c} \neq 0$.
(Normally one chooses x_{c} close to the square root of 2 , and $x^{(0)}=x_{c}$.)

What are the fixed points of this iteration?

For each fixed point determine all values of x_{c} for which the fixed point is attracting.

SOLUTION :

Here

$$
x^{(k+1)}=f\left(x^{(k)}\right), \quad \text { with } \quad f(x)=x-\frac{x^{2}-2}{2 x_{c}},
$$

and

$$
f^{\prime}(x)=1-\frac{x}{x_{c}} .
$$

We see that for $x^{*}=+\sqrt{2}$:

$$
\left|f^{\prime}\left(x^{*}\right)\right|<1 \quad \text { if } \quad x_{c}>\frac{1}{2} \sqrt{2},
$$

while for $x^{*}=-\sqrt{2}$:

$$
\left|f^{\prime}\left(x^{*}\right)\right|<1 \quad \text { if } \quad x_{c}<-\frac{1}{2} \sqrt{2} .
$$

PROBLEM 24 :

Consider the function $g(x)=x^{2}-3$.

- Write down Newton's method for finding a zero of $g(x)$.
- Draw the " $x^{(k+1)}$ versus $x^{(k)}$ diagram" for Newton's method.
- Will Newton's method converge for all initial points ?
- To which zero does it converge (as dependent on the initial guess) ?

SOLUTION :

For $g(x)=x^{2}-3$:

- Write down Newton's method for finding a zero of $g(x)$:

$$
x^{(k+1)}=f\left(x^{(k)}\right) \quad \text { where } \quad f(x)=x-\frac{x^{2}-3}{2 x}=\frac{x^{2}+3}{2 x}
$$

- Draw the " $x^{(k+1)}$ versus $x^{(k)}$ diagram" for Newton's method : TO BE DONE!
- Will Newton's method converge for all initial points ?

All initial points, except $x=0$ which give a division by zero.

- To which zero does it converge (as dependent on the initial guess) ? To $+\sqrt{2}$ for positive $x^{(0)}$, and to $-\sqrt{2}$ for negative $x^{(0)}$.

PROBLEM 25 :

Now consider the function $g(x)=x^{3}-3$:

- Write down Newton's method for finding a zero of $g(x)$.
- Draw the " $x^{(k+1)}$ versus $x^{(k)}$ diagram" for Newton's method.
- Will Newton's method converge for all initial points ?
(Hint: This is a little more difficult to answer here !)

SOLUTION :

For $g(x)=x^{3}-3 \quad$ (which has only one root):

- Write down Newton's method for finding a zero of $g(x)$:

$$
x^{(k+1)}=f\left(x^{(k)}\right),
$$

where

$$
f(x)=x-\frac{x^{3}-3}{3 x^{2}}=\frac{2 x^{3}+3}{3 x^{2}}
$$

- Draw the " $x^{(k+1)}$ versus $x^{(k)}$ diagram" for Newton's method : TO BE DONE!
- From the " $x^{(k+1)}$ versus $x^{(k)}$ diagram" we see that:
- Newton's method converges for all positive $x^{(0)}$.
- The initial point $x^{(0)}=0$ gives a division by zero.
- Newton's method converges for almost all negative $x^{(0)}$.
- A countably infinite number of negative $x^{(0)}$ result in division by zero .
(These reach $x=0$ after a finite number of iterations.)

PROBLEM 26 :

Consider Newton's method for solving the system of equations

$$
\begin{aligned}
& x_{1}-e^{-x_{2}}=0, \\
& 2 e^{-x_{1}}-x_{2}=0
\end{aligned}
$$

Use $x_{1}^{(0)}=0$ and $x_{2}^{(0)}=0$ as initial guesses.
Determine $x_{1}^{(1)}$ and $x_{2}^{(1)}$.

SOLUTION :

For the first iteration of Newton's Method we have :

$$
\left(\begin{array}{cc}
1 & e^{-x_{2}^{(0)}} \\
-2 e^{-x_{1}^{(0)}} & -1
\end{array}\right)\binom{\Delta x_{1}^{(0)}}{\Delta x_{2}^{(0)}}=-\left(\begin{array}{cc}
x_{1}^{(0)} & -e^{-x_{2}^{(0)}} \\
2 e^{-x_{1}^{(0)}} & -x_{2}^{(0)}
\end{array}\right)
$$

which, with $x_{1}^{(0)}=0$ and $x_{1}^{(0)}=0$, becomes

$$
\left(\begin{array}{cc}
1 & 1 \\
-2 & -1
\end{array}\right)\binom{\Delta x_{1}^{(0)}}{\Delta x_{2}^{(0)}}=\binom{1}{-2}
$$

from which

$$
\binom{\Delta x_{1}^{(0)}}{\Delta x_{2}^{(0)}}=\binom{1}{0}
$$

so that

$$
\binom{x_{1}^{(1)}}{x_{2}^{(1)}}=\binom{x_{1}^{(0)}}{x_{2}^{(0)}}+\binom{\Delta x_{1}^{(0)}}{\Delta x_{2}^{(0)}}=\binom{1}{0}
$$

PROBLEM 27 : Lagrange Interpolation

Suppose that $f(x)=e^{x}$, and that the interpolation points $\left\{x_{k}\right\}_{k=0}^{n}$ are distinct, but otherwise arbitrary in the interval $[-1,1]$.

How big must n be, so that

$$
\left|p_{n}(x)-e^{x}\right| \leq 10^{-6} \text { for all } x \in[-1,1] ?
$$

SOLUTION : The question is for what value of n is $\frac{2^{n+1}}{(n+1)!} \cdot e<10^{-6}$?
Here is a simple fortran code that determines the answer:

```
IMPLICIT NONE
DOUBLE PRECISION e, r, bound
INTEGER k, n
n = 14
e = DEXP(1.0D0)
! The ratio when n=0:
r = 2.d0
DO k = 1,n
    r = 2*r/(k+1)
    WRITE (6,101) k, r
ENDDO
bound = e * r
WRITE}(6,102)n, bound
101 FORMAT(1X," k =",I3,3X,"ratio =",D12.5)
102 FORMAT(/" n =",I3,3X,"bound =",D12.5)
STOP
END
```

SOLUTION (continued) : The output is:

$$
\begin{array}{ll}
\mathrm{k}=1 & \text { ratio }=0.20000 \mathrm{D}+01 \\
\mathrm{k}=2 & \text { ratio }=0.13333 \mathrm{D}+01 \\
\mathrm{k}=3 & \text { ratio }=0.66667 \mathrm{D}+00 \\
\mathrm{k}=4 & \text { ratio }=0.26667 \mathrm{D}+00 \\
\mathrm{k}=5 & \text { ratio }=0.88889 \mathrm{D}-01 \\
\mathrm{k}=6 & \text { ratio }=0.25397 \mathrm{D}-01 \\
\mathrm{k}=7 & \text { ratio }=0.63492 \mathrm{D}-02 \\
\mathrm{k}=8 & \text { ratio }=0.14109 \mathrm{D}-02 \\
\mathrm{k}=9 & \text { ratio }=0.28219 \mathrm{D}-03 \\
\mathrm{k}=10 & \text { ratio }=0.51307 \mathrm{D}-04 \\
\mathrm{k}=11 & \text { ratio }=0.85511 \mathrm{D}-05 \\
\mathrm{k}=12 & \text { ratio }=0.13156 \mathrm{D}-05 \\
\mathrm{k}=13 & \text { ratio }=0.18794 \mathrm{D}-06 \\
\mathrm{k}=14 & \text { ratio }=0.25058 \mathrm{D}-07 \\
\mathrm{n}=14 & \text { bound }=0.68115 \mathrm{D}-07
\end{array}
$$

PROBLEM 28 :

Consider the unique interpolating polynomial p_{4} of degree 4 or less that interpolates the function $f(x)=\sin (x)$ at five distinct points $\left\{x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right\}$ in the interval $[-1,1]$.

Use the Lagrange Interpolation Theorem to derive an upper bound on

$$
\left\|f-p_{4}\right\|_{\infty},
$$

for the case where:

The points $\left\{x_{k}\right\}_{k=0}^{4}$ are distinct in $[-1,1]$, but they are otherwise arbitrary.
(Use a tight bound on $\left\|\prod_{k=0}^{4}\left(x-x_{k}\right)\right\|_{\infty}$ in your derivation.)

SOLUTION :

$$
\left\|f-p_{4}\right\|_{\infty} \leq \frac{2^{n+1}}{(n+1)!}
$$

$$
\begin{aligned}
& \mathrm{n}=1 \quad \text { bound }=2.000000 \mathrm{D}+00 \\
& \mathrm{n}=2 \text { bound }=1.333333 \mathrm{D}+00 \\
& \mathrm{n}=3 \text { bound }=6.666667 \mathrm{D}-01 \\
& \mathrm{n}=4 \text { bound }=2.666667 \mathrm{D}-01 \\
& \mathrm{n}=5 \text { bound }=8.888889 \mathrm{D}-02 \\
& \mathrm{n}=6 \text { bound }=2.539683 \mathrm{D}-02 \\
& \mathrm{n}=7 \text { bound }=6.349206 \mathrm{D}-03 \\
& \mathrm{n}=8 \text { bound }=1.410935 \mathrm{D}-03 \\
& \mathrm{n}=9 \text { bound }=2.821869 \mathrm{D}-04 \\
& \mathrm{n}=10 \text { bound }=5.130672 \mathrm{D}-05 \\
& \mathrm{n}=11 \text { bound }=8.551120 \mathrm{D}-06
\end{aligned}
$$

PROBLEM 29 :

Again consider the unique interpolating polynomial p_{4} of degree 4 or less that interpolates the function $f(x)=\sin (x)$ at five distinct points $\left\{x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right\}$ in the interval $[-1,1]$.

Use the Lagrange Interpolation Theorem to derive an upper bound on

$$
\left\|f-p_{4}\right\|_{\infty},
$$

for the case where:

$$
x_{0}=-1, x_{1}=-0.5, x_{2}=0, x_{3}=0.5, x_{4}=1
$$

(Use a tight bound on $\left\|\prod_{k=0}^{4}\left(x-x_{k}\right)\right\|_{\infty}$ in your derivation.)

SOLUTION : By the Lagrange Interpolation Theorem, with $n=4$,

$$
f(x)-p_{4}(x)=\frac{f^{(5)}(\xi)}{5!} w_{5}(x)
$$

for some point $\xi(x) \in[-1,1]$.
Here the local maxima and minima of

$$
w_{5}(x)=(x+1)\left(x+\frac{1}{2}\right) x\left(x-\frac{1}{2}\right)(x-1)
$$

can be found analytically, namely at

$$
\begin{array}{ll}
x=-0.822216 & w(x)=0.113482 \\
x=-0.271956 & w(x)=-0.044334 \\
x=0.271956 & w(x)=0.044334 \\
x=0.822216 & w(x)=-0.113482
\end{array}
$$

Thus

$$
\left|f(x)-p_{4}(x)\right| \leq \frac{0.113482}{120}=9.4568310^{-4}
$$

PROBLEM 30 :

Once more consider the interpolating polynomial p_{4} of degree 4 or less that interpolates $f(x)=\sin (x)$ at five distinct points $\left\{x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right\}$ in the interval $[-1,1]$.

Use the Lagrange Interpolation Theorem to derive an upper bound on

$$
\left\|f-p_{4}\right\|_{\infty}
$$

when the points $\left\{x_{k}\right\}_{k=0}^{4}$ are the roots of $T_{5}(x)$ (Chebyshev points).
(Use a tight bound on $\left\|\prod_{k=0}^{4}\left(x-x_{k}\right)\right\|_{\infty}$ in your derivation.)

SOLUTION :

$$
\left|f(x)-p_{4}(x)\right| \leq \frac{2^{-n}}{(n+1)!}=\frac{2^{-4}}{5!}=\frac{1}{1920} \approx 5.20833 \cdot 10^{-4}
$$

PROBLEM 31 : Taylor's Theorem

If $f \in C^{n+1}[a, b]$ and $x \in[a, b]$, then $f(x)=p_{n}(x)+R_{n}(x)$, where

$$
p_{n}(x)=\sum_{k=0}^{n} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}
$$

is the Taylor polynomial, and

$$
R_{n}(x)=\frac{f^{(n+1)}(\xi(x))}{(n+1)!}\left(x-x_{0}\right)^{n+1}, \quad \text { for some } \xi(x) \in[a, b]
$$

is the Taylor Remainder (or "error term").

What are $p_{n}(x)$ and $R_{n}(x)$, when $f(x)=e^{x}$, and $x_{0}=0$?

SOLUTION :

$$
p_{n}(x)=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots+\frac{x^{n}}{n!}
$$

and

$$
R_{n}(x)=\frac{x^{n+1}}{(n+1)!} e^{\xi(x)}
$$

where

$$
\xi(x) \text { lies between } 0 \text { and } x .
$$

(Here x can be taken to be positive or negative.)

PROBLEM 32:

For the Taylor polynomial $p_{n}(x)$ of degree n for $f(x)=e^{x}$ about $x_{0}=0$, what is the smallest value of n, so that

$$
\left|e^{x}-p_{n}(x)\right|<10^{-3},
$$

everywhere in the interval $[-1,1]$?

SOLUTION :

Here

$$
\left|e^{x}-p_{n}(x)\right|=\left|R_{n}(x)\right|=\left|\frac{x^{n+1}}{(n+1)!}\right| e^{\xi(x)} \leq \frac{e}{(n+1)!}
$$

which is seen to be less than 10^{-3} when $n \geq 6$:

$$
\begin{array}{ll}
\mathrm{n}=1: & \mathrm{b}=1.359141 \mathrm{D}+00 \\
\mathrm{n}=2: & \mathrm{b}=4.530470 \mathrm{D}-01 \\
\mathrm{n}=3: & \mathrm{b}=1.132617 \mathrm{D}-01 \\
\mathrm{n}=4: & \mathrm{b}=2.265235 \mathrm{D}-02 \\
\mathrm{n}=5: & \mathrm{b}=3.775391 \mathrm{D}-03 \\
\mathrm{n}=6: & \mathrm{b}=5.393416 \mathrm{D}-04
\end{array}
$$

PROBLEM 33 :

Derive the Taylor polynomial p_{n} of degree n for $f(x)=\sin (x)$
about the point $x_{0}=0$, for the case $n=5$.

Draw a reasonably accurate graph of $p_{5}(x)$, together with $f(x)$.

Use the Taylor Theorem to derive an upper bound on

$$
\left\|f-p_{5}\right\|_{\infty}
$$

for the interval $[-1,1]$.

SOLUTION :

Here

$$
p_{5}(x)=x-\frac{x^{3}}{6}+\frac{x^{5}}{120}
$$

and

$$
\left|p_{5}(x)-\sin (x)\right|=\left|\frac{x^{7}}{7!} \cos (\xi(x))\right| \leq \frac{1}{5040}<2 \cdot 10^{-4}
$$

Why is using the error term

$$
\left|\frac{x^{7}}{7!} \cos (\xi(x))\right|
$$

correct here?

[^0]: $120.14142079 D+01-0.15913179 D-04$
 $130.14142159 \mathrm{D}+01 \quad 0.65914283 \mathrm{D}-05$

