
ASSIGNMENT PROBLEMS

for

ELEMENTARY NUMERICAL METHODS

with Solutions



PROBLEM 1 :

Let x ∈ R
3 be given by x = (3, 4,−5)T .

What is the value of ‖ x ‖2 ?
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SOLUTION :
√
50 .



PROBLEM 2 :

Use the Banach Lemma (with the matrix infinity norm) to prove that the
n by n matrix Tn given below is invertible for all positive integers n :

Tn = diag[1, 1, 5, 1, 1] ≡





















5 1 1
1 5 1 1
1 1 5 1 1

1 1 5 1 1
. . . . .

1 1 5 1
1 1 5





















.

Hint: First rewrite Tn as Tn = c T̃n, where c is a constant, chosen so that
the Banach Lemma can be applied to T̃n.

Also use the Banach Lemma to derive an upper bound on the infinity
norm of the inverse matrix T−1

n , and on the condition number of Tn.
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SOLUTION :

Take c = 5 (the number along the main diagonal of Tn).

Then
Tn = 5 (In +Bn) ,

where In is the n by n identity matrix, and

Bn = diag[
1

5
,
1

5
, 0,

1

5
,
1

5
] ≡





















0 1
5

1
5

1
5 0 1

5
1
5

1
5

1
5 0 1

5
1
5

1
5

1
5 0 1

5
1
5

. . . . .
1
5

1
5 0 1

5
1
5

1
5 0





















,

Here ‖ Bn ‖∞ = 4
5

< 1, so In +Bn is invertible, and

‖ (In +Bn)
−1 ‖∞ ≤ 1

1− ‖ Bn ‖∞
=

1

1− 4
5

= 5 .



From
Tn = 5 (In +Bn) ,

it also follows that

T−1
n =

1

5
(In +Bn)

−1 ,

so that

‖ T−1
n ‖∞ =

1

5
‖ (In +Bn)

−1 ‖∞ ≤ 1

5
· 5 = 1 ,

and
cond(Tn) ≡ ‖ Tn ‖∞ ‖ T−1

n ‖∞ ≤ 9 · 1 = 9 .



PROBLEM 3 :

Use the Banach Lemma (with the matrix infinity norm) to prove that the
n by n matrix Sn given below is invertible for all positive integers n :

Sn = diag[hi, 2(hi + hi+1), hi+1] ≡


















2(h0 + h1) h1

h1 2(h1 + h2) h2

h2 2(h2 + h3) h3

h3 2(h3 + h4) h4

· · ·
hn−2 2(hn−2 + hn−1) hn−1

hn−1 2(hn−1 + hn)



















,

where hi > 0, for all i. (This matrix arises in cubic spline interpolation.)

Hint: First rewrite Sn as Sn = Dn S̃n, where Dn is a diagonal matrix,
chosen so that the Banach Lemma can be applied to S̃n.
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SOLUTION :

The solution of this problem is actually given on the page that follows
Page 68 of the ”slides-with-solutions”.



PROBLEM 4 :

Use Gauss elimination to compute (pencil and paper) the LU-decomposition
of the matrix

A =





1 2 3
1 0 1
0 1 2



 .

After having computed L and U, use them to solve for x in

Ax = f ,

where f = (2, 2, 1)T .

Check your answer !

4



SOLUTION :

L =





1 0 0
1 1 0
0 −1

2
1



 , U =





1 2 3
0 −2 −2
0 0 1



 .

From Lg = f we get

g =





2
0
1



 ,

and backsubstitution in Ux = g gives

x =





1
−1
1



 .

The purpose of this exercise is to understand use of the LU -decomposition
algorithm.



PROBLEM 5 :

Give an example of a singular 2× 2 matrix A :

that has an LU-decomposition.

Show L and U.
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SOLUTION :

One of infinitely many possible examples of a singular 2× 2 matrix A

that has an LU-decomposition:

A =

(

1 1
1 1

)

,

for which

L =

(

1 0
1 1

)

, U =

(

1 1
0 0

)

.



PROBLEM 6 :

Give an example of a nonsingular 2× 2 matrix A :

that does not have an LU-decomposition.

Explain why not.
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SOLUTION :

One of infinitely many possible examples of a nonsingular 2× 2 matrix A

that does not have an LU-decomposition:

A =

(

0 1
1 1

)

.

The reason is that a zero-division occurs right at the first elimination step.

This problem can be fixed by using pivoting, i.e., interchanging rows.



PROBLEM 7 :

A square matrix A is said to be ill-conditioned if the condition number

cond(A) ≡ ‖ A ‖ ‖ A−1 ‖ ,

is large.

Give an example of a nonsingular 2× 2 matrix A that is ill-conditioned,

with

cond(A) ≥ 106 ,

but where the multiplier that arises in the LU-decomposition is not big
in absolute value.
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SOLUTION :

An example of a nonsingular 2 × 2 matrix A that is ill-conditioned,
where the multiplier that arises in the LU-decomposition is not big in
absolute value:

A =

(

104 0
0 10−4

)

,

with inverse

A−1 =

(

10−4 0
0 104

)

.

Here
cond(A) ≡ ‖ A ‖∞ ‖ A−1 ‖∞ = 108 ,

and the sole multiplier that arises is zero !



PROBLEM 8 :

Give an example of a 2× 2 matrix A that is not ill-conditioned, with

cond(A) ≤ 10 ,

but where the multiplier that arises in the LU -decomposition is of very
large magnitude, i.e., is big in absolute value.
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SOLUTION :

An example of a 2× 2 matrix A that is not ill-conditioned, where the
multiplier that arises in the LU-decomposition is of large magnitude:

Consider the matrix

A =

(

c 1
1 0

)

,

which has inverse

A−1 =

(

0 1
1 −c

)

.

Take c to be small, for example, c = 10−9 . Then

cond(A) ≡ ‖ A ‖ ‖ A−1 ‖ = (c+ 1)(1 + c) = (1 + c)2 ≈ 1 ,

whereas the sole multiplier that arises is 1/c = 109 .



PROBLEM 9 :

Compute (pencil and paper) the LU-decomposition of the n × n Hilbert

matrix Hn whose entries in the ith row and jth column are

hi,j = 1/(i+ j − 1), i, j = 1, · · · , n ,

for the case n = 2.

What can you say about the size of the multiplier?

Use the LU-decomposition to compute the inverse of H2 .

Verify your answer.

What is the condition number of H2 ?
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SOLUTION : Here

H2 =

(

1 1
2

1
2

1
3

)

,

for which

L =

(

1 0
1
2

1

)

, U =

(

1 1
2

0 1
12

)

, and H−1
2 =

(

4 −6
−6 12

)

.

The sole multiplier that arises in the LU-decomposition has value 1
2
, and

cond(H2) = ‖ H2 ‖∞ ‖ H−1
2 ‖∞ =

3

2
. 18 = 27 .



PROBLEM 10 :

Compute (pencil and paper) the LU-decomposition of the n × n Hilbert

matrix Hn whose entries in the ith row and jth column are

hi,j = 1/(i+ j − 1), i, j = 1, · · · , n ,

for the case n = 3.

Use the LU-decomposition to solve

H3 x = f ,

for x , when f = (0, 0, 1)T , i.e., first solve

L g = f ,

followed by solving U x = g.

10



SOLUTION : Here

H3 =





1 1
2

1
3

1
2

1
3

1
4

1
3

1
4

1
5



 ,

for which

L =





1 0 0
1
2

1 0
1
3

1 1



 , and U =





1 1
2

1
3

0 1
12

1
12

0 0 1
180



 .

The solution ofH3 x = f , when f = (0, 0, 1)T , is x = (30, 180, 180)T .

The matrix Hn becomes very ill-conditioned as its dimension n increases.



PROBLEM 11 :

Suppose that solving a general linear system of equations of dimension n
requires 0.1 second on a given computer when n = 102.

Based on the number of operations (multiplications and divisions only)
estimate how much time it will take tomultiply two general square matrices
of dimension 103 on this computer.
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SOLUTION :

The leading term of the number of ”operations” (multiplications and
divisions) for solving a system of linear equations is n3/3 .

Solving a linear system of dimension n = 100 takes 0.1 second.

Thus each operation takes 0.1/(106/3) = 3 · 10−7 seconds.

Multiplying two n by n matrices takes n3 operations (multiplications).

Multiplying two matrices of dimension n = 1000 takes 109 operations.

The estimated time to multiply two matrices of dimension n = 1000 is

109 · 3 · 10−7 = 300 seconds.



PROBLEM 12 :

Let Tn be the specific n by n tridiagonal matrix Tn = diag[2, 5, 2].

What upper bound on cond(Tn) is obtained,

when making use of the Banach Lemma?
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SOLUTION :

cond(Tn) ≤ 9 .



PROBLEM 13 :

Let Tn be any general n by n tridiagonal matrix.

What is the total of the number of multiplications and divisions needed

to determine the LU-decomposition of Tn ?

( Note that there is no right-hand side vector f .)

13



SOLUTION :

The total number of ”operations” (multiplications and divisions) is 2n−2 .



PROBLEM 14 :

If Newton’s method is used to compute the cube root of 3,

with initial guess x(0) = 1, then what will be the value of x(1) ?
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SOLUTION : x(1) = 5
3
.



PROBLEM 15 :

Use the methods below to compute
√
2, i.e., solve the equation

x2 − 2 = 0 ,

for its positive root.

In particular, determine the number of iterations k needed so that

the residual | (x(k))2 − 2 | is less than 10−5.

• Newton’s method with x(0) = 1 .

• The Chord method with x(0) = 1 .
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SOLUTION :

For Newton’s Method:

k x residual

1 0.15000000D+01 0.25000000D+00

2 0.14166667D+01 0.69444444D-02

3 0.14142157D+01 0.60073049D-05

For the Chord Method:

k x residual

1 0.15000000D+01 0.25000000D+00

2 0.13750000D+01 -0.10937500D+00

3 0.14296875D+01 0.44006348D-01

4 0.14076843D+01 -0.18424838D-01

5 0.14168967D+01 0.75963863D-02

. ... ...

. ... ...

12 0.14142079D+01 -0.15913179D-04

13 0.14142159D+01 0.65914283D-05



PROBLEM 16 :

Given x(0), say, x(0) = 2.0, compute the sequence

x(1) , x(2) , x(3) , · · · , x(N) ,

up to a large value of N , e.g., N = 10, using the recurrence relation

x(k+1) = f(x(k)), k = 0, 1, 2, 3, · · · ,
where

f(x) =
x2 + 5

2x
.

Describe in a few words the observed behavior of the sequence.

In particular, does the sequence approach a limiting value?

If yes, then do you recognize what this limiting value is?

Does the limiting value depend on x(0) ?
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SOLUTION : The sequence quickly converges :

k x

1 0.30000000D+01

2 0.23333333D+01

3 0.22380952D+01

4 0.22360689D+01

5 0.22360680D+01

6 0.22360680D+01

7 0.22360680D+01

The limiting value x∗ ≈ 2.2360680 is a fixed point, i.e., f(x∗) = x∗.

Thus x∗ is a solution of

x =
x2 + 5

2x
,

from which we find that x2 = 5 .

Indeed the limiting value 2.2360680 is the positive square root of 5,

and we recognize the iteration as Newton’s method for the root of 5.



PROBLEM 17 :

Consider the recurrence relation

x(k+1) = cx(k)(1− x(k)), k = 0, 1, 2, 3, · · · .

Prove that if c ∈ [0, 4] and x(0) ∈ [0, 1] then x(k) ∈ [0, 1] for all k.
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SOLUTION :

x(k+1) = f(x(k)) , where f(x) = cx(1− x) .

The curve y = f(x) is a parabola , with f(x) = 0 at x = 0 and x = 1.

Furthermore, f ′(x) = 0 at x = 1
2
, where f(x) reaches its maximum value,

namely, f(1
2
) = c

4
.

( Draw the graph of y = f(x) in the x-y-plane ! )

Thus if c has value in the interval [0, 4], and if x(k) is in the interval [0, 1],
then x(k+1) = f(x(k)) also is in the interval [0, 1].

Since x(0) is taken in the interval [0, 1] it follows by induction that x(k) lies
in the interval [0, 1], for all k.



PROBLEM 18 :

Consider the recurrence relation

x(k+1) = cx(k)(1− x(k)), k = 0, 1, 2, 3, · · · .

For each of these values of c :

c = 0.5 , 1.5 , 3.5 ,

• analytically determine all fixed points.

• analytically determine whether or not they are attracting.
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SOLUTION :

The fixed points are the solutions of x = f(x)

i.e., of
x = c x (1− x) ,

namely,

x∗ = 0 , and x∗ = 1− 1

c
.

A fixed point x∗ is ”attracting” (or ”stable” ) if | f ′(x∗) | < 1 .

Here
f(x) = c x (1− x), and f ′(x) = c (1− 2x) ,

The conclusions are given in the Table on the following page.



c x∗ | f ′(x∗) | stable? x∗ | f ′(x∗) | stable?

0.5 0 0.5 Yes

1.5 0 1.5 No 1
3

0.5 Yes

3.5 0 3.5 No 5
7

1.5 No



PROBLEM 19 :

For given x(0), say, x(0) = 3.10, compute

x(1), x(2), x(3), · · · , x(N) ,

up to a suitably large value of N , using the recurrence relation

x(k+1) = tan(x(k)) , k = 0, 1, 2, · · · .

Does this sequence have a limit?

Can you explain the observed behavior?

Do the same for x(0) = 6.2828.
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SOLUTION :

A reasonably accurate graph will explain the seemingly complex behaviour

of this fixed point iteration:

• Draw a graph that includes several of the ”branches” of the tangent
function f(x) = tan(x) .

• Note the zero intercepts of the branches, namely at x = k π , for

k = · · · − 3,−2,−1, 0, 1, 2, · · · .

• Also note the vertical asymptotes at x = (2k + 1) π/2 .

• Include the line ℓ(x) = x in the graph, and observe its intersects

with each of the infinitely many branches of f(x) = tan(x) .

• Thus there are infinitely many fixed points, including x = 0 .



• Note that f ′(x) = 1 at the fixed point x = 0, i.e., the derivative
test is inconclusive for x = 0.

• However, graphical interpretation of the iteration shows that the
fixed point x = 0 is repelling, albeit weakly repelling.

• Note that all of the other infinitely many fixed points are repelling.

• Thus all infinitely many fixed points are repelling, which explains
the complex behavior.

• Finally note that if x(k) is close to x = 0 for some k, then it can take
many more iterations before they leave the neighborhood of x = 0.



PROBLEM 20 :

Determine all fixed points of this iteration:

x(k+1) = f(x(k)) ,

where
f(x) = ex .
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SOLUTION :

A graph of f(x) = ex and ℓ(x) = x , shows that there is no fixed point.



PROBLEM 21 :

Determine all fixed points of this iteration:

x(k+1) = f(x(k)) ,

where
f(x) = e−x .
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SOLUTION :

A graph of f(x) = e−x and ℓ(x) = x shows that there is one fixed point,

namely,
x∗ ≈ 0.56714329 ,

and that x∗ is attracting, with

| f ′(x∗) | < 1 ,

but
f ′(x∗) 6= 0 .

Thus for sufficiently close x(0) there will be linear convergence .



PROBLEM 22 :

Determine all fixed points of this iteration:

x(k+1) = f(x(k) ,

where

f(x) =
1 + x2

1 + x
.

For each fixed point determine whether it is attracting.
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SOLUTION : A fixed point of

x(k+1) = f(x(k) , with f(x) =
1 + x2

1 + x
,

satisfies

x =
1 + x2

1 + x
,

which can be rewritten as

x+ x2 = 1 + x2 ,

from which it follows that x∗ = 1 is the only fixed point.

The derivative is seen to be

f ′(x) =
x2 + 2x− 1

(x+ 1)2
, with | f ′(x∗) | =

1

2
< 1 .

Thus x∗ = 1 is attracting for sufficiently close x(0) .



PROBLEM 23 :

Consider the Chord method for solving the equation x2 − 2 = 0 :

x(k+1) = x(k) − (x(k))2 − 2

2xc

,

Here xc is a constant, xc 6= 0 .

( Normally one chooses xc close to the square root of 2 , and x(0) = xc . )

What are the fixed points of this iteration ?

For each fixed point determine all values of xc for which the fixed point is
attracting.
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SOLUTION :

Here

x(k+1) = f(x(k)) , with f(x) = x − x2 − 2

2xc

,

and
f ′(x) = 1 − x

xc

.

We see that for x∗ = +
√
2 :

| f ′(x∗) | < 1 if xc >
1

2

√
2 ,

while for x∗ = −
√
2 :

| f ′(x∗) | < 1 if xc < − 1

2

√
2 .



PROBLEM 24 :

Consider the function g(x) = x2 − 3.

• Write down Newton’s method for finding a zero of g(x) .

• Draw the “x(k+1) versus x(k) diagram” for Newton’s method.

• Will Newton’s method converge for all initial points ?

• To which zero does it converge (as dependent on the initial guess) ?
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SOLUTION :

For g(x) = x2 − 3 :

• Write down Newton’s method for finding a zero of g(x) :

x(k+1) = f(x(k)) where f(x) = x− x2 − 3

2x
=

x2 + 3

2x
.

• Draw the “x(k+1) versus x(k) diagram” for Newton’s method :

TO BE DONE !

• Will Newton’s method converge for all initial points ?

All initial points, except x = 0 which give a division by zero.

• To which zero does it converge (as dependent on the initial guess) ?

To +
√
2 for positive x(0), and to −

√
2 for negative x(0) .



PROBLEM 25 :

Now consider the function g(x) = x3 − 3 :

• Write down Newton’s method for finding a zero of g(x) .

• Draw the “x(k+1) versus x(k) diagram” for Newton’s method.

• Will Newton’s method converge for all initial points ?

(Hint: This is a little more difficult to answer here !)
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SOLUTION :

For g(x) = x3 − 3 (which has only one root) :

• Write down Newton’s method for finding a zero of g(x) :

x(k+1) = f(x(k)) ,

where

f(x) = x− x3 − 3

3x2
=

2x3 + 3

3x2
.

• Draw the “x(k+1) versus x(k) diagram” for Newton’s method :

TO BE DONE !



• From the “x(k+1) versus x(k) diagram” we see that :

- Newton’s method converges for all positive x(0) .

- The initial point x(0) = 0 gives a division by zero .

- Newton’s method converges for almost all negative x(0) .

- A countably infinite number of negative x(0) result in division by zero .

(These reach x = 0 after a finite number of iterations.)



PROBLEM 26 :

Consider Newton’s method for solving the system of equations

x1 − e−x2 = 0 ,

2 e−x1 − x2 = 0 .

Use x
(0)
1 = 0 and x

(0)
2 = 0 as initial guesses.

Determine x
(1)
1 and x

(1)
2 .
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SOLUTION :

For the first iteration of Newton’s Method we have :

(

1 e−x
(0)
2

−2e−x
(0)
1 −1

)(

∆x
(0)
1

∆x
(0)
2

)

= −
(

x
(0)
1 − e−x

(0)
2

2e−x
(0)
1 − x

(0)
2

)

,

which, with x
(0)
1 = 0 and x

(0)
1 = 0 , becomes

(

1 1
−2 −1

)(

∆x
(0)
1

∆x
(0)
2

)

=

(

1
−2

)

,

from which
(

∆x
(0)
1

∆x
(0)
2

)

=

(

1
0

)

,

so that
(

x
(1)
1

x
(1)
2

)

=

(

x
(0)
1

x
(0)
2

)

+

(

∆x
(0)
1

∆x
(0)
2

)

=

(

1
0

)

.



PROBLEM 27 : Lagrange Interpolation

Suppose that f(x) = ex , and that the interpolation points {xk}nk=0 are
distinct, but otherwise arbitrary in the interval [−1, 1] .

How big must n be, so that

| pn(x)− ex | ≤ 10−6 for all x ∈ [−1, 1] ?
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SOLUTION : The question is for what value of n is 2n+1

(n+1)!
· e < 10−6 ?

Here is a simple fortran code that determines the answer:

IMPLICIT NONE

DOUBLE PRECISION e, r, bound

INTEGER k, n

n = 14

e = DEXP(1.0D0)

! The ratio when n=0:

r = 2.d0

DO k = 1,n

r = 2*r/(k+1)

WRITE(6,101) k, r

ENDDO

bound = e * r

WRITE(6,102)n, bound

101 FORMAT(1X," k =",I3,3X,"ratio =",D12.5)

102 FORMAT(/" n =",I3,3X,"bound =",D12.5)

STOP

END



SOLUTION (continued) : The output is:

k = 1 ratio = 0.20000D+01

k = 2 ratio = 0.13333D+01

k = 3 ratio = 0.66667D+00

k = 4 ratio = 0.26667D+00

k = 5 ratio = 0.88889D-01

k = 6 ratio = 0.25397D-01

k = 7 ratio = 0.63492D-02

k = 8 ratio = 0.14109D-02

k = 9 ratio = 0.28219D-03

k = 10 ratio = 0.51307D-04

k = 11 ratio = 0.85511D-05

k = 12 ratio = 0.13156D-05

k = 13 ratio = 0.18794D-06

k = 14 ratio = 0.25058D-07

n = 14 bound = 0.68115D-07



PROBLEM 28 :

Consider the unique interpolating polynomial p4 of degree 4 or less

that interpolates the function f(x) = sin(x) at five distinct points

{x0, x1, x2, x3, x4} in the interval [−1, 1].

Use the Lagrange Interpolation Theorem to derive an upper bound on

‖ f − p4 ‖∞ ,

for the case where:

The points {xk}4k=0 are distinct in [−1, 1], but they are otherwise arbitrary.

( Use a tight bound on ‖
∏4

k=0(x− xk) ‖∞ in your derivation.)
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SOLUTION :

‖ f − p4 ‖∞ ≤ 2n+1

(n+ 1)!
.

n = 1 bound = 2.000000D+00

n = 2 bound = 1.333333D+00

n = 3 bound = 6.666667D-01

n = 4 bound = 2.666667D-01

n = 5 bound = 8.888889D-02

n = 6 bound = 2.539683D-02

n = 7 bound = 6.349206D-03

n = 8 bound = 1.410935D-03

n = 9 bound = 2.821869D-04

n = 10 bound = 5.130672D-05

n = 11 bound = 8.551120D-06



PROBLEM 29 :

Again consider the unique interpolating polynomial p4 of degree 4 or less

that interpolates the function f(x) = sin(x) at five distinct points

{x0, x1, x2, x3, x4} in the interval [−1, 1].

Use the Lagrange Interpolation Theorem to derive an upper bound on

‖ f − p4 ‖∞ ,

for the case where:

x0 = −1 , x1 = −0.5 , x2 = 0 , x3 = 0.5 , x4 = 1 .

( Use a tight bound on ‖
∏4

k=0(x− xk) ‖∞ in your derivation.)
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SOLUTION : By the Lagrange Interpolation Theorem, with n = 4,

f(x)− p4(x) =
f (5)(ξ)

5!
w5(x) ,

for some point ξ(x) ∈ [−1, 1].

Here the local maxima and minima of

w5(x) = (x+ 1) (x+
1

2
) x (x− 1

2
) (x− 1)

can be found analytically, namely at

x =-0.822216 w(x) = 0.113482

x =-0.271956 w(x) =-0.044334

x = 0.271956 w(x) = 0.044334

x = 0.822216 w(x) =-0.113482

Thus

| f(x)− p4(x) | ≤ 0.113482

120
= 9.45683 10−4 .



PROBLEM 30 :

Once more consider the interpolating polynomial p4 of degree 4 or less
that interpolates f(x) = sin(x) at five distinct points {x0, x1, x2, x3, x4}
in the interval [−1, 1].

Use the Lagrange Interpolation Theorem to derive an upper bound on

‖ f − p4 ‖∞ ,

when the points {xk}4k=0 are the roots of T5(x) (Chebyshev points).

( Use a tight bound on ‖
∏4

k=0(x− xk) ‖∞ in your derivation.)
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SOLUTION :

| f(x)− p4(x) | ≤ 2−n

(n+ 1)!
=

2−4

5!
=

1

1920
≈ 5.20833 · 10−4 .



PROBLEM 31 : Taylor’s Theorem

If f ∈ Cn+1[a, b] and x ∈ [a, b], then f(x) = pn(x) +Rn(x), where

pn(x) =
n

∑

k=0

f (k)(x0)

k!
(x− x0)

k

is the Taylor polynomial, and

Rn(x) =
f (n+1)(ξ(x))

(n+ 1)!
(x− x0)

n+1, for some ξ(x) ∈ [a, b]

is the Taylor Remainder (or ”error term”).

What are pn(x) and Rn(x), when f(x) = ex, and x0 = 0 ?
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SOLUTION :

pn(x) = 1 + x +
x2

2!
+

x3

3!
+ · · · +

xn

n!
,

and

Rn(x) =
xn+1

(n+ 1)!
eξ(x) ,

where

ξ(x) lies between 0 and x .

(Here x can be taken to be positive or negative.)



PROBLEM 32 :

For the Taylor polynomial pn(x) of degree n for f(x) = ex about x0 = 0,

what is the smallest value of n , so that

| ex − pn(x) | < 10−3 ,

everywhere in the interval [−1, 1] ?
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SOLUTION :

Here

| ex − pn(x) | = | Rn(x) | = | xn+1

(n+ 1)!
| eξ(x) ≤ e

(n+ 1)!
,

which is seen to be less than 10−3 when n ≥ 6 :

n = 1: b = 1.359141D+00

n = 2: b = 4.530470D-01

n = 3: b = 1.132617D-01

n = 4: b = 2.265235D-02

n = 5: b = 3.775391D-03

n = 6: b = 5.393416D-04



PROBLEM 33 :

Derive the Taylor polynomial pn of degree n for f(x) = sin(x)

about the point x0 = 0, for the case n = 5.

Draw a reasonably accurate graph of p5(x), together with f(x).

Use the Taylor Theorem to derive an upper bound on

‖ f − p5 ‖∞ ,

for the interval [−1, 1].
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SOLUTION :

Here

p5(x) = x − x3

6
+

x5

120
,

and

| p5(x) − sin(x) | = | x
7

7!
cos(ξ(x)) | ≤ 1

5040
< 2 · 10−4 .

Why is using the error term

| x7

7!
cos(ξ(x)) |

correct here ?


