
ASSIGNMENT PROBLEMS

for

ELEMENTARY NUMERICAL METHODS



PROBLEM 1 :

Let x ∈ R
3 be given by x = (3, 4,−5)T .

What is the value of ‖ x ‖2 ?
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PROBLEM 2 :

Use the Banach Lemma (with the matrix infinity norm) to prove that the
n by n matrix Tn given below is invertible for all positive integers n :

Tn = diag[1, 1, 5, 1, 1] ≡





















5 1 1
1 5 1 1
1 1 5 1 1

1 1 5 1 1
. . . . .

1 1 5 1
1 1 5





















.

Hint: First rewrite Tn as Tn = c T̃n, where c is a constant, chosen so that
the Banach Lemma can be applied to T̃n.

Also use the Banach Lemma to derive an upper bound on the infinity
norm of the inverse matrix T−1

n , and on the condition number of Tn.
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PROBLEM 3 :

Use the Banach Lemma (with the matrix infinity norm) to prove that the
n by n matrix Sn given below is invertible for all positive integers n :

Sn = diag[hi, 2(hi + hi+1), hi+1] ≡


















2(h0 + h1) h1

h1 2(h1 + h2) h2

h2 2(h2 + h3) h3

h3 2(h3 + h4) h4

· · ·
hn−2 2(hn−2 + hn−1) hn−1

hn−1 2(hn−1 + hn)



















,

where hi > 0, for all i. (This matrix arises in cubic spline interpolation.)

Hint: First rewrite Sn as Sn = Dn S̃n, where Dn is a diagonal matrix,
chosen so that the Banach Lemma can be applied to S̃n.
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PROBLEM 4 :

Use Gauss elimination to compute (pencil and paper) the LU-decomposition
of the matrix

A =





1 2 3
1 0 1
0 1 2



 .

After having computed L and U, use them to solve for x in

Ax = f ,

where f = (2, 2, 1)T .

Check your answer !
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PROBLEM 5 :

Give an example of a singular 2× 2 matrix A :

that has an LU-decomposition.

Show L and U.
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PROBLEM 6 :

Give an example of a nonsingular 2× 2 matrix A :

that does not have an LU-decomposition.

Explain why not.
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PROBLEM 7 :

A square matrix A is said to be ill-conditioned if the condition number

cond(A) ≡ ‖ A ‖ ‖ A−1 ‖ ,

is large.

Give an example of a nonsingular 2× 2 matrix A that is ill-conditioned,

with

cond(A) ≥ 106 ,

but where the multiplier that arises in the LU-decomposition is not big
in absolute value.
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PROBLEM 8 :

Give an example of a 2× 2 matrix A that is not ill-conditioned, with

cond(A) ≤ 10 ,

but where the multiplier that arises in the LU -decomposition is of very
large magnitude, i.e., is big in absolute value.
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PROBLEM 9 :

Compute (pencil and paper) the LU-decomposition of the n × n Hilbert

matrix Hn whose entries in the ith row and jth column are

hi,j = 1/(i+ j − 1), i, j = 1, · · · , n ,

for the case n = 2.

What can you say about the size of the multiplier?

Use the LU-decomposition to compute the inverse of H2 .

Verify your answer.

What is the condition number of H2 ?
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PROBLEM 10 :

Compute (pencil and paper) the LU-decomposition of the n × n Hilbert

matrix Hn whose entries in the ith row and jth column are

hi,j = 1/(i+ j − 1), i, j = 1, · · · , n ,

for the case n = 3.

Use the LU-decomposition to solve

H3 x = f ,

for x , when f = (0, 0, 1)T , i.e., first solve

L g = f ,

followed by solving U x = g.
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PROBLEM 11 :

Suppose that solving a general linear system of equations of dimension n
requires 0.1 second on a given computer when n = 102.

Based on the number of operations (multiplications and divisions only)
estimate how much time it will take tomultiply two general square matrices
of dimension 103 on this computer.
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PROBLEM 12 :

Let Tn be the specific n by n tridiagonal matrix Tn = diag[2, 5, 2].

What is the upper bound on cond(Tn) is obtained,

when making use of the Banach Lemma?
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PROBLEM 13 :

Let Tn be any general n by n tridiagonal matrix.

What is the total of the number of multiplications and divisions needed

to determine the LU-decomposition of Tn ?

( Note that there is no right-hand side vector f .)
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PROBLEM 14 :

If Newton’s method is used to compute the cube root of 3,

with initial guess x(0) = 1,

then what will be the value of x(1) ?
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PROBLEM 15 :

Use the methods below to compute
√
2, i.e., solve the equation

x2 − 2 = 0 ,

for its positive root.

In particular, determine the number of iterations k needed so that

the residual | (x(k))2 − 2 | is less than 10−5.

• Newton’s method with x(0) = 1 .

• The Chord method with x(0) = 1 .
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PROBLEM 16 :

Given x(0), say, x(0) = 2.0, compute the sequence

x(1) , x(2) , x(3) , · · · , x(N) ,

up to a large value of N , e.g., N = 10, using the recurrence relation

x(k+1) = f(x(k)), k = 0, 1, 2, 3, · · · ,
where

f(x) =
x2 + 5

2x
.

Describe in a few words the observed behavior of the sequence.

In particular, does the sequence approach a limiting value?

If yes, then do you recognize what this limiting value is?

Does the limiting value depend on x(0) ?
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PROBLEM 17 :

Consider the recurrence relation

x(k+1) = cx(k)(1− x(k)), k = 0, 1, 2, 3, · · · .

Prove that if c ∈ [0, 4] and x(0) ∈ [0, 1] then x(k) ∈ [0, 1] for all k.
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PROBLEM 18 :

Consider the recurrence relation

x(k+1) = cx(k)(1− x(k)), k = 0, 1, 2, 3, · · · .

For each of these values of c :

c = 0.5 , 1.5 , 3.5 ,

• analytically determine all fixed points.

• analytically determine whether or not they are attracting.
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PROBLEM 19 :

For given x(0), say, x(0) = 3.10, compute

x(1), x(2), x(3), · · · , x(N) ,

up to a suitably large value of N , using the recurrence relation

x(k+1) = tan(x(k)) , k = 0, 1, 2, · · · .

Does this sequence have a limit?

Can you explain the observed behavior?

Do the same for x(0) = 6.2828.
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PROBLEM 20 :

Determine all fixed points of this iteration:

x(k+1) = f(x(k)) ,

where
f(x) = ex .
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PROBLEM 21 :

Determine all fixed points of this iteration:

x(k+1) = f(x(k)) ,

where
f(x) = e−x .
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PROBLEM 22 :

Determine all fixed points of this iteration:

x(k+1) = f(x(k) ,

where

f(x) =
1 + x2

1 + x
.

For each fixed point determine whether it is attracting.

22



PROBLEM 23 :

Consider the Chord method for solving the equation x2 − 2 = 0 :

x(k+1) = x(k) − (x(k))2 − 2

2xc

,

Here xc is a constant, xc 6= 0 .

( Normally one chooses xc close to the square root of 2 , and x(0) = xc . )

What are the fixed points of this iteration ?

For each fixed point determine all values of xc for which the fixed point is
attracting.
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PROBLEM 24 :

Consider the function g(x) = x2 − 3.

• Write down Newton’s method for finding a zero of g(x) .

• Draw the “x(k+1) versus x(k) diagram” for Newton’s method.

• Will Newton’s method converge for all initial points ?

• To which zero does it converge (as dependent on the initial guess) ?
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PROBLEM 25 :

Now consider the function g(x) = x3 − 3 :

• Write down Newton’s method for finding a zero of g(x) .

• Draw the “x(k+1) versus x(k) diagram” for Newton’s method.

• Will Newton’s method converge for all initial points ?

(Hint: This is a little more difficult to answer here !)
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PROBLEM 26 :

Consider Newton’s method for solving the system of equations

x1 − e−x2 = 0 ,

2 e−x1 − x2 = 0 .

Use x
(0)
1 = 0 and x

(0)
2 = 0 as initial guesses.

Determine x
(1)
1 and x

(1)
2 .
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PROBLEM 27 : Lagrange Interpolation

If f ∈ Cn+1[a, b] and x ∈ [a, b], then

f(x) = pn(x) + Rn(x) ,

where
pn(x) =

∑n
k=0 f(xk) lk(x) .

The polynomials lk(x) are the Lagrange interpolating coefficients , and

Rn(x) =
f (n+1)(ξ(x))

(n+ 1)!

n
∏

k=0

(x− xk), for some ξ(x) ∈ [a, b] ,

is the Lagrange remainder (error term).

The interpolation points xi are distinct, but otherwise arbitrary.

If f(x) = ex , then how big must n be, so that

| pn(x)− ex | ≤ 10−6 for all x ∈ [−1, 1] ?
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PROBLEM 28 :

Consider the unique interpolating polynomial p4 of degree 4 or less

that interpolates the function f(x) = sin(x) at five distinct points

{x0, x1, x2, x3, x4} in the interval [−1, 1].

Use the Lagrange Interpolation Theorem to derive an upper bound on

‖ f − p4 ‖∞ ,

for the case where:

The points {xk}4k=0 are distinct in [−1, 1], but they are otherwise arbitrary.

( Use a tight bound on ‖
∏4

k=0(x− xk) ‖∞ in your derivation.)

28



PROBLEM 29 :

Again consider the unique interpolating polynomial p4 of degree 4 or less

that interpolates the function f(x) = sin(x) at five distinct points

{x0, x1, x2, x3, x4} in the interval [−1, 1].

Use the Lagrange Interpolation Theorem to derive an upper bound on

‖ f − p4 ‖∞ ,

for the case where:

x0 = −1 , x1 = −0.5 , x2 = 0 , x3 = 0.5 , x4 = 1 .

( Use a tight bound on ‖
∏4

k=0(x− xk) ‖∞ in your derivation.)

29



PROBLEM 30 :

Once more consider the interpolating polynomial p4 of degree 4 or less

that interpolates the function f(x) = sin(x) at five distinct points

{x0, x1, x2, x3, x4} in the interval [−1, 1].

Use the Lagrange Interpolation Theorem to derive an upper bound on

‖ f − p4 ‖∞ ,

for the case where:

The points {xk}4k=0 are the roots of T5(x) (Chebyshev points).

( Use a tight bound on ‖
∏4

k=0(x− xk) ‖∞ in your derivation.)
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PROBLEM 31 :

Taylor’s Theorem :

If f ∈ Cn+1[a, b] and x ∈ [a, b], then f(x) = pn(x) +Rn(x), where

pn(x) =

n
∑

k=0

f (k)(x0)

k!
(x− x0)

k

is the Taylor polynomial, and

Rn(x) =
f (n+1)(ξ(x))

(n+ 1)!
(x− x0)

n+1, for some ξ(x) ∈ [a, b]

is the Taylor Remainder (= error term).

What are pn(x) and Rn(x), when f(x) = ex, and x0 = 0 ?
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PROBLEM 32 :

For the Taylor polynomial pn(x) of degree n for f(x) = ex about x0 = 0,

what is the smallest value of n , so that

| ex − pn(x) | < 10−3 ,

everywhere in the interval [−1, 1] ?
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PROBLEM 33 :

Derive the Taylor polynomial pn of degree n for f(x) = sin(x)

about the point x0 = 0, for the case n = 5.

Draw a reasonably accurate graph of p5(x), together with f(x).

Use the Taylor Theorem to derive an upper bound on

‖ f − p5 ‖∞ ,

for the interval [−1, 1].
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PROBLEM 34 :

Let x0 = 0, x1 = h, and x2 = 2h be uniformly spaced points.

Derive a numerical differentiation formula for

f ′(x0) , in terms of f(x0), f(x1), and f(x2).

Taylor expand to determine a formula for the error in this approximation.

34



PROBLEM 35 :

Derive a five-point approximation formula for the third derivative

of a sufficiently smooth function f(x).

Use the reference interval [−2h, 2h] , with

x0 = −2h , x1 = −h , x2 = 0 , x3 = h , x4 = 2h .

The formula should approximate f ′′′(x2) in terms of the values of f(x)

at the points x0, x1, x2, x3, and x4.

Use Taylor expansions to determine the leading error term of the formula.

If f(x) = ex then how small should h be so the error is less than 10−6 ?
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PROBLEM 36 :

Determine the order of accuracy of the following 3-point, asymmetric,

numerical differentiation formula:

f ′′(0) ∼= f(2h)− 2f(h) + f(0)

h2
.
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PROBLEM 37 :

For the Lagrange polynomial pn(x) of degree n or less, that interpolates

f(x) = ex at n+ 1 Chebyshev points in the interval [−1, 1] ,

what is the smallest value of n so that

| ex − pn(x) |< 10−3 ,
everywhere in [−1, 1] ?
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PROBLEM 38 :

Suppose we approximate f(x) = sin(x) in the interval [0, 2π]

by local polynomial interpolation at 3 Chebyshev points ,

using local polynomials of degree 2 or less.

What is the smallest number of intervals of equal size needed

so that the maximum interpolation error is less than 10−3 ?
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PROBLEM 39 :

How many function evaluations are needed by

the composite Simpson integration formula ,

to integrate a function f(x) over an interval [a, b] ,

based on local integration in N subintervals of size h = (b− a)/N .
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PROBLEM 40 :

Determine the order of accuracy of the composite Simpson formula

to integrate a sufficiently differentiable function f(x) over an interval [a, b],

based on local integration in N subintervals of size h = (b− a)/N?
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PROBLEM 41 :

The local Trapezoidal Rule for the reference interval [−h/2, h/2] is

∫ h/2

−h/2

f(x) dx ∼= h

2

[

f(−h/2) + f(h/2)
]

.

Use Taylor expansions to derive the local error formula .

Let h = (b− a)/N and xk = a+ k h , for k = 0, 1, 2, 3, · · · , N .

Then the composite Trapezoidal Rule is given by

∫ b

a

f(x)dx ∼= h

2

[

f(x0) + 2f(x1) + 2f(x2) + · · ·+ 2f(xN−1) + f(xN )
]

.

Based on the local error, derive an upper bound on the global error .
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PROBLEM 42 :

Use the Gram-Schmidt procedure to construct an orthogonal basis

of the 3-dimensional linear space

E3 ≡ Span{ 1 , x2 , x4 }

for the case of the interval [−1, 1].

Determine the best approximation p∗(x) ∈ E3 to the function f(x) = x6.

What is the value of ‖ f(x)− p∗(x) ‖2 ?

NOTE: ”best approximation” means ”best approximation in the ‖ · ‖2 ”.
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PROBLEM 43 :

Show that the functions

e0(x) ≡ 1, e1(x) = sin(x), e2(x) = cos(x), e3(x) = sin(2x), e4(x) = cos(2x)

are mutually orthogonal with respect to the inner product

< f , g > =

∫ 2π

0

f(x) g(x) dx .

Also show how one can determine the coefficients ck , k = 0, 1, 2, 3, 4,

of the trigonometric polynomial

p(x) = c0 + c1 sin(x) + c2 cos(x) + c3 sin(2x) + c4 cos(2x) ,

that, for a given function f(x), minimizes the integral
∫ 2π

0

( p(x)− f(x) )2 dx .
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