ASSIGNMENT PROBLEMS

for

ELEMENTARY NUMERICAL METHODS

PROBLEM 1:

Let $\mathbf{x} \in \mathbb{R}^{3}$ be given by $\mathbf{x}=(3,4,-5)^{T}$.

What is the value of $\|\mathbf{x}\|_{2}$?

PROBLEM 2:

Use the Banach Lemma (with the matrix infinity norm) to prove that the n by n matrix \mathbf{T}_{n} given below is invertible for all positive integers n :

$$
\mathbf{T}_{n}=\operatorname{diag}[1,1,5,1,1] \equiv\left(\begin{array}{ccccccc}
5 & 1 & 1 & & & & \\
1 & 5 & 1 & 1 & & & \\
1 & 1 & 5 & 1 & 1 & & \\
& 1 & 1 & 5 & 1 & 1 & \\
& & . & . & . & . & . \\
& & & 1 & 1 & 5 & 1 \\
& & & & 1 & 1 & 5
\end{array}\right)
$$

Hint: First rewrite \mathbf{T}_{n} as $\mathbf{T}_{n}=c \tilde{\mathbf{T}}_{n}$, where c is a constant, chosen so that the Banach Lemma can be applied to $\tilde{\mathbf{T}}_{n}$.

Also use the Banach Lemma to derive an upper bound on the infinity norm of the inverse matrix \mathbf{T}_{n}^{-1}, and on the condition number of \mathbf{T}_{n}.

PROBLEM 3:

Use the Banach Lemma (with the matrix infinity norm) to prove that the n by n matrix \mathbf{S}_{n} given below is invertible for all positive integers n :
$\mathbf{S}_{n}=\operatorname{diag}\left[h_{i}, 2\left(h_{i}+h_{i+1}\right), h_{i+1}\right] \equiv$

$$
\left(\begin{array}{cccccc}
2\left(h_{0}+h_{1}\right) & h_{1} & & & & \\
h_{1} & 2\left(h_{1}+h_{2}\right) & h_{2} & & & \\
& h_{2} & 2\left(h_{2}+h_{3}\right) & h_{3} & & \\
& & h_{3} & 2\left(h_{3}+h_{4}\right) & h_{4} & \\
& & \cdot & \cdot & \cdot & \\
& & & h_{n-2} & 2\left(h_{n-2}+h_{n-1}\right) & h_{n-1} \\
& & & & h_{n-1} & 2\left(h_{n-1}+h_{n}\right)
\end{array}\right)
$$

where $h_{i}>0$, for all i. (This matrix arises in cubic spline interpolation.)
Hint: First rewrite \mathbf{S}_{n} as $\mathbf{S}_{n}=\mathbf{D}_{n} \tilde{\mathbf{S}}_{n}$, where \mathbf{D}_{n} is a diagonal matrix, chosen so that the Banach Lemma can be applied to $\tilde{\mathbf{S}}_{n}$.

PROBLEM 4 :

Use Gauss elimination to compute (pencil and paper) the LU-decomposition of the matrix

$$
\mathbf{A}=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 0 & 1 \\
0 & 1 & 2
\end{array}\right)
$$

After having computed \mathbf{L} and \mathbf{U}, use them to solve for x in

$$
\mathrm{Ax}=\mathrm{f},
$$

where $\mathbf{f}=(2,2,1)^{T}$.

Check your answer !

PROBLEM 5:

Give an example of a singular 2×2 matrix \mathbf{A} :

that has an LU-decomposition.

Show L and U.

PROBLEM 6 :

Give an example of a nonsingular 2×2 matrix \mathbf{A} :
that does not have an LU-decomposition.

Explain why not.

PROBLEM 7 :

A square matrix \mathbf{A} is said to be ill-conditioned if the condition number

$$
\operatorname{cond}(\mathbf{A}) \equiv\|\mathbf{A}\|\left\|\mathbf{A}^{-1}\right\|
$$

is large.

Give an example of a nonsingular 2×2 matrix \mathbf{A} that is ill-conditioned, with

$$
\operatorname{cond}(\mathbf{A}) \geq 10^{6}
$$

but where the multiplier that arises in the LU-decomposition is not big in absolute value.

PROBLEM 8 :

Give an example of a 2×2 matrix \mathbf{A} that is not ill-conditioned, with

$$
\operatorname{cond}(\mathbf{A}) \leq 10,
$$

but where the multiplier that arises in the $\mathbf{L U}$-decomposition is of very large magnitude, i.e., is big in absolute value.

PROBLEM 9 :

Compute (pencil and paper) the LU-decomposition of the $n \times n$ Hilbert matrix \mathbf{H}_{n} whose entries in the i th row and j th column are

$$
h_{i, j}=1 /(i+j-1), \quad i, j=1, \cdots, n,
$$

for the case $n=2$.
What can you say about the size of the multiplier?

Use the LU-decomposition to compute the inverse of \mathbf{H}_{2}.

Verify your answer.
What is the condition number of \mathbf{H}_{2} ?

PROBLEM 10 :

Compute (pencil and paper) the LU-decomposition of the $n \times n$ Hilbert matrix \mathbf{H}_{n} whose entries in the i th row and j th column are

$$
h_{i, j}=1 /(i+j-1), \quad i, j=1, \cdots, n,
$$

for the case $n=3$.

Use the LU-decomposition to solve

$$
\mathbf{H}_{3} \mathrm{x}=\mathrm{f},
$$

for \mathbf{x}, when $\mathbf{f}=(0,0,1)^{T}$, i.e., first solve

$$
\mathbf{L} \mathrm{g}=\mathbf{f},
$$

followed by solving $\mathrm{Ux}=\mathrm{g}$.

PROBLEM 11 :

Suppose that solving a general linear system of equations of dimension n requires 0.1 second on a given computer when $n=10^{2}$.

Based on the number of operations (multiplications and divisions only) estimate how much time it will take to multiply two general square matrices of dimension 10^{3} on this computer.

PROBLEM 12 :

Let \mathbf{T}_{n} be the specific n by n tridiagonal matrix $\mathbf{T}_{n}=\operatorname{diag}[2,5,2]$.

What is the upper bound on $\operatorname{cond}\left(\mathbf{T}_{n}\right)$ is obtained, when making use of the Banach Lemma?

PROBLEM 13 :

Let \mathbf{T}_{n} be any general n by n tridiagonal matrix.

What is the total of the number of multiplications and divisions needed to determine the $\mathbf{L U}$-decomposition of \mathbf{T}_{n} ?
(Note that there is no right-hand side vector \mathbf{f}.)

PROBLEM 14 :

If Newton's method is used to compute the cube root of 3, with initial guess $x^{(0)}=1$,
then what will be the value of $x^{(1)}$?

PROBLEM 15 :

Use the methods below to compute $\sqrt{2}$, i.e., solve the equation

$$
x^{2}-2=0,
$$

for its positive root.

In particular, determine the number of iterations k needed so that the residual $\left|\left(x^{(k)}\right)^{2}-2\right|$ is less than 10^{-5}.

- Newton's method with $x^{(0)}=1$.
- The Chord method with $x^{(0)}=1$.

PROBLEM 16 :

Given $x^{(0)}$, say, $x^{(0)}=2.0$, compute the sequence

$$
x^{(1)}, x^{(2)}, x^{(3)}, \cdots, x^{(N)}
$$

up to a large value of N, e.g., $N=10$, using the recurrence relation

$$
x^{(k+1)}=f\left(x^{(k)}\right), \quad k=0,1,2,3, \cdots,
$$

where

$$
f(x)=\frac{x^{2}+5}{2 x} .
$$

Describe in a few words the observed behavior of the sequence.
In particular, does the sequence approach a limiting value?
If yes, then do you recognize what this limiting value is?
Does the limiting value depend on $x^{(0)}$?

PROBLEM 17 :

Consider the recurrence relation

$$
x^{(k+1)}=c x^{(k)}\left(1-x^{(k)}\right), \quad k=0,1,2,3, \cdots .
$$

Prove that if $c \in[0,4]$ and $x^{(0)} \in[0,1]$ then $x^{(k)} \in[0,1]$ for all k.

PROBLEM 18 :

Consider the recurrence relation

$$
x^{(k+1)}=c x^{(k)}\left(1-x^{(k)}\right), \quad k=0,1,2,3, \cdots
$$

For each of these values of c :

$$
c=0.5,1.5,3.5,
$$

- analytically determine all fixed points.
- analytically determine whether or not they are attracting.

PROBLEM 19 :

For given $x^{(0)}$, say, $x^{(0)}=3.10$, compute

$$
x^{(1)}, x^{(2)}, x^{(3)}, \cdots, x^{(N)}
$$

up to a suitably large value of N, using the recurrence relation

$$
x^{(k+1)}=\tan \left(x^{(k)}\right), \quad k=0,1,2, \cdots .
$$

Does this sequence have a limit?
Can you explain the observed behavior?

Do the same for $x^{(0)}=6.2828$.

PROBLEM 20 :

Determine all fixed points of this iteration:

$$
x^{(k+1)}=f\left(x^{(k)}\right)
$$

where

$$
f(x)=e^{x} .
$$

PROBLEM 21 :

Determine all fixed points of this iteration:

$$
x^{(k+1)}=f\left(x^{(k)}\right)
$$

where

$$
f(x)=e^{-x} .
$$

PROBLEM 22 :

Determine all fixed points of this iteration:

$$
x^{(k+1)}=f\left(x^{(k}\right)
$$

where

$$
f(x)=\frac{1+x^{2}}{1+x}
$$

For each fixed point determine whether it is attracting.

PROBLEM 23 :

Consider the Chord method for solving the equation $x^{2}-2=0$:

$$
x^{(k+1)}=x^{(k)}-\frac{\left(x^{(k)}\right)^{2}-2}{2 x_{c}}
$$

Here x_{c} is a constant, $x_{c} \neq 0$.
(Normally one chooses x_{c} close to the square root of 2 , and $x^{(0)}=x_{c}$.)

What are the fixed points of this iteration?

For each fixed point determine all values of x_{c} for which the fixed point is attracting.

PROBLEM 24 :

Consider the function $g(x)=x^{2}-3$.

- Write down Newton's method for finding a zero of $g(x)$.
- Draw the " $x^{(k+1)}$ versus $x^{(k)}$ diagram" for Newton's method.
- Will Newton's method converge for all initial points ?
- To which zero does it converge (as dependent on the initial guess) ?

PROBLEM 25 :

Now consider the function $g(x)=x^{3}-3$:

- Write down Newton's method for finding a zero of $g(x)$.
- Draw the " $x^{(k+1)}$ versus $x^{(k)}$ diagram" for Newton's method.
- Will Newton's method converge for all initial points ?
(Hint: This is a little more difficult to answer here !)

PROBLEM 26 :

Consider Newton's method for solving the system of equations

$$
\begin{aligned}
& x_{1}-e^{-x_{2}}=0, \\
& 2 e^{-x_{1}}-x_{2}=0
\end{aligned}
$$

Use $x_{1}^{(0)}=0$ and $x_{2}^{(0)}=0$ as initial guesses.
Determine $x_{1}^{(1)}$ and $x_{2}^{(1)}$.

PROBLEM 27 : Lagrange Interpolation

If $f \in C^{n+1}[a, b]$ and $x \in[a, b]$, then

$$
f(x)=p_{n}(x)+R_{n}(x),
$$

where

$$
p_{n}(x)=\sum_{k=0}^{n} f\left(x_{k}\right) l_{k}(x) .
$$

The polynomials $l_{k}(x)$ are the Lagrange interpolating coefficients, and

$$
R_{n}(x)=\frac{f^{(n+1)}(\xi(x))}{(n+1)!} \prod_{k=0}^{n}\left(x-x_{k}\right), \quad \text { for some } \xi(x) \in[a, b],
$$

is the Lagrange remainder (error term).
The interpolation points x_{i} are distinct, but otherwise arbitrary.
If $f(x)=e^{x}$, then how big must n be, so that

$$
\left|p_{n}(x)-e^{x}\right| \leq 10^{-6} \text { for all } x \in[-1,1] ?
$$

PROBLEM 28 :

Consider the unique interpolating polynomial p_{4} of degree 4 or less that interpolates the function $f(x)=\sin (x)$ at five distinct points $\left\{x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right\}$ in the interval $[-1,1]$.

Use the Lagrange Interpolation Theorem to derive an upper bound on

$$
\left\|f-p_{4}\right\|_{\infty},
$$

for the case where:

The points $\left\{x_{k}\right\}_{k=0}^{4}$ are distinct in $[-1,1]$, but they are otherwise arbitrary.
(Use a tight bound on $\left\|\prod_{k=0}^{4}\left(x-x_{k}\right)\right\|_{\infty}$ in your derivation.)

PROBLEM 29 :

Again consider the unique interpolating polynomial p_{4} of degree 4 or less that interpolates the function $f(x)=\sin (x)$ at five distinct points $\left\{x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right\}$ in the interval $[-1,1]$.

Use the Lagrange Interpolation Theorem to derive an upper bound on

$$
\left\|f-p_{4}\right\|_{\infty},
$$

for the case where:

$$
x_{0}=-1, x_{1}=-0.5, x_{2}=0, x_{3}=0.5, x_{4}=1
$$

(Use a tight bound on $\left\|\prod_{k=0}^{4}\left(x-x_{k}\right)\right\|_{\infty}$ in your derivation.)

PROBLEM 30 :

Once more consider the interpolating polynomial p_{4} of degree 4 or less that interpolates the function $f(x)=\sin (x)$ at five distinct points $\left\{x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right\}$ in the interval $[-1,1]$.

Use the Lagrange Interpolation Theorem to derive an upper bound on

$$
\left\|f-p_{4}\right\|_{\infty},
$$

for the case where:

The points $\left\{x_{k}\right\}_{k=0}^{4}$ are the roots of $T_{5}(x)$ (Chebyshev points).
(Use a tight bound on $\left\|\prod_{k=0}^{4}\left(x-x_{k}\right)\right\|_{\infty}$ in your derivation.)

PROBLEM 31 :

Taylor's Theorem :

If $f \in C^{n+1}[a, b]$ and $x \in[a, b]$, then $f(x)=p_{n}(x)+R_{n}(x)$, where

$$
p_{n}(x)=\sum_{k=0}^{n} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}
$$

is the Taylor polynomial, and

$$
R_{n}(x)=\frac{f^{(n+1)}(\xi(x))}{(n+1)!}\left(x-x_{0}\right)^{n+1}, \quad \text { for some } \xi(x) \in[a, b]
$$

is the Taylor Remainder (= error term).

What are $p_{n}(x)$ and $R_{n}(x)$, when $f(x)=e^{x}$, and $x_{0}=0$?

PROBLEM 32:

For the Taylor polynomial $p_{n}(x)$ of degree n for $f(x)=e^{x}$ about $x_{0}=0$, what is the smallest value of n, so that

$$
\left|e^{x}-p_{n}(x)\right|<10^{-3},
$$

everywhere in the interval $[-1,1]$?

PROBLEM 33 :

Derive the Taylor polynomial p_{n} of degree n for $f(x)=\sin (x)$
about the point $x_{0}=0$, for the case $n=5$.

Draw a reasonably accurate graph of $p_{5}(x)$, together with $f(x)$.

Use the Taylor Theorem to derive an upper bound on

$$
\left\|f-p_{5}\right\|_{\infty}
$$

for the interval $[-1,1]$.

PROBLEM 34:

Let $x_{0}=0, x_{1}=h$, and $x_{2}=2 h$ be uniformly spaced points.

Derive a numerical differentiation formula for

$$
f^{\prime}\left(x_{0}\right) \text {, in terms of } f\left(x_{0}\right), f\left(x_{1}\right) \text {, and } f\left(x_{2}\right) .
$$

Taylor expand to determine a formula for the error in this approximation.

PROBLEM 35 :

Derive a five-point approximation formula for the third derivative of a sufficiently smooth function $f(x)$.

Use the reference interval $[-2 h, 2 h]$, with

$$
x_{0}=-2 h, \quad x_{1}=-h, \quad x_{2}=0, \quad x_{3}=h, \quad x_{4}=2 h .
$$

The formula should approximate $f^{\prime \prime \prime}\left(x_{2}\right)$ in terms of the values of $f(x)$ at the points $x_{0}, x_{1}, x_{2}, x_{3}$, and x_{4}.

Use Taylor expansions to determine the leading error term of the formula.

If $f(x)=e^{x}$ then how small should h be so the error is less than 10^{-6} ?

PROBLEM 36 :

Determine the order of accuracy of the following 3-point, asymmetric, numerical differentiation formula:

$$
f^{\prime \prime}(0) \cong \frac{f(2 h)-2 f(h)+f(0)}{h^{2}}
$$

PROBLEM 37 :

For the Lagrange polynomial $p_{n}(x)$ of degree n or less, that interpolates

$$
f(x)=e^{x} \text { at } n+1 \text { Chebyshev points in the interval }[-1,1],
$$

what is the smallest value of n so that
everywhere in $[-1,1]$?

$$
\left|e^{x}-p_{n}(x)\right|<10^{-3},
$$

PROBLEM 38 :

Suppose we approximate $f(x)=\sin (x)$ in the interval $[0,2 \pi]$ by local polynomial interpolation at 3 Chebyshev points, using local polynomials of degree 2 or less.

What is the smallest number of intervals of equal size needed so that the maximum interpolation error is less than 10^{-3} ?

PROBLEM 39 :

How many function evaluations are needed by
the composite Simpson integration formula,
to integrate a function $f(x)$ over an interval $[a, b]$,
based on local integration in N subintervals of size $h=(b-a) / N$.

PROBLEM 40 :

Determine the order of accuracy of the composite Simpson formula to integrate a sufficiently differentiable function $f(x)$ over an interval $[a, b]$, based on local integration in N subintervals of size $h=(b-a) / N$?

PROBLEM 41 :

The local Trapezoidal Rule for the reference interval $[-h / 2, h / 2]$ is

$$
\int_{-h / 2}^{h / 2} f(x) d x \cong \frac{h}{2}[f(-h / 2)+f(h / 2)]
$$

Use Taylor expansions to derive the local error formula .

Let $h=(b-a) / N$ and $x_{k}=a+k h$, for $k=0,1,2,3, \cdots, N$.
Then the composite Trapezoidal Rule is given by

$$
\int_{a}^{b} f(x) d x \cong \frac{h}{2}\left[f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\cdots+2 f\left(x_{N-1}\right)+f\left(x_{N}\right)\right]
$$

Based on the local error, derive an upper bound on the global error .

PROBLEM 42 :

Use the Gram-Schmidt procedure to construct an orthogonal basis of the 3 -dimensional linear space

$$
\mathcal{E}_{3} \equiv \operatorname{Span}\left\{1, x^{2}, x^{4}\right\}
$$

for the case of the interval $[-1,1]$.

Determine the best approximation $p^{*}(x) \in \mathcal{E}_{3}$ to the function $f(x)=x^{6}$.

What is the value of $\left\|f(x)-p^{*}(x)\right\|_{2}$?

NOTE: "best approximation" means "best approximation in the $\|\cdot\|_{2}$ ".

PROBLEM 43 :

Show that the functions
$e_{0}(x) \equiv 1, e_{1}(x)=\sin (x), e_{2}(x)=\cos (x), e_{3}(x)=\sin (2 x), e_{4}(x)=\cos (2 x)$ are mutually orthogonal with respect to the inner product

$$
<f, g>=\int_{0}^{2 \pi} f(x) g(x) d x
$$

Also show how one can determine the coefficients $c_{k}, k=0,1,2,3,4$, of the trigonometric polynomial

$$
p(x)=c_{0}+c_{1} \sin (x)+c_{2} \cos (x)+c_{3} \sin (2 x)+c_{4} \cos (2 x)
$$

that, for a given function $f(x)$, minimizes the integral

$$
\int_{0}^{2 \pi}(p(x)-f(x))^{2} d x
$$

