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VECTOR AND MATRIX NORMS

In later analysis we shall need a quantity (called vector norm) that measures
the magnitude of a vector.

Let x = (z1,29,--+,7,) €R".

EXAMPLES (of norms) :

n

| x| = Z |z |, (the “one-norm”)
k=1
o 1
| x| = (Z r:°)2 (the “two-norm ”, or Euclidean length)
k=1
[ X |loo = | Inax | x| , (the “infinity-norm ”, or “max-norm”)
< n

1



| x||1 and || x||2 are special cases of

| x|, = (Z | g ]p)% , (where p is a positive integer),
k=1

while for any fixed vector x we have

| X || is the limit of || x|, as p — oo. (Check !)

EXAMPLE : If x=(1,-2,4)" then

Ixfh =7, Ixlla = v21, Ix o = 4.



Vector norms are required to satisty

(z) ||x] >0, ¥VvxeR" and | x| = 0 only if x = 0,

(ir) fex| = |al| |Ix][, vxeR" Vaeck,

(vie) |[|x+y]| < [|[x||+]yll, Vx,yeR" (Triangle inequality).



All of the examples of norms given above satisfy (i) and (i7). (Check !)

To check condition (7i7) let

X:(lel,CIZQ’-'-’CCn)T’ y:(ylvy%'”vyn)T'

Then

Ix+ylh = 2o lan+ue | < (Lo |+ 1yl )

= 2=l o+ luel = Ixlh+1lylh

[ x+yle < [[xl2+lyl- “by geometry” (Proof given later.)

| x4+ ¥ |loo = maxg |z +yr| < maxg |z | + maxy |y |

= %l + 1yl -



EXERCISES :

®001]

®002]

®(003]

®(004]

®(005]
®006]
®007]

®008]

Let x = (1,—-2,3)". Compute || x ||1, || x||2, and || X [|so.

Graphically indicate all points x = (x1, 22)" in R? for which || x [[s= 1.
Do the same for || x ||; and || X || -

Graphically indicate all points x = (z1, x2)? in R? for which || x |2< 1.
Do the same for || x ||; and || x || -

Graphically indicate all points x = (x1, T3, 23)" € R? with || x ||»= 1.
Do the same for || x ||; and || X || -

Prove that || x |1 < n | x| -

Prove that [ x|z < vn | X ||eo -
Prove that || x |2 < || x| -

Prove that lim, .o || x|, = | X -




oos) Prove that || x| < n| x| .
SOLUTION :

n
Ixli = > el < nmax|z| = nfx|x .
i=1

opog) Prove that || x| < V/n | x| .
SOLUTION Fron%

x5 = > o} < nmax|z P = n x|
1
1=

1
it follows that || x|z < vn | x||s -

oo7] Prove that || x| < |[x | .

SOLUTION : From

n n

Ix[F = Q_l=l)® = Y af = [x]3,

i=1 i=1
it follows that || x [z < || x |1 -



'[008] Prove that hmp_>oo || X ||p — || X ||OO :

SOLUTION : Clearly true if x = 0, so assume that x # 0.

Ixllp Ol [ 2 [7)

Ixle [R|P

Then

el
M
1
:??‘
8 —_—
=
N———
o]

We may assume

xk|

[EIPS

For the remaining values of k£ the ratio is strictly less than 1.

It follows that n

Thus n




We also need a measure of the magnitude of a square matrix (matriz norm).

This is defined in terms of a giwen vector norm , namely,

A
| Al = max | XH

70 || x ||

Thus || A || measures the mazimum relative stretching in a given vector
norm that occurs when multiplying all non-zero vectors x € R™ by A.

From this definition it follows that for arbitrary y € R", y =% 0, we have

I Ay |
Iy |l

A

1.€.,

TAy | < 1AL Iyl -



For specific choices of vector norm it is convenient to express the induced
matrix norm directly in terms of the elements of the matrix :

For the case of the || - || let

(an g a1n\

n
az1 Q22 -+ A2
A = " and let Rzmaxg | ai; | -
j=1
Ap1  Ap2 - App

Thus R is the “maximum absolute row sum”. For x € R", x # 0, we have

I

maxi{y . | i | || X [[oo} B

I Jloo

R .

VAN

7



Next we show that for any matrix A there always is a vector y for which

Let k be the row of A for which »_ 7, | az; | is a maximum, i.e.,
> lay| = R.
j=1

Takey = (y1,y2, -+, yn)’ such that

(1 if ay; >0,
Yi = 3
. —1 it akj<0.
Then
| Ay [|oc n n
S = IAY e = max| Y ey | = ) lag| = R
Y oo < 2.

8



Thus we have shown that

| A || is equal to the maximum absolute row sum.

EXAMPLE : If

1 2 -3
A = 1 0 4|,
1 5 1

then
| A ||l = max{6,5,7} = 7.

NOTE : In this example the vector y is given by y = (—=1,1,1)" .

For this vector we have

I AY [l
Iy [lsc

= 7 = maximum absolute row sum.



Similarly one can show that

A mn
AL = mac AX S0y
J
1=1

70 || x ||

= the maximum absolute column sum.

(Check !)

EXAMPLE : For the matrix

1 2 -3
A = 1 0 4|,
-1 5 1

we have

| Ay = max{3,7,8} = 8.

10



One can also show that

A
| Al = max | Ax |l = max K;(A) ,
x#0 || x |2 7?

where the k;(A) are defined to be

the square roots of the eigenvalues of the matrix ATA .

(These eigenvalues are indeed nonnegative).

The quantities {x;(A)};_, are called the singular values of the matrix A.

11



EXAMPLE : If
11
(o1)
10\ (1 1 11
T _ _
aa=(19) G1) = (e)

The eigenvalues A of ATA are obtained from

then

I —A 1

T — —
det(A" A—\I) det( | 5\

) = (1-N)(2=A)—1 = A2=3A+1 =0,

from which

345 3-5

Thus we have

12



If A is invertible then we also have

1

A = .
| I min; k;(A)

Thus if we order the square roots of the eigenvalues of AT A as

then

Thus in the previous example we have

AL, = ~ 1618 ()

13



EXERCISES :

0 2
®(09] Let A = (O O) . Compute || A |2 .

0
°p10] Let A = 1 |. Compute | A |
0

o O =

For a general n by n matrix A :

o1y Prove that ||Af; < vn [|A |« .

°n12) Prove that || A ||; is equal to the maximum absolute column sum.

14



SOLUTIONS :

0 0\ [0 2
oo 4 = (5 ) (5 ) =

with eigenvalues A\; =0 and Xy =4, so that || A ||

0 1 0

which has three eigenvalues equal to 1 . Thus

o] |Al: < Vi Al :

By a previous exercise ||y |2

Also it is easy to see that || x |2

A
| Alls = max | Ax |2

x#0 || x |,

IA

0 0
0 4

| % o

] Ax e

ax

45 Tx]
| AX |

max

45 T a

).

1
0
0

|

_— O O

0
1
0
A

_ Ji—

< Vn |y |ls forany vector y .



ez || A isequal to the maximum absolute column sum.

. (an a2 - aln\
PROOF : Let A | an
\anl Ap2 - ann)
and n
C = maxz | a;j | (maximum absolute column sum) .
J
1=1

First, for any vector x # 0, we will show that




PROOF : (continued --- )

First | Ax || _ > o Z?:l ;T

Ix | x|l

2?21 Z?:l | i j | T j |

<
| x []1
. Z?zl 2?21 | Aij I X j |
| x |1
i w20 Tay |
| x []1
" x| C
< Z]—l ‘ J ‘ _ O

I [l



PROOF : (continued --- )

Secondly, we show that there is a vector x for which

This vector is constructed as follows :
Let k£ be the index of the column having the maximum absolute column sum.

Let x be the zero vector, except for the kth element which is set to 1.

Then
Ix[i =1 and [ Ax|; = C,

so that indeed




EXERCISES :

®(013]

®014]

®015]

®016]

Let A be any n by n matrix. For each of the following state whether
it is true or false. If false then give a counter example.

Give a constructive proof that for any square matrix A

there is a vector x # 0 such that

I Ax [loo = [[Afle ([ %]l -

Give a constructive proof that for any square matrix A

there is a vector x # 0 such that
lAx |l = Al [[x] -

Is there a vector x such that

FAx [y > [[AfL [[x]L 7

15



SOLUTIONS :

o013 ||A]i < Al and || A |l < || A1 are both False :

1 1

ForA-(O 0

) we have

|Alle =2 and [[AfL =1, s0o [[AfLP < [[Allw ,

I 0

while for A = (1 0

) we have

Al =1 and [[AlL =2, so [[Alle < [AlL .



°(014) Prove that for any square matrix A there is a vector x # 0 such that
IAX [ = [TAfe x]le -

PROOF : Let k be a row where the maximum absolute row sum
occurs, with value S. Take the vector x to have these components:

r,=1 it Ax; >0, and z,=-1 if A;,; <O0.

Then || A |[= 9, || X [[oo= 1, and it is easily seen that || Ax ||= 9.
Thus
| Ax [loe = [[Alfle [ x]le -

EXAMPLE : (which is not a proof !) : Let

1 2 0
A = -3 2 -1
2 -1 1

and take x = (—1,1, —1)T.



°(015] Prove that for any square matrix A there is a vector x # 0 such that
TAx | = [TAl: Ixlh

PROOF : Let k£ be a column where the maximum absolute column
sum occurs, with value S. Take the vector x to have these components:

x;i=1 if 1=k, and z; =0 otherwise .

Then || A [[;= 9, || x ||1= 1, and it is easily seen that || Ax |;= 9.
Thus
TAx [ = [[AlL [Ix]L -

EXAMPLE : (which is not a proof !) : Let

1 2 0
A = -3 2 -1

and take x = (1,0,0)7.



®n16 Is there a vector x such that
lAx [y > [[Al [[x]: ?

The answer is "NQO” .

PROOF : (by contradiction) :
Suppose there is such a vector x .

Then x cannot be the zero vector. (Why not?)

It follows that

> [ AL

which contradicts that by definition || A ||; is the biggest value

of that ratio.



All matrix norms defined in terms of (induced by) a given vector norm as

A
[A] = max |AX
x#0 || x |
automatically satisfy
(i) ||A] >0, and |A| =0 onlyif A = O
(it) [[eA ] = [af [A], VaeR,

() [[A+B < [A[+[IB].

Check : Properties (i) and (i) !

16

(zero matrix) ,



PROOF of (iii) :

IA+Bj

VAN

IA

| (A+B)x |
max
X0 | x ||

| Ax + Bx ||
max
X0 | x|

| Ax || + || Bx ||
max
x£0 | x ||

| Ax || | Bx |
max + max
x£0 || x || x#0 || x ||
[A]+B| . QED!

17



In addition we have

(iv)  |[AB]
PROOF of (iv) :

AB| - e ABX

S0 x|

A(B
o ABX|

70 || x|

P

INA

x7#0 I |

< [[A]

I x|

A B

x7#0 I |

IA

18

IB

Al

IB -

QED !



EXERCISES : Let A and B be arbitrary n by n matrices.

®p17] Is 1t true that
[AB 2 = [|Af2 [[Bfz 7

If false then give a counterexample.

®1g] Is 1t true that

[Al AT L =17

If false then give a counterexample.

0 2
.[019] Let A = (O 0

(Here spr(A) is the absolute value of the largest eigenvalue of A.)

) . Compute spr(A) , the “spectral radius’ of A .

Explain why spr(A) is not a matrix norm.

19



SOLUTIONS :

°017] ||AB |2 = [|[A |2 ||Bl2 is false:

Take A = (é 8) ,and B = (8 (1)) . Then AB is the zero matrix.

So || AB [2=0, while || A [a=1 and || B [lo=1.

eis] || AL Ay =1 isalso false:
_ (11 (1 1 1| —
IfA(O 1)thenA (O 1> and || Al [|[A™ |1=4.

°19) Let A = (8 3) . Compute spr(A) .
Here spr(A)=0 because both eigenvalues of A are zero.

Since A is not the zero matrix, it follows that the spectral radius of a
matrix cannot serve as a matrix norm.



The Banach Lemma.

Let B be an n by n matrix .

If in some induced matrix norm

IBJl <1,

then
I + B is nonsingular

and
1

| @T+B)~ | -
1= B

20



PROOF :
Suppose on the contrary that I+ B is singular.

Then
I+B)y = 0,
for some nonzero vector y .
Hence
By = —-y,
and

- | By | < IBI Iyl _
Al |y |l

IB

which contradicts the assumption of the Lemma. (Why ?7)

Hence I+ B is nonsingular.

21



We now have

(I+B) I+B)™ =1

)

from which

I+B)! = I-BI+B)!.

Hence
|XI+B) || < |I+B| @X+B)] .

Since || I || is always 1 in any induced matrix norm, we get

(=B @+B)" || <1,

from which |

< .
1— || B

| (T+B) | QED !

22



EXERCISES :

®020 Consider the n by n tridiagonal matrix T,, = diag[1, 3, 1] .
For example,

\0 0 1 3/

Use the Banach Lemma to show that T, is invertible for all positive
integers n. Also compute an upper bound on || T, ||..

O = W
—_ W
w = O
_ O O

T, =

°21 Let A, be the n by n symmetric matrix

1

—

S|=3 =3 =
S |=3 =3 =

A, =

¢« 33
e = 3=
—_3 =S =

\s o
Show A, for the case n = 3. Prove that A, is invertible for any
dimension n , and determine an upper bound on || A ! || .

S|
S|

23



o020 SOLUTION :

We can write
T, = diag[l, 3,1 = 3(L, + B, ),

where I, is the n by n identity matrix, and

1 1
Bn — dlag[g,(),g]

Then )
Bn o = 7 < 17
IBulle = 2

so that using the Banach Lemma we have that ( I, + B,, ) is invertible,

and

1
T ' = 2 (I, +B,)",
with

I T e <

NOTE : The cases n = 1 and n = 2 should be considered separately.



o217 SOLUTION :

—

A, =

S|— =3
e e A

T Ll
3|3 |3 |-
A e

3 |
3=

\

Let A,, = I, + B, , where I, is the n by n identity matrix , and

|—
—_
N—

1
n

0 L 1 11
(T 5 & % q
B,—|1 1 0 T 1
\L 1Lt
Here | B, |« = %=+ < 1,s0 I, + B, is invertible, and
_ 1 1
| (T, +Bn) " o < = =n.

_1_HBnHoo 1_n__1



EXERCISES :

°221 Let A, be the n by n symmetric matrix

(Qn 1 1 - 1 1\
1 2n 1 -+ 1 1
A, = 1 1 2n --- 1 1
\1 R Qn)

Show A, for the cases n = 2,3. Prove that A,, is invertible for any
dimension n , and determine an upper bound on || A ! || .

®23) A square matrix is called diagonally dominant if in each row the ab-
solute value of the diagonal element is greater than the sum of the
absolute values of the off-diagonal elements. Use the Banach Lemma
to prove that a diagonally dominant matrix is invertible.

®i024) Derive an upper bound on || T;;! ||~ for the n by n tridiagonal matrix
T, =diag[l , 2+ 1/n, 1].

24



‘[022] SOLUTION :

4 1
A2_(1 4)7 A3:

Write A,, = 2n (I, + B,) , where I, is the n by n identity matrix ,

—_ =
—_ Oy =
Sy = =

and
0 3 3m 5 3
I BN O
2p g i
B,=|3 3: 0 %% o
5 on a0
Here || B, ||« = %+ < 1, sothat I,+ B, is invertible,
and
1 1 1 1 1




°(23) A diagonally dominant matrix A is invertible :

SOLUTION :

Let
A =D+ E,

where D contains the diagonal entries of A , and E contains the off-
diagonal entries, that is,

/an 0 0 0 0 \ ( 0 a2 a1z ais - aln\
0 ax O 0 0 a1 0 as3 a4 - agy
D— 0 0O asz3 O 0 E_ | a1 as 0 assa - asn
0 0 0 aas 0 as1  a42 a4z 0 - aup

\ 0 0 0 0 . CLnn) \anl an2 an3 aAn4 - 0 )

By assumption all diagonal entries a;; must be nonzero.
Thus D is invertible, and we can write

A=D(I+B), where B = D'E.



SOLUTION : continued

The matrix B = D™ 'E is given by

0 a12 a13 a4 . Gln
aiil aiil aiil aijil
as1 0 as3 ass . QG2n
a22 a22 a22 a2
asi as2 O a34 . a3n
B = ass ass ass ass3
a4i a42 a43 O . a4n
a44 a44 a44 a44
\ anil an2 an3 an4 . O )
ann ann ann ann
Now
| Bllee < 1,

because by the diagonal dominance assumption we have for each row that

It follows that A 1is invertible.



®(024) Derive an upper bound on || T,;' || for T, =diag[l, 2+~ , 1] .

SOLUTION : We can write

on + 1 on + 1
T, = diagl, 222, 1] = 270 (1, + B,),
n n

where 1,, is the n by n identity matrix, and

B, = diag—— , 0, —— | .

2n + 1 2n + 1

Then )
n
B, ||c = < 1,
| | 2n + 1
so that using the Banach Lemma we have that
1
|| Tfr_Ll ||oo S " : 5 - N .
2n+1 1= 2n+1

NOTE : The cases n = 1 and n = 2 should be considered separately.



THE NUMERICAL SOLUTION OF LINEAR SYSTEMS

The Gauss Elimination Method.

EXAMPLE : For given 4 by 4 matrix A and vector f € R* |

1 -2 -1 2 —2
A—/Q 0 1 2\ f—/5\
- 2 0 4 1 ’ B 7 ’
\1 6 1 2/ \ 16 )
solve
Ax =t |
for
T
) (1)
X = o




-2 —1

0
0
6

—2
4
4
8

—2
4
0
0

1
4
1

—1
3
6
2

—1
3
3

—4

-2 —1

4
0
0

3
3
0

2,

Y
2
0

—9
—1
8/3 )

subtract 2 x row 1 from row 2
subtract 2 X row 1 from row 3
subtract 1 X row 1 from row 4

subtract 1 X row 2 from row 3
subtract 2 X row 2 from row 4

subtract — % X row 3 from row 4



The bold-face numbers at the top left of each submatrix are the pivots :

The final matrix is an upper triangular matrix.

27



The upper triangular system

(é -2 -1 2\ /xl\ /—2\

4 3 —2 Lo o 9
000 3 —1||a|"| 2|
\o 0 0 83) \a/) \8/3)

can be solved by backsubstitution :

re = (8/3)/(8/3) = 1,

3 = 2—-(-D1J/3 =1,
g = [9-(-2)1-(3)1]/4 = 2,
o= [-2— (21— (—1)1—(=2)2]/1 = 1.

(Of course, actual computer computations use floating point arithmetic .)

28



Operation Count.

Using Gauss elimination for general n by n matrices, counting multiplications
and divisions only (and treating these as equivalent).

(2) Triangularization (illustrated for n = 4) :

PRSI AT 0 I S Y 4 B 4

RIS A V5 R 0 A CIR Y B U A O
(m+1)(n—1) + nin—2) + + (3)(1)

- n_lk(k+2) = §k2+2§k




(22) Backsubstitution :

PRI FANN b
\o oo« \a) \s
1+2+---+n:n(n;1)

Taking the total of triangularization and backsubstitution we obtain

n(n —1)(2n + 5) n(n+1) n’ , n
= — — = Check !
6 T 3 T T3 (Check )
EXAMPLES :

if n = 10, then the total is 430,
it n = 100 , then the total is 343 430,
if n = 1000, then the total is 336 333 430.

For large values of n the dominant term in the total operation count is n°/3.

30



Reconsider the Gauss elimination procedure for solving the system

given by
1 -2 -1 2 x —2
(2 0 1 2\ (x;\ B ( 5 \
\1 6 1 2/ \wx/) \16)

e In each step retain the equation that cancels the operation performed.

e 'This is done by storing the multipliers appropriately in the identity matrix.

31



o o - O

o —H O O

— o O O

oS O —H O

o — O O

— AN AN

o O —H O

S — — N

— AN AN

32



NOTE :

e Gauss elimination generates an L U-decomposition of A :

A =LU.

L is lower triangular and U is upper triangular.

The below-diagonal entries of L are the multipliers.

e In addition we have Lg = f .

Furthermore, LUx = Lg, where L is nonsingular.

e IHence we also have Ux = g .

33



Using the LU-decomposition for multiple right hand sides.

Suppose we want to solve
Ax®F) = £k

with fixed A, but for multiple right hand side vectors

£ k=12 m.

Algorithm :
(z) Determine the LU-decomposition of A .

(Lg® — £
(22) Solve < k=1,2,---,m.
\ UxF) = gk |

Note that the decomposition need only be computed once.

34



Operation Count.
Multiplications and divisions for an n by n system with m right hand sides :

Step (7) (LU-decomposition) :

PR I G
o o o o ~ O @) * *
\. o o .) KO O O *)
nin—1 + n—1)(n—-2) + ---+(2) (1)
— n_lk(k+1) — n_1k2 — n_lk
- (n—l)n6(2n—1) + n(nz—l) = % — g (Check !)

35



L g f U X g
ST AT ST A N S T O
RURE B VA 09 A PP B 043 B O

Step (72) (Backsubstitution) :
(Lg® = f& © mA+2+---+(n-1)),

\Ux(k) = gk . m(l+2+---4n) .

Total Step (ii) : mn? (Check !).

The total of Steps (7) and (i7) is therefore

n’ N 5 n
— mn® — —.
3 3
NOTE : For m small and n large the dominant term remains n°/3.

36



Tridiagonal systems.

For tridiagonal systems of linear equations

(e V()

a9 172 Co X9

Ap—1 bn—l Cn—1 Ln—1

\ v b )\ @)

Gauss elimination reduces to this simple algorithm :
B =bi, g = fr,

CLk/ﬁk—1 , )

Vi

Be = by —YCr—1, ¢ k

9 = Jk— WGk-1, |

37

2.3,

h
( f2 \
/3

f n.— 1

\ fo )




This transform the tridiagonal system into the upper-triangular form

/51 ;1 \ ( L1 \ ( g1 \
9 C9 L2 92
B3 c3 L3 gs

5n—1 Cn—1 Ln—1

K Bn ) \ o ) \92;1)

The backsubstitution algorithm now becomes

r, =
By
— CL.T
gy = IR ORRRL b 1 =2, e 1.

Bk

38



The resulting LU-decomposition 1is

(1 \(* o \

1 52 Co
v 1 B3 c3

Yn—1 1 Bn—l Cn—1

The total number of multiplications and divisions is 5n —4 . (Check !)

39



Inverses.

The inverse of a n by n matrix A is defined to be a matrix A~! such that

where

I = | | (the identity matriz) .

A is nvertible it and only if
det A # 0.

The inverse is then unique.
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To compute At we can solve
AA™YH =1,

which is of the form

A Al I
o

e o o C11 Cia Ci3 C I 0 0 O
PR T e N
e o o C31 C32 C(C33 C34 - O 0 1 O
\0 o o 0) Cq41 C42 (C43 C44) \O 0 O 1)

This corresponds to solving a linear system with n right hand sides.

Using the earlier formula, the number of multiplications and divisions is

3 43
%—I—(n)n2— "



But we can omit some operations , because the right hand side vectors,

i.e., the columns of I, are very special.
In particular, multiplications by 0 or 1 can be omitted.

The total number of multiplications that can be omitted is seen to be

n—1
() (n=1) + (r=1) (n=-2)+---+(2)(1) = > k(k+1)
k=1
n—1 n—1
_ Zk2+ Lo (n—l)n(Qn—1)+n(n—1)
§ 2
k=1 k=1
3
- - (Check !)
3 3
Thus to find A~! we need only
4n ;
(% — %) — (% — %) — n° operations .



NOTE :

To solve a n by n linear system
Ax®F) = £k

with m right hand sides, takes

3
n 5 n

3+

as derived earlier for the LU-decomposition algorithm.

operations ,

One can also find the solution vectors by computing A~! . and setting
x® = A7L R

But this takes

3 2

n° + mn operations ,

which is always less efficient , no matter how big n and m are !
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EXERCISES :

®025]

®026]

®027]

Compute the LU-decomposition of the tridiagonal matrix

/3100\

1 3 1 0
01 3 1
\0 0 1 3)

Let f = (4,5,5,4)1 . Using the matrices L and U, solve Lg = f,
followed by Ux = g . After having computed the vector x in this way,
check your answer by verifying that x satisfies the equation Tyx = 1.

T, =

How many multiplications and divisions are needed to compute the
LU-decomposition of the specific tridiagonal matrix T,, = diag|1, 3, 1]
as a function of n 7 Make sure not to count unnecessary operations.

If the LU-decomposition of this n by n tridiagonal matrix takes 0.01
second on a given computer if n = 10°, then how much time could it
take if n = 10° ?
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o255 SOLUTION :

Applying the LU-decomposition algorithm to the matrix

3 1 0 O
T_(1310\
7 o1 3 1]
results in the matrices KO 01 3)

1 0 0 O 3 1 0 0
L_/%loo\ _(Oglo\
o2 1o ™Y =100 2

\0 0 & 1/ \0 0 0 )

: B : _ 11 29  55\T
Solving Lg = f gives g=(4, 5, T, 57) ,

and subsequently solving Ux = g gives x=(1, 1,1, 1) .

NOTE : Actual computations use real numbers, rather than rationals.



®026) How many multiplications and divisions are needed to compute the
LU-decomposition of the specific tridiagonal matrix

T, = diagl[l, 3, 1],
as a function of n 7

SOLUTION :

Only n — 1 divisions are needed, and no multiplications !

°277 If the LU-decomposition of this n by n tridiagonal matrix takes 0.01
second on a given computer if n = 10°, then how much time could it take if
n=10"7

SOLUTION :

The estimated time, based only on the number of divisions, is 100 seconds.



EXERCISES :

®028]

®029]

Suppose the LU decomposition of a matrix A is given by

1 0 0 1 2 3
L=[1 1 0 and U=1[10 1 2
1 1 1 0 0 1

Using only L, U, and f, ie., without explicitly determining A ,
solve Ax = f, when f = (6,9,10)" .

Suppose that solving a general n by n linear system of the form Ax = f
by Gauss elimination takes 10 seconds on a given computer if n = 1000.

Eistimate how much time it will take to solve a 1000 by 1000 system
Lg = f, followed by solving Ux = g, where L is lower triangular with
1’s along its main diagonal, and where U is upper triangular?

Thus you may assume that L and U have already been computed.
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o2 SOLUTION :

Solving Lg = f gives g=(6, 3, 1),
and subsequently solving Ux = g gives x=(1, 1,1, 1)’

®029] SOLUTION :
The leading term for the number of "operations” for Ax = f is n’/3.

Thus the estimated time p per operation is obtained from
(10°)°

3
which gives © = 3-107° seconds .

1 = 10 seconds ,

The leading term for solving Lg = f followed by Ux = g is n?.

The estimated time for doing this is therefore

(10°)* - 3 - 107® = 0.03 seconds .



EXERCISES :

®(030]

®031]

®032]

®(033]

Suppose that multiplying two general n by n matrices takes 3 seconds
on a given computer, if n = 1000.

Esstimate how much time it will take to compute the LU-decomposition
of such a matrix.

Suppose that solving a general system of linear equations of dimension
1000 takes 10 seconds on a given computer.

Esstimate how much time it will take to solve a tridiagonal linear system
of dimension 10° on that computer.

How many divisions are needed for LU-decomposition of an n by n
tridiagonal matrix (not counting multiplications and additions)?

How many divisions are needed for LU-decomposition of an n by n
general matrix (not counting multiplications and additions)?
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®(030]

®031]

Suppose multiplying two general n by n matrices takes 3 seconds on a
given computer, if n = 1000. Estimate how much time it will take to
compute the LU-decomposition of such a matrix.

SOLUTION : Multiplying two n by n matrices takes n® multipli-
cations, while LU-decomposition takes approximately n®/3 multiplica-
tions and divisions. Thus LU-decomposition of a matrix of dimension
n = 1000 can be estimated to take one second.

Suppose solving a general system of linear equations of dimension 1000
takes 10 seconds on a given computer. Estimate how much time it will
take to solve a tridiagonal system of dimension 10° on that computer.

SOLUTION : Solving a system of n equations takes approximately
n? /3 multiplications and divisions, while solving a tridiagonal system
takes approximately 5n multiplications and divisions. Thus the answer

1S
H- 106 15 . 106
10003 /3 10 = 109 10 = 0.15 seconds .




°(p327 How many divisions are needed for LU-decomposition of an n by n

tridiagonal matrix (not counting multiplications and additions) ?

SOLUTION :
n — 1 divisions .

°(33 How many divisions are needed for LU-decomposition of an n by n

general matrix (not counting multiplications and additions) ?

SOLUTION
n(n—1)

2

divisions .



Practical Considerations.

o Memory reduction.

In an implementation of the LU decomposition algorithm, the multipliers
can be stored in the lower triangular part of the original matrix A.

In the earlier example, with

1 -2 —1 2
4 /2 0 1 2\
2 0 4 1|
\1 6 1 2/

this function would return the matrix :

1 -2 -1 2
( 0 4 3 -—2‘\
> 1 3 -1
\ 1 2 -4/3 8/3



e Row interchanges.

Gauss elimination will fail for the matrix

0 2 1
11 2 |,
2 3 —1

since the first pivot is zero.
A division by zero will occur when the first multiplier is computed !

The remedy is to interchange rows to get

I 1 2
0 2 1
2 3 -1

Several such interchanges may be needed during Gauss elimination.
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e Loss of accuracy.

More generally, loss of accuracy may occur when there are large multipliers .

EXAMPLE : Solve
0.0000001 1 1 1

1 1 To 2

on a “six-decimal-digit computer”.

NOTE :

1

e The solutioniszy = 1, x4

e The multiplier is 10,000,000 .

49



A “Swz-dectmal-digit computer” :

Assume all arithmetic operations are performed to infinite precision,

but then truncated to six decimal digits (plus exponent).

Thus, for example,
—100/3

1s stored as
—3.33333 10*
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0.0000001 1 T1 1

1 1 X9 2
(a) Elimination gives :
1.00000E — 07 1.00000E + 00 T 1.00000E + 00
0 —999999E + 01 To —999999E + 01
(b) Backsubstitution gives :
ro = 1.00000E + 00 , r1 = 0.00000E + 00 .

Clearly this result is very bad !

b1



Again, the remedy is to interchange rows :

1 1 X1 2

0.0000001 1 T 1

Now the multiplier is only 1.00000E — 07, and we obtain :

(a) Elimination :

1.000000E + 00  1.000000E + 00 1 2.00000E + 00

0 9999999E + 00 T 2999999k + 00

(b) Backsubstitution : x5 = 1.00000E + 00, z; = 1.0000E + 00 .

This solution is accurate !

H2



Gauss Elimination with pivoting.

A variant of the Gauss elimination procedure that avoids loss of accuracy
due to large multipliers is called

“Gauss elimination with partial pivoting (or row pivoting)”.

Here rows are interchanged each time a pivot element is sought, so that the
pivot is as large as possible in absolute value.

(In practice pointers to rows are interchanged.)

All multipliers will then be less than 1 in magnitude.
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EXAMPLE :

2 2 1 1 5 interchange row 1 and 3

1 0 1 9 — 2

4 1 2 I3 7

4 1 2 I 7

1 0 1 T = 2 subtract i row 1 from row 2

2 2 1 3 5) subtract % row 1 from row 3
4 1 2 I 7

0 —1/4 1/2 T = 1/4 interchange row 2 and 3
0 3/2 0 xs3 3/2

4 1 2 I 7

0 3/2 0 9 = 3/2

0 —1/4 1/2 T3 1/4 subtract %1 row 2 from row 3
4 1 2 1 7 backsubstitution : x1 =1
0 3/2 0 T2 = 3/2 backsubstitution : xo =1
0O 0 1/2 T3 1/2 backsubstitution : x3 =1

H4



EXERCISES :

°(p34 Use Gauss elimination with row pivoting to solve

1 2 3 L1 0
2 8 11 X9 = 1
3 22 35 T3 10

The solution is x = (—1,—1, 1) . If done honestly (with pivoting !)
then all multipliers will be less than 1 in magnitude.

®035] Suppose that Gauss elimination with row pivoting is used to solve
2 1 0 0 T 4

SN A T
0 2 1 T3 12

\o 012/ \e/)  \11)

Are any rows actually interchanged?

2
1
0

Can you also answer this question for general T, = diag|1,2,1] ?

5



o35 SOLUTION :

Without using pivoting the LU-decomposition of the matrix

(2 1 0 o\
T, — 1 2 1 0

T o1 o2 1|

results in the matrices KO 01 2)
1 0 0 O 2 1 0 0
L—(%loo\ dU_(og10\
oz 1o ™ — 1o 0 %1
\0 0 % 1) \0 0 0 2

We observe that all multipliers, as stored below the main diagonal of L .

are less than 1 in magnitude which shows that pivoting is not needed.

1 2 3

The pattern 5, £, 7, --- , of the nonzero multipliers is seen to continue

for larger dimensions. Thus no pivoting is done for any dimension of 7, .



Error Analysis.

Suppose we want to solve

Ax = f

)

where the n by n matrix A is nonsingular (i.e., invertible).

Suppose a small error is made in the right hand side, 7.e., instead we solve

Ay = f 4+ r.

What will be the error || y — x || in the solution 7
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From

Ay = f + r,
subtract
Ax = 1,
to get
Aly—x) =r
Thus
y—x = A7'r,
so that

ly—x| = [[ATr] < AT ] |r] -

Hence if || A~ || is large then a small perturbation r in f may lead to a
large change in X .

b7



EXAMPLE :

1 —1.001 z1\ [ 2.001
2.001 -2 zy ) \4.001)

has ezact solution
r1 — 1 , Lo — —1.

Suppose instead we solve
1 —1.001 y1\ [ 2.000
2.001 —2 ys /] \4.002 ) °
The exact solution of this system is

ylzza y2:0
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Note that the small change in the right hand side has norm

It = 0.001.

Also note that the change in the solution is much larger , namely,

Ix=yle = 1.

In this example

—666.44 333.55
Al
—666.77  333.22

Hence

12

I A7 [l

12
S

1000, whereas || A ||«
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Errors always occur in floating point computations due to finite word length.
For example, on a “six digit computer” % is represented by 3.33333 1071 .

Such errors occur in both right hand side and matrix.

Suppose we want to solve
Ax = f

)

but instead solve the perturbed system

(A+E)y = f+r.

Here the perturbation E is also a n by n matrix.
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THEOREM : Consider
Ax = £, and (A+E)y = f+r.

Assume that

1
A is nonsingular, and that | E ||< AT ie., |[ATY| ||E| < 1.
Then
|y —x| _ _ cond(A) (\!P\\+\!E\!)
Ix = 1= AIEJNE] (A
where
cond(A) = [[AT[[[[A]

1s called the condition number of A .

61



PROOF :

First write

A+E = A (I+A'E).

Now, using the assumption,

AT E| < AT [E| <1,

it follows from by the Banach Lemma that

(I+ A~'E) is nonsingular and

1 1
< :
I=[[AZE| = 1= A7 [ E ]

| T+ATE)™ |
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Next

implies

so that

Then

(A+E)y = f+r,

I+A7'E)y = A~ (f+1),
y = I+A'E)y"A P (f+1).

(I+A'E)™! (A—l(f ) - (T+ A_lE)X)
I+A'E)! (X + A7 r —x— A_lEX)

I+A'E)"' A~ (r — Ex) .
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Finally,

IA

VAN

| @+ ATE) | A (el + 1B

I |

Sl MG EY
+E|)
= AT TE\x]

A~ TA ( Ir | HEH)

_|_—
L= AT PEJNFA i< A

AT A (HPH+HEH).
I={f AT B AE] A

The last step uses the fact that

HE

= [Ax|| < [Afllx] . QED!
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From the above theorem we can conclude that :

ly —x|

If cond(A) is large, then the relative error can be large .

Note, however, that cond(A) is never less than 1 because

L= [T = |ATA| < AT |A] = cond(A),

in any induced matrix norm.

A matrix having a large condition number is said to be ll-conditioned.

65



EXAMPLE : The 2 by 2 matrix

1 —1.001 T
2.001 —2 Ty )

from the earlier example, with inverse

12

A—l

—666.44  333.55
—666.77 333.22 )

has condition number

cond(A) = (4)(1000) = 4000 ,

in the matrix infinity norm.

We may say that this matrix is ill-conditioned.
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Solving ill-conditioned systems numerically, if they can be solved at all on a
given computer, normally requires pivoting.

However, systems that need pivoting need not be ill-conditioned .
Reconsider, for example, the 2 by 2 matrix

A e (P00 1) a s (51) (oheds

for which the condition number is approximately 4 using the infinity norm.

But solving a linear system with the above A as coeflicient matrix requires
pivoting, at least on a six (decimal) digit computer.

67



EXERCISE :

Q[OSG]Let
0 =1 < th <ty < -+ < t, =1,

and let
hi:ti_ti—la i:1,2, e T

The following tridiagonal matrix arises in cubic spline interpolation

(to be discussed later) :

/2(h1 + hs) ho \
ho 2(hs + hs) hs
Sn—l — hg 2(h3 + h4) h4
\ hn—l Z(hn—l + hn))

Prove that S,,_; is invertible and determine a bound on cond(S,,_1) .

Are there situations where S,,_; could be ill-conditioned?
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‘[036] SOLUTION : Write Sn—l = Dn—l (In—l + Bn—l) ,Where

2(h1 + hs)
2(h2 —+ h3)
D, 1= 2(h3 -+ h4)
Q(hn_l + hn)
and h
( O Q(hl—l—hg) \
B 2(h2+h3) " 2(h2+h3) L
n-b 2(h3ih4) 0 2(h3jll-h4)
hn—l

| Br1 ||eo= % <1,s0o I,.1+B,_;,and hence S,_; , is invertible, with

o D z
|| —1 ||oo . — . {h. . ’
1— || Byt [|oo 2ming{h; + h;i1}
and
3maxz{hz—|—hz 1}
cond(Sp—1) = || Sn-1 llo | S e = - ;

mmz{hz + hz'_|_1}
which can be arbitrarily large.



EXERCISES :

377 Consider the n by n matrix :

(1 1 - 1\
C - 1 1 --- 1 |
11 e 1)

and let I,, be the n by n identity matrix.

For what € does the Banach Lemma guarantee I,, + €C,, is invertible?

Also determine a bound on cond(I, + €C,,) in this case.

35y Use the Banach Lemma to prove that the five-diagonal matrix
T, = diag[l1,1,5,1,1],
1s invertible for alln > 1 .

Derive an upper bound on cond(T,,) using the matrix infinity norm.
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EXERCISES :

For each of the following statements, state whether it is true or false.

If true then explain why; if false then give a counterexample.

030 A condition number of 10° is large.

o40) All large matrices are ill-conditioned.

(0417 All ill-conditioned matrices have small determinants.

0421 Only ill-conditioned matrices require pivoting.

43 If pivoting is needed then the matrix is ill-conditioned.
o441 The condition number of a matrix is never smaller than 1.

®n45) 1ridiagonal matrices are never ill-conditioned.
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EXERCISES :

For each of the following statements about matrices, say whether it is true
or false. Explain your answer.

®o46) 1WO n by n matrices can be multiplied using n? multiplications.

*(0477 LU-decomposition of the n by n tridiagonal matrix diag[1, 2, 1] can be
done using only n — 1 divisions and zero multiplications.

48] LU-decomposition of a general n by n tridiagonal matrix requires 2n—2
multiplications and divisions.

49 The n by n tridiagonal matrix T, = diag|1,2 + 1/n,1] is nonsingular
for any positive integer n.
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EXERCISES :

For each of the following statements about matrices, say whether it is true
or false. Explain your answer.

®509) For large n, the LU-decomposition of a general n by n matrix requires
approximately n°/3 multiplications and divisions.

°p51] Lhe inverse of a general, nonsingular n by n matrix can be computed
using n? multiplications and divisions.

°p59) If D is a diagonal matrix (i.e., its entries d;; are zero if ¢ # j), then

IDp = Dl = Dl -

o053 1f || A™" || is large then cond(A) is large.
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BRIEF SOLUTIONS : (You are expected to provide details.)

Page 69:

°37 I, +€C,, 1s Invertible if € < % , In which case

1+ en
1 —en

cond( I, +€C,) <

*p3s) | Tp' le < 1, and cond(Ty) = || Ty lle || T," [ <

Page 70: ejp39_045): TFFFFTF

Page 71: ejps6_pa9: FTTT

Page 72: epso_ps3: T TTF

9.



THE NUMERICAL SOLUTION OF NONLINEAR EQUATIONS

Introduction.

For a system of n [linear equations in n unknowns

Ax = f

)

where x,f € R" , and A an n by n matrix , we have these possibilities :
(z) A is nonsingular : In this case there is a unique solution.

(22) A is singular: There are no solutions or infinitely many. (Examples?)
Usually only case (7) is of interest.

The solution can be computed in a finite number of steps by Gauss Elimina-
tion (with pivoting, if necessary).
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We can write a system of n nonlinear equations in n unknowns as

G(x) = 0,
where
x, 0 e R",
X = (xlvx% 7ajn)T7
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EXAMPLES : (of possible situations) :

22 —1=0 hastwosolutions: z=1, z=—1.
2> +1=0 hastwosolutions: z =14, v = —1 .
e~ —sin(x) = 0 has a countably infinite number of solutions.

The system (221 — 29 =0, 23 + 21 — 29 = 0) has three solution pairs,

namely, (x1,22) = (0,0), (1,2), (—1,-2) .
The system (x129 —1 =0, 129 — 2 =0) has no solutions.
The system (e”™"2 —1=0, x; —xo = 0) has a continuum of solutions.

16!



NOTE :

For nonlinear equations :

There can be 0, 1, 2, 3, 4, --- oo solutions.

A solution can usually not be computed in a finite number of steps.

Instead, iterative methods will be used.

We will not consider the case of a continuum of solutions.
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Some Methods for Scalar Nonlinear Equations.

Consider the scalar equation (one equation, one unknown)

and let x* denote a solution (or zero , or root ) of this equation.

7



The Bisection Method.

This method requires two initial points :

0)

20y with  ¢(z @) <0 and g(y?)>0.

Algorithm : For k=0, 1, 2, ---:
o Set 20 — (gl 4 y®)
o If g(2®) <0 set abtl) = k) = ylk+l) — 4(k)

o If g(2®) >0 set aktD) =gk kD) — (k)
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9(x)

gy’) ——

- X
X" 7 (0) y(O)

/ g(®) The Bisection method.

The bisection method works if g(x) is continuous in the interval [z(%), y(®)].

In fact we have

28 g S_%‘ﬂm_y@‘.

The method does not readily generalize to systems of nonlinear equations.
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The Regula Falsi.

This method is similar to the bisection method.

However, in each step we now let

o 2Wg(y®) —yWg(a®)

Z( —
g(y®)) — g(z®))
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o >90) ) a(x)

X (1)

X© /

P o > X
(1) y

y

/ g(>%°)) The Regula Falsi.

(k) rF) g(y*)) — y ) g(2*))
g(y®) —g(z®)

2% is the zero of the line from (2, g(z*)) to (y*, g(y*®)). (Check !
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Unlike the bisection method, not both 2 and y*) need converge to z* :

g(>9°’)/g(x)

X (1)
X (0) /
X > X

y(O)

#2)

/gx)  y?

The Regula Falsi : Nonconvergence of %) to z* .

The Regula Falsi does not readily generalize to nonlinear systems.
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Newton’s Method.

Let 2% be an initial guess for a zero z* of ¢g(x) =0 .

The line po(x) that satisfies

po(a®) = g(z)

and
py(z' ) = ¢'(2)

is given by

po(z) = g(z) + (2 —2®) g'(«!”) . (Check!)
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a(x
g(X)

P, (x)
o

/X(Z) XY X -

Newton’s method

If ¢ is sufficiently smooth and z(® is close to z* then we expect the zero

0) g(x(o))

1)

M = 2 (Check !)

of po(z) to be a better approximation to z* than z(® .
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This procedure may now be repeated for the point z(V.

The general algorithm for Newton’s method can therefore be written as

k
g'(z™)

Later we show that Newton’s method converges to a zero z* of g(x) = 0 if

e ¢ has two continuous derivatives near z*,

e g(z*)#0,

o 1 ig sufficiently close to z* .
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EXAMPLE :
Use Newton’s method to compute the square root of 2 .

Note that this square root is a zero of g(z) = z° — 2.

Thus the Newton iteration is given by

(z*)2 — 2 (aW™)? 4 2

(k+1) __ (k) _

S 21) 22 )
With (¥ = 1.5, we get

M = 1.41666 , ¢ = 1.414215 , ete.

Newton’s method generalizes to systems of nonlinear equations.

This extension will be considered later.
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The Chord Method.

This method is similar to Newton’s method.

The only difference is that ¢/(z) is always evaluated at the initial point z(?).

Thus the algorithm is
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P, (x)
”

g(X

g(xX)

>

/ X(Z) X(l)

The Chord method

k) 9<x(k))

LD

g'(z?)

88
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Compared to Newton’s method :

e The Chord method takes fewer arithmetic operations per iteration.

e The two methods converge under essentially the same conditions.

e The Chord method needs more iterations for a prescribed accuracy.
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EXAMPLE :

With 2(® = 1.5 the Chord method for solving 22 — 2 = 0 takes the form

(k)y2 _
pHD) (k) (z\7) 2 |
3
The first few iterations give
= 1416666, 2 = 1414351, ¥ = 1.414221.

90



EXERCISES :

®054]

®(055]

®056]

®057]

Show how to use Newton’s method to compute the cube root of 2.
Carry out the first few iterations, using z(®) = 0.6.

Show how to use the Chord method to compute the cube root of 2.
Carry out the first few iterations, using z(®) = 0.6.

Consider the equation
sin(x) = 1/x .
Show the graphs of sin(z) and 1/x in one diagram. How many solutions

are there to this equation 7 Write down Newton’s method for finding
a solution. Carry out the first few iterations with (% = 7 /2.

Consider the equation sin(z) = e . Draw the functions sin(z) and
e " in one graph. How many solutions are there to the above equa-
tion 7 Show how one can use Newton’s method to find a solution of
the equation. Carry out the first few Newton iterations, using z(® = 0.
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°59 SOLUTION : Here is a Fortran code for Newton’s method for the
cube root of 2, followed by the output. Note the rapid convergence !

g(x) = x*%3 - 2
gp(x) = 3*x**2

nit = 10
X = 0.6
DO k=1,nit

x =x - g(x)/gp(x)
WRITE(6,101)k, x
ENDDO

101 FORMAT(I3,1PE16.6)
STOP
END

.251852E+00
.632705E+00
.338558E+00
.264450E+00
.259937E+00
.259921E+00
.259921E+00

~NOo o N -
Y N e =\



®(055]

the cube root of 2, followed by the output. The iteration diverges !

SOLUTION : Here is a Fortran code for the Chord method for

It will

converge if 2° is closer to the cube root of 2, but convergence is slower than
Newton.

101

addh WD -

g(x) = x**x3 - 2
nit = 5

X = 0.6
gp = 3kxk*x2
DO k=1,nit

x =x - g(x)/gp
WRITE(6,101)k, x
ENDDO

FORMAT(I3,1PE16.6)
STOP
END

2.251852E+00
-6.469230E+00
2.460709E+02
-1.379588E+07
2.431220E+21



°ps6) SOLUTION : For the equation sin(z) = 1/x .

Drawing the graphs of sin(x) and 1/z in a single diagram, one observes
that there are infinitely many solutions.

With g(z) =sin(z) — z~! , Newton’s method for finding a zero of g(x) is

sin(z) — z7!

cos(x) + x>

e D = f(2®) | where f(z) = z —

Taking 2% = 7/2 gives these results :

1 = 0.674191 ,
(2 = 0.962321 ,
B3 = 1.094709 ,
= 1.113808 ,
) = 1.114157,
6 = 1.114157,

1.e., the iteration converges to the positive solution that is nearest to zero.



°577 SOLUTION : For the equation sin(z) =e™* .

X

Drawing the graphs of sin(x) and e ™™ in a single diagram, one observes

that there are infinitely many solutions.

T

Letting g(x) = sin(z) —e ™ , Newton’s method for a zero of g(z) is

(k)) — e_w(k)

sin(x
L) (k) ( : —
cos(zF)) + e~

Taking z(®) =1 results in rapid convergence to the first positive solution:

1) = 0.47852772 .
z? = 0.58415699 .
B3 = 0.58852512 .
@ = 0.58853275 ,
z®) = 0.58853275 .
z©® = 0.58853275 .



Newton’s Method for Systems of Nonlinear Equations.

First reconsider Newton’s method for scalar equations

g(z) = 0.

Given 2®)_ we set z(*t1 to be the zero of

pe(z) = g(z®) + (z —2®) ¢ (W) .

NOTE :

o pi(x)is the tangent line to g(z) at x = =™ | d.e.,

o pi(x) is the linear approrimation to g(x) at x = =) e
o pi(x)is the degree 1 Taylor polynomial of g(x) at x = z*)
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Similarly for systems of the form
we have the linear approximation

P.(x) = G(E®) + G/(x%) (x —x™)

of G(x) about x = x*) |

Here G/(x™®)) is the Jacobian matriz of G(x) at x = x*),

Analogous to the scalar case we let x**1) be the zero of Py(x) =0 .
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Thus x**+1) is the solution of the linear system

G/(X(k)) (X(k+1> _ X(k>) - G(X(k)) 7

that is, we can get x**1 by first solving

o G/(xM) Ax) = —G(x").

and then setting
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EXAMPLE :

Use Newton’s method to solve the system

2 _
rxire — 1 = 0,

vy, — a7 = 0.

The Jacobian matrix in this example is given by

991 9g1
’( ) 0x1 0x9 2331332
G(x) = _
992 0g2 _ A3
8331 8332 4561

95
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Hence Newton’s method for this problem takes the form

k k k k k k
207y (o) [ Aal L= (2"
O — 9
k k k k
—A(z")? 1 Az (2f)t — 2"
( :ngJrl) _ xgk) n Axgk) |
o \
\ x;kJrl) _ CCgk) 4 A:U;k) |
for k=0,1,2,---.

Thus for each iteration two linear equations in two unknowns must be solved.
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With the initial guess

x(10) =2, xéo) = 2

the first iteration consists of solving
8 4\ (AN (-7
=32 1)\ A ) 14 )7

Az = —0463, Az =-0.823,

which gives

and then setting
xgl) = :z;§0> + A:cgo) = 1.537,

:L‘él) = SL‘;O) + Aa:éo) = 1.177 .

After a second iteration what will x?) and 5652) be 7
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EXERCISES :

053] Describe in detail how Newton’s method can be used to compute solu-
tions (x1, x9) of the system of two nonlinear equations

;-1 = 0,

To—et = 0.

®059) Describe in detail how Newton’s method can be used to compute a
solution (x1, w9, x3) of the system of three nonlinear equations

2 2 2 _
r3—et = 0,
rs —e? = 0.
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°ps5y SOLUTION : For the 2D problem :

<= (1) e = (50) = (hi) = ()

and Newton’s method takes the form

201 2w\ [ Aal? L= (2")? = ()
e 1 Ax;k) e x;k)
(2 = a4 A
<
(2= wy) + Ary

for k=0,1,2,---.



.[059] SOLUTION :

For the 3D problem Newton’s method takes the form :

(207 2 2P\ AT\ 1 - @)= (@) - )7

—e”1 0 1 A:U;k) = eri I’;(gk)

Vo e ) Al )\ et — o /

az'gkﬂ) = mgk) + Az

A = o 4 gl

xék:Jrl) _ xék) n A:Eék) |

for k=0,1,2,--- .



Residual Correction.

Suppose we use Newton’s method for a [linear system Ax =1,

that is, we let

G(x) = Ax — f.

Then
G'(x) = A,

so that Newton’s method
G/(X(k)) Ax(k) — _ G(X(k)) 7

becomes



NOTE :

e the Jacobian needs to be LU-decomposed only once.

o With exact arithmetic , the exact solution is found in one iteration :

AxO = —A1Ax? — f) = —xO 4 x|
so that
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NOTE :

e For inexact arithmetic , this iteration is called residual correction .

e Residual correction can improve the accuracy of the solution of Ax =f.

e Residual correction is valuable for mildly ill-conditioned linear systems.

e The “residual” Ax") — f should be computed with high precision.
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Convergence Analysis for Scalar Equations.

Most iterative methods for solving a scalar equation g(z) = 0 can be written

g = (W) k=0,1,2,---, 29 given .

EXAMPLE : In Newton’s method

g(x)
f L) = & — )
=) g'(x)
and in the Chord method
g(x)
o === 5o
Sometimes the iteration z*+1) = z(*) — ¢(z(*)) also works. In this method
flz) = x—g(z)



NOTE :

Iterations of the form
e = f(®)) k=201 2 ---, 29 given |

also arise independently, e.g., as models of “population growth” :

gD = ¢ x(k), k=20,1,2,---, 0 >0 given ,

models exponential population growth.

EXERCISES : What happens to the sequence z*), k=0,1,2,---,
®060] When @ > 0 and ¢ > 17

®061] When @ > 0 and ¢ < 17
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The iteration
g = e W) (1 — W)y k=0,1,2,---,

known as the logistic equation, models population growth when there are
limited resources.

EXERCISES : For 0 < 29 < 1

What happens to the sequence CIZ(k), k=0,1,2,---,

®ps27 when 0 < ¢ < 17
®63y when 1 < ¢ < 27
®64) When 2 < ¢ < 37
°p65y when 3 < ¢ < 47
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In general, an iteration of the form
o) f(a:(k)) ’ k=0,1,2,-

is sometimes called a fized point iteration (or a recurrence relation ,

or a discrete dynamical system) .

Suppose the sequence %), k =0,1,2,---, converges, i.e.,
lim 2% = 2~ .
k— 00

Then x* satisfies the equation

v = f(z),

(assuming that f is continuous near x*).

We call x* a fixed point of f.
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EXAMPLE :

In Newton’s method

that is,

(assuming that ¢'(z*) # 0 .)

Thus z* is a solution of g(x) = 0.
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Assuming that f has a fixed point, when does the fixed point iteration

et = f2®)

converge 7

The answer is suggested in the following two diagrams :
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y=f(x)

0

() D) @)

A convergent fixed point iteration.
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y

0
03/ XX %

A diwergent fixed point iteration.

109

y=f(x)



THEOREM :

Let f'(x) be continuous near a fixed point x* of f(x), and assume that

FACHEEES

Then the fixed point iteration

e — f(:,;(k))7 k=0,1,2,---

converges to x*, whenever the initial guess 2% is sufficiently close to x* .
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PROOF :
Let « = | f'(x*) |.

Then a < 1.

Choose (8 such that o < 8 < 1.

Then, for some € > 0, there exists an interval
I. = [25—€,2"+ €],

such that

(because f’ is continuous near x*).
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Let 29 € I.

By Taylor’s Theorem (or by the Mean Value Theorem)

W= f@0) = f@) + @9 =2 F(n)

for some 1y between z(©) and x*.

Since f(x*) = z* it follows that

[aW—a” | = [ (@V=2")f' (o) | = [«W=2"] | f(m)| < B[aW=a"] .

Thus 2V € I, , (because 0 < B < 1) .
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Again by Taylor’s Theorem (or the Mean Value Theorem)

1@ = fa®) = f@) + @Y —2") fim) .

for some 1y between 1) and x*.

Hence

Thus 22 € I, , (because 0 < < 1) .

Proceeding in this manner we find

Since 0 < 8 < 1 this implies that

2% 5 2 as k — oo
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COROLLARY : Let
I. = [2"—e, 2" +€],
and assume that for some ¢ > 0 we have :

e f(x) has a fixed point z* € I, ,
e f(x)is a smooth function in I ,
e | f'(r)| < 1everywherein I, ,

o 0 e

Then the fixed point iteration

o) f(:v(k)) 7 k=0,1,2,--- .
converges to x*.

PROOVF : This follows from the proof of the Theorem.
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COROLLARY :

It

e 1*isa zeroof g(z) =0,
e ¢(z) has two continuous derivatives near x* .
¢ ¢(@")#0,

o 1 is sufficiently close to x* .

then Newton’s method for solving g(z) = 0, i.e.,

k) g(x(k))

(k+1) B
! g'(x®)

converges to x™* .
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PROOF :

In Newton’s method

Therefore, certainly | f'(z*) |< 1.

116




EXAMPLE :

The fixed points of the logistic equation ,
LD e (R) (1-— CC(k)) 7

satisty

We see that the fixed points are given by

= 0, and =1 - —.

EXERCISE : ejys Determine, for all values of ¢, (0 < ¢ <4) , whether
these fixed points are attracting (| f'(z*) |< 1) , or repelling (| f'(x*) |> 1) .
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or66) SOLUTION : Here f(z) = ca (1 —ux),sothat f'(z) = c(1—2x).
The fixed points satisfy
r =cx(l—ux).

which we can rewrite as
r|l —c(l—x) = 0.

One fixed point is z* = 0 , with derivative f'(0) = ¢. Thus this fixed point
is attracting when 0 < ¢ < 1, and repelling when 1 < ¢ < 4.

The other fixed point satisfies 1 — ¢(1 — z)] = 0, from which z* =1 -1,
with derivative

Fl-D) = di-20-1y) = 2.

C C
We see that 1

| f'(1—=)|<1 when 1< c¢<3 (attracting) ,
c

and

1
| ff(1—=)|>1 when 0<c<1 and 3<c<4 (repelling) .
c
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The logistic equation : ¢ = 0.9 .
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T e e e
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The logistic equation : ¢ = 1.7.
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10 ! ! ! ! ! ! ! ! !
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The logistic equation : ¢ = 3.46 .
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0.7F

0.6
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The logistic equation :
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C =

3.001 .
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The logistic equation : ¢ = 3.6 .
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The logistic equation :
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C =

3.77 .
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The logistic equation : ¢ = 3.89 .
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1.0

D05

0.9f

0.8

0.7F |

0.6 f

0.3 ;

02|

0.1} A

0.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

The logistic equation : ¢ = 3.99 .
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If a fixed point iteration
e = 2

converges to a fixed point z* of f(x), then how fast does it converge ?

To answer this we let
e, = |a™ —a*] .

Thus e, 1s the error after the kth iteration.

We can now show the following :
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THEOREM :

Let f'(z) be continuous near x* with | f'(z*) |< 1.

Assume that () is sufficiently close to z*, so that the fixed point iteration

oD f(:v(k))
converges to z*.

Th : .
o lim L — | (") | (linear convergence) .
k— 00 (3

(The value of | f(z*) | is then called the rate of convergence.)

If in addition f’(z*) = 0 and if f”(x) is continuous near z* then

€Li1 1

lim —— = - | f(z") | (quadratic convergence) .
k— o0 €1 2
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PROOF :
Case : f'(z*) # 0O

_ [ k)

€Cki+1 — — X

"

= [ f(=") = "]
= [ f@) + (@ =a7) f(g) — 2"
= [2® =27 | f'(n)|

= €k |f,(77k:)‘ ;

where 7, is some point between z*¥) and z*.

Hence e
. 1 . %
im ——= = lim | f'(p) | = | f(a%)] -

k—oco €f k— 00
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Case: f'(z*) = 0

(k+1)

e = 2D =2t = | f@®) -7
= 1F@) @ ) ) g @) ) - o

1
= 562 | () |-

where 7, is some point between z*) and z*,

Thus
. €k .1 " 1 (%
fim “5 = Jim S S| = 1@ Q
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COROLLARY :

It

e ¢(z) has three continuous derivatives near a zero x* of g(x) =0 ,

e g'(x*)#0,

o 1 is sufficiently close to z* |

then Newton’s method for solving g(x) =0 converges quadratically .

PROOF : In Newton’s method




EXAMPLE :

Newton’s method for computing v/2 , i.e., for computing a zero of

g(CC) — 'CC2 — 2 )
is given by
(k1) ON (x™)? 2
2.(F) ’
that is, ()2
(k+1) (') + 2
22(k) ’
that is,
et = 2
where ‘o 2249
T p—
2T
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e D = f(2®) | where f(z) =

We observe that :
e The fixed points of f are z* = +4v/2 and 2* = —v/2 .

e f'(z*) = 0. (Hence quadratic convergence).
e f(r) > ocasxz|0,and f(r) > —occasx T 0. (Vertical asymptotes.)

e f(zr) & x/2as|x|— 0.

(Check !)
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080 075 100 125 150 L75 2.00 295 950
€T

Newton’s Method for v/2 as a fixed point iteration
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€T

Newton’s Method for /2 as a fixed point iteration (blow-up)
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°S 6 -4 -2 0 > 4 6 3

Newton’s Method for ++/2 as a fixed point iteration
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From the last graph we see that :

e The iteration converges to z* = ++/2 for any 2z > 0.

e The iteration converges to z* = —v/2 for any z(¥ < 0.

(Check !)
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EXAMPLE :

Consider the fixed point iteration

gF D = 2Ry g (B

for computing a zero of g(z) = 0.

Indeed, a fixed point x* satisfies

o=t — g,

that is,
g(z®) = 0. (Assuming v # 0 .)
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In this example

A fixed point z* is attracting if

1. €.,

1. €.,

1.€.,

1.€.,

if

if

if

if

S <1
1) <1
-1 <1 —~4@") <1,
-2 < —q4(@) <0,
0 < vd(x") < 2.
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The convergence is quadratic it

th&t iS, lf 1

Now z* is unknown beforehand and therefore # is also unknown.

However, after the kth iteration an approximation to 7 is given by

1
T ga®)

This leads to the iteration

= 2 — gy g(a®)

where 7, = 1/¢' (™)) |

i.e., we have rediscovered Newton’s method !
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EXERCISES :

°ps77 1 the following fixed point iteration converges, then what number will
it converge to? Is the convergence quadratic?

203 + 3

o+ f(%.(k))7 where f(z) = T

o063 Analytically determine all fixed points of
2P = 2™ =22 41 k=0,1,2,--- .

Are the fixed points attracting or repelling? If attracting, then is the
convergence linear or quadratic? Also draw a graphical interpretation.

°ps9) Analytically determine all fixed points of k) = 220 (1 — 2(F)) - Are
these attracting or repelling? If attracting then is the convergence
linear or quadratic? Also give a graphical interpretation.
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® (067 pHD = f@®), with  f(z) = 252

32
SOLUTION : This is Newton’s method for the cube root of 3.

The convergence is quadratic for sufficiently close initial guess.

‘[068] CC(k+1) — f(.flf(k)) , Wlth f(CC) — 2562 — 256 —|_ 1 .
SOLUTION : The fixed points are z = % and x =1 .
Here f'(x) = 4o —2, with f'(1) = 2 (repelling),

and f'(3) = 0, (attracting, with quadratic convergence).

® 069 pF) = f(2®) | with f(z) = 22(1 —2) .
SOLUTION : The fixed points are + = 0 and « = % :
Here f'(z) = 2—4x, with f'(0) = 2 (repelling),

and f'(3) = 0, (attracting, with quadratic convergence).



EXERCISES :

®070]

®071]

Give a graphical interpretation of the fixed point iteration.
p ) = gin(2®)

What are the fixed points? Does the derivative test give conclusive
evidence whether the fixed point x = 0 is attracting or repelling” Based
on the graphical interpretation, can one conclude whether z = 0 is
attracting or repelling?

Consider the fixed point iteration z**Y = f(2*)) | where
[ 2x, when z < % :
fla) = 1
2(1—2), when x> 3.

Give an accurate graphical interpretation in the interval [0, 1], with
(9 22 0.1, showing enough iterations to illustrate the behavior of this
fixed point iteration. Analytically determine all fixed points, and for
each fixed point determine whether it is attracting or repelling.

141



op79p SOLUTION : Here f(z) = sin(z), and f'(z) = cos(x) .

There is only one fixed point, namely, = =0 .

f'(0) = 1, so the derivative test is inconclusive.

Graphical interpretation shows that x = 0 is attracting, but very slowly.

Here are some of the very long-time iterations, starting with z(® = 7/4 :
1000 0.05455137
2000 0.03864754
3000 0.03157667
4000 0.02735556
5000 0.02447269
6000 0.02234359
7000 0.02068827
8000 0.01935361
9000 0.01824787

10000 0.01731231



N —

(2%, when x <

®071] flx) = 1

2(1—x), when x>

N

\

SOLUTION :

The fixed points are z = 0 and « = 2. Both are repelling since | f'(z) |= 2.
10—
Y AN 7
s — |
Sy i
o A Za( N
Sl RN 1
IRa=—=2 (I
o A7 N «
o 7N |
g\

YT 07 03 03 0;65 5 07 08 09 10
The first 15 iterations, with z(® = 0.0211 .



EXERCISES :

®072]

®073]

Show how to use the Chord method to compute the cube root of 5.
Carry out the first two iterations of the Chord method, using () = 2 .
Analytically determine all fixed points of this Chord iteration.

For each fixed point, determine whether it is attracting or repelling.

Draw the graph of ¢(z) = z° — 2, clearly showing its zero.

Write down Newton’s method for finding a zero of ¢ , and simplify the
expression for the Newton iteration as much as possible.

Will Newton’s method converge if the initial guess is sufficiently close?
If yes, then what is the rate of convergence?
Will Newton’s method converge for any positive initial guess 7

Will Newton’s method converge for negative initial guesses 7
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o3y SOLUTION : Newton’s method for the cube root of 2 :

32 2(x3 +1
e D = f(z®) | where f(z) = x—xSxQ = (:ng—; )

Analytically we find that f(x) :

- has a vertical asymptote at = =0

2

- approaches the line y = 3z when |z |— o0

- has (of course!) a fixed point at z* = v/2
- | f/(z*) |= 0, so convergence is quadratic (once z(¥) is close to z*)

Graphically we see that :

- the iteration converges for any z(® > 0

- the iteration converges for “most” negative (°), except for a countably
infinite such 29, namely those for which z*) =0 for some k.



SOLUTION : continued ---

6

st

S5 T 0 1T 2 3 4 5 ¢

Newton’s method for the cube root of 2, with a converging iteration (red)
having z(® = 0.35 , and the iteration (black) with z*) =0 for some k.



EXERCISES :

®(074]

®075]

Suppose you enter any number on a calculator and then keep pushing
the cosine button. (Assume the calculator is in “radian-mode”.)

What will happen in the limit to the result shown in the display?
Give a full mathematical explanation and a graphical interpretation.

Do the same for sin(x) and tan(z).

Consider the fixed point iteration
kD (k) (1-— x(k>) .

Does the derivative test give conclusive evidence whether or not the
fixed point z = 0 is attracting?

Give a careful graphical interpretation of this fixed point iteration.

What can you say about the convergence of the fixed point iteration?
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eorqy SOLUTION : z) = cos(z®), k=0,1,2, ---
Here f(x) = cos(x) and f'(zr) = —sin(x) .

There is only a single fixed point, namely, £* =~ 0.739085133 .
The fixed point is attracting, with | f'(«*) | ~ 0.673612029 .

*

A careful graphical interpretation shows there is convergence to x

for any initial guess ¥ .

o955 SOLUTION : D = 20 (1 —2®) = k£ =0,1,2, -
Here f(z) = (1 —2) and f'(x) = 1 — 2x.

There is only a single fixed point, namely, z* = 0 .

Here f/(0) = 1, so the derivative test is inconclusive.

Graphical interpretation shows x = 0 is attracting, but very slowly.



EXERCISES :

®076]

®077]

Consider the fixed point iteration

1
gkl — k=0,1,2,--- .

NN

Give a careful graphical interpretation of this fixed point iteration.

Determine all fixed points and whether they are attracting or repelling.

Does the iteration converge for all positive initial points z(®) ?

Consider the fixed point iteration

1+ 22
1+2x

cF D = f(2®) | where f(z) =

Determine all fixed points and whether they are attracting or repelling.
If attracting determine whether the convergence is linear or quadratic.

Give a graphical interpretation of the first few iterations, with (9 = 2.
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D) — k=0, 1,2
‘[076] L m ) )y Ly &
SOLUTION :
Here
1 , I _s
flx) = 272, and f(l'):—§l’2

There is one fixed point, namely z =1 .

Furthermore, | f/(1)| = 5, so =1 is attracting.

1
2
A careful graphical interpretation shows there is convergence to x =1

for all positive initial guesses (%) .



1+ 22
l+2

®077] 2 = f(l'(k))a where f(z) =
SOLUTION : Analytically we find that f(x) :

has a vertical asymptote at © = —1

approaches the line y =  when | x |— oo

has a fixed point at 2* =1

- | fl(z*)| = 5 < 1, soa*is attracting

graphically we see the iteration converges for any z(® > —1

graphically we also see the iteration diverges for any z(® < —1

the divergence for 290 < —1 is slow as *) becomes more negative



SOLUTION :
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Convergence Analysis for Systems.

Again most iterative methods for solving

can be written as

(k1) F(X(k)), k=,1,2---,

where the function F should be chosen such that

x* is a root of G(x) =0 if and only if x*is a fixed point of F.
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EXAMPLE :

Newton’s method for systems is

G/(X(k)) (X(k+1> _ X(k>) - G(X(k)) .

Thus

assuming G’(x)~! to exist near x = x*.

So here
Fix) = x—-G'(x)! G(x) .
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NOTE : Fixed point iterations also arise as models of physical processes,

where they are called difference equations or discrete dynamical systems .

EXAMPLE :

The equations

ccgkﬂ) = )\ :Izgk)(l — ccgk)) — ccgk) ccgk) :
azgkﬂ) = azgk) + :L‘%k) :L‘ék) :

Y

model a “predator-prey” system, where, for example,

:ng) denotes the biomass of “fish” in year £ ,

and

ccék) denotes the biomass of “sharks” in year £ |

and where A\, c¢; , and ¢y are constants.
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Derivatives :

For scalar functions

]
g

()

or, equivalently, f’(x) is the number such that

fle+h)— flz) = f'(x)h
h

> 0 as h — 0.

If f'(x) exists then f is said to be differentiable at x .
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Similarly for vector valued functions F(x) we say that F is differentiable at
x if there exists a matriz F/(x) such that

| F(x+h) —F(x) - F(x)h |
I'h ]

>0 as ||[h| — 0.

The matrix F/(x) is the Jacobian matriz introduced earlier :

If F(x) has component functions
(fl(X) ) f2(X) y T T fn(X))T 3

and if

then




THEOREM :
Let F/(x) be continuous near a fixed point x* of F(x) and

IFx) <1,

in some induced matrix norm.

Then the fixed point iteration

(k1) F(X(k)) 7 k=0,1,2,-

converges to x* whenever the initial guess x(9 is sufficiently close to x*.
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NOTE :

It can be shown that sufficient condition for
[F'(x) [ <1,
1 some matrix norm, 1s that

spr(F'(x*)) < 1.

Here

spr(F/(x*)) is the spectral radius of F'(x*) ,

that is, the size of the largest eigenvalue of F'(x*) .

NOTE : Eigenvalues may be complex numbers.
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PROOF (of the Theorem) :

(Similar to the proof of the scalar case.)

Let « = || F/(x*)||. Then a < 1.

By definition of F’ . given any € > 0, in particular

1l —«
2 Y,

€ =
there exists a 0 > 0 such that
IF(x) -Fx") -Fx) x-x") | <ellx=x"|,
whenever x € Bs(x*).

Here

Bs(x*)={x : |[|[x—x"| < ¢}.
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Let x(© € Bs(x*). Then

[ — x|

— | Fx") ~ F(x') ~ F

IA

| F(x'") - F(x") -

| F(x") - F(x") |

IN
Mm
x/'\~

=
|
x*

_|_
Q
x/'\~

=
|
P4

N
e
+
=
x/‘\
=
|
x*

where 3

Thus x) € Bs(x*) .

153



Since xM) € Bs(x*) , we also have

[x® —x"] < Bx—x"|

Thus, since 8 < 1, we have x(?) € Bs(x*) .

Continuing in this fashion, we find

I x(F) _ x* | < Bk(S.

S

Thus, since 8 < 1, we see that x(®¥) converges to x* .
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EXAMPLE : In Newton’s method
F(x) = x — (G'(x)7) G(x) .

Hence
G'(x)F(x) = G'(x)x — G(x) .

= G'(x)F(x) + G X)F (x) = G'(x)x + G'(x) — G'(x) = G"(x)x
= G'(¥F(x) = G"(x)(x - F(x)) = G"(x)(G'(x)) " G(x)

= F(x) = (G'(x)'G"(x)(G'(x)" G(x)

= F(x") = (G'(x) G (x") (G (x*) 'G(x") = O (zero matriz) |

because G(x*) = 0.

So || F/(x*) ||[= 0, and therefore certainly || F'(x*) [[< 1.
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Thus if
e G’(x) is continuous near x* ,
o (G'(x*))" exists ,
o x\ is sufficiently close to x* |

then Newton’s method converges.

Again this convergence can be shown to be quadratic , 1.e.,

H X(k+1) _x* H
<

lim

] T T C, for some constant C.
—00 X — X
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EXERCISE :

oo7g) Consider the fixed point iteration

ccgkﬂ) = )\ ccgk)(l — ccgk)) — 0.2 xgk) x;k) ,
a:ékﬂ) = 0.9 a;ék) + 0.2 a;'(lk) a;ék) .

This is a “predator-prey” model, where, for example, az'gk) denotes the

biomass of “fish” and SL‘ék) denotes the biomass of “sharks” in year k£ .

for

Numerically determine the long-time behavior of ccgk) and ccgk)

the following values of A :
A = 0.5, 1.0, 1,5, 2.0, 2.5,

taking, for example, x§0> = 0.1 and azéo) = 0.1.

What can you say analytically about the fixed points of this system?
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‘[078] SOLUTION .

Here is a "quick” Fortran code for doing the iteration. Note the use of the
"Intermediate variables” t1 and t2 so that the iteration is done correctly:
rl = 2.5

x1l =
X2 =

o O
=

5000
500

nit
npr

PRINT*, " lambda = ",rl
PRINT*, " k x1 x2"

DO k = 1,nit

tl = rl*x1*(1-x1) - 0.2*x1%*x2

t2 = 0.9%x2 + 0.2*%xx1%*x2

x1l = t1

x2 = t2

IF (MOD(k,npr).EQ.0) PRINT*, k, x1, x2
ENDDO
STOP

END



SOLUTION : (continued --- )

For each of the given values of A\ the iteration converges to finite values,
which are shown in the Table below. For the cases A = 1.0 and A = 2.0
the convergence is extremely slow, and a very large number of iterations is
needed to converge to the fixed points shown in the Table.

A 1 Io

0.5 || 0.000000 | 0.000000
1.0 || 0.000000 | 0.000000
1.5 | 0.333333 | 0.000000
2.0 || 0.500000 | 0.000000
2.5 || 0.500000 | 1.250000

Analytically it can be seen that the fixed points in the Table are indeed
attracting (”"stable”), although the fixed points for A = 1.0 and for A = 2.0
are “critically stable”. Indeed, the eigenvalues of the Jacobian matrix for
this problem are strictly less than 1 for A = 0.5, 1.5, 2.5, while for A = 1.0
and A = 2.0 there is an eigenvalue of magnitude 1. It must be mentioned
that there are also repelling fixed points, but we leave out details on these
here.



SOLUTION : (continued --- )

0.6

157 R
0.4}
S 0.3}
0.2}
0.1}

0.0

045 0.5 1.0 5 2.0 2.5 3.0
A

The value of x; along families of fixed points of the predator-prey system.
Solid /dashed curves represent attracting/repelling fixed points, respectively.

Black : 2y =29=0. Red: 21 #0, 29 =0. Blue: x; =0.5, 29 # 0.



SOLUTION : (continued --- )

2.5

201

1.oF

)

1.0}

0.5

0.0 —_ 4 ¢

0.0 05 1.0 1.5 2.0 25 3.0

The value of x5 along families of fixed points of the predator-prey system.

Solid /dashed curves represent attracting/repelling fixed points, respectively.
Black : 2y =29=0. Red: 21 #0, 29 =0. Blue: x; =0.5, 29 # 0.



THE APPROXIMATION OF FUNCTIONS.

Function Norms.

To measure how well a given function f € Cla, b] is approximated by another
function we need a quantity called function norm.

Examples of these are :

b

Il = | flx) | dx

b 1
Il = {] fl2) da}?
I flle = max]| f(z)] .

[a,0]

Note the similarity of these norms to the corresponding vector norms.
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A function norm must satisfy :

@ Nfl =0, vieClbl, [f] =0iff f =20,

(@) Neafll = Tal IfII, VaeR, VfeClab],

(@i) N f+gll < A0+ lgll YfgeClab.
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All of the norms above satisfy these requirements. (Check !)

EXAMPLE :

If+glh

/ | f(2) + 9) | da

I

/|f(:v)| L lg@) | de

/ab|f(:v)| Az + /:|g<x>| dx

= I flh + lgllh -

(For the || - ||o we shall verify (iz7) later.)
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NOTE : If a function is “small” in a given function norm then it need not
be small in another norm.

EXAMPLE : Consider fi(z), k=2,3,---, as shown below :

y

T

fi(x)

0 /1/2\ 1 %

12- 1k 2 12+ 1/k 2
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Then

| fxlle = k — 0 as k— o0,
while
1 1
[l = [ 1@ de = 3 >0 as koo,
0
and

[fill: = { f@? de}t = V23 (Check )
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EXAMPLE :

Approximate

by

on the interval |0, 1].

Then

that is, p(x) interpolates f(x) at these points.
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0.0 0.2 0.4 0.6 0.8 1.0
€T

Graph of f(z) = 2® (blue) and its interpolant p(z) = 22 — Lz (red) .
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A measure of “how close” f and p are is then given by, for example,

1 F=pls {/ 2 da}s

We find that

210
_ — 177 2~ ().0345. Check !
| f—pl- 150 0.0345 (Check !)
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The Lagrange Interpolation Polynomial.

Let f be a function defined on |a,b)] .

Let P, denote all polynomials of degree less than or equal to n .

Given points {xj}}_, with

a < 29 < 11 < "'<len§b,

we want to find p € P,, such that

p(xr) = flag) Ek=0,1,---.n.
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I

080701 02 03 02 05 06 07 08 09 1.0
€T

Graph of f(z) = 5 + t2 + 2®sin(2nz) (blue)
and its Lagrange interpolant p(z) € P (red)

at six interpolation points (n =5) .
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The following questions arise :

() Is p(x) uniquely defined 7

(22) How well does p approximate f 7

(72¢) Does the approximation get better as n — oo ?
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To answer the above questions let

be the Lagrange interpolating coefficients, or Lagrange basis functions.

Then each ¢; € P, . (Check !
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EXAMPLE : If n =2 we have

(x — x1)(x — x9)
fole) = (2o — 1) (w0 — T2)
(= x0)(T — 72)
li(z) = (21 — 20) (21 — 22) :
and
lo(z) = (x — xo)(x — 271)

NOTE: /;,ePy,, 1=0,1,2, and
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1\/ 1/\
X, X X, Xo X1 X

go(l’) _ (x—x1)(x—22) 61(1’) _ (x—x0)(x—x2)

(xo—x1)(T0—T2)

Lagrange basis functions (case n
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Now given f(x) let

p(z) = fzr) Ce()
Then
p € Py,
and )
p(z;) = floy) bp(2s) = fla)

that is, p(x) interpolates f(x) at the points xg,z1,---, T, .
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THEOREM : Let f(x) be defined on [a,b] and let

a < 29 < 173 < 0 <z < 0.

Then there is a unique polynomial p € P, that interpolates f at the {zx},_,.

PROOF :

We have already demonstrated the existence of p(x) .
Suppose g € P, also interpolates f at the points {zr},_, .
Let r(z) = p(z) —qlz) .

Then r € P, and r(xx) =0, k=0,1,---.n.

But r € P, can have at most n zeroes, unless r(z) = 0.
Hence r(z) = 0.

Thus p(z) = q(x), i.e., p is unique. QED !
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EXAMPLE : Let f(z) = e

Given f(0) =1, f(1) = 2.71828, f(2)
f(1.5) by polynomial interpolation at x

1.2
Here
 (15-1)(15-2) 1
W ooy T
 (15-0)(15-2) 6
G1s) = (1-0)(1-2 8’
 (15-0)(15-1) 3
t(15) = 2-0)(2—-1) 8’
so that

p(1.5) = f(0) 6o(L5) + F(1) Li(L5) + f(2) £o(1.5)

= (1)(——%) + Cl71828)(g) + C?38905)(§) = 4.68460 .

The exact value is f(1.5) = e*® = 4.48168 .
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Y9500 05 1.0 15 2.0 25

X

Graph of f(x) = e¢* (blue) and its Lagrange interpolant p(x) € Py (red).
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THE LAGRANGE INTERPOLATION THEOREM :
Let
o < 11 < o < T, and let r€eR.

Define
a = min{zg,x} and b = max{wr,,r} .

Assume that [ € C""[a, b].

Let p € P, be the unique polynomial that interpolates f(z) at {xp},_,-

Then .
_ g

(CE T xk) )
k=0

for some point £ = £(x) € [a,b].
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PROOF :

It z = x;, for some k then the formula is clearly valid.

So assume that = # x, , for k=0,1,---.n .
Let ;
w(z) = H(z — T) and c(z) = f(sz(_xf(x) .
k=0
Then ¢(x) is well defined since w(x) # 0 .
We want to show that
clr) = ]Z:J:)l()ﬁ') . (Why 7)
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Let

and

Thus F(z) has (at least) n+ 2 distinct zeroes in |a,b| .
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The zeroes of F(x) and of its derivatives.
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Hence, by Rolle’s Theorem, F'(z) has n + 1 distinct zeroes in |a, b] ,
F"(z) has n distinct zeroes in [a, b] ,

F"(z) has n — 1 distinct zeroes in |a,b] , etc.

We find that F("+1(2) has (at least) one zero in [a, b] , say,

FOH(e) = 0,  £€lab] .

But
FOD() = f00G) — pr(e) — w0 () )

Hence
FDg) = fOHE) — (n+ 1) e(z) = 0.

It follows that




EXAMPLE : In the last example we had
n=2, f(x)=¢€", 1o=0, x1=1 29=2,

and we computed the value of p(z) at © = 1.5.

By the Theorem

9
3!

fz) — p(z) (z=0)(z—-1)(z—-2), £€[0,2].

Since f®)(¢) < €% < 7.4 we find that

P — p(15) | < % (15) (0.5) (0.5) = 71—§ < 047

The actual error is | p(1.5) —e'® | = |4.68460 — 4.48168 | = 0.2.
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—0.2F |
005 | o foi
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i X

The graph of wy,41(x) = [[i_o(z — zx) for equally spaced interpolation
points in the interval [—1,1], for the cases n+1 = 3,6, 7, 10 .
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max max n max n max
1.00000 0.06918 || 9 | 0.01256 || 13 | 0.00278
0.38490 0.04382 || 10 | 0.00853 || 14 | 0.00193
0.19749 0.02845 || 11 | 0.00584 || 15 | 0.00134
0.11348 0.01877 || 12 | 0.00400 || 16 | 0.00095

The maximum value of | w,.1(z) | in the interval [—1,1]
for the case of n + 1 equally spaced interpolation points .
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EXERCISES :

°p79) Consider the polynomial p,(x) of degree n or less that interpolates
f(x) = sin(x) at n + 1 distinct points in [—1,1]. Write down the
general error formula for | sin(z) — p,(x) |. For distinct, but otherwise
arbitrary interpolation points, how big should n be to guarantee that
the maximum interpolation error in [—1, 1] is less than 1072 ?

op30) Also answer the above question for equally spaced interpolation points
in [—1, 1], using the Table on the preceding page .

®[0s1,0827 Also answer the above questions for the case of f(z) =e” in [—1,1].

o033y Consider the problem of interpolating a smooth function f(z) at two
points, xg = —h/2 and x; = h/2, by a polynomial p € P3 such that

p(zo) = f(wo), p/(xo) — f’(fﬁo)a p(z1) = f(21), p/(xl) = f’(éﬁ)-

Prove that this interpolation problem has one and only one solution.
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°79 Consider the polynomial p,(z) of degree n or less that interpolates
sin(x) at n+ 1 distinct points in [—1, 1]. For distinct, but arbitrary interpola-
tion points, how big should n be to guarantee that the maximum interpolation
error in [—1,1] is less than 1072 7

SOLUTION :
. B < (n41) . Max | Wnia (2) |
wgftffl]lsm(r) pu(z) [ < xg[lfbffl]’f (x) | CES
2n+1
< CESN >~ 6.35107° whenn=7.
n :

°(p30) Also answer the above question for equally spaced interpolation points
in |[—1, 1], using the Table on the preceding page .

SOLUTION :
. _ (nt 1) - max | w1 () |
nax, | sin(x) —pu(2) | < nax | () | CESN
. 0.19749
o max |wn(@) | _ ~ 8931073 whenn =3 .

- (n+1)! 4!



ops1) Consider the polynomial p,(x) of degree n or less that interpolates e”
at n + 1 distinct points in |—1,1]. For distinct, but arbitrary interpolation
points, how big should n be to guarantee that the maximum interpolation
error in [—1,1] is less than 1072 7

SOLUTION :

max | wn1(7) |

T < (n+1) .
nax, e —pu(z) | < max | () | CES
2n+1
< e - ~ 3836 107° whenn =238 .
(n+1)!

°p32] Also answer the above question for equally spaced interpolation points
in |[—1, 1], using the Table on the preceding page .

SOLUTION :

- max | (o) |

x < (n+1)
xg[l_a;fl]le pa(z) | < xé??ffl]’f (%) | CESN

. 0.11348
co . max|wnn(@) | _ ~ 95706 10~° when n = 4 .

- (n +1)! (n+1)!




o33y Consider the problem of interpolating a smooth function f(x) at two
points, xg = —h/2 and xy = h/2, by a polynomial p € P35 such that

p(zo) = f(w0), D'(x0) = f(z0), p(w1) = f(21), P(21) = f'(21).
Prove that this interpolation problem has one and only one solution.

SOLUTION : Write p(z) = ¢y + cix + cx® + c3z® . Then

p(—g) = ¢ — Clg + 02(2)2—03(2)3 = f(—g),
p(g) = ¢ + Clg + Cz(g)2+03(g)3 = f(g),

P2 = a - 2e + 3P = f(-2),
P(E) = o + 200 + 35 ;= F().



SOLUTION : continued - - - :

. 1 —_h R _R

In matrix form ( . 8 \ o fo
1 kAR

2 4 8 ca | _ |~

0 1 —h 3 Co 1o

\o 1 n @) \a fi

where the matrix can be transformed to upper-triangular form as follows :

h h? h3 h h?

(L =3 & —%) (1 —2 71

T O 0 h 0
2 4 82 N

0 1 -—h 3 0 1 —h

\o 1 ) \o 1 &

h h? h3 2

(1 -5 & %) I

0 h 0 L 0 h O
— | =

00 —-h 7 0 0 —h

\o 0 n ) 0 0 0

The determinant of the upper-triangular matrix is —h? |
Thus the system in uniquely solvable.

h3
_§\
h3
4
3h?

which i1s not zero.



Chebyshev Polynomials.

From the preceding Theorem it follows that

1 mn
1=l < gy 177 o e o
where n
wn+1(x) - H(:L’—Q?k),
k=0
and where
[t e = max | i) |
NOTE :

e It does not follow that || f —pllee — 0 as n — .
e There are examples where || f — p ||coc— 00 as n — 0.

o For given n, we can choose the points {zg},_, 80 || Wyt oo Is minimized .
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EXAMPLE :

Let n = 1 and place the xg and x; symmetrically in |—1,1] :

@
— Xo 0) X1 1

_N/m

wy(r) = (x—x0) (x—71) = (x+1n) (v —n) = 1’2—772-

We want to choose 1 such that
[z e = max | ws(a)|
is minimized .
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At the critical point :  wy(0) = —n*.

At the endpoints :  wy(—1) = wy(l) = 1—1n*.

We see that || wy || is minimized if we take n such that

| wo(—=1) | = [w2(0) | = [wa(l)] , i.e., if
1 1
Thus n = 5\/5 and | we ||oe = 5 -
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In general, the points
{x},_, that minimize | wp11 || on [—1,1]

are the zeroes of the Chebyshev Polynomial 1,1 of degree n + 1.

These polynomials are defined as
Tw(z) = cos( kcos™'(z) ), k=0,1,2,---, re|—1,1],

where cos™!(z) is used to denote arccos(x).

The T}, are indeed polynomials :
First To(x) = 1 and Ti(z) =z .

Also
Tei1(x) = 20 Ti(z) — Tp_1(x) .
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Tk+1(:1:) = 2z Tk<ilf) — Tk_1<ilf)

To derive this recurrence formula we use the identity
cos( (k+1)0 )+ cos( (k—1)0) = 2cos(kf) cos(f) .
which we rewrite as
cos( (k+1)0) = 2cos(kf) cos(f) — cos( (k—1)0).
so that, taking 6 = cos™!(z), we have
Tii1(z) = cos( (k+1)cos (x))
= 2cos( kcos *(x) ) cos(cos *(x)) — cos( (k—1)cos '(z))

= 20 Ti(z) — Tp1(x) .
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Thus, with To(x) = 1 and Ti(x) = x , we obtain

To(z) = 2xTi(z) — To(x) = 22* — 1,

T3(x) = 2xTy(x) — Ti(z) 47° — 3z,

Ty(x) = 2xTy(x) — To(x) = 8z — 8 + 1,

Thii(z) = 2" 2" +
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THE CHEBYSHEV THEOREM :

Let .
Wni1(x) = H(:U — Xk) -
k=0
Then for ixed n the value of
H Wn+1 Hoo = [Izllaﬁ ‘ wn+1<5’7) ‘

is minimized if the points {zy},_, are the zeroes of T,.(z) .

For these points the value of || w,11 ||c is equal to 27" .
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PROOF :

Thii(z) = cos( (n+1)cos (z)) .

7

Thii(z) = 0 if  (n+1)cos (z) = (2k+1)2

Hence the zeroes of T,,1(x) lie indeed in [—1,1] .

There are n + 1 such zeroes.
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711/10 o11/10

The Chebyshev points xp , (k=0,1,2,---,n), for the case n =4 .
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Thii(z) = cos( (n+1)cos (z)) .

Tpir(z) = +£1 if

that is, if,

We can now draw the graph of T, :
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cases n=2,3,4,95 .



Recall that from the recurrence relation

To(z) =1, Ti(x)=x, Tp(r) = 2z Tp(x) — Tp_1(x)

we have

Thus we can also write
Toa(z) = 2" (x — o) (x — 1) - (v — ),

where the x; are the zeroes of T, .1(x) .

Let

Then

H wn+1* Hoo — H 27" n+1 Hoo = 27 H Tn—H Hoo = 27"
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0
X5 X3 X4 1
2"
The graph of w} ., = [[i_,(z —xx) for the case n =4 .

Claim :
There does not exist w € P,,1 , with leading coefficient 1, such that

|w |l < 277
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Suppose there does exist a w, 1 € P,,.1, with leading coefficient 1, such that

lwngr e < llwni™ o = 277




Then w,;; must intersect w,,1* at least n+ 1 timesin |—1,1].

Thus (wpi1 —wyeq™) has n+1 zeroesin [—1,1].

But
(wn—l—l _ wn—l—l*) S Pn

since both w,,; and w,1* have leading coeflicient 1 .

Hence w,i1 —w,i1™ = 0.

Thus Wpt1 = ’U}n_|_1* . QED!
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n | uniform | Chebyshev || n | uniform | Chebyshev

1 | 1.00000 0.50000 5 | 0.06918 0.03125

2 | 0.38490 0.25000 6 | 0.04382 0.01563

3 | 0.19749 0.12500 7 1 0.02845 0.00782

41 0.11348 0.06250 8 | 0.01877 0.00391

The maximum of | w,1(x) | in the interval [—1,1]
for uniformly spaced points and for Chebyshev points .
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EXAMPLE :
Let f(z)=¢e" on |—1,1] and taken =2 .

Ts(xz) = 42° — 3z has zeroes

1 1
ro — —5\/§, 331:0, 562:5\/5

Approximate f(0.5) by polynomial interpolation at zy, x1, x3 :

(0.5 —21)(0.5 —ap)  1- V'3

OO0 = e @) 6
(05 —m)(05—2y) 4

605) = (71— @0) (71 — T2) -6

0,(05) — (05 —20)(0.5—21) _ 1++3 |

(9 — x0) (T2 — 1) 6
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Thus

p(0.5) = f(xo) 1o(0.5) + f(x1) 11(0.5) + f(x2) l2(0.5)
 osve —/3) 0o 4 (0.5v/3) (1++3)
= ¢ + e (=) + e
6 6 6
~ 1.697 .
The exact valueis e’ = 1.648--- .

Thus the exact absolute error is

[ e’ —p(0.5) ] = |1.648—1.697| = 0.049 .
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3.0

2.5}

2.0

= 1.5}

1.0

0.5}

700 =075 —050 —025 0.00 025 050 075 100
X

Graph of f(x) =¢e” (blue) on the interval |—1,1],
and its Lagrange interpolating polynomial p(x) € Py (red)
at three Chebyshev interpolation points (n = 2) .
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EXAMPLE : More generally, if we interpolate

f(x) =¢® by peP, at n+1 Chebyshev points in [—1,1],

then for = € [—-1,1] we have

: LG
& = p@)| = |y @]

where ¢ = &(x) € |—1,1], and where

n

Wy () = H(:U — ) , ( Chebyshev points zy, ),
k=0

Thus

max | e” — p(x) | |77 e | Wnt1 Joo
ze[—1,1] (n+1)!

IA

VAN




NOTE :
Let f be a sufficiently smooth function.
Let py be the polynomial that interpolates f at n+1 uniformly spaced points.

Let pc denote the polynomial that interpolates f at n+ 1 Chebyshev points.

Although the Theorem does not guarantee that

lpe—=Fflle < Moo —=1flle

this inequality is “usually” valid.
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EXERCISES :

®084]

®(085]

®086]

Suppose p € P" interpolates sin(z) at n + 1 distinct points in [—1, 1].
For the case of Chebyshev points, how big should n be for the error to
be less than 10~* everywhere in [—1,1] ?

Suppose that p € P" interpolates e* at n + 1 distinct points in [—1, 1].
For the case of Chebyshev points, how big should n be for the error to
be less than 10~ everywhere in [—1,1] ?

Suppose p € P" interpolates 2! at n + 1 distinct points in [—1, 1].
For the case of Chebyshev points, how big should n be for the maximum
interpolation error in [—1, 1] to be less than 10~* 7
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SOLUTIONS :

2—?7/
' — 1, < (n+1) :
®084] xg[l?ﬁ] | sin(x) — pu(z) | < xé??fﬁ] | f () | (n+1)
2—’[7,
< ~ 43410° whenn=>5.
(n +1)!
®pg5] IMax | e" —pn(r) | < max ’f(nﬂ)(x)‘ ' -
z€[—1,1] — ze[-1,1] (n + 1)!
e - 2—7’1, —6
< =~ 843 107° whenn=26.
(n+1)!
®086] MaX | 2" —pa(z) | < max | f(n+1)(55) | -
ze[—1,1] ~ ze[-1,1] (n+1)!
2—’[7,
< 1)! = 27"
s (n+l) (n +1)!

~ 6,110 whenn=14.



The Taylor Polynomial.

Let f e C"a,b|.

Let P,, denote all polynomials of degree less than or equal to n.

Given the point xy € |a, b] , we want to find p € P, such that

p (o) = fP(20), k=01 n.
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The function e® (blue) and its Taylor polynomials pg(x) about xg =0 :
k=1:purple, k=2:red, k=3 :brown, £=4:green, k=5 : black .
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As for Lagrange interpolation, we have the following questions :

e Is the polynomial p(x) € P, uniquely defined ?

e How well does p approximate f 7

e Does the approximation get better as n — oo 7
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Existence :

Clearly

p®(zo) = fP(zo), k = 0,1,---,n. (Check)

DEFINITION :

p(x) is called the Taylor polynomial of degree n for f(x) about the point x.
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TAYLOR’s THEOREM
Let fe C™"a,b], xz € a,b].

Let p(x) € P, be the Taylor polynomial for f about the point z , i.e.,

k!
k=0
Then, for z € |a,b] ,
FrD(g) .
for some point & = &(x) that lies between zy and =z .
DEFINITION :  Ru(z) = & (4 oyt
| T (n+ 1) ’

is called the Taylor remainder .

211



es7 PROOF of TAYLOR’s THEOREM (EXERCISE !) :

The steps are similar to those in the Lagrange Interpolation Theorem :

e First show that the Theorem holds if x = xy.

e Next assume zx is arbitrary, but x # x(. (Consider x as fixed.)

e Define
f(x) —p(x)

(x — x9) T

c(r) =

e Define F(z) = f(z) — p(z) — c(z) (z —xo)"t .
o Show that F®)(20) =0, k=0,1,---,n, and that F(z)=0.

e Give a qualitative graph of F(z) .
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Show F'(&) =0 for some & between xg and x . Graph F'(z) .

Show F"(&) =0 for some & between xy and & . Graph F"(z) .

etc.

Show that F"*tD(£,) =0 for some &, between xy and &,_; .

From this derive that

A9 _
@ = Ty (=6
Show how Taylor’s Theorem follows from this last step. QED !
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EXERCISES :

opsg) Write down the Taylor polynomials p,(x) of degree n (or less) for
f(x) = e* about the point x¢y = 0, for the cases n =1,2,3,4.

How big should n be so that | e* — p,(z) |< 107* everywhere in
[—1,1] 7

®ps9) Do the same for f(z) =sin(z) in [0,1] about the point 2o =0 .

®jp00] Do the same for f(x) =1In(z) in [$,2] about the point zy=1.
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® 088 SOLUTION

The Taylor polynomials p,(x) of degree n for f(x) = e® about the point
xog=0,tor n=1,2,3,4:

p(x) = 1 + =,

p2(x) :1‘|‘SU—|—%£L‘2,

p) =1+ a ket v b,

palw) =1+ o+ 32° + §a2° + gat.

How big should n be so that |e* —p,(x) |< 10~* everywhere in [—1,1] ?

The error bound is

€

T ~ 6.74177 107° when n = 7.
n !




.[089] SOLUTION :

The Taylor polynomials p,(z) for f(x) = sin(x) about xy = 0 all have
odd degree, since the coefficients of even degree terms are zero :

pi(z) = =,

ps(z) = © — 3 a°,

ps(z) = ¢ — ¢ 2° + 552,

pr(r) = = — %x3+ 310565 = ﬁﬂ,

po(z) = © — ¢ 2% + ma° — o 4 o a? .

(The formulas for ps(z), pr(z), and pg(z) were actually not asked for.)
How big should n be so |sin(z) — p,(z) |[< 10™* for x € [0,1] 7
The error bound for odd values of n is

1 1
E D] = 362880 ~ 2.756 107° when n =7.
n .




R

oof A S NN

otk NN/

opo N

~3 —5 1 0 1 > 3
€T

Graph of the function sin(x) (blue) and its Taylor polynomials pi(x)
about ro =0: k= 1: purple, £ = 3:red, kK =5: brown, k£ =7: black .
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‘[090] SOLUTION .
f(x) =In(x) has derivatives

fM(e) = ()"t =l
for example,

f(z) = 2™ C fP) = -2 fO2) = 2077,

fA(z) = —62x7* |, fOa) = 242> |, fO(z) = —120076, .-

Thus f™(1) = (=1)» ! (n—1)!, and

pule) = £1) + @170 + oy oD ),
R A ;!1) (—1)+ & ;!1) P ;!1)n(—1)n—1 (n—1)
_ (CIZ—l) o (56—1)2 (56—1)3 o 4 (_1)77, 1 (x_l)n




SOLUTION : continued - - - :

For f(x) =In(z) we found that
fW2) = (=Dt (n—1)a ",

so that
f(n+1)($) _ (_1)77, n! ZL’_(TH_D .

For x € [£,2], the Taylor remainder satisfies

o r— 1)t
@) - )| = [ B2

n —(n (:U B 1)n—l—1
- ({07“§(H)(n+n!

- (1)—(n—|-1) (1)n—l—1 1 B 1

- \2 2 n+l  n+1’
using the fact that & = &(x) also liesin [3, 3] .
Thus for | f(z) —pu(z)| < 107* in [4,2], weneed n >10*. (!)



Local Polynomial Interpolation.

Let f € C""a,b] .

Let p € P, interpolate f at n + 1 distinct points {zx},_, in [a,b] .

Does
| f — Plle — 0 as n — oo 7

The answer is often NO !
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EXAMPLE : If

1
f(l’) — 1 + 22 on [_575]7

and if p € P, interpolates f at the n + 1 equally spaced points {z},_, with

10
r, = —5 + k Ax, k=0,1,---,n, Ar = — |
n

then it can be shown that

| f — Pl — as n — 00 .

217



1.00

0.75}F

0.50 F

0.25F

0.00
—0.25}
0N 3 2 o1 0 1 2 3 4 5
x
Graph of f(z) = 175z on the interval [—5, 5]

and its Lagrange interpolant p(x) € Py (red)

at ten equally spaced interpolation points (n =9) .
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’5 -4 -3 -2 -1 0 1 2 3 4 5
T

—1.5

Graph of f(z) = 175z on the interval [—5, 5]
and its Lagrange interpolant p(x) € Py3 (red)

at fourteen equally spaced interpolation points (n = 13) .
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Conclusion :

e Interpolating a function by a high degree polynomial is not a good idea !

Alternative :

e Interpolate the function locally by polynomials of relatively low degree .
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For given integer NN let

b—a
h =
N Y
and partition |a,b] into
a =t < 1 < - <ty = b,
where
t: =a+ jh, j =01, N.

In each subinterval |[t;_1,t,] :

interpolate f by a local polynomial p; € P, at n+1 distinct points {x;,;}", .
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1.0

0.9
0.8
0.7
0.6
] e | R
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o I

ot AN

NI U= T I

V51 3 5 -1 0 1 2 3 4 5
X
Local polynomial interpolation of f(x) = 5 +1x2 at 3 points in 5 intervals.
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1Of ---------------------- .................... N ...................... ..........
osf ...................... ...................................... __________
06 ...................... ........................................ __________
0Af ---------------------- ........ { I \ .. __________

] S - /2 I T . A T

(N0 = R cx P o s R PR s P PR s R 3 RS 0 SRR 1) S x LR i SRS R 12 LR 1 S x RS S (1 ERRI X LRRE

—4 —2

0
X
)

Local polynomial interpolation of f(x
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e
e +

omf A N
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X

Local polynomial interpolation of f(x) = —

1422

at 2 Chebyshev points.
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Local polynomial interpolation of f(x) =

....................................................

—

....................................................

3 9 1
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1
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at 3 Chebyshev points.



By the Lagrange Interpolation Theorem

1
max Tr) — ;T < max (n+1) T max | w, .
[tj—1,t5] | f( ) pj( ) | B (n + 1)' [tj—1,t5] ‘ f ( ) ‘ [ti—1,t5] ‘ +1( ) ‘
where n -
’wn—i—l(ﬂf) = H(QC — Zlfj’i) , h = tj — tj—l — N

1=0

The Tables on Page 183, 200 show values of C),, = max_1 1] | wy41(2) |
for uniform and for Chebyshev interpolation points.

A scaling argument shows that for uniformly spaced local interpolation points

h
max | wnii(z) | < (5)" G,
[ti—1,t5] 2

while for local Chebyshev points we have

h
max | wyii(z) | < (5)" 27"
t5-1.45] 2
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NOTE :

o Keeping n fized , p; converges to fash—0, (i.e,as N — 00) .

e To get more accuracy, increase N , keeping the degree n fized .
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EXAMPLE : If we approximate

f(x) = cos(x) on 10, =],

-
2

by local interpolation at 3 equally spaced local interpolation points

Tjo = tj-1, Tj1 = : Tjo = 1j,

then n =2, h=7/(2N) , and, using the Table on Page 183,

(3)
WOl by,

1 h
max | f(x) —p;(z) | £ g 0.3849 .

[tj_l,tj] 3'
Specifically, if N = 4 (four intervals), then h = 7/8, so that

max | f(x) —pj(x)| <

I 1 w4
— — (= 0.3849 = 0.000486.
[ti—1,t5] 6 8 (8)
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T

Local polynomial interpolation at 3 points in 4 intervals.
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EXERCISES :

If we approximate a function f(x) on a given interval by local interpolation
with cubic polynomials, then how many intervals of equal size are needed to
ensure that the maximum error is less than 107* ? Answer this question for
each of the following cases :

°o1] f(x) =sin(z) on |0,27] , with arbitrary local interpolation points.
°92) f(x) =sin(x) on [0,27] , with equally spaced local points.

°p93) f(x) =sin(x) on [0, 27| , with local Chebyshev interpolation points.
°n94) f(z) =¢€" on |—1,1] , with equally spaced local points.

°no5] f(x) =¢€" on |[—1,1], with local Chebyshev interpolation points.
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o935y SOLUTION : Local interpolation of sin(z) at Chebyshev points :
If N is the number of intervals then their size is h = 2x/N.

The local error for sin(x) for an interval of size h is bounded by

- 1

— (n+1)!

For the reference interval |—1,1] the maximum of | w,1(x) | is 27" .

max | wyy1(x) | .

| sin(z) — pn(z) |

The adjusted bound for a local interval of size h is

| sin(z) —pu(z) | < (ni 0 (g)nHQ_" 7

which for the case n =3 gives

| sin(z) — p3(x) | <_1 (_h)42_3
sin(x p3(x
’ — 41 \2 7
which is less than 107* when h < 0.74448 . that is, when N > 9.

NOTE: For arbitrary points use 2" as maximum of | w, () | in [—1,1],
while for equally spaced points use instead the Table on Page 183.



NUMERICAL DIFFERENTIATION.

Numerical differentiation formulas can be derived from local interpolation :

Let p € P, interpolate f(x) at points {z;};_, . Thus

pa) = 3 fa) tla)

where
n

G =11 <(iii’i>-

k=0,k+q

For m < m we can approximate f™(x) by

f@) = pi ) = Y flw) (7 ()
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EXAMPLE :

Consider the case

Thus we want to approximate f”(z;) in terms of

Jo, Ji, and Jfo, (fi = flx)) -
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l f (%)

In this case

f'(x1) pl(z1) = folo(xr) + fili(z1) + foly(xy) .
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(@) = folg(z) + fL li(x1) + fo o)

Here l ( ) (CU o .flfl)(CC o CCQ)
rT) —
’ (33’0 — 1‘1)(33’0 — 1‘2)
so that 9 1
g// T _ —
0( ) (CCO — CIZl)(CIfO — CIZQ) h2
In particular, |
Similarly 5 |
Hence " ~ f0_2f1"|_f2
f (1‘1) — h2 '
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To derive an optimal error bound we use Taylor’s Theorem :

f2_2f1+f0 I

h? o
1 h2 h?) " h4 "
= 72 ( fi + hfi + ?f{’ + €f1 + ﬂf (¢1)
- 2f,
/ h2 h3 " h4
R Y S (VA (YN I
e I R ) I

where 1) € (xg, x2) .

(In the last step we used the Intermediate Value Theorem .)
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EXAMPLE : Withn=4, m=2, and = = x, , and reference interval
CC():—Qh, CElz—h, 562:07 legzh, 564:2h,

we have )
() = Zfz’ 0 (z2) .
i=0

Here

(x —x1)(x — x2)(x — x3) (T — 24)
(33’0 — 1‘1)(33’0 — 1‘2)(33’0 — 553)(33’0 — 1‘4)

Differentiating, and setting x equal to x5, we find

—1
12h2%

lo(wa) = (Check !)
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Similarly

(Check !)

Hence we have the five point finite difference approximation

— 161 —30fs + 1613 — [4
f”(CUZ) ~ f0"|_ f 12h]; + f3 f .

By Taylor expansion one can show that the leading error term is

ht O ()

(Check !)
90

We say that the order of accuracy of this approximation is equal to 4 .
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EXERCISES :

®09s) Derive a formula for the error in the approximation formula

What is the order of accuracy?

®0977 Do the same for £7(0) = f(h) — Qng) + f(=h) |

®n9g) Derive the approximation formula

O (UR (URS (0

and determine the order of accuracy.
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o095 SOLUTION : For the formula

Py = OO 10D

we use the notation f = f(0), fi = f(h), and fo = f(2h).

The Lagrange interpolating polynomial is

B (x — h)(z — 2h) (x — 0)(x — 2h) (x —0)(x — h)
px) = fo gm0 —2n) h—0)h—2h) 2 @h=0)2h—h)

so that

+ N1

(x — h) + (x — 2h) (x —0) + (z — 2h) (x—0)+ (x —h)

Pe) = fogTnoam P T aomo2n T @ oenon)
with
o (0=h)+(0—2h) (0—0) + (0 — 2h) (0—-0)+(0—h)
PO =g To-om T T om-m T @hi-oeh—n)
from which

_3h —9%h —h —3fo+4/1— Jo

f1(0) = p'(0) = f02—h2+f1_—h2+f22—h2 = 5



SOLUTION : continued - - - :

The order of accuracy is determined by Taylor expansion :

—3fo + 4f1 — J2

L /
o7 Jo
1
= g [ —3h
h3 "
[f0+hf0+—f +—f o]
/ 2h 7 2h "
_[fo+2hfo+(2)o (6)0+"']>_
— 1 (4h3 " (2h)3 " _|_ )
2h \ 6 Y 6 °°
h2
= -3 o'+ higher order terms .

Thus this formula is of second order accuracy.



EXERCISES :

®[p99) For the reference interval [0,3h| , give complete details on the deriva-
tion of the four weights in the numerical differentiation formula

7(0) = —11f(0) + 18f(h)6;: 9f(2h) +2f(3h) |

Use Taylor expansions to determine the leading error term.

00 For the reference interval [—3h/2,3h /2], give complete details on the
derivation of the weights in the numerical differentiation formula

iy o —d (Z3h/2) +3f(=h/2) = 3f(h/2) + f(3h/2)

Use Taylor expansions to determine the leading error term.
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BEST APPROXIMATION IN THE |- |- .

Introductory Example : Best approximation in R° .

Recall (from Linear Algebra) :

e A wvector x € R® is an ordered set of three numbers, x = (z1, x9, 23)"

e We can think of x as a point or an arrow .

e The dot product or inner product of two vectors x and y is defined as

<X7Y> = T1Y1+ T2 Y2+ T3 Y3 .
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e The length or norm of a vector is defined in terms of the inner product :

N~

Ixll = (x%) T} 25+ 25

e Then || x;— x5 |2 denotes the distance between x; and x, .

e Two vectors are perpendicular if (x1,%x3) = 0.
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Let

e, = (1,0,0)", e, = (0,1,0)" and e3 = (0,0,1)" .

The set {ey};_, is a basis of R?.

This basis is orthogonal because

(e1,e) = (e;,e3) = (eg,e3) = 0,
and normal since

leill: = flexfla = Jlesfa = 1,

1.e., the basis is orthonormal .
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Let &; denote the =z, zo-plane .

Then S, = Span{e1,e2}-

S, is a 2-dimensional subspace of R? .

Suppose we want to find the best approximation

p* c 82 ,
to a given vector x € R? .

Thus we want p* € &3 that minimizes

[x=p]2 ,
over all pe S,y .
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Geometrically we see that || x — p ||2 is minimized if and only if

(X—p) 1 827
i.e., if and only if
(x—p,e) =0, and (x—p,e) =0,
i.e., if and only if
<X7 el> — <p7 e1> ) and <X7 82> — <p7 e2> .
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Since p € S we have
p = ce + ey,

for certain constants ¢; and c¢s .

Thus || x—p ||z is minimized if and only if

<Xael> — <pael> — <Clel+62€2 ; el> —

(x,€2) = (P,€2)

Hence
p = ¢ € +C ey,

with

¢ = (X,eq) and co = (X, €) .
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Best Approximation in General.

Let X be a (possibly infinite-dimensional) real vector space,

with an inner product satistying :

for all x,y,z€ X ,and forall a € R :

() x,x) >0, (x,x) =0 only ifx = 0,
(i) (x,y) = (xay) = a{x,y)

(¢41) x,y) = (¥,%),

(iv) (x+vy,2) = (x,2)+(y,z) .
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THEOREM :

Let X be a vector space with an inner product satistying the properties above.

Then 1
Ix[ = {&xx?2,
defines a norm on X.
PROOF : We must show that || - || satisfies the usual properties :
(2) Clearly ||x|] > 0, and |[x] = 0 onlyif x=0.
.. 1 1
(it) [lox]| = (ax,ax)? = (a’(x,x) )7 = Ja| [x].

(22¢) The triangle inequality is also satisfied
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Let

a = %, y) = <X’y>2 . where x,y€ X.
(y.y) Iy
Then
0 < [[x—ay|® = (x—ay,x—ay)
= [[x|* = 2a{x,y) + o[y "
<X7Y> <X7Y>2 2
= [Ix[* — 2255 xy) + Iy |l
Iy II? Iy I
2
= x| - YD
Iy []?
Hence
2
(xy)" < I=xI® lIyl* .
or
L x, vy | < |Ix]|| [|y] (Cauchy — Schwartz Inequality) .
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Now

Ix+y |

IA

IA

(x+y,x+Yy)

Ix[* + 26xy) + [yl

Ix[* +2[xy)| + [y

Ix I+ 20xllllyll + Iyl

I+ Iy )

|yl - ( Triangle Inequality )
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Suppose {er}?_, is an orthonormal set of vectors in X | i.e.,

(0, if | # k,
<eﬁaek> — <

1 it [ = k.

\ Y,

Let S, C X be defined by

S, = Span{ex},_; .

We want the best approximation p* € S,, to a given vector x € X .

Thus we want to find p* € S, that minimizes || x—p || overall pe S, .
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THEOREM :

The best approrimation p* € S, to x € X is given by

n

P = Ck €L

k=1

where the Fourier Coefficients ¢, , (k=1,2,---,n) , are given by

X, e
L = (X, €) : if the basis is orthogonal ,
<ekaek>
and
. = (X,ep) if the basis is orthonormal .

252



PROOF : Let n

F(ci, 00,0 0p) = HX—chekHZ.
k=1

Thus we want to find the {cx}}_; that minimize F'.

Now
mn mn

F(ci,co,00,c,) = <X—chek,X—chek>

k=1 k=1
n

= (x,x) — 2 <chek7 cheka chek
= | x[* - Qchzxekz + ch €k, €k)

For F to be minimized we must have
OF

— =0 (=12,
866 Y ) = 77/2/
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We had

Flei,co, ) = ||xIP — 2) cplx,ep) + ci ey, ey) .
k=1 k=1
Setting g—f; = 0 gives
—2(x,ep) + 2ci(ep,e) = 0.
Hence, for ¢ =1,2,---.n , we have

P <X7 e€>
: (er,er)
o = (x,€ep), if the basis is orthonormal .

QED !
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NOTE :

e The proof uses the fact that X is an nner product space ,

with norm defined in terms of the inner product.

e In normed vector spaces without inner product, e.q.,
Cl0, 1] with | I

it is more difficult to find a best approximation.
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Gram-Schmidt Orthogonalization.

To construct
an orthogonal basis {er}}_, of a subspace S, of X,

we have the Gram-Schmaidt Orthogonalization Procedure :

e Take any nonzero e; € S, .

e Choose any vy € §,, that is linearly independent from e; .

o Sect
<V27 el>

(e1,er)

€ = Vo9 —

Then
<e2,e1> = 0. (Check ')

256



257



Inductively, suppose we have mutually orthogonal {e;}7=', (m < n).

e Choose v,, €S, linearly independent from the {e.}7-" .

o Set
m—1
Vmaek
en -2
e e
—1 ks k
Then

(em,er) = 0. (=1,2,--- m—1. (Check !)

An orthonormal basis can be obtained by normalizing :
€L

I e |

e, = k=1,2,---.n
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Best Approximation in a Function Space.

We now apply the general results the special case where

X = C[-1,1],

[ 1w ote) aa

This definition satisfies all conditions an inner product must satisfy. (Check !)

with nner product

Hence, from the Theorem it follows that

N
L\Dlr—\

I fll = (£1F = /f

is a norm on C|—1,1] .
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Suppose we want to find p* € P, that best approximates a given function

f S C[_lv 1] )
in the | - |2

Here P, is the (n + 1)-dimensional subspace of C[—1,1| consisting of all
polynomials of degree less than or equal to n.

By the Theorem we have n

pr(x) = ) exex()

k=0
where

(foen) [0 f@) en(x) do

Crp — — ) k:()vlv"'ana
; (ex, er) f_lle%ﬁ(a:) dx

and where the {e;}}_, denote the first n + 1 orthogonal polynomials .
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Use the Gram-Schmidt procedure to construct an orthogonal basis of P, :

(These basis polynomials are called the Legendre polynomials.)

Take ep(xr) = 1 and vi(z) = .

Then ,
<Ulv €0> L f—l r dx — 0
(€0, €o) f_ll 12 dx
Hence
er(x) = wvi(xr) — 0-efx) = =
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Take vo(z) = 27 .

Then

and

Hence
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= 0,
(€0, €o) f_ll 12 dx
and )
<U3761> . f—lx4 dx L §
(e1,€1) [1 2% do 5
and )
(v3, €2) B _1553(5’72 — %) dx 0
(€2, €2) f_ll(:zc2 1)? dx |
Hence
3 .3
es(xr) = w3(x) — 0-ep(x) — —e1(x) — 0-ex(x) = 2° — —x
etc.
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EXAMPLE :

The polynomial p* € Py that best approximates

HQ )

f(CC) = e ) on [_171] ) in
is given by
p(r) = coeplx) + 1 er(x) + o ex(x)
where
- (f5eo) e = (f,e1) .
<60760> <61761>

264



We find that

1
e® dx 1 1
o = freo) ) = —(e—=) = 1.175,

(€0, €0) f_ll 12 dx 2 €

(f, er) f_ll e® r dr 3

c1 = — = “(z—1)e" = 1.103 ,
1 (e1,e1) f_ll 22 dx 2( <l
1
e’ (2% — 3) dw 45 5
Cy = foea) f—11 5 = — (2% =224 )", = 0.536 .
(€2, €2) [ (2?2 = 3)? du 8 3

p(z) = 1175 (1) + 1.103 (z) + 0.536 (a2 —%)

= 0.536 z° + 1.103z + 0.996.  (Check!)
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T T T
2.5
2.0
1.5
1.0

0.5

00700 =075 =050 —0.25 0.00 025 050 0.5 L.00
o

Best approximation of f(x) =¢e* in |—1,1] by a polynomial p € P, .
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EXERCISES :

®(101]

®(102]

®(103]

®104]

Use the Gram-Schmidt procedure to construct an orthogonal basis of
the polynomial space P4 on the interval [—1, 1], by deriving e4(x), given
eo(zx) =1, ei(x) =2, ex(x) =2 — 3, and ez(z) =2° — 2.

Use the Gram-Schmidt procedure to construct an orthogonal basis of
the linear space Span{1,z,2z°} for the interval [—1,1]. Determine the

best approximation in the || - || to f(x) = 2°.

Use the Gram-Schmidt procedure to construct an orthogonal basis of
the linear space Span{1, z%, #*} for the interval [—1,1]. Determine the
best approximation in the || - ||> to f(z) = 2°.

Show that the functions eq(z) = 1, e;(z) = sin(z), es(x) = cos(x),
es(x) = sin(2z), e4(x) = cos(2x), are mutually orthogonal with respect
to the inner product < f,g >= fo% f(x)g(x) dx. Also show how one
can determine the coefficients ¢, £ = 0,1, 2, 3,4, of the trigonometric
polynomial p(z) = co+ ¢y sin(x) 4¢3 cos(x) 4¢3 sin(2x) + ¢4 cos(2x) that
minimizes fo% (p(z) — f(x))” dz, when f(z) = e”.
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®101]

®102]

Use the Gram-Schmidt procedure to construct an orthogonal basis of
the polynomial space P4 on the interval [—1, 1], by deriving e4(x), given
eo(z) =1, ei(x) =2, ex(x) =2 — 5, and ez(z) =2° — 2.
SOLUTION : A lengthy calculation, along the lines of the derivation
of es(x) earlier in this section, shows that es(z) = 2" — 22 + = .

Use the Gram-Schmidt procedure to construct an orthogonal basis of
the linear space Span{1,z,2z°} for the interval [—1,1]. Determine the
best approximation in the || - ||> to f(z) = z°.

SOLUTION : We can take eg(x) = 1 and ej(x) = x, as these are
already orthogonal. Letting vy(xz) = 2° we find

<U27 €0> f—ll xS dl’ 0 d <U27 61> f—ll :LA dl‘ 3
(€0, €0) f_ll 12 dx (e1,e1) f_ll 1?2 dx 5
Hence

er(x) = va(x) — 2 er(x) = a® — 2.



SOLUTION : continued ---

We found thet eg(z) = 1, e(z) = x, and ey(x) = x3_§

5

For the best approximation to f(z) = x> we have

(f, eo) f_11 v° dx

C — p— p— O7
’ (€0, €0) [l 12 dx

(f,e1) f_11 2° dx 3
Cl — — — ? ,

(€1, €1) [ a? da

(f,e2) [1 a%(a® = 22) da 10
C2 = = = — .

(€2, €2) f_ll(a:3 — 22)? du )




—1.0 —05 0.0 0.5 1.0

Best approximation of f(z) = 2" (blue) in [—1,1]
by a polynomial p € Span{1,z,z°} (red).



103y Use the Gram-Schmidt procedure to construct an orthogonal basis of
the linear space Span{1, z%, #*} for the interval [—1,1]. Determine the
best approximation in the || - ||z to f(x) = 2.

SOLUTION : Take ey(z) = 1 and vi(z) = 2% . Then

<U17€0> B f_11 v* dx B 1
(€0, €0) f_ll 12 dx 3
Hence : :
er(r) = vi(x) — 3 eo(r) = 2 — 3

and




SOLUTION : continued ---
We found

eo(r) =1, ex) = 2?2 —3, efx) = 2 =827+ .

For the best approximation to f(z) = 2% we have

(f,e0) f_ll 25 dx

1
— — = — = 0.14285715
© 7 lee)  [L1dr 7 ’
1
20 (2% — %) do 5
o = el f—ll ) do_ 5 =~ ().71428573 |
<617 61> f_l(CCQ — 5)2 d.flf 7
1
S (f,e2) Jo 2%t =22 + ) da

— PR R — > = 1.3636366 .
(€2, €2) [zt =2 a2+ 2)2 da

Thus p*(x) = co eo(x) + 1 e1(x) + c2 ea(x)

1.36364 x* — 0.454545 22 + 0.0216450 .
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Best approximation of f(z) = 2% (blue)in [—1,1]
by a polynomial p € Span{1, z*, z*} (red).



NUMERICAL INTEGRATION

e DMany definite integrals, e.qg.,

1 2
/ e dx |
0

are difficult or impossible to evaluate analytically.
e In such cases we can use numerical integration.

e There are many numerical integration (or quadrature ) formulas.
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Most formulas are based on integrating local interpolating polynomials of f :

[wa = S [ pwa

where p,;, € P, interpolates f at n+1 pointsin [¢t;_1,¢;] .

1.0
0.9r
0.8F
0.7
0.6
= 0.5F
0.4r
0.3
0.2
0.1r

0.0




The Trapezoidal Rule.

If n=1,andif p; €P; interpolates f at ¢,_; and ¢, , then

t; h
/ pj(z) de = 5 (fi—1+ fi) (local integration formula) .
lji—1

j_
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The composite integration formula then becomes

e = S [ pe)
/ > [

This 1s the well-known Trapezoidal Rule.
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In general

where

Thus we have the approximation

/:jl f(z) de = /ttj pj(z) de = zn:f(xﬁ)/ttj Lol da

J g—1 i=0 j—1

t
/ lji(x) dx
tj_1

j_

The integrals

are called the weights in the local integration formula.
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Simpson’s Rule.

Let n =2, and in each subinterval [t;_1,%;] choose the interpolation points

ti, t

1
= §(tj_1‘|_tj), and ;.

o L1 t, &Y t ) VRPN

Z

273



[t is convenient to derive the weights for the reference interval [—h/2, h/2]:




The weights are

(Check !)

(x—0) (x—%)
T0) (5 5)
[ ey
w2 (045) (0-%)
/W (x+ %) (z—0)
—h/2 (%+%) (%_0)
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With uniformly spaced {¢;}2, , the composite integration formula becomes

g=0 7

1

OBID

N
Z (fimr + 4fis + f)

/abf(x) dx

(fotdfi+2fi+dfii+2fo+-+2fna+4fy 1+ fv ).

S| =

This formula is known as Simpson’s Rule.
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1.0

0.9
0.8
0.7F
0.6
e e | e
o N
A AN

o AN

[N T R o ™

DOF -
B

0.0 =55 1 § 1
€T

3
The local polynomials (red) in Simpson’s Rule

for numerically integrating f(z) = =5 (blue) .
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THEOREM :

The error in the composite integration formula, based on local polynomial
interpolation at n + 1 equally spaced local points , satisfies the estimate

: [ | £ oo B Co (b= a)
[ @ an - ;/t“mx) dr| < T

where

and where the value of

C’I’L = mn 9
max | w1 () |

can be found in the Table on Page 183.
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PROOVF : The local error is

[ s = [* e i)

j—

279

PP (U o § K
ey L
7o (n+1)!

|| f(n—l—l) ||oo hn+2 Cn

(n + 1)! 2n+l



The error in the composite formula is now easily determined :

e daz—ﬁ;/jlpm) ir| = rf;/t:jlﬂx)—pj(x) s |

I

S 1 s = pa) do)

J

|| f(n—l—l) ||oo hn+2 Cn

N
(n+ 1)! 27+l

| fUHY) o R C, (b — a)
(n+ 1)! 27+l ’

where the last step uses the fact that

b—a _b—a

h = N i.e. N ;

QED !
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b N t 1 1
2 : ’ H f(n+ ) ||oo thr Cn (b_ CL)
' / fods p= /tjlp”(@ who= (n+ 1)t 2w+

NOTE :

e The order of accuracy is at least n +1 .

e We say that the method is O(h"t!) .

e For equally spaced local interpolation points we find (), in the Table.
e For local Chebyshev points we have C,, =27" .

e The actual order may be higher.

e For local Gausss points we have much higher order of accuracy !
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EXAMPLES :

For the Trapezoidal Rule , where n=1, C; =1, we get the error bound

e b-a).

Indeed the Trapezoidal Rule is O(h?) .

For Simpson’s Rule , where n =2, (5 =0.3849 , we get the bound

8.01875 - 102 A% || f¥ ||l (b—a) .

The actual order of Simpson’s Rule is higher, namely, O(h?*) .
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EXAMPLE :

Taylor expand for the precise local error in Simpson’s Rule :

h/2
fa)de — 5 (F=2) + 470) + £(5))

—h/2 6 2
h/2 4
_ fo _I_ .fljfo + _f + _f/// _I_ _f/l/l . d.flj
—h/2
h h/ 1h2// 1h3/// 1h4////
& ( Jo— e + 550 — (51 + 5(5) o0 +
+ 4o
h / L h 2 el L h 3 g L A 4
+ Jo + (2)f0 + 2(2) 0o T 6(2) 0o T 24(2)

where fy = f(0) , etc.
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5

R (R —4f”’ + o fy+ --){W

4120 ~h/2
— (hho + (h/32)3 - (h6/§)5 )
- (v + o+ T+ )
> .
= ~5gqp 1o + higher order terms.

Thus the leading error term of the composite Simpson’s Rule is bounded by

h4
"1
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EXERCISE :

ono5) The Local Midpoint Rule, for numerically integrating a function f(z)
over the reference interval [—h /2, h/2|, is given by

h/2

flz) dz = hf(0) .

—h/2

Use Taylor expansion to determine the error in this local formula.

Write down the formula for the Composite Midpoint Rule for integrating
f(x) over a general interval |a, b].

Derive an error formula for the composite formula.

How big must N be for the global error to be less than 107°, when
integrating f(x) = sin(z) over the interval [0, 1] 7
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o105y SOLUTION : Taylor expand for the local error :

h/2
/ f(x) de — b f;

h)2
h/2 2
= fo+zfy + =f + - dez — hfy
—h/2 -
x? |h/2 23 |h/2
— h o / - /1 L h
fo + 5 —h/QfO T3 2?0 + fo
h3
= — fi + higher order terms.
24
With uniformly spaced {t;}}L, , the composite integration formula becomes
b N 1
a j=1

The leading error term of the composite Midpoint Rule is bounded by

h2 2
o 1 e (0=a)



EXERCISE :

ono6) The local Trapezoidal Rule for the reference interval [—h /2, h/2] is

h/2 h

fl) de = S| f(=h/2)+ F(h/2)]
—h/2

Use Taylor expansions to derive the local error formula.
Let h=(b—a)/N and xp,=a+kh, for k=0,1,2,3, --- N .
Then the composite Trapezoidal Rule is given by
b
h
[ s@de = Z[f0) + 25@) + 2 () + -+ 2 ) + Flaw)]

Based on the local error, derive an upper bound on the global error.

SOLUTION : You should find that the global error of the composite
Trapezoidal Rule is bigger than for the Midpoint Rule, namely,

h2
= 1 e (b—a) .
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THE GAUSS QUADRATURE THEOREM :

If in each subinterval [t;_1,t;] the interpolation points {xzj;}, are taken as
the zeroes of the (n + 1)st orthogonal polynomial e,i1(x) ,
( relative to [t;_1,%4] ),

then the composite integration formula is O(h?"*?) |

NOTE :

e Such integration formulas are known as Gauss Quadrature formulas.
e The points {x;;}', are the Gauss points .

e The order improves from O(h"!) to O(h*"*?) for Gauss points.
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EXAMPLE : Thecasen =1 :

Relative to the interval |[—1, 1| , the second degree orthogonal polynomial is

To = — — and x|y = — .

— h—, and Tip = t._1 + I :
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Relative to the reference interval I, = |[—h/2, h/2] the Gauss points are

% 3

Ty = and r] =

6 6

with interpolating polynomial

p(r) = fl(xo) bo(x) + f(x1) la(2) ,

where

lo(z) = 50—_ 3;11 _ x_—h%%@
and

0h(z) = r—1xy  x+hV3/6
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The local integration formula is

h/2 h/2 h/2
f(x)de = f(xo) /_ lo(x) dx + f(x1) / (1(x) dx .

~h/2 h/2 —h/2

Integrating fo(x) and ¢1(x) , we find

h/2

f(x) dx

—h/2

h h
§f(~’170) + §f(~’171)-

10

Hence the composite two point Gauss quadrature formula is

/ () de

By the Theorem this integration formula is O(h*) .

N

10

f(z50) + flz50)]

1

DN | S

J
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PROOF (of the Gauss Quadrature Theorem.)

The local error for the reference interval I, = [—h/2, h/2] is
h/2
—h/2

where p € P, interpolates f(x) at Gauss points {x;}I, (relative to I ) .

By the Lagrange Interpolation Theorem

h/2 h/2 (n—l—l n
f(x) —p(z) de = / / Hcc—xz

~h/2 _n2 (n + 1

h/2 =0
- / () ens () da |
—h/2

where n
_ fU(E()
co(z) = D) and  epi(r) = [J(@— ).

i=0
Note that e, is the (n + 1)st orthogonal polynomial (relative to 1Ij) .
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FACT : If f(x) is very smooth then c¢(x) has n 4+ 1 continuous derivatives.

Thus we can Taylor expand :

n
Q?k xn—l—l

(@) = 57 ¢0) + T

k=0

" (n(2)) -

Call the remainder r(x) and use the fact that each summation term is in P, :

n

c(x) = ch er(r) + r(x),

k=0

where ¢, is the k' orthogonal polynomial relative to Ij, .
(Recall that the {ex}}_, form an orthogonal basis of P, .)
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We have

and

k=0
It follows that
h/2 h/2 n
| fle) — ple)de| = | [ D e erlr) + ()] enpal) dr |
—h/2 S
n h/2 h/2
= | ch/ er() eni1(x) do + / r(x) epy1(x) do | .
k=0 —h/2 —h/2
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Note that all terms in the summation term are zero by orthogonality, so that

h/2 h/2
[t - e de| = \/ ) eans(@) de |
—h/2 h/2
h/2 ot
-1/ ) (n(a)) [ — i) da|
h/2 n—l—l i—0
< b max| (n+1) () ][ —a) |
) 1=0
n+1
< (h/z) max ‘ C(n—i—l)(x) ‘ prtl
(n+1)' xely,
h2n—|—3

— (n+1)
o b ¢ @

Hence the local integration formula is O(h*"*3) .

As before, this implies that the composite formula is O(h?"1?) . QED !
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EXERCISE :

o077 Give complete details on the derivation of the local 3-point Gauss
integration formula. Also write down the composite 3-point Gauss
formula for integrating a function f(z) over a general interval [a, b].

o0s) Are the following True or False for any sufficiently smooth f(x) ?

- The order of accuracy of a general composite (n + 1)-point inte-
gration formula for f(x) is at least O(h"™t1).

- The order of accuracy of the composite (n+1)-point Gauss formula
for integrating f(x) is O(h*" ).

- The order of accuracy of the composite 2-Point Gauss formula
is the same as the order of accuracy of the composite Simpson
formula.
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DISCRETE LEAST SQUARES APPROXIMATION

We have solved the continuous least squares problem :

Given f(x) on [—1,1], find a polynomial p(x) € P, that minimizes

Ip=flz = /_[p(x)—f(x)mx.
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Next we solve the discrete least squares problem :

Given a set of discrete data points

{ (xzayz) z']\il )

find p € P, such that N

1S minimized.

More generally, find

n

) = 3 a 6ia)

1=0

(not necessarily a polynomial), such that ey, is minimized.
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Linear Least Squares

e Suppose we have data on the daily high temperature in March.
e For each day we compute the average high temperature.
e Fach average is taken over a number of years .

e The (fictitious) data are given in the Table below.

1 24| 2 06| 3 -1.7| 4 01} 5 -20| 6 -06| 7 -1.8
g8 17| 9 20,10 1211 0712 06|13 13|14 1.5
5 26 (16 18|17 0918 27|19 27120 35|21 3.1
22 38123 3524 4425 35|26 76|27 32|28 75
29 55|30 6.8]31 5.9

Average daily high temperature in Montreal in March
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Temperature

| | | | | |
.............. N o A P
| . [ T e S A A _
. T S |
| | | | | |

5 10 15 20 25 30 35

Day

Average daily high temperature in Montreal in March
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Suppose that :

e We believe these temperatures basically increase [linearly .

e Thus we believe 1in a relation

Tk = Cl—|—62]€, k:1,2,,31

e The dewviations from linearity come from random influences .

e These random influences can be due to many factors .

e We want to determine " the best” linear approximation.
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Temperature

0 5 10 15 20 25 30 35

Day

Average daily high temperatures, with a [linear approzimation .
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There are many ways to determine such a linear approximation.
Often used is the least squares method .

This method determines ¢; and ¢y that minimize
N

Z( Tk — (61 + Cgl’k) )2,

k=1

where, in our example, N =31 and z, =k .

To do so set the partial derivatives w.rt. c¢; and cy to zero :

N

w.r.t. ¢ — 2 Z( Ty, — (c1 + o)) = 0,
k=1
N

w.r.t. ¢y — 2 Zl’k (Tpy — (1 + cox) ) = 0.
k=1
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From setting the partial derivatives to zero, we have

N N
Z Tk — Cl —+ CQCCk)) = , Zxk (Tk — (Cl —+ CQCCk)) = 0.
k=1 k=1

Solving these two equations for c¢; and cy gives

Sos ar Ty — >, T

Cor = )

N 2 —~2
> T, — Nz

ClzT—CQi‘,

1N 1N

and

where

EXERCISE : Check these formulas !
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EXAMPLE : For our ”"March temperatures” example, we find
cp = — 2.111 and ¢, =0.272 .

Temperature

I I I I I I
0 5 10 15 20 25 30 35

Day

Average daily high temperatures, with linear least squares approrimation .
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General Least Squares

Given discrete data points

{ (%yz') 7];V=1 ;

find the coefficients c¢; of the function

n

pa) = S o),

k=1
that minimize the least squares error
N

Ee = Y (o) — )

1=1

EXAMPLES :
e plx) = ¢ + x. (Already done !)
o plx) = ¢ + wx + 3%, (Quadratic approximation)
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For any vector x € RY we have

N
[x|3 = x'x = Z Ty (T" denotes transpose).
=1

. (ple)\ (o)
kL = Z p(z) —ul” = | = R

( 2?21 Ci¢z‘($1) \ ( y.1 \

= | | R

\ S cidilay) ) \yN )
oy o
vy

Then

2 = [[Ac—yl3.

K br(en) - dnlen) )



THEOREM :
For the least squares error E; to be minimized we must have
A" Ac = Al y.

PROOF :

Ep = |Ac—y|;

= (Ac—y)" (Ac—y)

= (Ac)’Ac — (Ac)'y — y'Ac + y'y

c’ATAc — Ay — y'Ac + y'y.
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PROOF : continued - - -

We had
E, = ¢c’ATAc — 'Aly — y'Ac + yly .

For a munimum we need

OF OF
a—cL =0, i.e., 8; =0, i=01--,n,

which gives
c"’ATA + (ATAc)! — (A'y)! — y'A = 0, (Check!)

1.€.,

2c’ATA — 2yTA = 0,
or
c'ATA = y'A .
Transposing gives
ATAc = Aly. QED !
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EXAMPLE : Given the data points
{ (xzvyZ) ?:1 — { (071) y (173) ) (272) y (473) }

find the coefficients ¢; and c¢; of p(x) = ¢ + cox,

that minimize
4

E, = Z [ (1 + coms) — uil* .

1=1

)

SOLUTION : Here N=4, n=2, ¢1(x) =1, ¢o(x) =2 .

Use the Theorem :

(10

1

)

4 7 Cq o 9
7 21 Co - 19 ’
with solution ¢y = 1.6 and ¢y, = 0.371429 .
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EXAMPLE : Given the same data points, find the coeflicients of

L pz) = o + v + e’
that minimize A
E;, = Z[(cl+02xi+03x?)—yz-]2.
i=1

SOLUTION : Here

N=4 , n=3 , ¢(x)=1 , ¢o(x) =2 , ¢3(x)=2".
Use the Theorem :
1 1 1 1 (1 (1) (1) \ C1 1 1 1 1 (é\
0 1 2 4 2 4 Co = 0 1 2 4 9
0 1 4 16 \ C3 0 1 4 16
1 4 16/ \ 3
or
4 7 21 C1 9
7 21 73 Co — 19 ;
21 73 273 C3 59

with solution ¢y = 1.32727 , c9 = 0.936364 , c3 = —0.136364 .
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The least squares approximations from the preceding two examples :

3.5

3.0

2.5

> 2.0

1.5

1.0

0.5

3.0
2.5+
> 20

15f-

1 1 0.5 L1 1

p(z) = ¢ + cox p(x) = ¢c1 + cx + 3w
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EXAMPLE : From actual data :

The average daily high temperatures in Montreal (by month) are :

January )
February -3
March 3
April 11
May 19
June 24
July 26
August 25
September | 20
October 13
November 6
December | -2
Source : http://weather.uk.msn.com
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30 ! ! ' ! ' '
25 ------------------ ------------------ R . - ----------------- |
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15 f e e ------------------ ----------------- a

of T T |

Temperature

Average daily high temperature in Montreal (by month).
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EXAMPLE : continued - --

The graph suggests using a 3-term [least squares approximation

plz) = o ¢i(z) + c2galz) + ¢ @s(z),
of the form

plx) = ¢ + o sin(%) + c3 cos(ﬂ—g).
QUESTIONS :

e Why include ¢o(z) = sin(%) 7
e Why is the argument Z%* 7

e Why include the constant term ¢(x) = ¢ 7
e Why include ¢3(x) = cos(%) ?

In this example we find the least squares coeflicients

C1 — 11.4 , Co — —8&.06 , C3 — —12.8 .
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30 ! ! . ! |

Temperature

—10 ' I | | |
0
Least squares fit of average daily high temperatures.

316



EXAMPLE :

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Consider the following experimental data :
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EXAMPLE : continued - --

Suppose we are given that :

e These data contain ”noise” .

e The underlying physical process is understood.

e The functional dependence is known to have the form

—c3x

y = czx%e

e The valuesof ¢;, ¢y, c3 are not known.
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EXAMPLE : continued - --

The functional relationship has the form

—Cc3T

y = cx%e

Note that :

e The unknown coefficients ¢y, ¢y, c3 appear nonlinearly !
e This gives nonlinear equations for ¢, ¢y, c3 !

e Such problems are more difficult to solve !

e What todo?
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EXAMPLE : continued - --

Fortunately, in this example we can take the logarithm :

logy = logcg + cplogxr — c3x.

This gives a [linear relationship

log y = ¢ dilx) + 2 ga(r) + c3¢3(n),
where
61 — lOg C1 .
and
o1(r) =1 , ¢o(x) = logz , ¢s(z) = —x.
Thus

e We can now use regular least squares.

e We first need to take the logarithm of the data.

320



EXAMPLE : continued - --

00 ! ! ! ! ! ! ' !
05 . ----------- -------------- ------------- ............. .............
e Tt s s s s
e T e

S T — — I S —

log vy

S| T T T E—
e e
] S — — e

L T S— AR I e

s ; ; ; ; ; ; ; ;
0 1 2 3 4 5 6 7 8

The logarithm of the original y-values versus =z .
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EXAMPLE : continued - --

We had
y = ¢ x?%e 3",
and
log y = ¢ ou(r) + 2 dalx) + 3 P3(x),
with
o1(x) =1 , ¢o(x) = log z , ¢3(x) = —ux,
and

ci = log c .

We find the following least squares values of the coeflicients :
61 = —0.00473 , Co — 2.04 , C3 — 1.01 ;

and A
el = 0.995 .

o
[y
|
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EXAMPLE : continued - --

The least squares approximation of the transformed data.
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EXAMPLE : continued - --

e T T -
sl N e e R e |
A S LN S e e
R S S o S S
b N

T T et S Tt s

| | | | | | i .
005 1 2 3 4 5 6 7 8

The least squares approximation shown in the original data.
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EXERCISES :

°109 Compute the discrete least squares approximation of the form
p(x) = cp + c1x + cpx? to the data {(0,2),(1,1),(2,1),(3,3)} .

o119 Compute the discrete least squares approximation of the form
p(x) =co+cax+c £ to the data {(1,5),(2,3),(3,2),(4,3)} .

111 Derive a formula in terms of N and n for the number of multiplications
and divisions needed to solve the linear discrete least squares system

ATAc = ATy .

for c € R", given the N by n matrix A and the vector y € RY. Here AT
denotes the transpose of A. What is the total number of multiplications
and divisions in terms of N for the special case n =27
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SMOOTH INTERPOLATION BY PIECEWISE POLYNOMIALS

We have already discussed local (or piecewise) polynomial interpolation :

In each subinterval [¢;_1,t;] the function f is interpolated by a polynomial
p; € P, at interpolation points { x;; }7 :

1.0

0.9r
0.8
0.7r
0.6
(0.5}
0.4r
0.3
0.2
0.1r

O =5 =5 —1T 0 1 2 3 1 5




NOTE :

e The collection {p;}?_, defines a function p(t) .

e p(t) is generally not smooth, (not continuously differentiable) .

e In fact, p(t) is not continuous, unless
rjio = tj—l and Lin = tj,

i.e., unless in each subinterval the leftmost and rightmost interpolation
points are the end points of the subinterval.
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NOTE :

e Sometimes a smooth interpolant is wanted.

e These can also be constructed using piecewise polynomials.

e One class of smooth piecewise polynomial are called cubic splines.

e (Cubic splines are piecewise polynomial functions
p(t) € C[a,b],

for which each component p; isin Pj .
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o

0.4}

0.2

0.0

14f

0.6}

..............

..............

0.0

The cubic spline that interpolates the indicated data points.

0.2
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Cubic Spline Interpolation.

Given f(t) defined on |a, b] we seek a function p(t) satisfying :

e p € Ca,b],
e The restriction p; of p to [t;_1,t;] liesin Ps .
¢ p(tj) :f(tj)a jzoala'”aNa

x p'(te) =0,  p'lty) = 0.

e There are other possible choices for * .
e With the above choice of % a spline is called the natural cubic spline.

e We may also have discrete data points (t;,f;),j=0,1,---,N .
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This spline is "formally well defined”, because
the total number of unknowns is 4N |

(since each p; is defined by four coefficients) ,

which is matched by the number of equations :

continuity equations 3(N —1)

interpolation equations N +1
end point conditions 2
Total AN
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NOTE :

e In practice we do not solve these 4N equations to find the spline.

e Often we want the values of the spline at a large number of points,

whereas the actual number of data points

{(tjafj) ;'VIO

is relatively small.

e For this purpose we derive a more efficient algorithm below.
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Consider the interval [t;_1,1;] of size h; .

To simplify notation take the interval [tg, 1] of size hy .

Corresponding to this interval we have a polynomial p € P .

We can write
p(to) = po , p(t1) = p1,

pi(te) = po, P'(t) = pi.

These four equations uniquely define p € P3 in terms of the values

Do , p1 o, Py, DI
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In fact, for the interval [tg,t1] , one finds the polynomial

pg 3 24 3 P P Po pb’hl
t) = t1—t t—t — t—t —
pi(t) = 2 (t=0)" + 2 (t=t0)* + (7 = B (1) + (2225
Indeed, p; € P3, and
p(tO) — Do p(tl) — D1,

p'(to) = po, ') = pi.

Similarly, for the interval [ti,?5] , one finds the polynomial

Py Py p2 Pyl

P1 _]?’th

(t—t1)” + ) (t=t1) + (

(ta—t)° +

pa2(t)

" 6hy 65, he 6 ho

EXERCISE : Derive the formulas given above.
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By construction the local polynomials p; and p, connect continuously at ;.
By construction the second derivatives also connect continuously.
However, the first deriwatives must also match :

pi(t) = p5(t1) .

This requirement leads to the consistency relation

ho hq

hi pg + 2(hi+he) p{ + haopy = 6 (pg—p1 p1—po) :

EXERCISE : Derive this formula.
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For consecutive intervals [t;_1,%;] and [¢;,t,11], the consistency relation is

Pj+1 — Py
hjy iy + 2(hj +hj1) 0 + hjppj,, = 6 ( ]h :
Jj+1
where
hj —_ tj — tj—l and hj_|_1 = tj_|_1 — tj .

We have one such equation for each interior mesh point .

To nterpolate the data points {(¢;, f;) ;VIO , we have

p]:f]7 ]:OalaaN

Furthermore we have the natural spline endpoint conditions

pg = py = 0.
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This gives a tridiagonal system of equations for the unknown values

namely,

2(h1 + ho)
( N

where

p;/7 for jzla"'aN_la

ho
2(hg + h3) hs

hno1 2(hy-1+ hN))

fimi =t fi— j—l) |

Mg h

337
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NOTE :

e In each row the diagonal entry is bigger than the sum of the other entries.
e Such a matrix is called diagonally dominant.

e By the Banach Lemma this matrix is nonsingular.  (Check !)

e Thus we can compute the p7 using the tridiagonal algorithm.

Thereafter evaluate each local polynomial with the formula

p] 1 p]

(1) = t:—t L (t—t;,)°
p]( ) 6h] ( ) —I— 6h ( J 1)
Dj p”h Pj—1 p;'/_1hj
t—1t;_ — t; —1) .
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NOTE :

The smoothness makes the component polynomials interdependent.

One can not determine each component polynomial individually.

As seen above, a tridiagonal system must be solved.

This interdependence can lead to unwanted oscillations.
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€T

The cubic spline that interpolates the indicated data points.

340



NUMERICAL METHODS FOR INITIAL VALUE PROBLEMS

Here we discuss some basic concepts that arise in the numerical solution of

initial value problems (IVPs) in ordinary differential equations (ODEs) .

Consider the first order IVP

u'(t) = f(ut)), for t >0,

with initial conditions

Here u, f(-) e R".
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Many higher order ODEs can be rewritten as first order systems .

EXAMPLE :

u(0) = ug,
u'(()) — Vo,
can be rewritten as
u'(t) = v(t),

with nitial conditions



EXAMPLE :

The equations of motion of a satellite in an Earth-Moon-like system are :

o= 2 = (L= p) () — (e — T4 )y
y' = =22ty — (1 —pyr” — pyry”
2= = (1= p)ary® — pary?
where
ro= V()2 oy 422 ro = V(r— 14 )2 +y2+ 22
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Rewritten as a first order system :

Y= v,
yo= vy,

7= v,

v, = 2o ta— (- p)(@+p)r” = (e =14+ p)ry”
v, = =20, +y— (1 —pyr® —pyry?

v, = —(1—p)ary® — pary”

with

ri=+(@+u)?+y>+22 and ry=\/(x —1+p)? 49>+ 22

This system is of the form

u'(t) = f(u(t) ), with initial condition u(0) = ug .
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Here p is the mass ratio | i.e.,

o

/’L:ml_l_m27

where my is the mass of the larger body, and moy of the smaller body.

For example,

1 = 0.01215  for the Earth Moon system,
o = 9.53107% for the Sun Jupiter system,

p = 3.0107°% for the Sun Earth system.

The variables are scaled such that

e the distance between the two bodiesis 1 ,

e the sum of their masses is 1 .

The larger body is located at (—u,0,0) , and the smaller body at (1—pu,0,0) .
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A trajectory connecting a periodic “Halo orbit” to itself.
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Numerical Methods.

Let
t; = 7 At 7=0,1,2,--- .

Below we give several basic numerical methods for solving the IVP
u'(t) = f(u(t)), u, f(-) e R".

u(0) = up.

We use the notation

u(t;) = the exact solution of the ODE at time ¢, ,

u; = the numerical solution at time t; .
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Euler’s Method :

Using the first order accurate numerical differentiation formula

we have

W1 — Uy + Atf(uj)a j:071727”' )

( explicit, one-step , O(At) ) .

(Check the order of accuracy!)
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The Trapezoidal Method :

Using the second order accurate approximation formula

u(tjn) — ulty) o uwt)+u'tn)  fu))+f(aln))
At 2 2
we have
At .
U1 = Uy + 7 [ f(u]) + f(uj-l—l) ] ) J = 07 17 27 R

(implicit, one-step , O(At?) ) .
(Check the order of accuracy!)

NOTE : In each time-step a nonlinear system must be solved !
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A Two-Step (Three-Point) Backward Differentiation Formula (BDF) :

Using the second order accurate approximation formula

3u(tjy) — 4ult;) + u(t—)

2At = w(ljy1) = f(ulty)), (Check!)
we have
4 1 2At |
Wi = oW — g+ — f(w),  j=12

(implicit, two-step , O(AL?)) .

NOTE : In each time-step a nonlinear system must be solved!
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A Two-Step (Three-Point) Forward Differentiation Formula :

Using the second order accurate approximation formula

—u(tj1) + 4uty) — 3ultj1)
2At N

u'(t;1) = f(u(t;1)), (Check!)

we have

U411 = 4uj — SUj_l — 2At f(llj_l), 321,2, ,

( explicit, two-step , O(AE?) ) .

(We will show that this method is useless!)
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The Improved Euler Method :

for 7=0,1,2,--- .

( explicit, one-step , O(At?)) .
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An Explicit 4th order accurate Runge-Kutta Method :

ki = f(u),
At

kQ - f(uj -+ 7 kl) ,
At

k3 — f(llj + 7 k2> ,

k4 = f(Uj + At k3> ;

At
uj_|_1 — U—y -+ F {kl —|_2k2 —|_2k3 —|_k4} 9

for 7=0,1,2,--- .

( explicit, one-step , O(At*)) .
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The order of accuracy of a local formula can be found by Taylor expansion .

EXAMPLE :

For the two-step BDF we have the local discretization error

& Gutyen) = 20(6) + Julti) ) = i)

1 3
= Kt{§ u(tjs1)

75

At? A3

—2fu(tjy1) — At u'(tj41) + o u(tjv1) — 6 u(tjp1) + ]
(+ %[) utyn) — 280w (ty) + CE ) - B,y )
— u/ tj_|_1

1
= 3 At? v (tjr1) + higher order terms.

The accuracy of this method is of order 2 .
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Stability of Numerical Approximations.

The very simple model equation
u'(t) = 0, uw(0) = wug , u, 0 eR,

has solution
u(t) = up , (constant) .

A general m-step approximation has the form
Ay, Uj41 + Q1 Uj - + Qq Ujtr1—m — 0.

Assume that
Ug 1s given ,

and (if m > 1) that

Uy, U, -+ ,Up—1 are computed by another method ,

e.g., by a one-step method of the same order of accuracy.
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General m-step approzimation of u'(t) =0, u(0) = wuy :

Ay, Uj41 + Q1 Uj - - + Qg Ujtr1—m — 0.
EXAMPLES :
(1) Ui —u; = 0, uy given Euler, Trapezoidal
(2) | 3ujy1 —4u; +u;—1 = 0 | up,u; given | Backward Differentiation
(3) | —wjq1 +4u; —3u;—1 = 0 | up,u; given | Forward Differentiation
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The difference equation
Oy Ujp1 + Qg Uj + -0+ Qo Ujp1—m = 0,

can be solved explicitly :

Try solutions of the form wu; = 27 .

Then we have
O T A e 2+ g AT =0,

or, multiplying through by 2”71

m 2™+ a1 2+ -+ a1z + g = 0.

This is the Characteristic Equation of the difference equation.
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Difference equation :

O Wiyl + Q1 U; + -+ + Qo Ujp1—m = 0.

Characteristic Equation :

am 2™+ a1 2+ - a1z + g = 0.

If a,, # 0, then the characteristic equation has m roots {zp}7; .

For simplicity we assume here that these roots are distinct .

The general solution of the difference equation is then

R T Ry

The coeficients v, are determined by the initial data ug, uq, - - -
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FACT :

If the characteristic equation has one or more zeroes zp with |z [> 1

then the numerical method is wunstable .

In such a case the wu; can become arbitrarily large in a fixed time interval

by taking At sufficiently small.

THEOREM :

A necessary condition for numerical stability of a multistep method is that
the characteristic equation

- |
a2t + a2t + - + o = 0

have no zeroes outside the unit circle .
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EXAMPLES :

Formula Char. Eqn. Roots | Stability
(1) Ujp1 —u; =0 z—1=0 z=1 Stable
(2) | Bujy1 —4duj+uj_1 =0 | 322 —42+1=0 | z=1,5 | Stable
(3) | —ujp1 +4u; —3u; 1 =0| —2*4+42—3=0| 2=1,3 | Unstable
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Consider the last two examples in more detail :

Case (2) :  Here the general solution is

1. .

ujg = 7 (1)) + % ()"

The initial data are ug and wu; , so that

Y1+ Y2 = Up,

Y1+ %% = U,
from which
3 1
o= 5w T 5 o
3 3
T2 = §u0 — 5“1
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Hence

(3 1 ) 4 (3 3
U, = (= uy — —u — Uy — — U
7 9 1 9 0 9 0 9 1
It
Uy = Ug ,

then we see that

u; = U , for all 7 .
Moreover, it

Uy = Ug + € ,

then
3
Uj — U + 56 —

so that wu; stays close to wug it € is small.
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Case (3) :  Here the general solution is

uj = mn (1)) + 1 (3).

Using the initial data

we find 2 1 1 1
7T = U — U, Y2 = Z U — 7 U
Hence 3 | | |
Uj = (§Uo - §U1) + (5’“1 - §U0)(3)j-

Again, if u; =1y then u; =wuy forall 5.
But if u; = uwp + € then w; = ug — %e + 1e30 .

2

Hence wu; becomes arbitrarily large in finite time by taking small At !
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THEOREM :
Suppose that the local approximation is accurate.

Then if the zeroes {z;}}", of the characteristic equation

1
amz" + o112+ -+ oz + ag = 0,

2] < 1, and |2z | =1 = 2z issimple,
then the method 1s stable and

w; — u(t;) as At — 0 .

PROOF : Omitted.
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Stiff Differential Equations.

There are ODEs for which explicit difference approximations require At to
be very small before one gets the convergence guaranteed by the theorem.

To investigate this, we use the model equation
u'(t) = Au(t), t>0,

with

where A is a constant. (We allow A to be complex.)

The solution is



Consider the case where
Re()\) << 0,

i.e., A has large negative real part .

Then the ezact solution of

w'(t) = Au(t),

A

namely, u(t) = e ug , decays very quickly as t — oo.

The numerical solution wu; again has the form
m
R E ( J
u] _ Vk Zk )
k=1
and we certainly don’t want wu; to increase as j — oo !

Thus we don’t want any 2, outside the unit disk in the complex plane.
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However, for many difference formulas
At must be very small
in order that

all z,, k=1,---m, are inside the unit disk .

Thus problems with

Re(N\) << 0, (“Stiff Problems”) ,

need special difference approximations .
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More generally the IVP

is called stiff if the Jacobian

f.(u(t) ),

has one or more eigenvalues A\; = \;(t) , with

Re(\;) << 0.

NOTE : Eigenvalues can be complex.
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EXAMPLES :

We will approximate

by various discretization formulas and determine the values of At\ in the
complex plane for which the solution of the difference formula decays .

Assume

At > 0, and  Re(\) < 0.

Then At\ always lies in the negative half plane , i.e.,

Re(AtN) < 0.

NOTE : Since eigenvalues can be complex, we allow A to be complex.
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FExplicit Euler.

Applying Euler’s explicit formula to the model equation
u'(t) = Mu(t),

we get the difference equation

1 .
Kt (uj_|_1 —U]) =) U] , 1.€., Uj-|—1 — (1—|_At)\) u] )

Trying solutions of the form w; = 27 gives the characteristic equation
z — (14+Ath) =0, with zero z = 14+ At).

Thus |2z| < 1 ifandonlyif |1+ AtA| < 1, e, if and only if
| AtA—(=1)| <1.
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Complex (At -A)— plane

Stability region of the Explicit Euler method
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EXAMPLE : Take A = — 10°.

Then
6
u(t) = e gy

which decays very rapidly for increasing ¢ !

However, for u; to decay, one must take
AtA > =2,

that is,
At < 2 -107° !

Thus the explicit Euler method is useless for stiff equations !
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Implicit Euler.

The difference formula is

1
At (Ujr — ;) = Ay,

that is,

LT T AN

The characteristic equation

1
_ — 0
T T A ’
has zero
B 1
C T T AN

sothat | z| < 1 ifandonlyif |1 —AtA\| > 1, e, if and only if

[AtA—1] > 1.
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Complex (At -A)— plane

Stability region of the Implicit Euler method
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Trapezoidal Method.
When applied to w'(t) = X u(t) , the Trapezoidal Method gives

1 1
7y W — ) = 5 A (gt )

Thus the characteristic equation is

1 1 1+ AN
(1—§At)\) z — (1+§At)\) = 0, withzero 2z = —zAt)\'
We find that z = €% if
z—1 e 1
AtN = 2 = 2 (— = 21t —
(Z+1) (629+1) i tan(;)

The region of stability is now precisely the entire negative half plane.

Thus, z < 1 if and only if Re(AtA) < 0, which is very desirable.
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A disadvantage is that the decay rate becomes smaller when

Re(A\) — —o0,

contrary to the decay rate of the solution of the differential equation.

In fact (thinking of At as fixed) we have

14 2AtA
lim z(A) = lim +% = —1
A——00 A—s—o0 | — §At)\
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Complex (At -A)— plane
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Backward Differentiation Formulas (BDF).

For the differential equation «'(¢) = f(u(t)) the BDF take the form

1 m
A7 ZO@; Ujr1—i = f(uj1) -
1=0

The {«;}", are chosen so the order is as high as possible, namely, O(At™) .

These formulas follow from the numerical differentiation formulas

that approximate u'(¢;41) in terms of

utjer) > ulty) s - wltjynom) -

All of these methods are mplicit .

The choice m = 1 gives the implicit Euler method.
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Let §,, denote the stability region of the m-step BDF.
Concerning S,, one can show the following :

m=1,2:

S,, contains the negative half plane.

These methods are called A-stable .

m=3456:

S,, contains the negative axis, but not the entire negative half plane.

These methods are called A («)-stable .

m > T

These methods are unstable , even for solving u'(t) = 0!
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_______________________________________________________

Stability r-egion’of Backward Differentiation Formulas.
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Collocation at 2 Gauss Points.

The 2-point Gauss collocation method for taking a time step for the IVP

u'(t) = fu@®),  w0) = uo,
is defined by finding a local polynomial p € P, that satisfies

p(ty) = uy,
and
p/(xj,z‘) = f( p(xj,z') ), i=1,2, (collocation) ,
where
and then setting " 2 6
ujr1 = pltj1) -

Applied to the model equation u'(t) = X u(t) this gives
1 + At A + (AL N)?

12

YT OTTTTAL N + L (A2

12

u; = 2(AtA) u; .
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It can be shown that the stability region

1 + Ath + & (At))?
S = { At) : = <1
t 1 — AN + & (AtN)?2 — Fs

12

is the entire negative half plane.

All Gauss collocation methods have this property and thus are A-stable .

However,

lim z(At\) = 1

;
A——00

so that the methods lead to slow decay for stiff problems .
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BOUNDARY VALUE PROBLEMS IN ODEs

EXAMPLE : The boundary value problem (BVP)

y'(x) —y(lzr) = —5sin(2x), r € [0,7],

has the exact (and unique) solution

y(r) = sin(2z) .

e This BVP is a simple example of problems from science and engineering.
e Usually it is difficult or impossible to find an exact solution.

e In such cases numerical techniques can be used.
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Partition |0,7] into a grid or mesh :

0 = 29 < 11 < 9 < -+ < Ty = T,

where

Ly = ]ha (j:()71727"'7N)7 h =

We want to find approximations w; to y(z;), 7=0,1,2,--- N.

A finite difference approximation to y"(x;) is given by

; N yj+2_yj _ yj_gj—l B Vil — 2y] + i1
Y (CC]) _ h - h2 ?

where



We want to find approximations u; to y(z;), 7=0,1,2,--- /N .

The wu; are computed by solving the finite difference equations :

Ug — 0 )
Us — 2u1 + u ,
: h21 Y w = —5sin(22)
Us — 2Us + U ,
’ h22 L~ uy = —5sin(2m,) |

UN — 2UN—1 + UN—2

e — uy_1 = —Hsin(2zy_1) ,

UN:O.
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Write the finite difference equations as

1 2 1 : .
(ﬁ) uj—l_(1+ﬁ) u‘7+(ﬁ) Uj_|_1 = —9 SIH(QCL‘]') , ] = 1,2,"',N—1,

and put them in matriz form :

AN

h2 LT R a2 U2

72 —1 - 72 72 UN-2 Jn—2

\ B -2 ) Nuve ) \ v

f1 —58111(2.?3’1)
( fo \ ( —5sin(2xs) \

JN—2 —5sin(2xn_o)

\fN_1) K—S sin(QxN_l))

and where the matrix has dimensions N —1 by N — 1.
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We found that :

The finite difference equations can be written in matriz form as

Apu, = 1,
where
. 1 2 1
Ah:dlag[ﬁa_(1+ﬁ)aﬁ]a
u, = (ul , U2 ) uN—l)Ta
and
f, = —5( sin(2xy), sin(2xy), ---, sin(2zy_1) )" .
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QUESTIONS :
e How to solve the linear systems efficiently, especially when N is large 7
e How to approximate derivatives and find the error in the approximation 7

e What is the actual error after solving the system,

1.e. , what 1s
max | u; — y(z;) | 7

(assuming exact arithmetic)
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e How to solve the linear systems efficiently, especially when NN is large 7

ANSWER :

The matrix is tridiagonal .

Thus the linear system can be solved by the specialized Gauss elimination
algorithm for tridiagonal systems.
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e How to approximate derivatives and find the error in the approximation 7

ANSWER : As done earlier, the local discretization error is

Yir1 — 2y tyi-1

T = h2 — Y
1 h? h? h*
= = ( yj + hyy + oY+ n [y UAN(S)
— 2y,
h? h3 h*
oy = by oy oy oy (G) ) - Y
L h2 1111 "1
DY Y (C) Yy (C)
h2
"
= 5 vy (n;) for some n; € (x;-1,2;41) ,

"

using Taylor and Intermediate Value Theorem, assuming ¢ is continuous.
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We found that

Tj —

In our BVP, we have

y(r)

Thus | y""(x) | < 16, and

\Tj\

Yj+1 — 2y + Y1 h?

J h2] J L y;/ E y//// ( 77])
sin(2z) , and " (x) = 16sin(2x) .
16

— h* = = h*, j=1,2,---,N—1
12
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e What is the actual error after solving the system 7

1.e., what 1is
masx | w; — y(a;) | 7

ANSWER :

For this, we will use the Banach Lemma .
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We already showed that

| 75|

Now

Thus if we define

Yhn
then

- _2 ) ) 4h2
— ‘ (y] 1 hy2] ‘|‘yj+1) B y;, ‘ < T | i 1.9,
1 2 1
Wi — 2y + yi-)
o h2 — Y
=y + T =y
= 71; — bHsin(2z,) .
(y17y27"'7yN—1)T, and ’ThE(7‘177'27...

Ayyy, = ™ + 1.
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We found that

Ahyh — Ty -+ fh.

Since

Apu, = 1,

it follows from subtraction that

Ah (yh—uh) — Tp .

395



We found that

Ah(Yh —U—h) = Th -

Thus if we can show that Aj; has an inverse and that

A e < K

for some constant K that does not depend on h, then

H Y — U, Hoo

IA

IA

| AL Tl
A oo 70 Dl
4h?

K —.
3
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Now

1 - 2 1
L S )
72 hZ  R2
Y —1-5 s
h h h
\ L )
0 1
h? + 2 1 1 0 1
_ I, —
h2 h2 . .
1 0
0 1
h? + 2 [I h? 1 1 0 1 }
h2 h h2 492 h2 L
1 0
0 1
h? 4+ 2 [ 1 1 0 1 }
h2 h h2 + 92 L
1 0



We have ) 0 1
A, - x2or 1 0 1 ]
h — h2 h h2 + 92 ..
1 0
h? + 2
— —_ h2 (Ih —|_Bh) 3
where 1, is the identity matrix and
0 1
_ —1 (101
h = h2_|_2 . )
1 0
Since
IBille = o < 1

it follows by the Banach Lemma that (I, + Bj)™! exists and that

B 1 h? + 2
| (T +Bi)" o < —— = 3
h2+42
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We have

and
Hence

IA o = |
Thus K = 1, and

h? 4+ 2
Ah — h2 (Ih—l—Bh),
L h* + 2
| T +Br) ™ oo < =5
—h? » h*  h*+2
g It Bl = 5575 5
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A Nonlinear Boundary Value Problem.

Consider the Gelfand-Bratu problem
u'(z) + Xe*®) = 0, z e [0,1],

u(0) = 0, wu(l) = 0, A\isa parameter ,

and its finite difference approrimation

Ug — 2U1

gi(u) = 12 + X"t = 0,
Uz — 2Us + U
ga(n) = T A =0,
UN_1 — 2Un_9 + UN_
gy_o(u) = —— }]L\; T e = 0,
—2un_1 + un_
gn-1(u) = : ;Lz Y2 e = 0,
where u = (uy, ug, -+, uy_1)"
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If we let

G(u) = (gi(u), g2(u), -+, gn-1(u) )T7
and
0 = (0,0,---,0)" e RV,

then these equations can be compactly written as

G(u) = 0.

The Jacobian matrix is an NV — 1 by N — 1 tridiagonal matrix :

(2 A \
1 _ 2 4 \e¥2 L
G’(u) _ 7,2 73 T A€ 7,2
\ A
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Each Newton iteration for solving the nonlinear system

(k)
( — 75 + et s . \
2 —7z + Ae™ 2 Au® = —Gu®),
' k)
\ L 2 el )
where
Au(k) = (Augk) ) Augk) ) ) Aug\];:) 1)T ’

and updating
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integral u(x)

Solutions of the Gelfand-Bratu equations for different values of .
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DIFFUSION PROBLEMS

Here we consider parabolic partial differential equations.

The simplest is the linear diffusion equation or heat equation :

u(x,t) = Uge(x,t), rel0,1], t>0,
u(az, O) — g(SL‘) )
u(0,t) = wu(l,t) = 0.
This equation governs, for example, the temperature in an insulated rod of

which the endpoints are kept at the constant temperature zero, and in which
the initial temperature distribution is g(x).
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First discretize in space :

where we have introduced the notation

ui(t) = ulzj, 1),

and where ' denotes differentiation with respect to .

These space-discretized equations represents a system of N — 1 coupled
ordinary differential equations.
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In matrixz-vector notation we can write the space-discretized equations as

u'(t) = N D u(t)
where -
(1 -2 1 \
D = : :
1 -2 1
\ 1 -2
and

wr
]

UN—-2
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Now discretize in time :

Often used is the Trapezoidal rule :

uftl — uf 1
— D k41 k
At A P AW Hut
where . \
uy
koo ( Ug
u — . ,

and

k : k
u; approximates u(w;,t") .
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Assume that the solution has been computed up to time t*.

Thus u® is known , and we want to solve for u*t! .

Rewrite the above equation as

At
2A 12

At

I—
( 2A 12

D) u*tt = (I+ D) u” .

Thus to take a step in time we have to solve a tridiagonal linear system.

This method is also known as the Crank-Nicolson scheme.
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ts
t
(o 1
0 X0 X1 X2 * XN
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NOTE :

e We can also use an explicit method in time, for example explicit Euler.

e DBut this can be a bad choice because the ODE system is stiff.

e The time step At may have to be wvery small to have stability:.
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For the system of ODEs
1

we can demonstrate the stiffness analytically.

In fact, we can explicitly compute the eigenvalues of the matrix

1
—— D
Ax? ’

as follows :

An eigenvalue-eigenvector pair A, v satisfies

1

A—CCQ DV - )\V,
that is,
1
(=20t u) = My, =120 No1, v =y = 0
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We had the difference equation

1
A—QZQ(Uj_l — 2Uj —+ ’Uj_|_1) m— )\’Uj .
Try a solution of the form wv; = 27 .

This gives the characteristic equation

7 — 24+A°N)z +1 =0,

or

2+ 271 -9

A p—
Ax?

The characteristic equation has zeroes

Z = 2 and z = 2

The general solution of the difference equation then has the form

_ J —J
V; = C12] T C22y°7 .
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From the first boundary condition we have

v =0 = c¢+c = 0.

Thus we can take

Then

from which




The eigenvalues are therefore

Ak

2+ 2z 1 —9
Az?

2(008(22—1\7;) —1)

4 , kT
——— sin

2 -
Ax? (QN) ’
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The eigenvalue with [largest negative real part is

Av-r = = g s
which for large N behaves like
4
Av_g 2N = — —

Thus the system is stiff if Ax is small .

EXAMPLE : To make the explicit Euler method stable we need to take
the timestep At so that At\* lies in the circle of radius 1 centered at —1,

1.e., we must take 1

Using explicit Euler is often not a good idea .
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Nonlinear Diffusion Equations.

An example of a nonlinear diffusion equation is the Fisher equation

u(x,t) = uge(x,t) + Au(x,t) (1 —u(x,t)),

for
r e [0,1], t>0,

with
u(x,0) = g(z), u(0,t) = u(l,t) = 0.

This is a simple model of population growth with diffusion and with

mazimal sustainable population equal to 1 .

417



Another example is the time-dependent Gelfand-Bratu equation

ug(x,t) = uge(x,t) + A et(@:t) :

for
re|0,1], t>0,

with
u(x,0) = g(z), u(0,t) = u(l,t) = 0,

tor which we have already considered the stationary equations
Uge () + X ™ = 0, e |0,1],

with
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We illustrate the numerical solution procedure for the general equation

ug(x,t) = Uge(x,t) + flu(z,t)), rel0,1], t>0,

u(z,0) = g(z)

u(0,t) = u(l,t) = 0,

where
f(u) = Au (1 —wu) forthe Fisher equation ,

and

=
£
|

A e*  for the Gelfand-Bratu equation .
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We approximate this equation as follows :

First discretize in space to get a system of ODEs :

u(t) = uj_l(t)_ngz) Funl® )

Then discretize in time using Implicit Euler :

k+1 k+1 o k+1 k+1
u; L L A e +
o 2 uj .

At Az

420



Rewrite these equations as

At
Fitl = ot — b - (W -2 i) - AT = 0,

torj=1,2,---, N —1,

with

k+1

it = 0 and uy = 0.

Ug —

We can assume that the solution has been computed up to time t*,

k+1

i.e., the uf are known and we must solve for the wu;

Since the equations are nonlinear we use Newton’s method.
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k+1

As initial approximation to u;" " in Newton’s method use

(™ = wf,  j=12- N-1.

Each Newton iteration then consists of solving a linear tridiagonal system

Tk:—l—l,(u) Auk:—l—l,(u) _ Fk—l—l,(u)
J
where
(14220 — Atfu(uy™ ) — oL \
Tk+1,(v) _— _% 1+ QAAt Atf“ kH (V)) _%
\ ~ Ay 1+2A8 Atfu (WS )
and
A1) R
k+1,(v) k+1,(v)
k+1 A k+1 F,
Ayghth) — Usg S FRLO)
k—l—l (v) k—l—l (v)
Aup_] Fy_y

Then set the next approzimation to the solution at time t = t*! equal to
LD L) L AR
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Time-evolution of solutions of the Gelfand-Bratu equations for A = 2.
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integral u(z)

@
o

12.5

30 T 100 L
2.5t
7.5¢
2.0t
2 50
3
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1.0F
05l 0.0

00001 02 03 04 05 06 07 08 0. 200 01 02 03 04 05 06 07 08 09 10
time T

Time-evolution of solutions of the Gelfand-Bratu equations for A\ = 4.
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