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VECTOR AND MATRIX NORMS

In later analysis we shall need a quantity (called vector norm) that measures
the magnitude of a vector.

Let x ≡ (x1, x2, · · · , xn)
T ∈ R

n .

EXAMPLES (of norms) :

‖ x ‖1 ≡
n

∑

k=1

| xk | , (the “one-norm ”)

‖ x ‖2 ≡ (
n

∑

k=1

xk
2)

1
2 , (the “two-norm ”, or Euclidean length)

‖ x ‖∞ ≡ max
1 ≤ k ≤ n

| xk | , (the “infinity-norm ”, or “max-norm”)
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‖ x ‖1 and ‖ x ‖2 are special cases of

‖ x ‖p ≡ (

n
∑

k=1

| xk |p)
1
p , (where p is a positive integer),

while for any fixed vector x we have

‖ x ‖∞ is the limit of ‖ x ‖p as p → ∞ . (Check !)

EXAMPLE : If x = (1,−2, 4)T then

‖ x ‖1 = 7 , ‖ x ‖2 =
√
21 , ‖ x ‖∞ = 4 .
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Vector norms are required to satisfy

(i) ‖ x ‖ ≥ 0, ∀x ∈ R
n and ‖ x ‖ = 0 only if x = 0,

(ii) ‖ αx ‖ = | α | ‖ x ‖, ∀x ∈ R
n , ∀α ∈ R,

(iii) ‖ x+ y ‖ ≤ ‖ x ‖ + ‖ y ‖, ∀x,y ∈ R
n (Triangle inequality).
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All of the examples of norms given above satisfy (i) and (ii). (Check !)

To check condition (iii) let

x = (x1, x2, · · · , xn)
T , y = (y1, y2, · · · , yn)T .

Then

‖ x+ y ‖1 =
∑n

k=1 | xk + yk | ≤
∑n

k=1( | xk | + | yk | )

=
∑n

k=1 | xk | +
∑n

k=1 | yk | = ‖ x ‖1 + ‖ y ‖1 .

‖ x+ y ‖2 ≤ ‖ x ‖2 + ‖ y ‖2 “by geometry′′ (Proof given later.)

‖ x+ y ‖∞ = maxk | xk + yk | ≤ maxk | xk | +maxk | yk |

= ‖ x ‖∞ + ‖ y ‖∞ .
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EXERCISES :

• Let x = (1,−2, 3)T . Compute ‖ x ‖1, ‖ x ‖2, and ‖ x ‖∞.

• Graphically indicate all points x = (x1, x2)
T in R

2 for which ‖ x ‖2= 1.
Do the same for ‖ x ‖1 and ‖ x ‖∞ .

• Graphically indicate all points x = (x1, x2)
T in R

2 for which ‖ x ‖2≤ 1.
Do the same for ‖ x ‖1 and ‖ x ‖∞ .

• Graphically indicate all points x = (x1, x2, x3)
T ∈ R

3 with ‖ x ‖2= 1.
Do the same for ‖ x ‖1 and ‖ x ‖∞ .

• Prove that ‖ x ‖1 ≤ n ‖ x ‖∞ .

• Prove that ‖ x ‖2 ≤ √
n ‖ x ‖∞ .

• Prove that ‖ x ‖2 ≤ ‖ x ‖1 .

• Prove that limp→∞ ‖ x ‖p = ‖ x ‖∞ .
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We also need a measure of the magnitude of a square matrix (matrix norm).

This is defined in terms of a given vector norm , namely,

‖ A ‖ ≡ max
x 6=0

‖ Ax ‖
‖ x ‖ .

Thus ‖ A ‖ measures the maximum relative stretching in a given vector
norm that occurs when multiplying all non-zero vectors x ∈ Rn by A.

From this definition it follows that for arbitrary y ∈ R
n , y 6= 0, we have

‖ Ay ‖
‖ y ‖ ≤ ‖ A ‖ ,

i.e.,
‖ Ay ‖ ≤ ‖ A ‖ ‖ y ‖ .
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For specific choices of vector norm it is convenient to express the induced
matrix norm directly in terms of the elements of the matrix :

For the case of the ‖ · ‖∞ let

A ≡









a11 a12 · · · a1n
a21 a22 · · · a2n
· · · · · · · · · · · ·
an1 an2 · · · ann









, and let R ≡ max
i

n
∑

j=1

| aij | .

Thus R is the “maximum absolute row sum”. For x ∈ R
n , x 6= 0, we have

‖ Ax ‖∞
‖ x ‖∞

=
maxi |

∑n
j=1 aijxj |

‖ x ‖∞

≤
maxi

∑n
j=1 | aij || xj |
‖ x ‖∞

≤
maxi{

∑n
j=1 | aij | ‖ x ‖∞}
‖ x ‖∞

= R .
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Next we show that for any matrix A there always is a vector y for which

‖ Ay ‖∞
‖ y ‖∞

= R .

Let k be the row of A for which
∑n

j=1 | akj | is a maximum, i.e.,

n
∑

j=1

| akj | = R .

Take y = (y1, y2, · · · , yn)T such that

yj =







1 if akj ≥ 0 ,

−1 if akj < 0 .

Then

‖ Ay ‖∞
‖ y ‖∞

= ‖ Ay ‖∞ = max
i

|
n

∑

j=1

aijyj | =
n

∑

j=1

| akj | = R .
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Thus we have shown that

‖ A ‖∞ is equal to the maximum absolute row sum.

EXAMPLE : If

A =





1 2 −3
1 0 4

−1 5 1



 ,

then
‖ A ‖∞ = max{6, 5, 7} = 7 .

NOTE : In this example the vector y is given by y = (−1, 1, 1)T .

For this vector we have

‖ Ay ‖∞
‖ y ‖∞

= 7 = maximum absolute row sum.

9



Similarly one can show that

‖ A ‖1 ≡ max
x 6=0

‖ Ax ‖1
‖ x ‖1

= max
j

n
∑

i=1

| aij |

= the maximum absolute column sum.
(Check !)

EXAMPLE : For the matrix

A =





1 2 −3
1 0 4

−1 5 1



 ,

we have

‖ A ‖1 = max{3, 7, 8} = 8 .
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One can also show that

‖ A ‖2 ≡ max
x 6=0

‖ Ax ‖2
‖ x ‖2

= max
i

κi(A) ,

where the κi(A) are defined to be

the square roots of the eigenvalues of the matrix ATA .

(These eigenvalues are indeed nonnegative).

The quantities {κi(A)}ni=1 are called the singular values of the matrix A.
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EXAMPLE : If

A =

(

1 1
0 1

)

,

then

ATA =

(

1 0
1 1

) (

1 1
0 1

)

=

(

1 1
1 2

)

.

The eigenvalues λ of ATA are obtained from

det(ATA−λI) = det

(

1− λ 1
1 2− λ

)

= (1−λ)(2−λ)−1 = λ2−3λ+1 = 0 ,

from which

λ1 =
3 +

√
5

2
and λ2 =

3−
√
5

2
.

Thus we have

‖ A ‖2 =

√

(3 +
√
5)/2 ∼= 1.618 .
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If A is invertible then we also have

‖ A−1 ‖2 =
1

mini κi(A)
.

Thus if we order the square roots of the eigenvalues of ATA as

κ1 ≥ κ2 ≥ · · ·κn ≥ 0 ,

then

‖ A ‖2 = κ1, and ‖ A−1 ‖2 =
1

κn

.

Thus in the previous example we have

‖ A−1 ‖2 =
1

√

(3−
√
5)/2

∼= 1.618 (!)
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EXERCISES :

• Let A =

(

0 2
0 0

)

. Compute ‖ A ‖2 .

• Let A =





1 0 0
0 0 1
0 −1 0



 . Compute ‖ A ‖2.

For a general n by n matrix A :

• Prove that ‖ A ‖2 ≤ √
n ‖ A ‖∞ .

• Prove that ‖ A ‖1 is equal to the maximum absolute column sum.
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EXERCISES :

• Let A be any n by n matrix. For each of the following state whether
it is true or false. If false then give a counter example.

‖ A ‖1 ≤ ‖ A ‖∞ , ‖ A ‖∞ ≤ ‖ A ‖1 .

• Give a constructive proof that for any square matrix A

there is a vector x 6= 0 such that

‖ Ax ‖∞ = ‖ A ‖∞ ‖ x ‖∞ .

• Give a constructive proof that for any square matrix A

there is a vector x 6= 0 such that

‖ Ax ‖1 = ‖ A ‖1 ‖ x ‖1 .

• Is there a vector x such that

‖ Ax ‖1 > ‖ A ‖1 ‖ x ‖1 ?
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All matrix norms defined in terms of (induced by) a given vector norm as

‖ A ‖ = max
x 6=0

‖ Ax ‖
‖ x ‖

automatically satisfy

(i) ‖ A ‖ ≥ 0, and ‖ A ‖ = 0 only if A = O (zero matrix) ,

(ii) ‖ αA ‖ = | α | ‖ A ‖, ∀α ∈ R ,

(iii) ‖ A+B ‖ ≤ ‖ A ‖ + ‖ B ‖ .

Check : Properties (i) and (ii) !
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PROOF of (iii) :

‖ A+B ‖ = max
x 6=0

‖ (A+B)x ‖
‖ x ‖

= max
x 6=0

‖ Ax+Bx ‖
‖ x ‖

≤ max
x 6=0

‖ Ax ‖ + ‖ Bx ‖
‖ x ‖

≤ max
x 6=0

‖ Ax ‖
‖ x ‖ + max

x 6=0

‖ Bx ‖
‖ x ‖

≡ ‖ A ‖ + ‖ B ‖ . QED !
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In addition we have

(iv) ‖ AB ‖ ≤ ‖ A ‖ ‖ B ‖ .

PROOF of (iv) :

‖ AB ‖ = max
x 6=0

‖ (AB)x ‖
‖ x ‖

= max
x 6=0

‖ A(Bx) ‖
‖ x ‖

≤ max
x 6=0

‖ A ‖ ‖ Bx ‖
‖ x ‖

≤ max
x 6=0

‖ A ‖ ‖ B ‖ ‖ x ‖
‖ x ‖ = ‖ A ‖ ‖ B ‖ . QED !
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EXERCISES : Let A and B be arbitrary n by n matrices.

• Is it true that
‖ AB ‖2 = ‖ A ‖2 ‖ B ‖2 ?

If false then give a counterexample.

• Is it true that
‖ A ‖1 ‖ A−1 ‖1 = 1 ?

If false then give a counterexample.

• Let A =

(

0 2
0 0

)

. Compute spr(A) , the “spectral radius” of A .

(Here spr(A) is the absolute value of the largest eigenvalue of A.)

Explain why spr(A) is not a matrix norm.
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The Banach Lemma.

Let B be an n by n matrix .

If in some induced matrix norm

‖ B ‖ < 1 ,

then
I+B is nonsingular

and

‖ (I+B)−1 ‖ ≤ 1

1− ‖ B ‖ .
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PROOF :

Suppose on the contrary that I+B is singular.

Then
(I+B) y = 0 ,

for some nonzero vector y .

Hence

B y = − y ,

and

1 =
‖ B y ‖
‖ y ‖ ≤ ‖ B ‖ ‖ y ‖

‖ y ‖ = ‖ B ‖ ,

which contradicts the assumption of the Lemma. (Why ?)

Hence I+B is nonsingular.
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We now have

(I+B) (I+B)−1 = I ,
from which

(I+B)−1 = I−B (I+B)−1 .

Hence
‖ (I+B)−1 ‖ ≤ ‖ I ‖ + ‖ B ‖ ‖ (I+B)−1 ‖ .

Since ‖ I ‖ is always 1 in any induced matrix norm, we get

(1− ‖ B ‖) ‖ (I+B)−1 ‖ ≤ 1 ,

from which

‖ (I+B)−1 ‖ ≤ 1

1− ‖ B ‖ . QED !
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EXERCISES :

• Consider the n by n tridiagonal matrix Tn = diag[1, 3, 1] .
For example,

T4 =









3 1 0 0
1 3 1 0
0 1 3 1
0 0 1 3









.

Use the Banach Lemma to show that Tn is invertible for all positive
integers n. Also compute an upper bound on ‖ T−1

n ‖∞.

• Let An be the n by n symmetric matrix

An =













1 1
n

1
n

· · · 1
n

1
n

1
n

1 1
n

· · · 1
n

1
n

1
n

1
n

1 · · · 1
n

1
n

· · · · · · · ·
1
n

1
n

1
n

· · · 1
n

1













.

Show An for the case n = 3. Prove that An is invertible for any
dimension n , and determine an upper bound on ‖ A−1

n ‖∞ .
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EXERCISES :

• Let An be the n by n symmetric matrix

An =













2n 1 1 · · · 1 1
1 2n 1 · · · 1 1
1 1 2n · · · 1 1
· · · · · · · ·
1 1 1 · · · 1 2n













.

Show An for the cases n = 2, 3. Prove that An is invertible for any
dimension n , and determine an upper bound on ‖ A−1

n ‖∞ .

• A square matrix is called diagonally dominant if in each row the ab-
solute value of the diagonal element is greater than the sum of the
absolute values of the off-diagonal elements. Use the Banach Lemma
to prove that a diagonally dominant matrix is invertible.

• Derive an upper bound on ‖ T−1
n ‖∞ for the n by n tridiagonal matrix

Tn = diag[1 , 2 + 1/n , 1] .
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THE NUMERICAL SOLUTION OF LINEAR SYSTEMS

The Gauss Elimination Method.

EXAMPLE : For given 4 by 4 matrix A and vector f ∈ R
4 ,

A =









1 −2 −1 2
2 0 1 2
2 0 4 1
1 6 1 2









, f =









−2
5
7
16









,

solve
Ax = f ,

for

x =









x1

x2

x3

x4









.
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1 −2 −1 2
2 0 1 2
2 0 4 1
1 6 1 2

















x1

x2

x3

x4









=









−2
5
7
16









subtract 2 × row 1 from row 2
subtract 2 × row 1 from row 3
subtract 1 × row 1 from row 4









1 −2 −1 2
0 4 3 −2
0 4 6 −3
0 8 2 0

















x1

x2

x3

x4









=









−2
9
11
18







 subtract 1 × row 2 from row 3
subtract 2 × row 2 from row 4









1 −2 −1 2
0 4 3 −2
0 0 3 −1
0 0 −4 4

















x1

x2

x3

x4









=









−2
9
2
0









subtract− 4
3
× row 3 from row 4









1 −2 −1 2
0 4 3 −2
0 0 3 −1
0 0 0 8/3

















x1

x2

x3

x4









=









−2
9
2
8/3
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The bold-face numbers at the top left of each submatrix are the pivots :









1 −2 −1 2
0 4 3 −2
0 0 3 −1
0 0 0 8/3









The final matrix is an upper triangular matrix.
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The upper triangular system








1 −2 −1 2
0 4 3 −2
0 0 3 −1
0 0 0 8/3

















x1

x2

x3

x4









=









−2
9
2
8/3









,

can be solved by backsubstitution :

x4 = (8/3)/(8/3) = 1 ,

x3 = [2− (−1)1]/3 = 1 ,

x2 = [9− (−2)1− (3)1]/4 = 2 ,

x1 = [−2− (2)1− (−1)1− (−2)2]/1 = 1 .

(Of course, actual computer computations use floating point arithmetic .)
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Operation Count.

Using Gauss elimination for general n by n matrices, counting multiplications
and divisions only (and treating these as equivalent).

(i) Triangularization (illustrated for n = 4) :









• • • •
• • • •
• • • •
• • • •

















x1

x2

x3

x4









=









•
•
•
•









⇒









• • • •
◦ ⋆ ⋆ ⋆
◦ ◦ ⋆ ⋆
◦ ◦ ◦ ⋆

















x1

x2

x3

x4









=









•
⋆
⋆
⋆









(n+ 1)(n− 1) + n(n− 2) + · · · + (3)(1)

=

n−1
∑

k=1

k(k + 2) =

n−1
∑

k=1

k2 + 2

n−1
∑

k=1

k

=
(n− 1)n(2n− 1)

6
+ n(n− 1) =

n(n− 1)(2n+ 5)

6
. (Check !)
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(ii) Backsubstitution :








• • • •
◦ ⋆ ⋆ ⋆
◦ ◦ ⋆ ⋆
◦ ◦ ◦ ⋆

















x1

x2

x3

x4









=









•
⋆
⋆
⋆









1 + 2 + · · · + n =
n(n+ 1)

2
.

Taking the total of triangularization and backsubstitution we obtain

n(n− 1)(2n+ 5)

6
+

n(n+ 1)

2
=

n3

3
+ n2 − n

3
. (Check !)

EXAMPLES :

if n = 10 , then the total is 430,

if n = 100 , then the total is 343 430,

if n = 1000, then the total is 336 333 430.

For large values of n the dominant term in the total operation count is n3/3.

30



Reconsider the Gauss elimination procedure for solving the system

Ax = f ,

given by








1 −2 −1 2
2 0 1 2
2 0 4 1
1 6 1 2

















x1

x2

x3

x4









=









−2
5
7
16









.

• In each step retain the equation that cancels the operation performed.

• This is done by storing the multipliers appropriately in the identity matrix.
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I A x I f








1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

















1 −2 −1 2
2 0 1 2
2 0 4 1
1 6 1 2

















x1
x2
x3
x4









=









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

















−2
5
7
16

















1 0 0 0
2 1 0 0
2 0 1 0
1 0 0 1

















1 −2 −1 2
0 4 3 −2
0 4 6 −3
0 8 2 0

















x1
x2
x3
x4









=









1 0 0 0
2 1 0 0
2 0 1 0
1 0 0 1

















−2
9
11
18

















1 0 0 0
2 1 0 0
2 1 1 0
1 2 0 1

















1 −2 −1 2
0 4 3 −2
0 0 3 −1
0 0 −4 4

















x1
x2
x3
x4









=









1 0 0 0
2 1 0 0
2 1 1 0
1 2 0 1

















−2
9
2
0

















1 0 0 0
2 1 0 0
2 1 1 0
1 2 −4

3 1

















1 −2 −1 2
0 4 3 −2
0 0 3 −1
0 0 0 8

3

















x1
x2
x3
x4









=









1 0 0 0
2 1 0 0
2 1 1 0
1 2 −4

3 1

















−2
9
2
8
3









L U x L g
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NOTE :

• Gauss elimination generates an LU-decomposition of A :

A = L U .

L is lower triangular and U is upper triangular.

The below-diagonal entries of L are the multipliers.

• In addition we have Lg = f .

Furthermore, LUx = Lg, where L is nonsingular.

• Hence we also have Ux = g .
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Using the LU-decomposition for multiple right hand sides.

Suppose we want to solve
Ax(k) = f (k) ,

with fixed A, but for multiple right hand side vectors

f (k) , k = 1, 2, · · · ,m .

Algorithm :

(i) Determine the LU-decomposition of A .

(ii) Solve







Lg(k) = f (k) ,

Ux(k) = g(k) ,
k = 1, 2, · · · ,m .

Note that the decomposition need only be computed once.
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Operation Count.

Multiplications and divisions for an n by n system with m right hand sides :

Step (i) (LU-decomposition) :








• • • •
• • • •
• • • •
• • • •









⇒









• • • •
◦ ⋆ ⋆ ⋆
◦ ◦ ⋆ ⋆
◦ ◦ ◦ ⋆









n (n− 1) + (n− 1) (n− 2) + · · ·+ (2) (1)

=
n−1
∑

k=1

k (k + 1) =
n−1
∑

k=1

k2 +
n−1
∑

k=1

k

=
(n− 1) n (2n− 1)

6
+

n (n− 1)

2
=

n3

3
− n

3
. (Check !)
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L g f U x g








1 ◦ ◦ ◦
⋆ 1 ◦ ◦
⋆ ⋆ 1 ◦
⋆ ⋆ ⋆ 1

















g1
g2
g3
g4









=









•
•
•
•









,









• • • •
◦ ⋆ ⋆ ⋆
◦ ◦ ⋆ ⋆
◦ ◦ ◦ ⋆

















x1

x2

x3

x4









=









•
•
•
•









Step (ii) (Backsubstitution) :






Lg(k) = f (k) : m(1 + 2 + · · ·+ (n− 1)) ,
k = 1, 2, · · · ,m .

Ux(k) = g(k) : m(1 + 2 + · · ·+ n) .

Total Step (ii) : mn2 (Check !).

The total of Steps (i) and (ii) is therefore

n3

3
+ mn2 − n

3
.

NOTE : For m small and n large the dominant term remains n3/3.
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Tridiagonal systems.

For tridiagonal systems of linear equations

















b1 c1
a2 b2 c2

a3 b3 c3
. . .

an−1 bn−1 cn−1

an bn

































x1

x2

x3

.
xn−1

xn

















=

















f1
f2
f3
.

fn−1

fn

















,

Gauss elimination reduces to this simple algorithm :

β1 = b1 , g1 = f1 ,

γk = ak/βk−1 ,

βk = bk − γkck−1 ,

gk = fk − γkgk−1 ,























k = 2, 3, · · · , n .
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This transform the tridiagonal system into the upper-triangular form

















β1 c1
β2 c2

β3 c3
. .

βn−1 cn−1

βn

































x1

x2

x3

.
xn−1

xn

















=

















g1
g2
g3
.

gn−1

gn

















.

The backsubstitution algorithm now becomes

xn =
gn
βn

,

xk =
gk − ckxk+1

βk

, k = n− 1 , n− 2 , · · · , 1 .
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The resulting LU-decomposition is

















1
γ2 1

γ3 1
. .

γn−1 1
γn 1

































β1 c1
β2 c2

β3 c3
. .

βn−1 cn−1

βn

















The total number of multiplications and divisions is 5n− 4 . (Check !)
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Inverses.

The inverse of a n by n matrix A is defined to be a matrix A−1 such that

A (A−1) = (A−1) A = I ,

where

I ≡









1 0 · 0
0 1 · 0
· · · ·
0 0 · 1









(the identity matrix ) .

A is invertible if and only if

det A 6= 0 .

The inverse is then unique.
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To compute A−1 we can solve

A (A−1) = I ,

which is of the form

A A−1 I








• • • •
• • • •
• • • •
• • • •

















c11 c12 c13 c14
c21 c22 c23 c24
c31 c32 c33 c34
c41 c42 c43 c44









=









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









.

This corresponds to solving a linear system with n right hand sides.

Using the earlier formula, the number of multiplications and divisions is

n3

3
+ (n) n2 − n

3
=

4n3

3
− n

3
.

41



But we can omit some operations , because the right hand side vectors,

i.e., the columns of I , are very special.

In particular, multiplications by 0 or 1 can be omitted.

The total number of multiplications that can be omitted is seen to be

(n) (n− 1) + (n− 1) (n− 2) + · · ·+ (2) (1) =

n−1
∑

k=1

k (k + 1)

=
n−1
∑

k=1

k2 +
n−1
∑

k=1

k =
(n− 1) n (2n− 1)

6
+

n (n− 1)

2

=
n3

3
− n

3
. (Check !)

Thus to find A−1 we need only

(
4n3

3
− n

3
) − (

n3

3
− n

3
) = n3 operations .
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NOTE :

To solve a n by n linear system

Ax(k) = f (k) ,

with m right hand sides, takes

n3

3
+ mn2 − n

3
operations ,

as derived earlier for the LU-decomposition algorithm.

One can also find the solution vectors by computing A−1 , and setting

x(k) = A−1 f (k) .

But this takes
n3 + mn2 operations ,

which is always less efficient , no matter how big n and m are !
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EXERCISES :

• Compute the LU-decomposition of the tridiagonal matrix

T4 =









3 1 0 0
1 3 1 0
0 1 3 1
0 0 1 3









.

Let f = (4, 5, 5, 4)T . Using the matrices L and U, solve Lg = f ,
followed by Ux = g . After having computed the vector x in this way,
check your answer by verifying that x satisfies the equation T4x = f .

• How many multiplications and divisions are needed to compute the
LU-decomposition of the specific tridiagonal matrix Tn = diag[1, 3, 1]
as a function of n ? Make sure not to count unnecessary operations.

• If the LU-decomposition of this n by n tridiagonal matrix takes 0.01
second on a given computer if n = 105, then how much time could it
take if n = 109 ?
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EXERCISES :

• Suppose the LU decomposition of a matrix A is given by

L =





1 0 0
1 1 0
1 1 1



 and U =





1 2 3
0 1 2
0 0 1



 .

Using only L , U , and f , i.e., without explicitly determining A ,
solve Ax = f , when f = ( 6, 9, 10 )T .

• Suppose that solving a general n by n linear system of the form Ax = f

by Gauss elimination takes 10 seconds on a given computer if n = 1000.

Estimate how much time it will take to solve a 1000 by 1000 system
Lg = f , followed by solving Ux = g, where L is lower triangular with
1’s along its main diagonal, and where U is upper triangular?

Thus you may assume that L and U have already been computed.
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EXERCISES :

• Suppose that multiplying two general n by n matrices takes 3 seconds
on a given computer, if n = 1000.

Estimate how much time it will take to compute the LU-decomposition
of such a matrix.

• Suppose that solving a general system of linear equations of dimension
1000 takes 10 seconds on a given computer.

Estimate how much time it will take to solve a tridiagonal linear system
of dimension 106 on that computer.

• • How many divisions are needed for LU-decomposition of an n by n
tridiagonal matrix (not counting multiplications and additions)?

• • How many divisions are needed for LU-decomposition of an n by n
general matrix (not counting multiplications and additions)?

46



Practical Considerations.

• Memory reduction.

In an implementation of the LU decomposition algorithm, the multipliers
can be stored in the lower triangular part of the original matrix A.

In the earlier example, with

A =









1 −2 −1 2
2 0 1 2
2 0 4 1
1 6 1 2









,

this function would return the matrix :









1 −2 −1 2
2 4 3 −2
2 1 3 −1
1 2 −4/3 8/3









.
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• Row interchanges.

Gauss elimination will fail for the matrix




0 2 1
1 1 2
2 3 −1



 ,

since the first pivot is zero.

A division by zero will occur when the first multiplier is computed !

The remedy is to interchange rows to get




1 1 2
0 2 1
2 3 −1





Several such interchanges may be needed during Gauss elimination.
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• Loss of accuracy.

More generally, loss of accuracy may occur when there are large multipliers .

EXAMPLE : Solve




0.0000001 1

1 1









x1

x2



 =





1

2



 ,

on a “six-decimal-digit computer”.

NOTE :

• The solution is x1
∼= 1 , x2

∼= 1 .

• The multiplier is 10,000,000 .
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A “Six-decimal-digit computer ” :

Assume all arithmetic operations are performed to infinite precision,

but then truncated to six decimal digits (plus exponent).

Thus, for example,
−100/3

is stored as
−3.33333 101
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0.0000001 1

1 1









x1

x2



 =





1

2





(a) Elimination gives :




1.00000E− 07 1.00000E + 00

0 −999999E + 01









x1

x2



 =





1.00000E + 00

−999999E + 01



 .

(b) Backsubstitution gives :

x2 = 1.00000E + 00 , x1 = 0.00000E + 00 .

Clearly this result is very bad !
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Again, the remedy is to interchange rows :




1 1

0.0000001 1









x1

x2



 =





2

1



 .

Now the multiplier is only 1.00000E− 07, and we obtain :

(a) Elimination :




1.000000E + 00 1.000000E + 00

0 .999999E + 00









x1

x2



 =





2.00000E + 00

.999999E + 00



 .

(b) Backsubstitution : x2 = 1.00000E + 00, x1 = 1.0000E + 00 .

This solution is accurate !
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Gauss Elimination with pivoting.

A variant of the Gauss elimination procedure that avoids loss of accuracy
due to large multipliers is called

“Gauss elimination with partial pivoting (or row pivoting)”.

Here rows are interchanged each time a pivot element is sought, so that the
pivot is as large as possible in absolute value.

(In practice pointers to rows are interchanged.)

All multipliers will then be less than 1 in magnitude.
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EXAMPLE :





2 2 1
1 0 1
4 1 2









x1
x2
x3



 =





5
2
7





interchange row 1 and 3





4 1 2
1 0 1
2 2 1









x1
x2
x3



 =





7
2
5



 subtract 1
4 row 1 from row 2

subtract 2
4 row 1 from row 3





4 1 2
0 −1/4 1/2
0 3/2 0









x1
x2
x3



 =





7
1/4
3/2



 interchange row 2 and 3





4 1 2
0 3/2 0
0 −1/4 1/2









x1
x2
x3



 =





7
3/2
1/4





subtract
−1
6 row 2 from row 3





4 1 2
0 3/2 0
0 0 1/2









x1
x2
x3



 =





7
3/2
1/2





backsubstitution : x1 = 1
backsubstitution : x2 = 1
backsubstitution : x3 = 1
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EXERCISES :

• Use Gauss elimination with row pivoting to solve




1 2 3
2 8 11
3 22 35









x1

x2

x3



 =





0
1
10



 .

The solution is x = (−1 ,−1 , 1) . If done honestly (with pivoting !)
then all multipliers will be less than 1 in magnitude.

• Suppose that Gauss elimination with row pivoting is used to solve








2 1 0 0
1 2 1 0
0 1 2 1
0 0 1 2

















x1

x2

x3

x4









=









4
8
12
11









.

Are any rows actually interchanged?

Can you also answer this question for general Tn = diag[1, 2, 1] ?
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Error Analysis.

Suppose we want to solve

Ax = f ,

where the n by n matrix A is nonsingular (i.e., invertible).

Suppose a small error is made in the right hand side, i.e., instead we solve

Ay = f + r.

What will be the error ‖ y − x ‖ in the solution ?
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From
Ay = f + r ,

subtract
Ax = f ,

to get
A(y − x) = r .

Thus
y − x = A−1r ,

so that
‖ y − x ‖ = ‖ A−1r ‖ ≤ ‖ A−1 ‖ ‖ r ‖ .

Hence if ‖ A−1 ‖ is large then a small perturbation r in f may lead to a
large change in x .
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EXAMPLE :
(

1 −1.001
2.001 −2

)(

x1

x2

)

=

(

2.001
4.001

)

,

has exact solution
x1 = 1 , x2 = −1 .

Suppose instead we solve

(

1 −1.001
2.001 −2

)(

y1
y2

)

=

(

2.000
4.002

)

.

The exact solution of this system is

y1 = 2 , y2 = 0 .
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Note that the small change in the right hand side has norm

‖ r ‖∞ = 0.001 .

Also note that the change in the solution is much larger , namely,

‖ x− y ‖∞ = 1 .

In this example

A−1 ∼=





−666.44 333.55

−666.77 333.22



 .

Hence
‖ A−1 ‖∞ ∼= 1000 , whereas ‖ A ‖∞ ∼= 4 .
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Errors always occur in floating point computations due to finite word length.

For example, on a “six digit computer” 1
3
is represented by 3.33333 10−1 .

Such errors occur in both right hand side and matrix.

Suppose we want to solve
Ax = f ,

but instead solve the perturbed system

(A+ E)y = f + r .

Here the perturbation E is also a n by n matrix.
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THEOREM : Consider

Ax = f , and (A+ E)y = f + r .

Assume that

A is nonsingular, and that ‖ E ‖< 1

‖ A−1 ‖ , i .e. , ‖ A−1 ‖ ‖ E ‖ < 1 .

Then
‖ y − x ‖
‖ x ‖ ≤ cond(A)

1− ‖ A−1 ‖‖ E ‖
(‖ r ‖
‖ f ‖ +

‖ E ‖
‖ A ‖

)

,

where
cond(A) ≡ ‖ A−1 ‖‖ A ‖ ,

is called the condition number of A .
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PROOF :

First write
A+ E = A (I+A−1E) .

Now, using the assumption,

‖ A−1 E ‖ ≤ ‖ A−1 ‖ ‖ E ‖ < 1 ,

it follows from by the Banach Lemma that

(I+A−1E) is nonsingular and

‖ (I+A−1E)−1 ‖ ≤ 1

1− ‖ A−1E ‖ ≤ 1

1− ‖ A−1 ‖‖ E ‖ .
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Next

(A+ E) y = f + r ,

implies
(I+A−1E) y = A−1 (f + r) ,

so that

y = (I+A−1E)−1 A−1 (f + r) .

Then

y − x = (I+A−1E)−1
(

A−1(f + r)− (I+A−1E)x
)

= (I+A−1E)−1
(

x+A−1r− x−A−1Ex
)

= (I+A−1E)−1 A−1 (r− Ex) .
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Finally,

‖ y − x ‖
‖ x ‖ ≤

‖ (I+A−1E)−1 ‖ ‖ A−1 ‖
(

‖ r ‖ + ‖ E ‖‖ x ‖
)

‖ x ‖

≤ ‖ A−1 ‖
1− ‖ A−1 ‖ ‖ E ‖

( ‖ r ‖
‖ x ‖+ ‖ E ‖

)

=
‖ A−1 ‖ ‖ A ‖

1− ‖ A−1 ‖ ‖ E ‖
( ‖ r ‖
‖ A ‖ ‖ x ‖ +

‖ E ‖
‖ A ‖

)

≤ ‖ A−1 ‖ ‖ A ‖
1− ‖ A−1 ‖ ‖ E ‖

(‖ r ‖
‖ f ‖ +

‖ E ‖
‖ A ‖

)

.

The last step uses the fact that

‖ f ‖ = ‖ Ax ‖ ≤ ‖ A ‖‖ x ‖ . QED !
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From the above theorem we can conclude that :

If cond(A) is large, then the relative error
‖ y − x ‖
‖ x ‖ can be large .

Note, however, that cond(A) is never less than 1 because

1 = ‖ I ‖ = ‖ A−1A ‖ ≤ ‖ A−1 ‖ ‖ A ‖ ≡ cond(A) ,

in any induced matrix norm.

A matrix having a large condition number is said to be ill-conditioned.
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EXAMPLE : The 2 by 2 matrix

(

1 −1.001
2.001 −2

)(

x1

x2

)

,

from the earlier example, with inverse

A−1 ∼=
(

−666.44 333.55
−666.77 333.22

)

,

has condition number

cond(A) ∼= (4)(1000) = 4000 ,

in the matrix infinity norm.

We may say that this matrix is ill-conditioned.
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Solving ill-conditioned systems numerically, if they can be solved at all on a
given computer, normally requires pivoting.

However, systems that need pivoting need not be ill-conditioned .

Reconsider, for example, the 2 by 2 matrix

A =

(

.0000001 1
1 1

)

, with A−1 ∼=
(

−1 1
1 0

)

(Check !) ,

for which the condition number is approximately 4 using the infinity norm.

But solving a linear system with the above A as coefficient matrix requires
pivoting, at least on a six (decimal) digit computer.

67



EXERCISE :

• Let
0 = t0 < t1 < t2 < · · · < tn = 1 ,

and let
hi = ti − ti−1 , i = 1, 2, · · · , n .

The following tridiagonal matrix arises in cubic spline interpolation

(to be discussed later) :

Sn−1 =













2(h1 + h2) h2

h2 2(h2 + h3) h3

h3 2(h3 + h4) h4

· · ·
hn−1 2(hn−1 + hn)













.

Prove that Sn−1 is invertible and determine a bound on cond(Sn−1) .

Are there situations where Sn−1 could be ill-conditioned?
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EXERCISES :

• Consider the n by n matrix :

Cn =









1 1 · · · 1
1 1 · · · 1
· · · ·
1 1 · · · 1









,

and let In be the n by n identity matrix.

For what ǫ does the Banach Lemma guarantee In + ǫCn is invertible?

Also determine a bound on cond(In + ǫCn) in this case.

• Use the Banach Lemma to prove that the five-diagonal matrix

Tn = diag[1, 1, 5, 1, 1] ,

is invertible for all n ≥ 1 .

Derive an upper bound on cond(Tn) using the matrix infinity norm.
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EXERCISES :

For each of the following statements, state whether it is true or false. If true
then explain why; if false then give a counterexample.

• A condition number of 106 is large.

• All large matrices are ill-conditioned.

• All ill-conditioned matrices have small determinants.

• Only ill-conditioned matrices require pivoting.

• If pivoting is needed then the matrix is ill-conditioned.

• The condition number of a matrix is never smaller than 1.

• Tridiagonal matrices are never ill-conditioned.
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EXERCISES :

For each of the following statements about matrices, say whether it is true
or false. Explain your answer.

• Two n by n matrices can be multiplied using n2 multiplications.

• LU-decomposition of the n by n tridiagonal matrix diag[1, 2, 1] can be
done using only n− 1 divisions and zero multiplications.

• LU-decomposition of a general n by n tridiagonal matrix requires 2n−2
multiplications and divisions.

• The n by n tridiagonal matrix Tn = diag[1, 2 + 1/n, 1] is nonsingular
for any positive integer n.
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EXERCISES :

For each of the following statements about matrices, say whether it is true
or false. Explain your answer.

• For large n, the LU-decomposition of a general n by n matrix requires
approximately n3/3 multiplications and divisions.

• The inverse of a general, nonsingular n by n matrix can be computed
using n3 multiplications and divisions.

• If D is a diagonal matrix (i.e., its entries dij are zero if i 6= j), then

‖ D ‖1 = ‖ D ‖2 = ‖ D ‖∞ .

• If ‖ A−1 ‖ is large then cond(A) is large.
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THE NUMERICAL SOLUTION OF NONLINEAR EQUATIONS

Introduction.

For a system of n linear equations in n unknowns

Ax = f ,

where x, f ∈ R
n , and A an n by n matrix , we have these possibilities :

(i) A is nonsingular : In this case there is a unique solution.

(ii) A is singular : There are no solutions or infinitely many. (Examples?)

Usually only case (i) is of interest.

The solution can be computed in a finite number of steps by Gauss Elimina-
tion (with pivoting, if necessary).
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We can write a system of n nonlinear equations in n unknowns as

G(x) = 0 ,

where

x , 0 ∈ R
n ,

x = (x1, x2, · · · , xn)
T ,

and where G is a vector-valued function of x having n component functions,

G(x) = (g1(x) , g2(x) , · · · , gn(x))
T .
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EXAMPLES : (of possible situations) :

• x2 − 1 = 0 has two solutions : x = 1 , x = −1 .

• x2 + 1 = 0 has two solutions : x = i , x = −i .

• e−x − sin(x) = 0 has a countably infinite number of solutions.

• The system (2x1 − x2 = 0 , x3
1 + x1 − x2 = 0) has three solution pairs,

namely, (x1, x2) = (0, 0) , (1, 2) , (−1,−2) .

• The system (x1x2 − 1 = 0 , x1x2 − 2 = 0) has no solutions.

• The system (ex1−x2 −1 = 0 , x1−x2 = 0) has a continuum of solutions.
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NOTE :

For nonlinear equations :

• There can be 0, 1, 2, 3, 4, · · · ∞ solutions.

• A solution can usually not be computed in a finite number of steps.

• Instead, iterative methods will be used.

• We will not consider the case of a continuum of solutions.
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Some Methods for Scalar Nonlinear Equations.

Consider the scalar equation (one equation, one unknown)

g(x) = 0 ,

and let x∗ denote a solution (or zero , or root ) of this equation.
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The Bisection Method.

This method requires two initial points :

x(0) , y(0) with g(x(0)) < 0 and g(y(0)) > 0 .

Algorithm : For k = 0, 1, 2, · · · :

• Set z(k) = 1
2
(x(k) + y(k)) ,

• If g(z(k)) < 0 set x(k+1) = z(k) , y(k+1) = y(k) ,

• If g(z(k)) > 0 set x(k+1) = x(k) , y(k+1) = z(k) .
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g(x)

x

x z y
x

x

y

(1)

(0)

*

(1)

(0)

g(x  )

g(y  )(0)

(0)

(0)

The Bisection method.

The bisection method works if g(x) is continuous in the interval [x(0), y(0)].

In fact we have

| x(k) − x∗ | ≤ 1

2k
| x(0) − y(0) | .

The method does not readily generalize to systems of nonlinear equations.
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The Regula Falsi.

This method is similar to the bisection method.

However, in each step we now let

z(k) =
x(k)g(y(k))− y(k)g(x(k))

g(y(k))− g(x(k))
.
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g(x)

x
x

x (1)

(0)

(0)x* z
y (1)

y

g(y  )

g(x  )(0)

(0)

(0)

The Regula Falsi.

z(k) =
x(k)g(y(k))− y(k)g(x(k))

g(y(k))− g(x(k))
.

z(k) is the zero of the line from (x(k), g(x(k))) to (y(k), g(y(k))) . (Check !)
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Unlike the bisection method, not both x(k) and y(k) need converge to x∗ :

g(x)

x
x

x (1)

(0)

(0)z
y (1)

y

g(y  )

g(x  )(0)

(0)

x*

z
y

(2)

(2)

x (2)

.

.

(0)

The Regula Falsi : Nonconvergence of x(k) to x∗ .

The Regula Falsi does not readily generalize to nonlinear systems.
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Newton’s Method.

Let x(0) be an initial guess for a zero x∗ of g(x) = 0 .

The line p0(x) that satisfies

p0(x
(0)) = g(x(0))

and
p′0(x

(0)) = g′(x(0)) ,

is given by

p0(x) = g(x(0)) + (x− x(0)) g′(x(0)) . (Check !)
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x

g(x)

x(1)

x*

(0)x

p (x)
0

g(x  )(0)

x(2)

Newton’s method

If g is sufficiently smooth and x(0) is close to x∗ then we expect the zero

x(1) = x(0) − g(x(0))

g′(x(0))
, (Check !)

of p0(x) to be a better approximation to x∗ than x(0) .
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This procedure may now be repeated for the point x(1).

The general algorithm for Newton’s method can therefore be written as

x(k+1) = x(k) − g(x(k))

g′(x(k))
, k = 0, 1, 2, · · · .

Later we show that Newton’s method converges to a zero x∗ of g(x) = 0 if

• g has two continuous derivatives near x∗,

• g′(x∗) 6= 0 ,

• x(0) is sufficiently close to x∗ .
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EXAMPLE :

Use Newton’s method to compute the square root of 2 .

Note that this square root is a zero of g(x) ≡ x2 − 2.

Thus the Newton iteration is given by

x(k+1) = x(k) − (x(k))2 − 2

2x(k)
=

(x(k))2 + 2

2x(k)
.

With x(0) = 1.5 , we get

x(1) = 1.41666 , x(2) = 1.414215 , etc.

Newton’s method generalizes to systems of nonlinear equations.

This extension will be considered later.
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The Chord Method.

This method is similar to Newton’s method.

The only difference is that g′(x) is always evaluated at the initial point x(0).

Thus the algorithm is

x(k+1) = x(k) − g(x(k))

g′(x(0))
.
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x

g(x)

x(1)

x*

(0)x

p (x)
0

g(x  )(0)

(2)x

The Chord method

x(k+1) = x(k) − g(x(k))

g′(x(0))
.
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Compared to Newton’s method :

• The Chord method takes fewer arithmetic operations per iteration.

• The two methods converge under essentially the same conditions.

• The Chord method needs more iterations for a prescribed accuracy.
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EXAMPLE :

With x(0) = 1.5 the Chord method for solving x2 − 2 = 0 takes the form

x(k+1) = x(k) − (x(k))2 − 2

3
.

The first few iterations give

x(1) = 1.416666 , x(2) = 1.414351 , x(3) = 1.414221 .
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EXERCISES :

• Show how to use Newton’s method to compute the cube root of 2.
Carry out the first few iterations, using x(0) = 0.6.

• Show how to use the Chord method to compute the cube root of 2.
Carry out the first few iterations, using x(0) = 0.6.

• Consider the equation
sin(x) = 1/x .

Show the graphs of sin(x) and 1/x in one diagram. How many solutions
are there to this equation ? Write down Newton’s method for finding
a solution. Carry out the first few iterations with x(0) = π/2.

• Consider the equation sin(x) = e−x. Draw the functions sin(x) and
e−x in one graph. How many solutions are there to the above equa-
tion ? Show how one can use Newton’s method to find a solution of
the equation. Carry out the first few Newton iterations, using x(0) = 0.
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Newton’s Method for Systems of Nonlinear Equations.

First reconsider Newton’s method for scalar equations

g(x) = 0 .

Given x(k), we set x(k+1) to be the zero of

pk(x) ≡ g(x(k)) + (x− x(k)) g′(x(k)) .

NOTE :

• pk(x) is the tangent line to g(x) at x = x(k) , i.e.,

• pk(x) is the linear approximation to g(x) at x = x(k) , i.e.,

• pk(x) is the degree 1 Taylor polynomial of g(x) at x = x(k) .
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Similarly for systems of the form

G(x) = 0 ,

we have the linear approximation

Pk(x) ≡ G(x(k)) + G′(x(k)) (x− x(k))

of G(x) about x = x(k) .

Here G′(x(k)) is the Jacobian matrix of G(x) at x = x(k).

Analogous to the scalar case we let x(k+1) be the zero of Pk(x) = 0 .
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Thus x(k+1) is the solution of the linear system

G′(x(k)) (x(k+1) − x(k)) = −G(x(k)) ,

that is, we can get x(k+1) by first solving

• G′(x(k)) ∆x(k) = −G(x(k)) ,

and then setting

• x(k+1) = x(k) + ∆x(k) .
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EXAMPLE :

Use Newton’s method to solve the system

x2
1x2 − 1 = 0 ,

x2 − x4
1 = 0 .

Here

x =

(

x1

x2

)

, G(x) =

(

g1(x)
g2(x)

)

=

(

g1(x1, x2)
g2(x1, x2)

)

=

(

x2
1x2 − 1
x2 − x4

1

)

.

The Jacobian matrix in this example is given by

G′(x) ≡





∂g1
∂x1

∂g1
∂x2

∂g2
∂x1

∂g2
∂x2



 =





2x1x2 x2
1

−4x3
1 1



 .
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Hence Newton’s method for this problem takes the form

•





2x
(k)
1 x

(k)
2 (x

(k)
1 )2

−4(x
(k)
1 )3 1









∆x
(k)
1

∆x
(k)
2



 =





1− (x
(k)
1 )2x

(k)
2

(x
(k)
1 )4 − x

(k)
2



 ,

•







x
(k+1)
1 = x

(k)
1 + ∆x

(k)
1 ,

x
(k+1)
2 = x

(k)
2 + ∆x

(k)
2 ,

for k = 0, 1, 2, · · · .

Thus for each iteration two linear equations in two unknowns must be solved.
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With the initial guess

x
(0)
1 = 2 , x

(0)
2 = 2 ,

the first iteration consists of solving
(

8 4
−32 1

)(

∆x
(0)
1

∆x
(0)
2

)

=

(

−7
14

)

,

which gives

∆x
(0)
1 = −0.463 , ∆x

(0)
2 = −0.823 ,

and then setting

x
(1)
1 = x

(0)
1 +∆x

(0)
1 = 1.537 ,

x
(1)
2 = x

(0)
2 +∆x

(0)
2 = 1.177 .

After a second iteration what will x
(2)
1 and x

(2)
2 be ?
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EXERCISES :

• Describe in detail how Newton’s method can be used to compute solu-
tions (x1, x2) of the system of two nonlinear equations

x2
1 + x2

2 − 1 = 0 ,

x2 − ex1 = 0 .

• Describe in detail how Newton’s method can be used to compute a
solution (x1, x2, x3) of the system of three nonlinear equations

x2
1 + x2

2 + x2
3 − 1 = 0 ,

x3 − ex1 = 0 ,

x3 − ex2 = 0 .
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Residual Correction.

Suppose we use Newton’s method for a linear system Ax = f ,

that is, we let
G(x) ≡ Ax − f .

Then
G′(x) = A ,

so that Newton’s method

G′(x(k)) ∆x(k) = −G(x(k)) ,

x(k+1) = x(k) + ∆x(k) ,

becomes
A ∆x(k) = − (Ax(k) − f) ,

x(k+1) = x(k) + ∆x(k) .
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A ∆x(k) = − (Ax(k) − f) ,

x(k+1) = x(k) + ∆x(k) .

NOTE :

• the Jacobian needs to be LU-decomposed only once.

• With exact arithmetic , the exact solution is found in one iteration :

∆x(0) = −A−1(Ax(0) − f) = − x(0) + x ,

so that

x(1) = x(0) + ∆x(0) = x(0) − x(0) + x = x .
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A ∆x(k) = − (Ax(k) − f) ,

x(k+1) = x(k) + ∆x(k) .

NOTE :

• For inexact arithmetic , this iteration is called residual correction .

• Residual correction can improve the accuracy of the solution ofAx = f .

• Residual correction is valuable for mildly ill-conditioned linear systems.

• The “residual ” Ax(k) − f should be computed with high precision.
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Convergence Analysis for Scalar Equations.

Most iterative methods for solving a scalar equation g(x) = 0 can be written

x(k+1) = f(x(k)) , k = 0, 1, 2, · · · , x(0) given .

EXAMPLE : In Newton’s method

f(x) = x − g(x)

g′(x)
,

and in the Chord method

f(x) = x − g(x)

g′(x(0))
.

Sometimes the iteration x(k+1) = x(k) − g(x(k)) also works. In this method

f(x) = x− g(x) .
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NOTE :

Iterations of the form

x(k+1) = f(x(k)) , k = 0, 1, 2, · · · , x(0) given ,

also arise independently, e.g., as models of “population growth” :

x(k+1) = c x(k), k = 0, 1, 2, · · · , x(0) > 0 given ,

models exponential population growth.

EXERCISES : What happens to the sequence x(k), k = 0, 1, 2, · · · ,

• when x(0) > 0 and c > 1 ?

• when x(0) > 0 and c < 1 ?
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The iteration

x(k+1) = c x(k) (1− x(k)) , k = 0, 1, 2, · · · ,

known as the logistic equation, models population growth when there are
limited resources.

EXERCISES : For 0 < x(0) < 1 :

What happens to the sequence x(k), k = 0, 1, 2, · · · ,

• when 0 ≤ c < 1 ?

• when 1 ≤ c < 2 ?

• when 2 ≤ c < 3 ?

• when 3 ≤ c ≤ 4 ?
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In general, an iteration of the form

x(k+1) = f(x(k)) , k = 0, 1, 2, · · · ,

is sometimes called a fixed point iteration (or a recurrence relation ,

or a discrete dynamical system) .

Suppose the sequence x(k), k = 0, 1, 2, · · ·, converges, i.e.,

lim
k→∞

x(k) = x∗ .

Then x∗ satisfies the equation

x = f(x) ,

(assuming that f is continuous near x∗).

We call x∗ a fixed point of f .

105



EXAMPLE :

In Newton’s method

f(x) = x − g(x)

g′(x)
.

Thus a fixed point x∗ satisfies

x∗ = x∗ − g(x∗)

g′(x∗)
,

that is,
g(x∗) = 0 ,

(assuming that g′(x∗) 6= 0 .)

Thus x∗ is a solution of g(x) = 0.
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Assuming that f has a fixed point, when does the fixed point iteration

x(k+1) = f(x(k)) ,

converge ?

The answer is suggested in the following two diagrams :

107



y

x

y=f(x)

y=x

0
0

x(0) x x(1) (2)
x*

A convergent fixed point iteration.
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y

x

y=f(x)

y=x

0
0

xx x(0)(1)(2) x*(3)x

A divergent fixed point iteration.
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THEOREM :

Let f ′(x) be continuous near a fixed point x∗ of f(x), and assume that

| f ′(x∗) | < 1 .

Then the fixed point iteration

x(k+1) = f(x(k)) , k = 0, 1, 2, · · · ,

converges to x∗, whenever the initial guess x(0) is sufficiently close to x∗ .
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PROOF :

Let α ≡ | f ′(x∗) |.

Then α < 1.

Choose β such that α < β < 1.

Then, for some ǫ > 0, there exists an interval

Iǫ ≡ [x∗ − ǫ, x∗ + ǫ] ,

such that
| f ′(x) | ≤ β in Iǫ ,

(because f ′ is continuous near x∗).
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Let x(0) ∈ Iǫ.

By Taylor’s Theorem (or by the Mean Value Theorem)

x(1) ≡ f(x(0)) = f(x∗) + (x(0) − x∗) f ′(η0) ,

for some η0 between x(0) and x∗.

Since f(x∗) = x∗ it follows that

| x(1)−x∗ | = | (x(0)−x∗)f ′(η0) | = | x(0)−x∗ | | f ′(η0) | ≤ β | x(0)−x∗ | .

Thus x(1) ∈ Iǫ , (because 0 < β < 1) .
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Again by Taylor’s Theorem (or the Mean Value Theorem)

x(2) ≡ f(x(1)) = f(x∗) + (x(1) − x∗) f ′(η1) ,

for some η1 between x(1) and x∗.

Hence
| x(2) − x∗ | ≤ β | x(1) − x∗ | ≤ β2 | x(0) − x∗ | .

Thus x(2) ∈ Iǫ , (because 0 < β < 1) .

Proceeding in this manner we find

| x(k) − x∗ | ≤ βk | x(0) − x∗ | .

Since 0 < β < 1 this implies that

x(k) → x∗ as k → ∞ .
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COROLLARY : Let

Iǫ ≡ [ x∗ − ǫ , x∗ + ǫ ] ,

and assume that for some ǫ > 0 we have :

• f(x) has a fixed point x∗ ∈ Iǫ ,

• f(x) is a smooth function in Iǫ ,

• | f ′(x) | < 1 everywhere in Iǫ ,

• x(0) ∈ Iǫ .

Then the fixed point iteration

x(k+1) = f(x(k)) , k = 0, 1, 2, · · · .

converges to x∗.

PROOF : This follows from the proof of the Theorem.

114



COROLLARY :

If

• x∗ is a zero of g(x) = 0 ,

• g(x) has two continuous derivatives near x∗ ,

• g′(x∗) 6= 0 ,

• x(0) is sufficiently close to x∗ .

then Newton’s method for solving g(x) = 0, i.e.,

x(k+1) = x(k) − g(x(k))

g′(x(k))
,

converges to x∗ .
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PROOF :

In Newton’s method

f(x) = x − g(x)

g′(x)
.

Hence

f ′(x∗) = 1 − g′(x∗)2 − g(x∗) g′′(x∗)

g′(x∗)2
=

g(x∗) g′′(x∗)

g′(x∗)2
= 0 .

Therefore, certainly | f ′(x∗) |< 1 .
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EXAMPLE :

The fixed points of the logistic equation ,

x(k+1) = c x(k) (1− x(k)) ,

satisfy
x∗ = c x∗ (1− x∗) .

We see that the fixed points are given by

x∗ = 0 , and x∗ = 1 − 1

c
.

EXERCISE : • Determine, for all values of c , (0 < c ≤ 4) , whether
these fixed points are attracting (| f ′(x∗) |< 1) , or repelling (| f ′(x∗) |> 1) .
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The logistic equation : c = 0.9 .
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The logistic equation : c = 1.7 .
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The logistic equation : c = 3.6 .
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If a fixed point iteration

x(k+1) = f(x(k)) ,

converges to a fixed point x∗ of f(x), then how fast does it converge ?

To answer this we let
ek ≡ | x(k) − x∗ | .

Thus ek is the error after the kth iteration.

We can now show the following :
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THEOREM :

Let f ′(x) be continuous near x∗ with | f ′(x∗) |< 1 .

Assume that x(0) is sufficiently close to x∗, so that the fixed point iteration

x(k+1) = f(x(k))
converges to x∗.

Then
lim
k→∞

ek+1

ek
= | f ′(x∗) | (linear convergence) .

(The value of | f ′(x∗) | is then called the rate of convergence.)

If in addition f ′(x∗) = 0 and if f ′′(x) is continuous near x∗ then

lim
k→∞

ek+1

e2k
=

1

2
| f ′′(x∗) | (quadratic convergence) .
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PROOF :

Case : f ′(x∗) 6= 0 :

ek+1 = | x(k+1) − x∗ |

= | f(x(k)) − x∗ |

= | f(x∗) + (x(k) − x∗) f ′(ηk) − x∗ |

= | x(k) − x∗ | | f ′(ηk) |

= ek | f ′(ηk) | ,

where ηk is some point between x(k) and x∗.

Hence
lim
k→∞

ek+1

ek
= lim

k→∞
| f ′(ηk) | = | f ′(x∗) | .
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Case : f ′(x∗) = 0 :

ek+1 = | x(k+1) − x∗ | = | f(x(k))− x∗ |

= | f(x∗) + (x(k) − x∗)f ′(x∗) +
1

2
(x(k) − x∗)2 f ′′(ηk) − x∗ |

=
1

2
e2k | f ′′(ηk) | .

where ηk is some point between x(k) and x∗,

Thus

lim
k→∞

ek+1

e2k
= lim

k→∞

1

2
| f ′′(ηk) | =

1

2
| f ′′(x∗) | QED !
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COROLLARY :

If

• g(x) has three continuous derivatives near a zero x∗ of g(x) = 0 ,

• g′(x∗) 6= 0 ,

• x(0) is sufficiently close to x∗ ,

then Newton’s method for solving g(x) = 0 converges quadratically .

PROOF : In Newton’s method

f(x) = x − g(x)

g′(x)
,

and we have already shown that

f ′(x∗) = 0 .
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EXAMPLE :

Newton’s method for computing
√
2 , i.e., for computing a zero of

g(x) = x2 − 2 ,

is given by

x(k+1) = x(k) − (x(k))2 − 2

2x(k)
,

that is,

x(k+1) =
(x(k))2 + 2

2x(k)
,

that is,

x(k+1) = f(x(k)) ,

where
f(x) =

x2 + 2

2x
.
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x(k+1) = f(x(k)) , where f(x) =
x2 + 2

2x
.

We observe that :

• The fixed points of f are x∗ = +
√
2 and x∗ = −

√
2 .

• f ′(x∗) = 0 . (Hence quadratic convergence).

• f(x) → ∞ as x ↓ 0 , and f(x) → −∞ as x ↑ 0 . (Vertical asymptotes.)

• f(x) ∼= x/2 as | x |→ ∞ .

(Check !)
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Newton’s Method for
√
2 as a fixed point iteration
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Newton’s Method for
√
2 as a fixed point iteration (blow-up)
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Newton’s Method for ±
√
2 as a fixed point iteration
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From the last graph we see that :

• The iteration converges to x∗ = +
√
2 for any x(0) > 0 .

• The iteration converges to x∗ = −
√
2 for any x(0) < 0 .

(Check !)

136



EXAMPLE :

Consider the fixed point iteration

x(k+1) = x(k) − γ g(x(k)) ,

for computing a zero of g(x) = 0.

Indeed, a fixed point x∗ satisfies

x∗ = x∗ − γ g(x∗) ,

that is,
g(x∗) = 0 . (Assuming γ 6= 0 .)
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In this example

f(x) = x − γ g(x) .

A fixed point x∗ is attracting if

| f ′(x∗) | < 1 ,

i.e., if
| 1 − γ g′(x∗) | < 1 ,

i.e., if
−1 < 1 − γ g′(x∗) < 1 ,

i.e., if
−2 < − γ g′(x∗) < 0 ,

i.e., if
0 < γ g′(x∗) < 2 .
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The convergence is quadratic if

f ′(x∗) = 1− γ g′(x∗) = 0 ,
that is, if

γ = γ̂ ≡ 1

g′(x∗)
.

Now x∗ is unknown beforehand and therefore γ̂ is also unknown.

However, after the kth iteration an approximation to γ̂ is given by

γ̂ ∼= γk ≡ 1

g′(x(k))
.

This leads to the iteration

x(k+1) = x(k) − γk g(x(k)) ,

where γk = 1/g′(x(k)) ,

i.e., we have rediscovered Newton’s method !
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EXERCISES :

• If the following fixed point iteration converges, then what number will
it converge to? Is the convergence quadratic?

x(k+1) = f(x(k)) , where f(x) =
2x3 + 3

3x2
.

• Analytically determine all fixed points of

x(k+1) = 2(x(k))2 − 2x(k) + 1 , k = 0, 1, 2, · · · .

Are the fixed points attracting or repelling? If attracting, then is the
convergence linear or quadratic? Also draw a graphical interpretation.

• Analytically determine all fixed points of x(k+1) = 2x(k)(1− x(k)). Are
these attracting or repelling? If attracting then is the convergence
linear or quadratic? Also give a graphical interpretation.
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EXERCISES :

• Give a graphical interpretation of the fixed point iteration.

x(k+1) = sin(x(k)) .

What are the fixed points? Does the derivative test give conclusive
evidence whether the fixed point x = 0 is attracting or repelling? Based
on the graphical interpretation, can one conclude whether x = 0 is
attracting or repelling?

• Consider the fixed point iteration x(k+1) = f(x(k)) , where

f(x) =







2x , when x ≤ 1
2
,

2(1− x) , when x > 1
2
.

Give an accurate graphical interpretation in the interval [0, 1], with
x(0) ∼= 0.1, showing enough iterations to illustrate the behavior of this
fixed point iteration. Analytically determine all fixed points, and for
each fixed point determine whether it is attracting or repelling.
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EXERCISES :

• Show how to use the Chord method to compute the cube root of 5.

Carry out the first two iterations of the Chord method, using x(0) = 2 .

Analytically determine all fixed points of this Chord iteration.

For each fixed point, determine whether it is attracting or repelling.

• Draw the graph of g(x) = x3 − 2 , clearly showing its zero.

Write down Newton’s method for finding a zero of g , and simplify the
expression for the Newton iteration as much as possible.

Will Newton’s method converge if the initial guess is sufficiently close?

If yes, then what is the rate of convergence?

Will Newton’s method converge for any positive initial guess ?

Will Newton’s method converge for negative initial guesses ?
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EXERCISES :

• Suppose you enter any number on a calculator and then keep pushing
the cosine button. (Assume the calculator is in “radian-mode”.)

What will happen in the limit to the result shown in the display?

Give a full mathematical explanation and a graphical interpretation.

Do the same for sin(x) and tan(x).

• Consider the fixed point iteration

x(k+1) = x(k) (1− x(k)) .

Does the derivative test give conclusive evidence whether or not the
fixed point x = 0 is attracting?

Give a careful graphical interpretation of this fixed point iteration.

What can you say about the convergence of the fixed point iteration?
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EXERCISES :

• Consider the fixed point iteration

x(k+1) =
1√
x(k)

, k = 0, 1, 2, · · · .

Give a careful graphical interpretation of this fixed point iteration.

Determine all fixed points and whether they are attracting or repelling.

Does the iteration converge for all positive initial points x(0) ?

• Consider the fixed point iteration

x(k+1) = f(x(k)) , where f(x) =
1 + x2

1 + x
.

Determine all fixed points and whether they are attracting or repelling.

If attracting determine whether the convergence is linear or quadratic.

Give a graphical interpretation of the first few iterations, with x(0) = 2.
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Convergence Analysis for Systems.

Again most iterative methods for solving

G(x) = 0 ,

can be written as

x(k+1) = F(x(k)) , k =, 1, 2, · · · ,

where the function F should be chosen such that

x∗ is a root of G(x) = 0 if and only if x∗ is a fixed point of F.
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EXAMPLE :

Newton’s method for systems is

G′(x(k)) (x(k+1) − x(k)) = −G(x(k)) .

Thus

x(k+1) = x(k) −G′(x(k))−1 G(x(k)) ,

assuming G′(x)−1 to exist near x = x∗.

So here
F(x) = x−G′(x)−1 G(x) .
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NOTE : Fixed point iterations also arise as models of physical processes,

where they are called difference equations or discrete dynamical systems .

EXAMPLE :

The equations

x
(k+1)
1 = λ x

(k)
1 (1− x

(k)
1 ) − c1 x

(k)
1 x

(k)
2 ,

x
(k+1)
2 = c2 x

(k)
2 + c1 x

(k)
1 x

(k)
2 ,

model a “predator-prey ” system, where, for example,

x
(k)
1 denotes the biomass of “fish” in year k ,

and
x
(k)
2 denotes the biomass of “sharks” in year k ,

and where λ , c1 , and c2 are constants.
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Derivatives :

For scalar functions

f ′(x) ≡ lim
h→0

f(x+ h)− f(x)

h
,

or, equivalently, f ′(x) is the number such that

f(x+ h)− f(x)− f ′(x)h

h
→ 0 as h → 0 .

If f ′(x) exists then f is said to be differentiable at x .
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Similarly for vector valued functions F(x) we say that F is differentiable at
x if there exists a matrix F′(x) such that

‖ F(x+ h)− F(x)− F′(x)h ‖
‖ h ‖ → 0 as ‖ h ‖ → 0 .

The matrix F′(x) is the Jacobian matrix introduced earlier :

If F(x) has component functions

(f1(x) , f2(x) , · · · , fn(x))T ,

and if

x ≡ (x1 , x2 , · · · , xn)
T ,

then

{F′(x)}i,j ≡ ∂f i

∂xj

.
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THEOREM :

Let F′(x) be continuous near a fixed point x∗ of F(x) and

‖ F′(x∗) ‖ < 1 ,

in some induced matrix norm.

Then the fixed point iteration

x(k+1) = F(x(k)) , k = 0, 1, 2, · · · ,

converges to x∗ whenever the initial guess x(0) is sufficiently close to x∗.
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NOTE :

It can be shown that sufficient condition for

‖ F′(x∗) ‖ < 1 ,

in some matrix norm, is that

spr(F′(x∗)) < 1 .

Here

spr(F′(x∗)) is the spectral radius of F′(x∗) ,

that is, the size of the largest eigenvalue of F′(x∗) .

NOTE : Eigenvalues may be complex numbers.
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PROOF (of the Theorem) :

(Similar to the proof of the scalar case.)

Let α ≡ ‖ F′(x∗) ‖ . Then α < 1.

By definition of F′ , given any ǫ > 0, in particular

ǫ ≡ 1− α

2
,

there exists a δ > 0 such that

‖ F(x)− F(x∗)− F′(x∗) (x− x∗) ‖ ≤ ǫ ‖ x− x∗ ‖ ,

whenever x ∈ Bδ(x
∗).

Here
Bδ(x

∗) ≡ {x : ‖ x− x∗ ‖ ≤ δ} .
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Let x(0) ∈ Bδ(x
∗). Then

‖ x(1) − x∗ ‖ = ‖ F(x(0))− F(x∗) ‖

= ‖ F(x(0))− F(x∗) − F′(x∗) (x(0) − x∗) + F′(x∗) (x(0) − x∗) ‖

≤ ‖ F(x(0))− F(x∗)− F′(x∗) (x(0) − x∗) ‖ + ‖ F′(x∗) (x(0) − x∗) ‖

≤ ǫ ‖ x(0) − x∗ ‖ + α ‖ x(0) − x∗ ‖

≤ (ǫ+ α) ‖ x(0) − x∗ ‖

= (
1− α

2
+ α) ‖ x(0) − x∗ ‖

=
1 + α

2
‖ x(0) − x∗ ‖ ≤ β δ ,

where β ≡ 1 + α

2
< 1 .

Thus x(1) ∈ Bδ(x
∗) .
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Since x(1) ∈ Bδ(x
∗) , we also have

‖ x(2) − x∗ ‖ ≤ β ‖ x(1) − x∗ ‖ ≤ β2 δ .

Thus, since β < 1, we have x(2) ∈ Bδ(x
∗) .

Continuing in this fashion, we find

‖ x(k) − x∗ ‖ ≤ βk δ .

Thus, since β < 1, we see that x(k) converges to x∗ . QED !
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EXAMPLE : In Newton’s method

F(x) = x − (G′(x)−1) G(x) .

Hence
G′(x)F(x) = G′(x)x−G(x) .

⇒ G′′(x)F(x) +G′(x)F′(x) = G′′(x)x+G′(x)−G′(x) = G′′(x)x

⇒ G′(x)F′(x) = G′′(x)(x− F(x)) = G′′(x)(G′(x))−1
G(x)

⇒ F′(x) = (G′(x))−1
G′′(x)(G′(x))−1

G(x)

⇒ F′(x∗) = (G′(x∗))−1
G′′(x∗)(G′(x∗))−1

G(x∗) = O (zero matrix) .

because G(x∗) = 0.

So ‖ F′(x∗) ‖= 0 , and therefore certainly ‖ F′(x∗) ‖< 1 .
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Thus if

• G′′(x) is continuous near x∗ ,

• (G′(x∗))−1 exists ,

• x(0) is sufficiently close to x∗ ,

then Newton’s method converges.

Again this convergence can be shown to be quadratic , i.e.,

lim
k→∞

‖ x(k+1) − x∗ ‖
‖ x(k) − x∗ ‖2 ≤ C , for some constant C.
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EXERCISE :

• Consider the fixed point iteration

x
(k+1)
1 = λ x

(k)
1 (1− x

(k)
1 ) − 0.2 x

(k)
1 x

(k)
2 ,

x
(k+1)
2 = 0.9 x

(k)
2 + 0.2 x

(k)
1 x

(k)
2 .

This is a “predator-prey ” model, where, for example, x
(k)
1 denotes the

biomass of “fish” and x
(k)
2 denotes the biomass of “sharks” in year k .

Numerically determine the long-time behavior of x
(k)
1 and x

(k)
2 for

the following values of λ :

λ = 0.5, 1.0, 1, 5, 2.0, 2.5 ,

taking, for example, x
(0)
1 = 0.1 and x

(0)
2 = 0.1.

What can you say analytically about the fixed points of this system?
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THE APPROXIMATION OF FUNCTIONS.

Function Norms.

To measure how well a given function f ∈ C[a, b] is approximated by another
function we need a quantity called function norm.

Examples of these are :

‖ f ‖1 ≡
∫ b

a

| f(x) | dx ,

‖ f ‖2 ≡ {
∫ b

a

f(x)2 dx}
1
2 ,

‖ f ‖∞ ≡ max
[a,b]

| f(x) | .

Note the similarity of these norms to the corresponding vector norms.
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A function norm must satisfy :

(i) ‖ f ‖ ≥ 0 , ∀f ∈ C[a, b] , ‖ f ‖ = 0 iff f ≡ 0 ,

(ii) ‖ αf ‖ = | α | ‖ f ‖ , ∀α ∈ R , ∀f ∈ C[a, b] ,

(iii) ‖ f + g ‖ ≤ ‖ f ‖ + ‖ g ‖ , ∀f, g ∈ C[a, b] .
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All of the norms above satisfy these requirements. (Check !)

EXAMPLE :

‖ f + g ‖1 =

∫ b

a

| f(x) + g(x) | dx

≤
∫ b

a

| f(x) | + | g(x) | dx

=

∫ b

a

| f(x) | dx +

∫ b

a

| g(x) | dx

= ‖ f ‖1 + ‖ g ‖1 .

(For the ‖ · ‖2 we shall verify (iii) later.)
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NOTE : If a function is “small” in a given function norm then it need not
be small in another norm.

EXAMPLE : Consider fk(x) , k = 2, 3, · · · , as shown below :

1/2 - 1/k 2 21/2 + 1/k

x

f  (x)k

k

y

0 11/2
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Then

‖ fk ‖∞ = k → ∞ as k → ∞ ,

while

‖ fk ‖1 =

∫ 1

0

| fk(x) | dx =
1

k
→ 0 as k → ∞ ,

and

‖ fk ‖2 = {
∫ 1

0

fk(x)
2 dx}

1
2 =

√

2/3 (Check !) .
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EXAMPLE :

Approximate
f(x) = x3

by

p(x) =
3

2
x2 − 1

2
x ,

on the interval [0, 1].

Then

p(x) = f(x) for x = 0 ,
1

2
, 1 ,

that is, p(x) interpolates f(x) at these points.
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Graph of f(x) = x3 (blue) and its interpolant p(x) = 3
2
x2 − 1

2
x (red) .
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A measure of “how close” f and p are is then given by, for example,

‖ f − p ‖2 = {
∫ 1

0

(f(x)− p(x))2 dx}
1
2 .

We find that

‖ f − p ‖2 =

√
210

420
∼= 0.0345. (Check !)
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The Lagrange Interpolation Polynomial.

Let f be a function defined on [a, b] .

Let Pn denote all polynomials of degree less than or equal to n .

Given points {xk}nk=0 with

a ≤ x0 < x1 < · · · < xn ≤ b ,

we want to find p ∈ Pn such that

p(xk) = f(xk) , k = 0, 1, · · · , n .

166



Graph of f(x) = 1
10

+ 1
5
x+ x2 sin(2πx) (blue)

and its Lagrange interpolant p(x) ∈ P5 (red)

at six interpolation points (n = 5) .
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The following questions arise :

(i) Is p(x) uniquely defined ?

(ii) How well does p approximate f ?

(iii) Does the approximation get better as n → ∞ ?
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To answer the above questions let

ℓi(x) ≡
n
∏

k=0,k 6=i

(x− xk)

(xi − xk)
, i = 0, 1, · · · , n ,

be the Lagrange interpolating coefficients, or Lagrange basis functions.

Then each ℓi ∈ Pn . (Check !)
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EXAMPLE : If n = 2 we have

ℓ0(x) =
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
,

ℓ1(x) =
(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
,

and

ℓ2(x) =
(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
.

NOTE : ℓi ∈ P2 , i = 0, 1, 2 , and

ℓi(xk) =

{ 0 if k 6= i ,

1 if k = i .
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x x x x x x x x
0 1 2 1 2 0 1x0 2

111

ℓ0(x) = (x−x1)(x−x2)
(x0−x1)(x0−x2)

, ℓ1(x) = (x−x0)(x−x2)
(x1−x0)(x1−x2)

, ℓ2(x) = (x−x0)(x−x1)
(x2−x0)(x2−x1)

.

Lagrange basis functions (case n = 2) .
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Now given f(x) let

p(x) =

n
∑

k=0

f(xk) ℓk(x) .

Then
p ∈ Pn ,

and

p(xi) =
n

∑

k=0

f(xk) ℓk(xi) = f(xi) ,

that is, p(x) interpolates f(x) at the points x0, x1, · · · , xn .
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THEOREM : Let f(x) be defined on [a, b] and let

a ≤ x0 < x1 < · · · < xn ≤ b .

Then there is a unique polynomial p ∈ Pn that interpolates f at the {xk}nk=0.

PROOF :

We have already demonstrated the existence of p(x) .

Suppose q ∈ Pn also interpolates f at the points {xk}nk=0 .

Let r(x) ≡ p(x)− q(x) .

Then r ∈ Pn and r(xk) = 0 , k = 0, 1, · · · , n .

But r ∈ Pn can have at most n zeroes, unless r(x) ≡ 0 .

Hence r(x) ≡ 0 .

Thus p(x) ≡ q(x) , i.e., p is unique. QED !
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EXAMPLE : Let f(x) = ex.

Given f(0) = 1, f(1) = 2.71828, f(2) = 7.38905, we want to approximate
f(1.5) by polynomial interpolation at x = 0, 1, 2.

Here

ℓ0(1.5) =
(1.5− 1) (1.5− 2)

(0− 1) (0− 2)
= − 1

8
,

ℓ1(1.5) =
(1.5− 0) (1.5− 2)

(1− 0) (1− 2)
=

6

8
,

ℓ2(1.5) =
(1.5− 0) (1.5− 1)

(2− 0) (2− 1)
=

3

8
,

so that

p(1.5) = f(0) ℓ0(1.5) + f(1) ℓ1(1.5) + f(2) ℓ2(1.5)

= (1) (−1

8
) + (2.71828) (

6

8
) + (7.38905) (

3

8
) = 4.68460 .

The exact value is f(1.5) = e1.5 = 4.48168 .
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Graph of f(x) = ex (blue) and its Lagrange interpolant p(x) ∈ P2 (red).
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THE LAGRANGE INTERPOLATION THEOREM :

Let
x0 < x1 < · · · < xn , and let x ∈ R .

Define
a ≡ min{x0, x} and b ≡ max{xn, x} .

Assume that f ∈ Cn+1[a, b].

Let p ∈ Pn be the unique polynomial that interpolates f(x) at {xk}nk=0.

Then

f(x)− p(x) =
f (n+1)(ξ)

(n+ 1)!

n
∏

k=0

(x− xk) ,

for some point ξ ≡ ξ(x) ∈ [a, b].
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PROOF :

If x = xk for some k then the formula is clearly valid.

So assume that x 6= xk , for k = 0, 1, · · · , n .

Let

w(z) ≡
n
∏

k=0

(z − xk) and c(x) ≡ f(x)− p(x)

w(x)
.

Then c(x) is well defined since w(x) 6= 0 .

We want to show that

c(x) =
f (n+1)(ξ)

(n+ 1)!
. (Why ?)
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Let
F (z) ≡ f(z) − p(z) − w(z) c(x) .

Then

F (xk) = f(xk) − p(xk) − w(xk) c(x) = 0, k = 0, 1, · · · , n ,

and

F (x) = f(x) − p(x) − w(x)
f(x)− p(x)

w(x)
= 0 .

Thus F (z) has (at least) n+ 2 distinct zeroes in [a, b] .
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F

F’

F’’

F(n+1)

x
k xnx 1 xk+1x0 x

ξ

.

.

.

.
etc.

The zeroes of F (x) and of its derivatives.
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Hence, by Rolle’s Theorem, F ′(z) has n+ 1 distinct zeroes in [a, b] ,

F ′′(z) has n distinct zeroes in [a, b] ,

F ′′′(z) has n− 1 distinct zeroes in [a, b] , etc.

We find that F (n+1)(z) has (at least) one zero in [a, b] , say,

F (n+1)(ξ) = 0 , ξ ∈ [a, b] .

But

F (n+1)(z) = f (n+1)(z) − p(n+1)(z) − w(n+1)(z) c(x) .

Hence

F (n+1)(ξ) = f (n+1)(ξ) − (n+ 1)! c(x) = 0 .

It follows that

c(x) =
f (n+1)(ξ)

(n+ 1)!
.
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EXAMPLE : In the last example we had

n = 2 , f(x) = ex , x0 = 0 , x1 = 1, x2 = 2 ,

and we computed the value of p(x) at x = 1.5.

By the Theorem

f(x)− p(x) =
f (3)(ξ)

3!
(x− 0)(x− 1)(x− 2) , ξ ∈ [0, 2] .

Since f (3)(ξ) ≤ e2 < 7.4 we find that

| f(1.5)− p(1.5) | <
7.4

6
(1.5) (0.5) (0.5) =

7.4

16
< 0.47 .

The actual error is | p(1.5)− e1.5 | ∼= | 4.68460− 4.48168 | ∼= 0.2 .
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The graph of wn+1(x) =
∏n

k=0(x− xk) for equally spaced interpolation
points in the interval [−1, 1] , for the cases n+ 1 = 3 , 6 , 7 , 10 .
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n max n max n max n max

1 1.00000 5 0.06918 9 0.01256 13 0.00278

2 0.38490 6 0.04382 10 0.00853 14 0.00193

3 0.19749 7 0.02845 11 0.00584 15 0.00134

4 0.11348 8 0.01877 12 0.00400 16 0.00095

The maximum value of | wn+1(x) | in the interval [−1, 1]
for the case of n+ 1 equally spaced interpolation points .
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EXERCISES :

• Consider the polynomial pn(x) of degree n or less that interpolates
f(x) = sin(x) at n + 1 distinct points in [−1, 1]. Write down the
general error formula for | sin(x)− pn(x) |. For distinct, but otherwise
arbitrary interpolation points, how big should n be to guarantee that
the maximum interpolation error in [−1, 1] is less than 10−2 ?

• Also answer the above question for equally spaced interpolation points
in [−1, 1], using the Table on the preceding page .

• Also answer the above questions for the case of f(x) = ex in [−1, 1].

• Consider the problem of interpolating a smooth function f(x) at two
points, x0 = −h/2 and x1 = h/2, by a polynomial p ∈ P3 such that

p(x0) = f(x0), p′(x0) = f ′(x0), p(x1) = f(x1), p′(x1) = f ′(x1).

Prove that this interpolation problem has one and only one solution.
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Chebyshev Polynomials.

From the preceding Theorem it follows that

‖ f − p ‖∞ ≤ 1

(n+ 1)!
‖ f (n+1) ‖∞ ‖ wn+1 ‖∞ ,

where

wn+1(x) ≡
n
∏

k=0

(x− xk) ,

and where
‖ wn+1 ‖∞ ≡ max

[a,b]
| wn+1(x) | .

NOTE :

• It does not follow that ‖ f − p ‖∞ → 0 as n → ∞ .

• There are examples where ‖ f − p ‖∞→ ∞ as n → ∞.

• For given n, we can choose the points {xk}nk=0 so ‖ wn+1 ‖∞ is minimized .
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EXAMPLE :

Let n = 1 and place the x0 and x1 symmetrically in [−1, 1] :

1−1 0x0 x1

−η +η

w (x)2

Then
w2(x) = (x− x0) (x− x1) = (x+ η) (x− η) = x2 − η2 .

We want to choose η such that

‖ w2 ‖∞ ≡ max
[−1,1]

| w2(x) |

is minimized .
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1−1 0x0 x1

−η

1−η2

w (x)2

1−η

−η

2

2

+η

At the critical point : w2(0) = − η2 .

At the endpoints : w2(−1) = w2(1) = 1− η2 .

We see that ‖ w2 ‖∞ is minimized if we take η such that

| w2(−1) | = | w2(0) | = | w2(1) | , i .e., if η2 = 1− η2 ,

Thus η =
1

2

√
2 and ‖ w2 ‖∞ =

1

2
.
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In general, the points

{xk}nk=0 that minimize ‖ wn+1 ‖∞ on [−1, 1]

are the zeroes of the Chebyshev Polynomial Tn+1 of degree n+ 1.

These polynomials are defined as

Tk(x) ≡ cos( k cos−1(x) ) , k = 0, 1, 2, · · · , x ∈ [−1, 1] ,

where cos−1(x) is used to denote arccos(x).

The Tk are indeed polynomials :

First T0(x) ≡ 1 and T1(x) = x .

Also
Tk+1(x) = 2x Tk(x) − Tk−1(x) .
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Tk+1(x) = 2x Tk(x) − Tk−1(x)

To derive this recurrence formula we use the identity

cos( (k + 1)θ ) + cos( (k − 1)θ ) = 2 cos(kθ) cos(θ) .

which we rewrite as

cos( (k + 1)θ ) = 2 cos(kθ) cos(θ) − cos( (k − 1)θ ) .

so that, taking θ = cos−1(x), we have

Tk+1(x) ≡ cos( (k + 1) cos−1(x) )

= 2 cos( k cos−1(x) ) cos(cos−1(x)) − cos( (k − 1) cos−1(x) )

= 2x Tk(x) − Tk−1(x) .
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Thus, with T0(x) ≡ 1 and T1(x) = x , we obtain

T2(x) = 2x T1(x) − T0(x) = 2x2 − 1 ,

T3(x) = 2x T2(x) − T1(x) = 4x3 − 3x ,

T4(x) = 2x T3(x) − T2(x) = 8x4 − 8x2 + 1 ,

·
·
·

Tn+1(x) = 2n xn+1 + · · · .

190



THE CHEBYSHEV THEOREM :

Let

wn+1(x) ≡
n
∏

k=0

(x− xk) .

Then for fixed n the value of

‖ wn+1 ‖∞ ≡ max
[−1,1]

| wn+1(x) |

is minimized if the points {xk}nk=0 are the zeroes of Tn+1(x) .

For these points the value of ‖ wn+1 ‖∞ is equal to 2−n .
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PROOF :

Tn+1(x) = cos( (n+ 1) cos−1(x) ) .

Tn+1(x) = 0 if (n+ 1) cos−1(x) = (2k + 1)
π

2
,

i.e., Tn+1(x) = 0 if

x = cos(
2k + 1

2(n+ 1)
π) , k = 0, 1, 2, · · · , n .

Hence the zeroes of Tn+1(x) lie indeed in [−1, 1] .

There are n+ 1 such zeroes.
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x = cos(
2k + 1

2(n+ 1)
π) , k = 0, 1, 2, · · · , n .

7π/10 9π/10

3π/10π/10

x

x

x

x

x

π0

4

3

2

1

0     −1

1

The Chebyshev points xk , (k = 0, 1, 2, · · · , n) , for the case n = 4 .
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Tn+1(x) = cos( (n+ 1) cos−1(x) ) .

Tn+1(x) = ± 1 if
(n+ 1) cos−1(x) = kπ ,

that is, if,

x = cos(
k

n+ 1
π) , k = 0, 1, 2, · · · , n+ 1 .

We can now draw the graph of Tn+1 :
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The graph of Tn for the cases n = 2, 3, 4, 5 .
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Recall that from the recurrence relation

T0(x) ≡ 1 , T1(x) = x , Tk+1(x) = 2x Tk(x) − Tk−1(x) ,

we have
Tn+1(x) = 2n xn+1 + · · · .

Thus we can also write

Tn+1(x) = 2n (x− x0) (x− x1) · · · (x− xn) ,

where the xk are the zeroes of Tn+1(x) .

Let

w∗
n+1(x) ≡ 2−n Tn+1(x) = (x− x0) (x− x1) · · · (x− xn) ,

Then

‖ wn+1
∗ ‖∞ = ‖ 2−nTn+1 ‖∞ = 2−n ‖ Tn+1 ‖∞ = 2−n .
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1

−2

w*

−n

−1 x

5(x)

2 −n

The graph of w∗
n+1 =

∏n
k=0(x− xk) for the case n = 4 .

Claim :

There does not exist w ∈ Pn+1 , with leading coefficient 1, such that

‖ w ‖∞ < 2−n .
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Suppose there does exist a wn+1 ∈ Pn+1, with leading coefficient 1, such that

‖ wn+1 ‖∞ < ‖ wn+1
∗ ‖∞ = 2−n .
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x x x x x40 321

0

−2

w*

−n

−n

w (x)

5

5

(x)

−1 1

2
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Then wn+1 must intersect wn+1
∗ at least n+ 1 times in [−1, 1] .

Thus (wn+1 − wn+1
∗) has n+ 1 zeroes in [−1, 1] .

But
(wn+1 − wn+1

∗) ∈ Pn

since both wn+1 and wn+1
∗ have leading coefficient 1 .

Hence wn+1 − wn+1
∗ ≡ 0 .

Thus wn+1 = wn+1
∗ . QED !
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n uniform Chebyshev n uniform Chebyshev

1 1.00000 0.50000 5 0.06918 0.03125

2 0.38490 0.25000 6 0.04382 0.01563

3 0.19749 0.12500 7 0.02845 0.00782

4 0.11348 0.06250 8 0.01877 0.00391

The maximum of | wn+1(x) | in the interval [−1, 1]
for uniformly spaced points and for Chebyshev points .
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EXAMPLE :

Let f(x) = ex on [−1, 1] and take n = 2 .

T3(x) = 4x3 − 3x has zeroes

x0 = − 1

2

√
3 , x1 = 0 , x2 =

1

2

√
3 .

Approximate f(0.5) by polynomial interpolation at x0, x1, x2 :

ℓ0(0.5) =
(0.5− x1)(0.5− x2)

(x0 − x1)(x0 − x2)
=

1−
√
3

6
,

ℓ1(0.5) =
(0.5− x0)(0.5− x2)

(x1 − x0)(x1 − x2)
=

4

6
,

ℓ2(0.5) =
(0.5− x0)(0.5− x1)

(x2 − x0)(x2 − x1)
=

1 +
√
3

6
.
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Thus

p(0.5) = f(x0) l0(0.5) + f(x1) l1(0.5) + f(x2) l2(0.5)

= e(−0.5
√
3) (1−

√
3)

6
+ e0 (

4

6
) + e(0.5

√
3) (1 +

√
3)

6

∼= 1.697 .

The exact value is e0.5 = 1.648 · · · .

Thus the exact absolute error is

| e0.5 − p(0.5) | ∼= | 1.648− 1.697 | = 0.049 .
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Graph of f(x) = ex (blue) on the interval [−1, 1] ,

and its Lagrange interpolating polynomial p(x) ∈ P2 (red)

at three Chebyshev interpolation points (n = 2) .
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EXAMPLE : More generally, if we interpolate

f(x) = ex by p ∈ Pn at n+ 1 Chebyshev points in [−1, 1] ,

then for x ∈ [−1, 1] we have

| ex − p(x) | = | f
(n+1)(ξ)

(n+ 1)!
wn+1(x) | ,

where ξ ≡ ξ(x) ∈ [−1, 1] , and where

wn+1(x) =
n
∏

k=0

(x− xk) , ( Chebyshev points xk ),

Thus

max
x∈[−1,1]

| ex − p(x) | ≤ ‖ f (n+1) ‖∞
(n+ 1)!

‖ wn+1 ‖∞

≤ e

(n+ 1)!
‖ wn+1 ‖∞

=
e

(n+ 1)!
2−n .
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NOTE :

Let f be a sufficiently smooth function.

Let pU be the polynomial that interpolates f at n+1 uniformly spaced points.

Let pC denote the polynomial that interpolates f at n+1 Chebyshev points.

Although the Theorem does not guarantee that

‖ pC − f ‖∞ ≤ ‖ pU − f ‖∞ ,

this inequality is “usually” valid.
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EXERCISES :

• Suppose p ∈ P
n interpolates sin(x) at n + 1 distinct points in [−1, 1].

For the case of Chebyshev points, how big should n be for the error to
be less than 10−4 everywhere in [−1, 1] ?

• Suppose that p ∈ P
n interpolates ex at n+ 1 distinct points in [−1, 1].

For the case of Chebyshev points, how big should n be for the error to
be less than 10−4 everywhere in [−1, 1] ?

• Suppose p ∈ P
n interpolates xn+1 at n+ 1 distinct points in [−1, 1].

For the case of Chebyshev points, how big should n be for the maximum
interpolation error in [−1, 1] to be less than 10−4 ?
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The Taylor Polynomial.

Let f ∈ Cn[a, b] .

Let Pn denote all polynomials of degree less than or equal to n.

Given the point x0 ∈ [a, b] , we want to find p ∈ Pn such that

p(k)(x0) = f (k)(x0) , k = 0, 1, · · · , n .
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The function ex (blue) and its Taylor polynomials pk(x) about x0 = 0 :
k = 1 : purple, k = 2 : red, k = 3 : brown, k = 4 : green, k = 5 : black .
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As for Lagrange interpolation, we have the following questions :

• Is the polynomial p(x) ∈ Pn uniquely defined ?

• How well does p approximate f ?

• Does the approximation get better as n → ∞ ?
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Existence :

p(x) =
n

∑

k=0

f (k)(x0)

k!
(x− x0)

k .

Clearly

p(k)(x0) = f (k)(x0) , k = 0, 1, · · · , n . (Check !)

DEFINITION :

p(x) is called the Taylor polynomial of degree n for f(x) about the point x0.
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TAYLOR’s THEOREM :

Let f ∈ Cn+1[a, b] , x0 ∈ [a, b] .

Let p(x) ∈ Pn be the Taylor polynomial for f about the point x0 , i.e.,

p(x) =

n
∑

k=0

f (k)(x0)

k!
(x− x0)

k .

Then, for x ∈ [a, b] ,

f(x) − p(x) =
f (n+1)(ξ)

(n+ 1)!
(x− x0)

n+1 ,

for some point ξ = ξ(x) that lies between x0 and x .

DEFINITION : Rn(x) ≡ f (n+1)(ξ)

(n+ 1)!
(x− x0)

n+1

is called the Taylor remainder .
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PROOF : ( EXERCISE )

The steps are similar to those in the Lagrange Interpolation Theorem :

• First show that the Theorem holds if x = x0.

• Next assume x is arbitrary, but x 6= x0. (Consider x as fixed.)

• Define

c(x) =
f(x)− p(x)

(x− x0)n+1
.

• Define F (z) = f(z) − p(z) − c(x) (z − x0)
n+1 .

• Show that F (k)(x0) = 0 , k = 0, 1, · · · , n , and that F (x) = 0 .

• Give a qualitative graph of F (z) .
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• Show F ′(ξ0) = 0 for some ξ0 between x0 and x . Graph F ′(z) .

• Show F ′′(ξ1) = 0 for some ξ1 between x0 and ξ0 . Graph F ′′(z) .

• etc.

• Show that F (n+1)(ξn) = 0 for some ξn between x0 and ξn−1 .

• From this derive that

c(x) =
f (n+1)(ξ)

(n+ 1)!
, (ξ = ξn) .

• Show how Taylor’s Theorem follows from this last step. QED !
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EXERCISES :

• Write down the Taylor polynomials pn(x) of degree n (or less) for
f(x) = ex about the point x0 = 0, for each of the following cases : n =
1, 2, 3, 4.

• How big should n be so that | ex − pn(x) |< 10−4 everywhere in the
interval [−1, 1] ?

• Do the same for f(x) = sin(x) in [0, 1] about the point x0 = 0 .

• Do the same for f(x) = ln(x) in [1
2
, 3
2
] about the point x0 = 1 .
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Graph of the function sin(x) (blue) and its Taylor polynomials pk(x)
about x0 = 0 : k = 1: purple, k = 3: red, k = 5: brown, k = 7: black .
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Local Polynomial Interpolation.

Let f ∈ Cn+1[a, b] .

Let p ∈ Pn interpolate f at n+ 1 distinct points {xk}nk=0 in [a, b] .

Does
‖ f − p ‖∞ → 0 as n → ∞ ?

The answer is often NO !
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EXAMPLE : If

f(x) =
1

1 + x2
on [−5, 5] ,

and if p ∈ Pn interpolates f at the n+ 1 equally spaced points {xk}nk=0 with

xk = − 5 + k ∆x , k = 0, 1, · · · , n , ∆x =
10

n
,

then it can be shown that

‖ f − p ‖∞ → ∞ as n → ∞ .
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Graph of f(x) = 1
1+x2 on the interval [−5, 5]

and its Lagrange interpolant p(x) ∈ P9 (red)

at ten equally spaced interpolation points (n = 9) .
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Graph of f(x) = 1
1+x2 on the interval [−5, 5]

and its Lagrange interpolant p(x) ∈ P13 (red)

at fourteen equally spaced interpolation points (n = 13) .
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Conclusion :

• Interpolating a function by a high degree polynomial is not a good idea !

Alternative :

• Interpolate the function locally by polynomials of relatively low degree .
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For given integer N let

h ≡ b− a

N
,

and partition [a, b] into

a = t0 < t1 < · · · < tN = b ,

where
tj = a + jh , j = 0, 1, · · · , N .

In each subinterval [tj−1, tj] :

interpolate f by a local polynomial pj ∈ Pn at n+1 distinct points {xj,i}ni=0 .
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Local polynomial interpolation of f(x) = 1
1+x2 at 3 points in 5 intervals.
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Local polynomial interpolation of f(x) = 1
1+x2 at 3 points in 10 intervals.
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Local polynomial interpolation of f(x) = 1
1+x2 at 2 Chebyshev points.
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Local polynomial interpolation of f(x) = 1
1+x2 at 3 Chebyshev points.
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By the Lagrange Interpolation Theorem

max
[tj−1,tj ]

| f(x)− pj(x) | ≤ 1

(n+ 1)!
max

[tj−1,tj ]
| f (n+1)(x) | max

[tj−1,tj ]
| wn+1(x) |

where
wn+1(x) =

n
∏

i=0

(x− xj,i) , h ≡ tj − tj−1 =
b− a

N
.

The Tables on Page 183, 200 show values of Cn ≡ max[−1,1] | wn+1(x) |
for uniform and for Chebyshev interpolation points.

A scaling argument shows that for uniformly spaced local interpolation points

max
[tj−1,tj ]

| wn+1(x) | ≤ (
h

2
)n+1 Cn ,

while for local Chebyshev points we have

max
[tj−1,tj ]

| wn+1(x) | ≤ (
h

2
)n+1 2−n .
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NOTE :

• Keeping n fixed , pj converges to f as h → 0 , (i.e., as N → ∞) .

• To get more accuracy, increase N , keeping the degree n fixed .
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EXAMPLE : If we approximate

f(x) = cos(x) on [ 0 ,
π

2
] ,

by local interpolation at 3 equally spaced local interpolation points

xj,0 = tj−1 , xj,1 =
tj−1 + tj

2
, xj,2 = tj ,

then n = 2, h = π/(2N) , and, using the Table on Page 183,

max
[tj−1,tj ]

| f(x)− pj(x) | ≤ ‖ f (3) ‖∞
3!

(
h

2
)3 C2 ≤ 1

6

h3

8
0.3849 .

Specifically, if N = 4 (four intervals), then h = π/8, so that

max
[tj−1,tj ]

| f(x)− pj(x) | ≤ 1

6

1

8
(
π

8
)3 0.3849 = 0.000486.
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Local polynomial interpolation at 3 points in 4 intervals.
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EXERCISES :

If we approximate a function f(x) on a given interval by local interpolation
with cubic polynomials, then how many intervals of equal size are needed to
ensure that the maximum error is less than 10−4 ? Answer this question for
each of the following cases :

• f(x) = sin(x) on [0, 2π] , with arbitrary local interpolation points.

• f(x) = sin(x) on [0, 2π] , with equally spaced local points.

• f(x) = sin(x) on [0, 2π] , with local Chebyshev interpolation points.

• f(x) = ex on [−1, 1] , with equally spaced local points.

• f(x) = ex on [−1, 1] , with local Chebyshev interpolation points.
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NUMERICAL DIFFERENTIATION.

Numerical differentiation formulas can be derived from local interpolation :

Let p ∈ Pn interpolate f(x) at points {xi}ni=0 . Thus

p(x) =

n
∑

i=0

f(xi) ℓi(x) ,

where

ℓi(x) =
n
∏

k=0,k 6=i

(x− xk)

(xi − xk)
.

For m ≤ n we can approximate f (m)(x) by

f (m)(x) ∼= p(m)(x) =
n

∑

i=0

f(xi) ℓ
(m)
i (x) .
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EXAMPLE :

Consider the case

n = 2 , m = 2 , x = 0 ,

for the reference interval [−h, h] :

x0 = − h , x1 = 0 , x2 = h .

Thus we want to approximate f ′′(x1) in terms of

f0 , f1 , and f2 , ( fi ≡ f(xi) ) .
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x x x

f (x)

h h

0 1 2

In this case

f ′′(x1) ∼= p′′(x1) = f0 ℓ′′0(x1) + f1 ℓ′′1(x1) + f2 ℓ′′2(x1) .
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f ′′(x1) ∼= f0 ℓ′′0(x1) + f1 ℓ′′1(x1) + f2 ℓ′′2(x1) .

Here
l0(x) =

(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
,

so that
ℓ′′0(x) =

2

(x0 − x1)(x0 − x2)
=

1

h2
.

In particular,

ℓ′′0(x1) =
1

h2
.

Similarly

ℓ′′1(x1) = − 2

h2
, ℓ′′2(x1) =

1

h2
. (Check !)

Hence
f ′′(x1) ∼= f0 − 2f1 + f2

h2
.
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To derive an optimal error bound we use Taylor’s Theorem :

f2 − 2f1 + f0
h2

− f ′′
1

=
1

h2

(

f1 + hf ′
1 +

h2

2
f ′′
1 +

h3

6
f ′′′
1 +

h4

24
f ′′′′(ζ1)

− 2f1

+ f1 − hf ′
1 +

h2

2
f ′′
1 − h3

6
f ′′′
1 +

h4

24
f ′′′′(ζ2)

)

− f ′′
1

=
h2

24

(

f ′′′′(ζ1) + f ′′′′(ζ2)
)

=
h2

12
f ′′′′(η) ,

where η ∈ (x0, x2) .

(In the last step we used the Intermediate Value Theorem .)
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EXAMPLE : With n = 4 , m = 2 , and x = x2 , and reference interval

x0 = − 2h , x1 = − h , x2 = 0 , x3 = h , x4 = 2h ,

we have

f ′′(x2) ∼=
4

∑

i=0

fi ℓ
′′
i (x2) .

Here

l0(x) =
(x− x1)(x− x2)(x− x3)(x− x4)

(x0 − x1)(x0 − x2)(x0 − x3)(x0 − x4)

=
(x− x1)(x− x2)(x− x3)(x− x4)

24h4
.

Differentiating, and setting x equal to x2, we find

ℓ′′0(x2) =
−1

12h2
. (Check !)
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Similarly

ℓ′′1(x2) =
16

12h2
, ℓ′′2(x2) =

−30

12h2
, ℓ′′3(x2) =

16

12h2
, ℓ′′4(x2) =

−1

12h2
.

(Check !)

Hence we have the five point finite difference approximation

f ′′(x2) ∼= −f0 + 16f1 − 30f2 + 16f3 − f4
12h2

.

By Taylor expansion one can show that the leading error term is

h4 f (6)(x2)

90
. (Check !)

We say that the order of accuracy of this approximation is equal to 4 .
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EXERCISES :

• Derive a formula for the error in the approximation formula

f ′′(0) ∼= f(2h)− 2f(h) + f(0)

h2
.

What is the order of accuracy?

• Do the same for f ′′(0) ∼= f(h)− 2f(0) + f(−h)

h2
.

• Derive the approximation formula

f ′(0) ∼= −3f(0) + 4f(h)− f(2h)

2h
.

and determine the order of accuracy.

238



EXERCISES :

• For the reference interval [0, 3h] , give complete details on the deriva-
tion of the four weights in the numerical differentiation formula

f ′(0) ∼= −11f(0) + 18f(h)− 9f(2h) + 2f(3h)

6h
.

Use Taylor expansions to determine the leading error term.

• For the reference interval [−3h/2, 3h/2], give complete details on the
derivation of the weights in the numerical differentiation formula

f ′′′(0) ∼= −f(−3h/2) + 3f(−h/2)− 3f(h/2) + f(3h/2)

h3
.

Use Taylor expansions to determine the leading error term.
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BEST APPROXIMATION IN THE ‖ · ‖2 .

Introductory Example : Best approximation in R3 .

Recall (from Linear Algebra) :

• A vector x ∈ R
3 is an ordered set of three numbers, x = (x1, x2, x3)

T .

• We can think of x as a point or an arrow .

• The dot product or inner product of two vectors x and y is defined as

〈x,y〉 ≡ x1 y1 + x2 y2 + x3 y3 .
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• The length or norm of a vector is defined in terms of the inner product :

‖ x ‖2 ≡ 〈x,x〉
1
2 =

√

x2
1 + x2

2 + x2
3 .

• Then ‖ x1 − x2 ‖2 denotes the distance between x1 and x2 .

• Two vectors are perpendicular if 〈x1,x2〉 = 0 .
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Let

e1 ≡ (1, 0, 0)T , e2 ≡ (0, 1, 0)T , and e3 ≡ (0, 0, 1)T .

The set {ek}3k=1 is a basis of R
3 .

This basis is orthogonal because

〈e1, e2〉 = 〈e1, e3〉 = 〈e2, e3〉 = 0 ,

and normal since

‖ e1 ‖2 = ‖ e2 ‖2 = ‖ e3 ‖2 = 1 ,

i.e., the basis is orthonormal .
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Let S2 denote the x1, x2-plane .

Then S2 = Span{e1, e2} .

S2 is a 2-dimensional subspace of R3 .

Suppose we want to find the best approximation

p∗ ∈ S2 ,

to a given vector x ∈ R
3 .

Thus we want p∗ ∈ S2 that minimizes

‖ x− p ‖2 ,

over all p ∈ S2 .
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S

p*
2

e

e
2

1

x-p* 

x
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Geometrically we see that ‖ x− p ‖2 is minimized if and only if

(x− p) ⊥ S2 ,

i.e., if and only if

〈x− p , e1〉 = 0 , and 〈x− p , e2〉 = 0 ,

i.e., if and only if

〈x , e1〉 = 〈p , e1〉 , and 〈x , e2〉 = 〈p , e2〉 .
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Since p ∈ S2 we have

p = c1 e1 + c2 e2 ,

for certain constants c1 and c2 .

Thus ‖ x− p ‖2 is minimized if and only if

〈x, e1〉 = 〈p, e1〉 = 〈c1e1 + c2e2 , e1〉 = c1 ,

〈x, e2〉 = 〈p, e2〉 = 〈c1e1 + c2e2 , e2〉 = c2 .

Hence
p∗ = c1 e1 + c2 e2 ,

with
c1 = 〈x, e1〉 and c2 = 〈x, e2〉 .
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Best Approximation in General.

Let X be a (possibly infinite-dimensional) real vector space,

with an inner product satisfying :

for all x,y, z ∈ X , and for all α ∈ R :

(i) 〈x,x〉 ≥ 0 , 〈x,x〉 = 0 only if x = 0 ,

(ii) 〈αx,y〉 = 〈x, αy〉 = α〈x,y〉 ,

(iii) 〈x,y〉 = 〈y,x〉 ,

(iv) 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉 .
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THEOREM :

LetX be a vector space with an inner product satisfying the properties above.

Then
‖ x ‖ ≡ 〈x,x〉

1
2 ,

defines a norm on X.

PROOF : We must show that ‖ · ‖ satisfies the usual properties :

(i) Clearly ‖ x ‖ ≥ 0 , and ‖ x ‖ = 0 only if x = 0 .

(ii) ‖ αx ‖ = 〈αx, αx〉
1
2 = ( α2〈x,x〉 ) 1

2 = | α | ‖ x ‖ .

(iii) The triangle inequality is also satisfied :
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Let

α ≡ 〈x,y〉
〈y,y〉 =

〈x,y〉
‖ y ‖2 , where x,y ∈ X .

Then

0 ≤ ‖ x− αy ‖2 = 〈x− αy,x− αy〉

= ‖ x ‖2 − 2α〈x,y〉 + α2 ‖ y ‖2

= ‖ x ‖2 − 2
〈x,y〉
‖ y ‖2 〈x,y〉 +

〈x,y〉2
‖ y ‖4 ‖ y ‖2

= ‖ x ‖2 − 〈x,y〉2
‖ y ‖2 .

Hence
〈x,y〉2 ≤ ‖ x ‖2 ‖ y ‖2 ,

or

| 〈x,y〉 | ≤ ‖ x ‖ ‖ y ‖ (Cauchy − Schwartz Inequality) .
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Now

‖ x+ y ‖2 = 〈x+ y,x+ y〉

= ‖ x ‖2 + 2〈x,y〉 + ‖ y ‖2

≤ ‖ x ‖2 + 2 | 〈x,y〉 | + ‖ y ‖2

≤ ‖ x ‖2 + 2 ‖ x ‖‖ y ‖ + ‖ y ‖2

= ( ‖ x ‖ + ‖ y ‖ )2 .

Hence

‖ x+ y ‖ ≤ ‖ x ‖ + ‖ y ‖ . ( Triangle Inequality ) QED !
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Suppose {ek}nk=1 is an orthonormal set of vectors in X , i.e.,

〈eℓ, ek〉 =







0 , if l 6= k ,

1 , if l = k .

Let Sn ⊂ X be defined by

Sn = Span{ek}nk=1 .

We want the best approximation p∗ ∈ Sn to a given vector x ∈ X .

Thus we want to find p∗ ∈ Sn that minimizes ‖ x− p ‖ over all p ∈ Sn .
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THEOREM :

The best approximation p∗ ∈ Sn to x ∈ X is given by

p∗ =

n
∑

k=1

ck ek ,

where the Fourier Coefficients ck , (k = 1, 2, · · · , n) , are given by

ck =
〈x, ek〉
〈ek, ek〉

, if the basis is orthogonal ,

and

ck = 〈x, ek〉 , if the basis is orthonormal .
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PROOF : Let
F (c1, c2, · · · , cn) ≡ ‖ x−

n
∑

k=1

ckek ‖2 .

Thus we want to find the {ck}nk=1 that minimize F .

Now

F (c1, c2, · · · , cn) = 〈x−
n

∑

k=1

ckek , x−
n

∑

k=1

ckek〉

= 〈x,x〉 − 2 〈
n

∑

k=1

ckek,x〉 + 〈
n

∑

k=1

ckek ,
n

∑

k=1

ckek〉

= ‖ x ‖2 − 2

n
∑

k=1

ck〈x, ek〉 +

n
∑

k=1

c2k〈ek, ek〉 .

For F to be minimized we must have

∂F

∂cℓ
= 0 , ℓ = 1, 2, · · · , n .
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We had

F (c1, c2, · · · , cn) = ‖ x ‖2 − 2
n

∑

k=1

ck〈x, ek〉 +
n

∑

k=1

c2k〈ek, ek〉 .

Setting ∂F
∂cℓ

= 0 gives

−2〈x, eℓ〉 + 2cℓ〈eℓ, eℓ〉 = 0 .

Hence, for ℓ = 1, 2, · · · , n , we have

cℓ =
〈x, eℓ〉
〈eℓ, eℓ〉

,

cℓ = 〈x, eℓ〉 , if the basis is orthonormal .

QED !
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NOTE :

• The proof uses the fact that X is an inner product space ,

with norm defined in terms of the inner product.

• In normed vector spaces without inner product, e.g.,

C[0, 1] with ‖ · ‖∞ ,

it is more difficult to find a best approximation.
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Gram-Schmidt Orthogonalization.

To construct

an orthogonal basis {ek}nk=1 of a subspace Sn of X ,

we have the Gram-Schmidt Orthogonalization Procedure :

• Take any nonzero e1 ∈ Sn .

• Choose any v2 ∈ Sn that is linearly independent from e1 .

• Set

e2 = v2 − 〈v2, e1〉
〈e1, e1〉

e1 .

Then
〈e2, e1〉 = 0 . (Check !)
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1
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2

1
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Inductively, suppose we have mutually orthogonal {ek}m−1
k=1 , (m ≤ n).

• Choose vm ∈ Sn linearly independent from the {ek}m−1
k=1 .

• Set

em = vm −
m−1
∑

k=1

〈vm, ek〉
〈ek, ek〉

ek .

Then
〈em, eℓ〉 = 0 . ℓ = 1, 2, · · · ,m− 1 . (Check !)

An orthonormal basis can be obtained by normalizing :

êk =
ek

‖ ek ‖
, k = 1, 2, · · · , n .
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Best Approximation in a Function Space.

We now apply the general results the special case where

X = C[−1, 1] ,

with inner product

〈f, g〉 ≡
∫ 1

−1

f(x) g(x) dx .

This definition satisfies all conditions an inner product must satisfy. (Check !)

Hence, from the Theorem it follows that

‖ f ‖2 ≡ 〈f, f〉
1
2 = (

∫ 1

−1

f(x)2 dx )
1
2 ,

is a norm on C[−1, 1] .
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Suppose we want to find p∗ ∈ Pn that best approximates a given function

f ∈ C[−1, 1] ,

in the ‖ · ‖2.

Here Pn is the (n + 1)-dimensional subspace of C[−1, 1] consisting of all
polynomials of degree less than or equal to n.

By the Theorem we have

p∗(x) =
n

∑

k=0

ck ek(x) ,

where

ck =
〈f, ek〉
〈ek, ek〉

=

∫ 1

−1
f(x) ek(x) dx
∫ 1

−1
e2k(x) dx

, k = 0, 1, · · · , n ,

and where the {ek}nk=0 denote the first n+ 1 orthogonal polynomials .
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Use the Gram-Schmidt procedure to construct an orthogonal basis of Pn :

(These basis polynomials are called the Legendre polynomials.)

Take e0(x) ≡ 1 and v1(x) = x .

Then
〈v1, e0〉
〈e0, e0〉

=

∫ 1

−1
x dx

∫ 1

−1
12 dx

= 0 .

Hence
e1(x) = v1(x) − 0 · e0(x) = x .
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Take v2(x) = x2 .

Then
〈v2, e0〉
〈e0, e0〉

=

∫ 1

−1
x2 dx

∫ 1

−1
12 dx

=
1

3
,

and
〈v2, e1〉
〈e1, e1〉

=

∫ 1

−1
x3 dx

∫ 1

−1
x2 dx

= 0 .

Hence

e2(x) = v2(x) − 1

3
e0(x) − 0 · e1(x) = x2 − 1

3
.
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Take v3(x) = x3. Then

〈v3, e0〉
〈e0, e0〉

=

∫ 1

−1
x3 dx

∫ 1

−1
12 dx

= 0 ,

and
〈v3, e1〉
〈e1, e1〉

=

∫ 1

−1
x4 dx

∫ 1

−1
x2 dx

=
3

5
,

and
〈v3, e2〉
〈e2, e2〉

=

∫ 1

−1
x3(x2 − 1

3
) dx

∫ 1

−1
(x2 − 1

3
)2 dx

= 0 .

Hence

e3(x) = v3(x) − 0 · e0(x) − 3

5
e1(x) − 0 · e2(x) = x3 − 3

5
x .

etc.
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EXAMPLE :

The polynomial p∗ ∈ P2 that best approximates

f(x) = ex , on [−1, 1] , in ‖ · ‖2 ,

is given by
p∗(x) = c0 e0(x) + c1 e1(x) + c2 e2(x) ,

where

c0 =
〈f, e0〉
〈e0, e0〉

, c1 =
〈f, e1〉
〈e1, e1〉

, c2 =
〈f, e2〉
〈e2, e2〉

.
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We find that

c0 =
〈f, e0〉
〈e0, e0〉

=

∫ 1

−1
ex dx

∫ 1

−1
12 dx

=
1

2
(e− 1

e
) = 1.175 ,

c1 =
〈f, e1〉
〈e1, e1〉

=

∫ 1

−1
ex x dx

∫ 1

−1
x2 dx

=
3

2
(x− 1)ex|1−1 = 1.103 ,

c2 =
〈f, e2〉
〈e2, e2〉

=

∫ 1

−1
ex (x2 − 1

3
) dx

∫ 1

−1
(x2 − 1

3
)2 dx

=
45

8
(x2 − 2x+

5

3
)ex|1−1 = 0.536 .

Therefore

p∗(x) = 1.175 (1) + 1.103 (x) + 0.536 (x2 − 1

3
)

= 0.536 x2 + 1.103 x + 0.996 . (Check !)
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Best approximation of f(x) = ex in [−1, 1] by a polynomial p ∈ P2 .
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EXERCISES :

• Use the Gram-Schmidt procedure to construct an orthogonal basis of
the polynomial space P4 on the interval [−1, 1], by deriving e4(x), given
e0(x) = 1 , e1(x) = x , e2(x) = x2 − 1

3
, and e3(x) = x3 − 3

5
x .

• Use the Gram-Schmidt procedure to construct an orthogonal basis of
the linear space Span{1, x, x3} for the interval [−1, 1]. Determine the
best approximation in the ‖ · ‖2 to f(x) = x5.

• Use the Gram-Schmidt procedure to construct an orthogonal basis of
the linear space Span{1, x2, x4} for the interval [−1, 1]. Determine the
best approximation in the ‖ · ‖2 to f(x) = x6.

• Show that the functions e0(x) ≡ 1, e1(x) = sin(x), e2(x) = cos(x),
e3(x) = sin(2x), e4(x) = cos(2x), are mutually orthogonal with respect

to the inner product < f, g >=
∫ 2π

0
f(x)g(x) dx. Also show how one

can determine the coefficients ck, k = 0, 1, 2, 3, 4, of the trigonometric
polynomial p(x) = c0+c1 sin(x)+c2 cos(x)+c3 sin(2x)+c4 cos(2x) that

minimizes
∫ 2π

0
(p(x)− f(x))2 dx, when f(x) = ex.
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NUMERICAL INTEGRATION

• Many definite integrals, e.g.,

∫ 1

0

e(x
2) dx ,

are difficult or impossible to evaluate analytically.

• In such cases we can use numerical integration.

• There are many numerical integration (or quadrature ) formulas.
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Most formulas are based on integrating local interpolating polynomials of f :
∫ b

a

f(x) dx ∼=
N
∑

j=1

∫ tj

tj−1

pj(x) dx ,

where pj ∈ Pn interpolates f at n+ 1 points in [tj−1, tj] .
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The Trapezoidal Rule.

If n = 1 , and if pj ∈ P1 interpolates f at tj−1 and tj , then
∫ tj

tj−1

pj(x) dx =
h

2
(fj−1 + fj) , (local integration formula) .
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The composite integration formula then becomes

∫ b

a

f(x) dx ∼=
N
∑

j=1

∫ tj

tj−1

pj(x) dx

=

N
∑

j=1

h

2
(fj−1 + fj)

= h (
1

2
f0 + f1 + · · · + fN−1 +

1

2
fN ) ,

where fj ≡ f(tj).

This is the well-known Trapezoidal Rule.
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In general

pj(x) =

n
∑

i=0

f(xji) ℓji(x) ,

where

ℓji(x) =
n
∏

k=0,k 6=i

x− xjk

xji − xjk

.

Thus we have the approximation

∫ tj

tj−1

f(x) dx ∼=
∫ tj

tj−1

pj(x) dx =

n
∑

i=0

f(xji)

∫ tj

tj−1

ℓji(x) dx .

The integrals
∫ tj

tj−1

ℓji(x) dx ,

are called the weights in the local integration formula.
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Simpson’s Rule.

Let n = 2 , and in each subinterval [tj−1, tj] choose the interpolation points

tj−1 , tj− 1
2

≡ 1

2
(tj−1 + tj) , and tj .
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It is convenient to derive the weights for the reference interval [−h/2 , h/2] :

��
��
��
��

��
��
��
��

��
��
��
��

h

−h/2 h/20

f

p
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The weights are

∫ h/2

−h/2

(x− 0) (x− h
2
)

(−h
2
− 0) (−h

2
− h

2
)

dx =
h

6
,

∫ h/2

−h/2

(x+ h
2
) (x− h

2
)

(0 + h
2
) (0− h

2
)

dx =
4h

6
,

∫ h/2

−h/2

(x+ h
2
) (x− 0)

(h
2
+ h

2
) (h

2
− 0)

dx =
h

6
.

(Check !)
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With uniformly spaced {tj}Nj=0 , the composite integration formula becomes

∫ b

a

f(x) dx ∼=
N
∑

j=1

h

6
(fj−1 + 4fj− 1

2
+ fj)

=
h

6
( f0 + 4f 1

2
+ 2f1 + 4f1 1

2
+ 2f2 + · · ·+ 2fN−1 + 4fN− 1

2
+ fN ) .

This formula is known as Simpson’s Rule.
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The local polynomials (red) in Simpson’s Rule
for numerically integrating f(x) = 1

1+x2 (blue) .

277



THEOREM :

The error in the composite integration formula, based on local polynomial
interpolation at n+ 1 equally spaced local points , satisfies the estimate

|
∫ b

a

f(x) dx −
N
∑

j=1

∫ tj

tj−1

pj(x) dx | ≤ ‖ f (n+1) ‖∞ hn+1 Cn (b− a)

(n+ 1)! 2n+1
,

where

h =
b− a

N
,

and where the value of

Cn ≡ max
[−1,1]

| wn+1(x) | ,

can be found in the Table on Page 183.
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PROOF : The local error is

|
∫ tj

tj−1

f(x) dx −
∫ tj

tj−1

pj(x) dx | = |
∫ tj

tj−1

f(x)− pj(x) dx |

= |
∫ tj

tj−1

f (n+1)(ξ(x))

(n+ 1)!

n
∏

i=0

(x− xji) dx |

≤ | tj − tj−1 |
‖ f (n+1) ‖∞
(n+ 1)!

(h

2

)n+1

Cn

=
‖ f (n+1) ‖∞ hn+2 Cn

(n+ 1)! 2n+1
.
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The error in the composite formula is now easily determined :

|
∫ b

a

f(x) dx−
N
∑

j=1

∫ tj

tj−1

pj(x) dx | = |
N
∑

j=1

∫ tj

tj−1

f(x)− pj(x) dx |

≤
N
∑

j=1

|
∫ tj

tj−1

f(x)− pj(x) dx |

= N
‖ f (n+1) ‖∞ hn+2 Cn

(n+ 1)! 2n+1

=
‖ f (n+1) ‖∞ hn+1 Cn (b− a)

(n+ 1)! 2n+1
,

where the last step uses the fact that

h =
b− a

N
, i .e. , N =

b− a

h
.

QED !
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|
∫ b

a

f(x) dx −
N
∑

j=1

∫ tj

tj−1

pj(x) dx | ≤ ‖ f (n+1) ‖∞ hn+1 Cn (b− a)

(n+ 1)! 2n+1
.

NOTE :

• The order of accuracy is at least n+ 1 .

• We say that the method is O(hn+1) .

• For equally spaced local interpolation points we find Cn in the Table.

• For local Chebyshev points we have Cn = 2−n .

• The actual order may be higher.

• For local Gausss points we have much higher order of accuracy !
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EXAMPLES :

For the Trapezoidal Rule , where n = 1 , C1 = 1 , we get the error bound

h2

8
‖ f ′′ ‖∞ (b− a) .

Indeed the Trapezoidal Rule is O(h2) .

For Simpson’s Rule , where n = 2 , C2 = 0.3849 , we get the bound

8.01875 · 10−3 h3 ‖ f (3) ‖∞ (b− a) .

The actual order of Simpson’s Rule is higher, namely, O(h4) .
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EXAMPLE :

Taylor expand for the precise local error in Simpson’s Rule :

∫ h/2

−h/2

f(x) dx − h

6

(

f(−h

2
) + 4f(0) + f(

h

2
)
)

=

∫ h/2

−h/2

f0 + xf ′
0 +

x2

2
f ′′
0 +

x3

6
f ′′′
0 +

x4

24
f ′′′′
0 + · · · dx

− h

6

(

f0 − (
h

2
)f ′

0 +
1

2
(
h

2
)2f ′′

0 − 1

6
(
h

2
)3f ′′′

0 +
1

24
(
h

2
)4f ′′′′

0 + · · ·

+ 4f0

+ f0 + (
h

2
)f ′

0 +
1

2
(
h

2
)2f ′′

0 +
1

6
(
h

2
)3f ′′′

0 +
1

24
(
h

2
)4f ′′′′

0 + · · ·
)

where f0 ≡ f(0) , etc.
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=
(

xf0 +
x2

2
f ′
0 +

x3

6
f ′′
0 +

x4

24
f ′′′
0 +

x5

120
f ′′′′
0 + · · ·

)∣

∣

∣

h/2

−h/2

− h

6

(

6f0 +
h2

4
f ′′
0 +

h4

192
f ′′′′
0 + · · ·

)

=
(

hf0 +
(h/2)3

3
f ′′
0 +

(h/2)5

60
f ′′′′
0 + · · ·

)

−
(

hf0 +
h3

24
f ′′
0 +

h5

1152
f ′′′′
0 + · · ·

)

= − h5

2880
f ′′′′
0 + higher order terms.

Thus the leading error term of the composite Simpson’s Rule is bounded by

h4

2880
‖ f ′′′′ ‖∞ (b− a) .
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EXERCISE :

• The Local Midpoint Rule, for numerically integrating a function f(x)
over the reference interval [−h/2, h/2], is given by

∫ h/2

−h/2

f(x) dx ∼= hf(0) .

Use Taylor expansion to determine the error in this local formula.

Write down the formula for the Composite Midpoint Rule for integrating
f(x) over a general interval [a, b].

Derive an error formula for the composite formula.

How big must N be for the global error to be less than 10−6, when
integrating f(x) = sin(x) over the interval [0, 1] ?
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EXERCISE :

• The local Trapezoidal Rule for the reference interval [−h/2, h/2] is

∫ h/2

−h/2

f(x) dx ∼= h

2

[

f(−h/2) + f(h/2)
]

.

Use Taylor expansions to derive the local error formula.

Let h = (b− a)/N and xk = a+ k h , for k = 0, 1, 2, 3, · · · , N .
Then the composite Trapezoidal Rule is given by

∫ b

a

f(x)dx ∼= h

2

[

f(x0) + 2f(x1) + 2f(x2) + · · ·+ 2f(xN−1) + f(xN )
]

.

Based on the local error, derive an upper bound on the global error.

How big must N be for the global error to be less than 10−6, when
integrating f(x) = sin(x) over the interval [0, 1] ?
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THE GAUSS QUADRATURE THEOREM :

If in each subinterval [tj−1, tj] the interpolation points {xji}ni=0 are taken as

the zeroes of the (n+ 1)st orthogonal polynomial en+1(x) ,

( relative to [tj−1, tj ] ) ,

then the composite integration formula is O(h2n+2) .

NOTE :

• Such integration formulas are known as Gauss Quadrature formulas.

• The points {xji}ni=0 are the Gauss points .

• The order improves from O(hn+1) to O(h2n+2) for Gauss points.
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EXAMPLE : The case n = 1 :

Relative to the interval [−1, 1] , the second degree orthogonal polynomial is

e2(x) = x2 − 1

3
.

The two Gauss points relative to [−1, 1] are the zeroes of e2(x) , i.e.,

x0 = −
√
3

3
and x1 =

√
3

3
.

Relative to [tj−1, tj] the Gauss points are

xj,0 = tj− 1
2
− h

√
3

6
, and xj,1 = tj− 1

2
+ h

√
3

6
,

where tj− 1
2

≡ 1
2
(tj−1 + tj) .
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Relative to the reference interval Ih ≡ [−h/2 , h/2] the Gauss points are

x0 = − h
√
3

6
and x1 =

h
√
3

6
,

with interpolating polynomial

p(x) = f(x0) ℓ0(x) + f(x1) ℓ1(x) ,

where

ℓ0(x) =
x− x1

x0 − x1

=
x− h

√
3/6

−h
√
3/3

,

and

ℓ1(x) =
x− x0

x1 − x0

=
x+ h

√
3/6

h
√
3/3

.
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The local integration formula is

∫ h/2

−h/2

f(x) dx ∼= f(x0)

∫ h/2

−h/2

ℓ0(x) dx + f(x1)

∫ h/2

−h/2

ℓ1(x) dx .

Integrating ℓ0(x) and ℓ1(x) , we find

∫ h/2

−h/2

f(x) dx ∼= h

2
f(x0) +

h

2
f(x1) .

Hence the composite two point Gauss quadrature formula is

∫ b

a

f(x) dx ∼= h

2

N
∑

j=1

[f(xj,0) + f(xj,1)] .

By the Theorem this integration formula is O(h4) .
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PROOF (of the Gauss Quadrature Theorem.)

The local error for the reference interval Ih ≡ [−h/2 , h/2] is

∫ h/2

−h/2

f(x)− p(x) dx ,

where p ∈ Pn interpolates f(x) at Gauss points {xi}ni=0 (relative to Ih ) .

By the Lagrange Interpolation Theorem

∫ h/2

−h/2

f(x)− p(x) dx =

∫ h/2

−h/2

f (n+1)(ξ(x))

(n+ 1)!

n
∏

i=0

(x− xi) dx

=

∫ h/2

−h/2

c(x) en+1(x) dx ,

where
c(x) ≡ f (n+1)(ξ(x))

(n+ 1)!
and en+1(x) =

n
∏

i=0

(x− xi) .

Note that en+1 is the (n+ 1)st orthogonal polynomial (relative to Ih) .
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FACT : If f(x) is very smooth then c(x) has n+ 1 continuous derivatives.

Thus we can Taylor expand :

c(x) =

n
∑

k=0

xk

k!
c(k)(0) +

xn+1

(n+ 1)!
c(n+1)(η(x)) .

Call the remainder r(x) and use the fact that each summation term is in Pn :

c(x) =
n

∑

k=0

ck ek(x) + r(x) ,

where ek is the kth orthogonal polynomial relative to Ih .

(Recall that the {ek}nk=0 form an orthogonal basis of Pn .)
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We have

∫ h/2

−h/2

f(x)− p(x) dx =

∫ h/2

−h/2

c(x) en+1(x) dx ,

and

c(x) =

n
∑

k=0

ck ek(x) + r(x) .

It follows that

|
∫ h/2

−h/2

f(x) − p(x) dx | = |
∫ h/2

−h/2

[

n
∑

k=0

ck ek(x) + r(x)] en+1(x) dx |

= |
n

∑

k=0

ck

∫ h/2

−h/2

ek(x) en+1(x) dx +

∫ h/2

−h/2

r(x) en+1(x) dx | .
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Note that all terms in the summation term are zero by orthogonality, so that

|
∫ h/2

−h/2

f(x) − p(x) dx | = |
∫ h/2

−h/2

r(x) en+1(x) dx |

= |
∫ h/2

−h/2

xn+1

(n+ 1)!
c(n+1) (η(x))

n
∏

i=0

(x− xi) dx |

≤ h max
x∈Ih

| xn+1

(n+ 1)!
c(n+1)(η(x))

n
∏

i=0

(x− xi) |

≤ h
(h/2)n+1

(n+ 1)!
max
x∈Ih

| c(n+1)(x) | hn+1

=
h2n+3

2n+1(n+ 1)!
max
x∈Ih

| c(n+1)(x) | .

Hence the local integration formula is O(h2n+3) .

As before, this implies that the composite formula is O(h2n+2) . QED !

294



EXERCISE :

• Give complete details on the derivation of the local 3-point Gauss
integration formula. Also write down the composite 3-point Gauss
formula for integrating a function f(x) over a general interval [a, b].

• Are the following True or False for any sufficiently smooth f(x) ?

- The order of accuracy of a general composite (n + 1)-point inte-
gration formula for f(x) is at least O(hn+1).

- The order of accuracy of the composite (n+1)-point Gauss formula
for integrating f(x) is O(h2n+4).

- The order of accuracy of the composite 2-Point Gauss formula
is the same as the order of accuracy of the composite Simpson
formula.
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DISCRETE LEAST SQUARES APPROXIMATION

We have solved the continuous least squares problem :

Given f(x) on [−1, 1], find a polynomial p(x) ∈ Pn that minimizes

‖ p− f ‖22 ≡
∫ 1

−1

[p(x)− f(x)]2 dx .
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Next we solve the discrete least squares problem :

Given a set of discrete data points

{ (xi, yi) }Ni=1 ,

find p ∈ Pn such that

eL ≡
N
∑

i=1

[p(xi)− yi]
2

is minimized.

More generally, find

p(x) =

n
∑

i=0

ai φi(x) ,

(not necessarily a polynomial), such that eL is minimized.
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Linear Least Squares

• Suppose we have data on the daily high temperature in March.

• For each day we compute the average high temperature.

• Each average is taken over a number of years .

• The (fictitious) data are given in the Table below.

1 -2.4 2 -0.6 3 -1.7 4 0.1 5 -2.0 6 -0.6 7 -1.8
8 1.7 9 2.0 10 1.2 11 0.7 12 0.6 13 1.3 14 1.5
15 2.6 16 1.8 17 0.9 18 2.7 19 2.7 20 3.5 21 3.1
22 3.8 23 3.5 24 4.4 25 3.5 26 7.6 27 3.2 28 7.5
29 5.5 30 6.8 31 5.9

Average daily high temperature in Montreal in March
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Average daily high temperature in Montreal in March
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Suppose that :

• We believe these temperatures basically increase linearly .

• Thus we believe in a relation

Tk = c1 + c2 k , k = 1, 2, · · · , 31 .

• The deviations from linearity come from random influences .

• These random influences can be due to many factors .

• We want to determine ”the best ” linear approximation.
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Average daily high temperatures, with a linear approximation .
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• There are many ways to determine such a linear approximation.

• Often used is the least squares method .

• This method determines c1 and c2 that minimize

N
∑

k=1

( Tk − (c1 + c2xk) )
2 ,

where, in our example, N = 31 and xk = k .

• To do so set the partial derivatives w.r.t. c1 and c2 to zero :

w.r.t. c1 : − 2

N
∑

k=1

( Tk − (c1 + c2xk) ) = 0 ,

w.r.t. c2 : − 2

N
∑

k=1

xk ( Tk − (c1 + c2xk) ) = 0 .
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The least squares error versus c1 and c2 .
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From setting the partial derivatives to zero, we have

N
∑

k=1

( Tk − (c1 + c2xk) ) = 0 ,
N
∑

k=1

xk ( Tk − (c1 + c2xk) ) = 0 .

Solving these two equations for c1 and c2 gives

c2 =

∑N
k=1 xkTk − x̄

∑N
k=1 Tk

∑N
k=1 x

2
k − Nx̄2

,

and
c1 = T̄ − c2 x̄ ,

where

x̄ =
1

N

N
∑

k=1

xk , T̄ =
1

N

N
∑

k=1

Tk .

EXERCISE : Check these formulas !
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EXAMPLE : For our ”March temperatures” example, we find

c1 = − 2.111 and c2 = 0.272 .
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Average daily high temperatures, with linear least squares approximation .
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General Least Squares

Given discrete data points

{ (xi, yi) }Ni=1 ,

find the coefficients ck of the function

p(x) ≡
n

∑

k=1

ck φk(x) ,

that minimize the least squares error

EL ≡
N
∑

i=1

(p(xi)− yi)
2

EXAMPLES :

• p(x) = c1 + c2 x . (Already done !)

• p(x) = c1 + c2 x + c3 x2 . (Quadratic approximation)
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For any vector x ∈ R
N we have

‖ x ‖22 ≡ xTx ≡
N
∑

i=1

x2
k . (T denotes transpose).

Then

EL ≡
N
∑

i=1

[p(xi)− yi]
2 = ‖









p(x1)
·
·

p(xN )









−









y1
·
·
yN









‖22

= ‖









∑n
i=1 ciφi(x1)

·
·

∑n
i=1 ciφi(xN )









−









y1
·
·
yN









‖22

= ‖









φ1(x1) · φn(x1)
· ·
· ·

φ1(xN ) · φn(xN )













c1
·
cn



−









y1
·
·
yN









‖22 ≡ ‖ Ac− y ‖22 .
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THEOREM :

For the least squares error EL to be minimized we must have

AT A c = AT y .

PROOF :

EL = ‖ Ac− y ‖22

= (Ac− y)T (Ac− y)

= (Ac)TAc − (Ac)Ty − yTAc + yTy

= cTATAc − cTATy − yTAc + yTy .
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PROOF : continued · · ·

We had
EL = cTATAc − cTATy − yTAc + yTy .

For a minimum we need

∂EL

∂c
= 0, i .e.,

∂EL

∂ci
= 0 , i = 0, 1, · · · , n ,

which gives

cTATA + (ATAc)T − (ATy)T − yTA = 0 , (Check !)

i.e.,
2cTATA − 2yTA = 0 ,

or
cTATA = yTA .

Transposing gives

ATAc = ATy . QED !
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EXAMPLE : Given the data points

{ (xi, yi) }4i=1 = { (0, 1) , (1, 3) , (2, 2) , (4, 3) } ,

find the coefficients c1 and c2 of p(x) = c1 + c2x ,
that minimize

EL ≡
4

∑

i=1

[ (c1 + c2xi) − yi]
2 .

SOLUTION : Here N = 4 , n = 2 , φ1(x) = 1 , φ2(x) = x .

Use the Theorem :

(

1 1 1 1
0 1 2 4

)









1 0
1 1
1 2
1 4









(

c1
c2

)

=

(

1 1 1 1
0 1 2 4

)









1
3
2
3









,

or
(

4 7
7 21

)(

c1
c2

)

=

(

9
19

)

,

with solution c1 = 1.6 and c2 = 0.371429 .
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EXAMPLE : Given the same data points, find the coefficients of

p(x) = c1 + c2x + c3x
2 ,

that minimize

EL ≡
4

∑

i=1

[ (c1 + c2 xi + c3 x2
i ) − yi ]

2 .

SOLUTION : Here

N = 4 , n = 3 , φ1(x) = 1 , φ2(x) = x , φ3(x) = x2 .

Use the Theorem :




1 1 1 1
0 1 2 4
0 1 4 16













1 0 0
1 1 1
1 2 4
1 4 16













c1
c2
c3



 =





1 1 1 1
0 1 2 4
0 1 4 16













1
3
2
3









,

or




4 7 21
7 21 73
21 73 273









c1
c2
c3



 =





9
19
59



 ,

with solution c1 = 1.32727 , c2 = 0.936364 , c3 = −0.136364 .
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The least squares approximations from the preceding two examples :
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y

p(x) = c1 + c2x p(x) = c1 + c2x + c3x
2
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EXAMPLE : From actual data :

The average daily high temperatures in Montreal (by month) are :

January -5
February -3
March 3
April 11
May 19
June 24
July 26
August 25
September 20
October 13
November 6
December -2

Source : http://weather.uk.msn.com
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Average daily high temperature in Montreal (by month).
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EXAMPLE : continued · · ·
The graph suggests using a 3-term least squares approximation

p(x) = c1 φ1(x) + c2 φ2(x) + c3 φ3(x) ,

of the form

p(x) = c1 + c2 sin(
πx

6
) + c3 cos(

πx

6
) .

QUESTIONS :

• Why include φ2(x) = sin(πx
6
) ?

• Why is the argument πx
6

?

• Why include the constant term φ1(x) = c1 ?

• Why include φ3(x) = cos(πx
6
) ?

In this example we find the least squares coefficients

c1 = 11.4 , c2 = −8.66 , c3 = −12.8 .
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Least squares fit of average daily high temperatures.
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EXAMPLE : Consider the following experimental data :

0 1 2 3 4 5 6 7 8

x
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EXAMPLE : continued · · ·

Suppose we are given that :

• These data contain ”noise ” .

• The underlying physical process is understood.

• The functional dependence is known to have the form

y = c1 xc2 e−c3x .

• The values of c1 , c2 , c3 are not known.
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EXAMPLE : continued · · ·

The functional relationship has the form

y = c1 xc2 e−c3x .

Note that :

• The unknown coefficients c1 , c2 , c3 appear nonlinearly !

• This gives nonlinear equations for c1 , c2 , c3 !

• Such problems are more difficult to solve !

• What to do ?
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EXAMPLE : continued · · ·

Fortunately, in this example we can take the logarithm :

log y = log c1 + c2 log x − c3 x .

This gives a linear relationship

log y = ĉ1 φ1(x) + c2 φ2(x) + c3 φ3(x) ,
where

ĉ1 = log c1 .

and
φ1(x) = 1 , φ2(x) = log x , φ3(x) = − x .

Thus

• We can now use regular least squares.

• We first need to take the logarithm of the data.
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EXAMPLE : continued · · ·

0 1 2 3 4 5 6 7 8
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The logarithm of the original y-values versus x .
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EXAMPLE : continued · · ·

We had
y = c1 xc2 e−c3x ,

and
log y = ĉ1 φ1(x) + c2 φ2(x) + c3 φ3(x) ,

with
φ1(x) = 1 , φ2(x) = log x , φ3(x) = − x ,

and
ĉ1 = log c1 .

We find the following least squares values of the coefficients :

ĉ1 = − 0.00473 , c2 = 2.04 , c3 = 1.01 ,

and
c1 = eĉ1 = 0.995 .
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EXAMPLE : continued · · ·
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The least squares approximation of the transformed data.
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EXAMPLE : continued · · ·
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The least squares approximation shown in the original data.
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EXERCISES :

• Compute the discrete least squares approximation of the form
p(x) = c0 + c1x+ c2x

2 to the data {(0, 2), (1, 1), (2, 1), (3, 3)} .

• Compute the discrete least squares approximation of the form
p(x) = c0 + c1x+ c2

1
x

to the data {(1, 5), (2, 3), (3, 2), (4, 3)} .

• Derive a formula in terms of N and n for the number of multiplications
and divisions needed to solve the linear discrete least squares system

ATAc = ATy ,

for c ∈ R
n, given the N by nmatrixA and the vector y ∈ R

N . HereAT

denotes the transpose ofA. What is the total number of multiplications
and divisions in terms of N for the special case n = 2 ?
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SMOOTH INTERPOLATION BY PIECEWISE POLYNOMIALS

We have already discussed local (or piecewise) polynomial interpolation :

In each subinterval [tj−1, tj] the function f is interpolated by a polynomial
pj ∈ Pn at interpolation points { xj,i }ni=0 :
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NOTE :

• The collection {pj}Nj=1 defines a function p(t) .

• p(t) is generally not smooth, (not continuously differentiable) .

• In fact, p(t) is not continuous, unless

xj,0 = tj−1 and xj,n = tj ,

i.e., unless in each subinterval the leftmost and rightmost interpolation
points are the end points of the subinterval.
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NOTE :

• Sometimes a smooth interpolant is wanted.

• These can also be constructed using piecewise polynomials.

• One class of smooth piecewise polynomial are called cubic splines.

• Cubic splines are piecewise polynomial functions

p(t) ∈ C
2[a, b] ,

for which each component pj is in P3 .
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The cubic spline that interpolates the indicated data points.
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Cubic Spline Interpolation.

Given f(t) defined on [a, b] we seek a function p(t) satisfying :

• p ∈ C
2[a, b] ,

• The restriction pj of p to [tj−1, tj] lies in P3 ,

• p(tj) = f(tj) , j = 0, 1, · · · , N ,

⋆ p′′(t0) = 0 , p′′(tN ) = 0 .

• There are other possible choices for ⋆ .

• With the above choice of ⋆ a spline is called the natural cubic spline.

• We may also have discrete data points (tj, fj) , j = 0, 1, · · · , N .
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This spline is ”formally well defined”, because

the total number of unknowns is 4N ,

(since each pj is defined by four coefficients) ,

which is matched by the number of equations :

continuity equations 3(N − 1)

interpolation equations N + 1

end point conditions 2
———

Total 4N
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NOTE :

• In practice we do not solve these 4N equations to find the spline.

• Often we want the values of the spline at a large number of points,

whereas the actual number of data points

{ ( tj , fj ) }Nj=0

is relatively small.

• For this purpose we derive a more efficient algorithm below.
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Consider the interval [tj−1, tj] of size hj .

To simplify notation take the interval [t0, t1] of size h1 .

Corresponding to this interval we have a polynomial p ∈ P3 .

We can write

p(t0) = p0 , p(t1) = p1 ,

p′′(t0) = p′′0 , p′′(t1) = p′′1 .

These four equations uniquely define p ∈ P3 in terms of the values

p0 , p1 , p′′0 , p′′1 .
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In fact, for the interval [t0, t1] , one finds the polynomial

p1(t) =
p′′0
6h1

(t1−t)3 +
p′′1
6h1

(t−t0)
3 + (

p1
h1

− p′′1h1

6
) (t−t0) + (

p0
h1

−p′′0h1

6
) (t1−t) .

Indeed, p1 ∈ P3 , and

p(t0) = p0 , p(t1) = p1 ,

p′′(t0) = p′′0 , p′′(t1) = p′′1 .

Similarly, for the interval [t1, t2] , one finds the polynomial

p2(t) =
p′′1
6h2

(t2−t)3 +
p′′2
6h2

(t−t1)
3 + (

p2
h2

− p′′2h2

6
) (t−t1) + (

p1
h2

−p′′1h2

6
) (t2−t) .

EXERCISE : Derive the formulas given above.
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By construction the local polynomials p1 and p2 connect continuously at t1.

By construction the second derivatives also connect continuously.

However, the first derivatives must also match :

p′1(t1) = p′2(t1) .

This requirement leads to the consistency relation

h1 p′′0 + 2(h1 + h2) p
′′
1 + h2 p′′2 = 6

(p2 − p1
h2

− p1 − p0
h1

)

.

EXERCISE : Derive this formula.
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For consecutive intervals [tj−1, tj] and [tj , tj+1], the consistency relation is

hj p
′′
j−1 + 2(hj + hj+1) p

′′
j + hj+1 p′′j+1 = 6

(pj+1 − pj
hj+1

− pj − pj−1

hj

)

,

where
hj ≡ tj − tj−1 and hj+1 ≡ tj+1 − tj .

We have one such equation for each interior mesh point .

To interpolate the data points {(tj, fj)}Nj=0 , we have

pj = fj , j = 0, 1, · · · , N .

Furthermore we have the natural spline endpoint conditions

p′′0 = p′′N = 0 .
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This gives a tridiagonal system of equations for the unknown values

p′′j , for j = 1, · · · , N − 1 ,

namely,













2(h1 + h2) h2

h2 2(h2 + h3) h3

· · ·
· · ·

hN−1 2(hN−1 + hN )





























p′′1
p′′2
·
·

p′′N−2

p′′N−1

















=













F1

F2

·
FN−2

FN−1













where

Fj ≡ 6
(fj+1 − fj

hj+1

− fj − fj−1

hj

)

.
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NOTE :

• In each row the diagonal entry is bigger than the sum of the other entries.

• Such a matrix is called diagonally dominant.

• By the Banach Lemma this matrix is nonsingular. (Check !)

• Thus we can compute the p′′j using the tridiagonal algorithm.

Thereafter evaluate each local polynomial with the formula

pj(t) =
p′′j−1

6hj

(tj − t)3 +
p′′j
6hj

(t− tj−1)
3

+ (
pj
hj

−
p′′jhj

6
) (t− tj−1) + (

pj−1

hj

−
p′′j−1hj

6
) (tj − t) .
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NOTE :

• The smoothness makes the component polynomials interdependent.

• One can not determine each component polynomial individually.

• As seen above, a tridiagonal system must be solved.

• This interdependence can lead to unwanted oscillations.
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The cubic spline that interpolates the indicated data points.
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NUMERICAL METHODS FOR INITIAL VALUE PROBLEMS

Here we discuss some basic concepts that arise in the numerical solution of

initial value problems (IVPs) in ordinary differential equations (ODEs) .

Consider the first order IVP

u′(t) = f( u(t) ) , for t ≥ 0 ,

with initial conditions
u(0) = u0 .

Here u , f(·) ∈ R
n .
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Many higher order ODEs can be rewritten as first order systems .

EXAMPLE :
u′′ = g( u(t) , u′(t) ) ,

where u , g(·, ·) ∈ R
n , with initial conditions

u(0) = u0 ,

u′(0) = v0 ,
can be rewritten as

u′(t) = v(t) ,

v′(t) = g( u(t) , v(t) ) ,

with initial conditions
u(0) = u0 ,

v(0) = v0 .
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EXAMPLE :

The equations of motion of a satellite in an Earth-Moon-like system are :

x′′ = 2y′ + x− (1− µ)(x+ µ)r−3
1 − µ(x− 1 + µ)r−3

2 ,

y′′ = −2x′ + y − (1− µ)yr−3
1 − µyr−3

2 ,

z′′ = −(1− µ)zr−3
1 − µzr−3

2 ,

where

r1 =
√

(x+ µ)2 + y2 + z2 , r2 =
√

(x− 1 + µ)2 + y2 + z2 .
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Rewritten as a first order system :

x′ = vx ,

y′ = vy ,

z′ = vz ,

v′x = 2vy + x− (1− µ)(x+ µ)r−3
1 − µ(x− 1 + µ)r−3

2 ,

v′y = −2vx + y − (1− µ)yr−3
1 − µyr−3

2 ,

v′z = −(1− µ)zr−3
1 − µzr−3

2 ,

with

r1 =
√

(x+ µ)2 + y2 + z2 and r2 =
√

(x− 1 + µ)2 + y2 + z2 .

This system is of the form

u′(t) = f( u(t) ) , with initial condition u(0) = u0 .
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Here µ is the mass ratio , i.e.,

µ ≡ m2

m1 +m2

,

where m1 is the mass of the larger body, and m2 of the smaller body.

For example,

µ ∼= 0.01215 for the Earth Moon system,

µ ∼= 9.53 10−4 for the Sun Jupiter system,

µ ∼= 3.0 10−6 for the Sun Earth system.

The variables are scaled such that

• the distance between the two bodies is 1 ,

• the sum of their masses is 1 .

The larger body is located at (−µ, 0, 0) , and the smaller body at (1−µ, 0, 0) .
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A trajectory connecting a periodic “Halo orbit” to itself.
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Numerical Methods.

Let
tj ≡ j ∆t , j = 0, 1, 2, · · · .

Below we give several basic numerical methods for solving the IVP

u′(t) = f( u(t) ) , u , f(·) ∈ R
n .

u(0) = u0 .

We use the notation

u(tj) = the exact solution of the ODE at time tj ,

uj = the numerical solution at time tj .
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Euler’s Method :

Using the first order accurate numerical differentiation formula

u(tj+1) − u(tj)

∆t
∼= u′(tj) = f( u(tj) ) ,

we have

uj+1 = uj + ∆t f(uj) , j = 0, 1, 2, · · · ,

( explicit, one-step , O(∆t) ) .

(Check the order of accuracy!)

348



The Trapezoidal Method :

Using the second order accurate approximation formula

u(tj+1) − u(tj)

∆t
∼= u′(tj) + u′(tj+1)

2
=

f( u(tj) ) + f( u(tj+1) )

2
,

we have

uj+1 = uj +
∆t

2
[ f(uj) + f(uj+1) ] , j = 0, 1, 2, · · · ,

( implicit, one-step , O(∆t2) ) .

(Check the order of accuracy!)

NOTE : In each time-step a nonlinear system must be solved !
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A Two-Step (Three-Point) Backward Differentiation Formula (BDF) :

Using the second order accurate approximation formula

3 u(tj+1) − 4 u(tj) + u(tj−1)

2∆t
∼= u′(tj+1) = f( u(tj+1) ) , (Check !)

we have

uj+1 =
4

3
uj − 1

3
uj−1 +

2∆t

3
f(uj+1) , j = 1, 2, · · · ,

( implicit, two-step , O(∆t2) ) .

NOTE : In each time-step a nonlinear system must be solved!
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A Two-Step (Three-Point) Forward Differentiation Formula :

Using the second order accurate approximation formula

−u(tj+1) + 4 u(tj) − 3u(tj−1)

2∆t
∼= u′(tj−1) = f( u(tj−1) ) , (Check !)

we have

uj+1 = 4 uj − 3 uj−1 − 2∆t f(uj−1) , j = 1, 2, · · · ,

( explicit, two-step , O(∆t2) ) .

(We will show that this method is useless !)
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The Improved Euler Method :

ûj+1 = uj + ∆t f(uj) ,

uj+1 = uj +
∆t

2
[ f(uj) + f(ûj+1) ] ,

for j = 0, 1, 2, · · · .

( explicit, one-step , O(∆t2) ) .

352



An Explicit 4th order accurate Runge-Kutta Method :

k1 = f(uj) ,

k2 = f(uj +
∆t

2
k1) ,

k3 = f(uj +
∆t

2
k2) ,

k4 = f(uj +∆t k3) ,

uj+1 = uj +
∆t

6
{k1 + 2k2 + 2k3 + k4} ,

for j = 0, 1, 2, · · · .

( explicit, one-step , O(∆t4) ) .
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The order of accuracy of a local formula can be found by Taylor expansion .

EXAMPLE :

For the two-step BDF we have the local discretization error

τj ≡ 1

∆t
{ 3

2
u(tj+1) − 2u(tj) +

1

2
u(tj−1) } − u′(tj+1)

=
1

∆t

{3

2
u(tj+1)

− 2[ u(tj+1) − ∆t u′(tj+1) +
∆t2

2
u′′(tj+1) − ∆t3

6
u′′′(tj+1) + · · · ]

+
1

2
[ u(tj+1)− 2∆t u′(tj+1) +

(2∆t)2

2
u′′(tj+1)−

(2∆t)3

6
u′′′(tj+1) + · · · ]

}

− u′(tj+1)

= −1

3
∆t2 u′′′(tj+1) + higher order terms.

The accuracy of this method is of order 2 .
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Stability of Numerical Approximations.

The very simple model equation

u′(t) = 0 , u(0) = u0 , u , 0 ∈ R ,

has solution
u(t) = u0 , (constant) .

A general m-step approximation has the form

αm uj+1 + αm−1 uj · · · + α0 uj+1−m = 0 .

Assume that
u0 is given ,

and (if m > 1) that

u1, u2, · · · , um−1 are computed by another method ,

e.g., by a one-step method of the same order of accuracy.
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General m-step approximation of u′(t) = 0 , u(0) = u0 :

αm uj+1 + αm−1 uj · · · + α0 uj+1−m = 0 .

EXAMPLES :

(1) uj+1 − uj = 0 , u0 given Euler, Trapezoidal

(2) 3uj+1 − 4uj + uj−1 = 0 u0, u1 given Backward Differentiation

(3) −uj+1 + 4uj − 3uj−1 = 0 u0, u1 given Forward Differentiation
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The difference equation

αm uj+1 + αm−1 uj + · · · + α0 uj+1−m = 0 ,

can be solved explicitly :

Try solutions of the form uj = zj .

Then we have

αm zj+1 + αm−1 zj + · · · + α0 zj+1−m = 0 ,

or, multiplying through by zm−j−1

αm zm + αm−1 zm−1 + · · · + α1 z + α0 = 0 .

This is the Characteristic Equation of the difference equation.
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Difference equation :

αm uj+1 + αm−1 uj + · · · + α0 uj+1−m = 0 .

Characteristic Equation :

αm zm + αm−1 zm−1 + · · · + α1 z + α0 = 0 .

• If αm 6= 0 , then the characteristic equation has m roots {zk}mk=1 .

• For simplicity we assume here that these roots are distinct .

• The general solution of the difference equation is then

uj = γ1 zj1 + γ2 zj2 + · · ·+ γm zjm .

• The coeficients γk are determined by the initial data u0, u1, · · · , um−1 .
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FACT :

If the characteristic equation has one or more zeroes zk with | zk |> 1

then the numerical method is unstable .

In such a case the uj can become arbitrarily large in a fixed time interval

by taking ∆t sufficiently small.

THEOREM :

A necessary condition for numerical stability of a multistep method is that
the characteristic equation

αmz
j+1 + αm−1z

j + · · · + α0 = 0 ,

have no zeroes outside the unit circle .
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EXAMPLES :

Formula Char. Eqn. Roots Stability

(1) uj+1 − uj = 0 z − 1 = 0 z = 1 Stable

(2) 3uj+1 − 4uj + uj−1 = 0 3z2 − 4z + 1 = 0 z = 1, 1
3

Stable

(3) −uj+1 + 4uj − 3uj−1 = 0 −z2 + 4z − 3 = 0 z = 1, 3 Unstable
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Consider the last two examples in more detail :

Case (2) : Here the general solution is

uj = γ1 (1)j + γ2 (
1

3
)j .

The initial data are u0 and u1 , so that

γ1 + γ2 = u0 ,

γ1 +
1

3
γ2 = u1 ,

from which

γ1 =
3

2
u1 − 1

2
u0 ,

γ2 =
3

2
u0 − 3

2
u1 .
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Hence

uj = (
3

2
u1 − 1

2
u0) + (

3

2
u0 − 3

2
u1) (

1

3
)j .

If
u1 = u0 ,

then we see that
uj = u0 , for all j .

Moreover, if
u1 = u0 + ǫ ,

then

uj = u0 +
3

2
ǫ − 3ǫ

2
(
1

3
)j ,

so that uj stays close to u0 if ǫ is small.
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Case (3) : Here the general solution is

uj = γ1 (1)j + γ2 (3)j .

Using the initial data
γ1 + γ2 = u0 ,

γ1 + 3 γ2 = u1 ,

we find
γ1 =

3

2
u0 − 1

2
u1 , γ2 =

1

2
u1 − 1

2
u0 .

Hence

uj = (
3

2
u0 − 1

2
u1) + (

1

2
u1 − 1

2
u0) (3)

j .

Again, if u1 = u0 then uj = u0 for all j .

But if u1 = u0 + ǫ then uj = u0 − 1
2
ǫ + 1

2
ǫ 3j .

Hence uj becomes arbitrarily large in finite time by taking small ∆t !
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THEOREM :

Suppose that the local approximation is accurate.

Then if the zeroes {zk}mk=1 of the characteristic equation

αmz
m + αm−1z

m−1 + · · · + α1z + α0 = 0 ,

satisfy

| zk | ≤ 1 , and | zk | = 1 ⇒ zk is simple ,

then the method is stable and

uj → u(tj) as ∆t → 0 .

PROOF : Omitted.
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Stiff Differential Equations.

There are ODEs for which explicit difference approximations require ∆t to
be very small before one gets the convergence guaranteed by the theorem.

To investigate this, we use the model equation

u′(t) = λ u(t) , t ≥ 0 ,

with
u(0) = u0 ,

where λ is a constant. (We allow λ to be complex.)

The solution is
u(t) = eλt u0 .
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Consider the case where
Re(λ) << 0 ,

i.e., λ has large negative real part .

Then the exact solution of

u′(t) = λ u(t) ,

namely, u(t) = eλt u0 , decays very quickly as t → ∞.

The numerical solution uj again has the form

uj =
m
∑

k=1

γk zjk ,

and we certainly don’t want uj to increase as j → ∞ !

Thus we don’t want any zk outside the unit disk in the complex plane.
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However, for many difference formulas

∆t must be very small

in order that

all zk , k = 1, · · ·m, are inside the unit disk .

Thus problems with

Re(λ) << 0 , (“Stiff Problems ”) ,

need special difference approximations .
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More generally the IVP

u′(t) = f( u(t) ) ,

u(0) = u0 ,

is called stiff if the Jacobian

fu( u(t) ) ,

has one or more eigenvalues λi = λi(t) , with

Re(λi) << 0 .

NOTE : Eigenvalues can be complex.
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EXAMPLES :

We will approximate
u′(t) = λ u(t) ,

by various discretization formulas and determine the values of ∆tλ in the
complex plane for which the solution of the difference formula decays .

Assume
∆t > 0 , and Re(λ) < 0 .

Then ∆tλ always lies in the negative half plane , i.e.,

Re(∆tλ) < 0 .

NOTE : Since eigenvalues can be complex, we allow λ to be complex.
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Explicit Euler.

Applying Euler’s explicit formula to the model equation

u′(t) = λ u(t) ,

we get the difference equation

1

∆t
(uj+1 − uj) = λ uj , i .e., uj+1 = (1 + ∆tλ) uj .

Trying solutions of the form uj = zj gives the characteristic equation

z − (1 + ∆tλ) = 0 , with zero z = 1 + ∆tλ .

Thus | z | ≤ 1 if and only if | 1 + ∆tλ | ≤ 1 , i.e., if and only if

| ∆tλ− (−1) | ≤ 1 .
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0-2 -1

(∆ t λ)−.Complex plane

Stability region of the Explicit Euler method
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EXAMPLE : Take λ = − 106.

Then
u(t) = e(−106t) u0 ,

which decays very rapidly for increasing t !

However, for uj to decay, one must take

∆tλ > − 2 ,

that is,
∆t < 2 · 10−6 !

Thus the explicit Euler method is useless for stiff equations !
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Implicit Euler.

The difference formula is

1

∆t
(uj+1 − uj) = λ uj+1 ,

that is,

uj+1 =
1

1−∆tλ
uj .

The characteristic equation

z − 1

1−∆tλ
= 0 ,

has zero

z =
1

1−∆tλ
,

so that | z | ≤ 1 if and only if | 1−∆tλ | ≥ 1 , i.e., if and only if

| ∆tλ− 1 | ≥ 1 .
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0

(∆ t

1 2

.λ)−Complex plane

Stability region of the Implicit Euler method
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Trapezoidal Method.

When applied to u′(t) = λ u(t) , the Trapezoidal Method gives

1

∆t
(uj+1 − uj) =

1

2
λ (uj + uj+1) .

Thus the characteristic equation is

(1− 1

2
∆tλ) z − (1 +

1

2
∆tλ) = 0 , with zero z =

1 + 1
2
∆tλ

1− 1
2
∆tλ

.

We find that z = eiθ if

∆tλ = 2 (
z − 1

z + 1
) = 2 (

eiθ − 1

eiθ + 1
) = 2i tan(

θ

2
) .

The region of stability is now precisely the entire negative half plane.

Thus, z ≤ 1 if and only if Re(∆tλ) < 0 , which is very desirable.
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A disadvantage is that the decay rate becomes smaller when

Re(λ) → −∞ ,

contrary to the decay rate of the solution of the differential equation.

In fact (thinking of ∆t as fixed) we have

lim
λ→−∞

z(λ) = lim
λ→−∞

1 + 1
2
∆tλ

1− 1
2
∆tλ

= − 1 .
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0

(∆ t .λ)−Complex plane

Stability region of the Trapezoidal method
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Backward Differentiation Formulas (BDF).

For the differential equation u′(t) = f(u(t)) the BDF take the form

1

∆t

m
∑

i=0

αi uj+1−i = f(uj+1) .

The {αi}mi=0 are chosen so the order is as high as possible, namely, O(∆tm) .

These formulas follow from the numerical differentiation formulas

that approximate u′(tj+1) in terms of

u(tj+1) , u(tj) , · · · , u(tj+1−m) .

All of these methods are implicit .

The choice m = 1 gives the implicit Euler method.
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Let Sm denote the stability region of the m-step BDF.

Concerning Sm one can show the following :

m = 1, 2 :

Sm contains the negative half plane.

These methods are called A-stable .

m = 3, 4, 5, 6 :

Sm contains the negative axis, but not the entire negative half plane.

These methods are called A(α)-stable .

m ≥ 7 :

These methods are unstable , even for solving u′(t) = 0 !
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Stability region of Backward Differentiation Formulas.
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Collocation at 2 Gauss Points.

The 2-point Gauss collocation method for taking a time step for the IVP

u′(t) = f(u(t)) , u(0) = u0 ,

is defined by finding a local polynomial p ∈ P2 that satisfies

p(tj) = uj ,
and

p′(xj,i) = f( p(xj,i) ) , i = 1, 2 , (collocation) ,

where

xj,i =
tj + tj+1

2
± ∆t

√
3

6
,

and then setting
uj+1 = p(tj+1) .

Applied to the model equation u′(t) = λ u(t) this gives

uj+1 =
1 + ∆t λ + 1

12
(∆t λ)2

1 − ∆t λ + 1
12

(∆tλ)2
uj ≡ z(∆tλ) uj .
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It can be shown that the stability region

S ≡ { ∆tλ :
1 + ∆tλ + 1

12
(∆tλ)2

1 − ∆tλ + 1
12

(∆tλ)2
≤ 1 } ,

is the entire negative half plane.

All Gauss collocation methods have this property and thus are A-stable .

However,
lim

λ→−∞
z(∆tλ) = 1 ,

so that the methods lead to slow decay for stiff problems .
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0

(∆ t .λ)−Complex plane

Stability region of the collocation method
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BOUNDARY VALUE PROBLEMS IN ODEs

EXAMPLE : The boundary value problem (BVP)

y′′(x)− y(x) = −5 sin(2x) , x ∈ [0, π] ,

y(0) = 0 , y(π) = 0 ,

has the exact (and unique) solution

y(x) = sin(2x) .

• This BVP is a simple example of problems from science and engineering.

• Usually it is difficult or impossible to find an exact solution.

• In such cases numerical techniques can be used.
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Partition [0, π] into a grid or mesh :

0 = x0 < x1 < x2 < · · · < xN = π ,

where
xj = jh , (j = 0, 1, 2, · · · , N) , h =

π

N
.

We want to find approximations uj to y(xj) , j = 0, 1, 2, · · · , N .

A finite difference approximation to y′′(xj) is given by

y′′(xj) ∼=
yj+1−yj

h
− yj−yj−1

h

h
=

yj+1 − 2yj + yj−1

h2
,

where
yj ≡ y(xj) .
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We want to find approximations uj to y(xj) , j = 0, 1, 2, · · · , N .

The uj are computed by solving the finite difference equations :

u0 = 0 ,

u2 − 2u1 + u0

h2
− u1 = − 5 sin(2x1) ,

u3 − 2u2 + u1

h2
− u2 = − 5 sin(2x2) ,

·
·
·

uN − 2uN−1 + uN−2

h2
− uN−1 = − 5 sin(2xN−1) ,

uN = 0 .
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Write the finite difference equations as

(
1

h2
) uj−1−(1+

2

h2
) uj+(

1

h2
) uj+1 = −5 sin(2xj) , j = 1, 2, · · · , N−1,

and put them in matrix form :













−1− 2
h2

1
h2

1
h2 −1− 2

h2
1
h2

. . .
1
h2 −1− 2

h2
1
h2

1
h2 −1− 2

h2

























u1

u2

.
uN−2

uN−1













=













f1
f2
.

fN−2

fN−1













,

where












f1
f2
.

fN−2

fN−1













=













−5 sin(2x1)
−5 sin(2x2)

.
−5 sin(2xN−2)
−5 sin(2xN−1)













,

and where the matrix has dimensions N − 1 by N − 1.
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We found that :

The finite difference equations can be written in matrix form as

Ah uh = fh ,

where

Ah = diag[
1

h2
, − (1 +

2

h2
) ,

1

h2
] ,

uh ≡ (u1 , u2 , · · · , uN−1)
T ,

and

fh ≡ − 5 ( sin(2x1) , sin(2x2) , · · · , sin(2xN−1) )
T .
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QUESTIONS :

• How to solve the linear systems efficiently, especially when N is large ?

• How to approximate derivatives and find the error in the approximation ?

• What is the actual error after solving the system,

i.e. , what is
max

j
| uj − y(xj) | ?

(assuming exact arithmetic)
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• How to solve the linear systems efficiently, especially when N is large ?

ANSWER :

The matrix is tridiagonal .

Thus the linear system can be solved by the specialized Gauss elimination
algorithm for tridiagonal systems.
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• How to approximate derivatives and find the error in the approximation ?

ANSWER : As done earlier, the local discretization error is

τj ≡ yj+1 − 2yj + yj−1

h2
− y′′j

=
1

h2

(

yj + hy′j +
h2

2
y′′j +

h3

6
y′′′j +

h4

24
y′′′′(ζ1)

− 2yj

+ yj − hy′j +
h2

2
y′′j − h3

6
y′′′j +

h4

24
y′′′′(ζ2)

)

− y′′j

=
h2

24

(

y′′′′(ζ1) + y′′′′(ζ2)
)

=
h2

12
y′′′′(ηj) , for some ηj ∈ (xj−1, xj+1) ,

using Taylor and Intermediate Value Theorem, assuming y′′′′ is continuous.
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We found that

τj ≡ yj+1 − 2yj + yj−1

h2
− y′′j =

h2

12
y′′′′(ηj) .

In our BVP, we have

y(x) = sin(2x) , and y′′′′(x) = 16 sin(2x) .

Thus | y′′′′(x) | ≤ 16 , and

| τj | ≤ 16

12
h2 =

4

3
h2 , j = 1, 2, · · · , N − 1 .
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• What is the actual error after solving the system ?

i.e., what is
max

j
| uj − y(xj) | ?

ANSWER :

For this, we will use the Banach Lemma .
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We already showed that

| τj | ≡ | (yj−1 − 2yj + yj+1)

h2
− y′′j | ≤ 4h2

3
, j = 1, 2, · · · , N − 1 .

Now

1

h2
yj−1 − (1 +

2

h2
)yj +

1

h2
yj+1

=
(yj+1 − 2yj + yj−1)

h2
− yj

= y′′j + τj − yj

= τj − 5 sin(2xj) .

Thus if we define

yh ≡ ( y1 , y2 , · · · , yN−1 )T , and τ h ≡ ( τ1 , τ2 , · · · , τN−1 )T ,

then
Ahyh = τ h + fh .
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We found that

Ahyh = τ h + fh .

Since
Ahuh = fh ,

it follows from subtraction that

Ah (yh − uh) = τ h .
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We found that

Ah(yh − uh) = τ h .

Thus if we can show that Ah has an inverse and that

‖ A−1
h ‖∞ ≤ K ,

for some constant K that does not depend on h, then

‖ yh − uh ‖∞ = ‖ A−1
h τ h ‖∞

≤ ‖ A−1
h ‖∞ ‖ τ h ‖∞

≤ K
4h2

3
.
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Now

Ah =











−1− 2
h2

1
h2

1
h2 −1− 2

h2
1
h2

. . .
1
h2 −1− 2

h2
1
h2

1
h2 −1− 2

h2











= −h2 + 2

h2
Ih +

1

h2







0 1
1 0 1

· · ·
1 0







= −h2 + 2

h2

[

Ih − h2

h2 + 2

1

h2







0 1
1 0 1

· · ·
1 0







]

= −h2 + 2

h2

[

Ih − 1

h2 + 2







0 1
1 0 1

· · ·
1 0







]

.
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We have

Ah = −h2 + 2

h2

[

Ih − 1

h2 + 2







0 1
1 0 1

· · ·
1 0







]

= −h2 + 2

h2
(Ih +Bh) ,

where Ih is the identity matrix and

Bh ≡ −1

h2 + 2







0 1
1 0 1

· · ·
1 0






.

Since

‖ Bh ‖∞ =
2

h2 + 2
< 1 ,

it follows by the Banach Lemma that (Ih +Bh)
−1 exists and that

‖ (Ih +Bh)
−1 ‖∞ ≤ 1

1− 2
h2+2

=
h2 + 2

h2
.
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We have

Ah = − h2 + 2

h2
(Ih +Bh) ,

and

‖ (Ih +Bh)
−1 ‖∞ ≤ h2 + 2

h2
.

Hence

‖ A−1
h ‖∞ = ‖ −h2

h2 + 2
(Ih +Bh)

−1 ‖∞ ≤ h2

h2 + 2

h2 + 2

h2
= 1 .

Thus K = 1 , and

‖ yh − uh ‖∞ ≤ 4h2

3
.
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A Nonlinear Boundary Value Problem.

Consider the Gelfand-Bratu problem

u′′(x) + λeu(x) = 0 , x ∈ [0, 1] ,

u(0) = 0 , u(1) = 0 , λ is a parameter ,

and its finite difference approximation

g1(u) ≡ u2 − 2u1

h2
+ λeu1 = 0 ,

g2(u) ≡ u3 − 2u2 + u1

h2
+ λeu2 = 0 ,

·
·

gN−2(u) ≡ uN−1 − 2uN−2 + uN−3

h2
+ λeuN−2 = 0 ,

gN−1(u) ≡ −2uN−1 + uN−2

h2
+ λeuN−1 = 0 ,

where u ≡ (u1 , u2 , · · · , uN−1)
T .
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If we let

G(u) ≡ ( g1(u) , g2(u) , · · · , gN−1(u) )
T ,

and
0 ≡ (0, 0, · · · , 0)T ∈ RN−1 ,

then these equations can be compactly written as

G(u) = 0 .

The Jacobian matrix is an N − 1 by N − 1 tridiagonal matrix :

G′(u) =









− 2
h2 + λeu1 1

h2

1
h2 − 2

h2 + λeu2 1
h2

· · ·
1
h2 − 2

h2 + λeuN−1









.
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Each Newton iteration for solving the nonlinear system

G(u) = 0 ,

consists of solving the tridiagonal system









− 2
h2 + λeu

(k)
1 1

h2

1
h2 − 2

h2 + λeu
(k)
2 1

h2

· ·
1
h2 − 2

h2 + λeu
(k)
N−1









∆u(k) = −G(u(k)) ,

where
∆u(k) ≡ (∆u

(k)
1 , ∆u

(k)
2 , · · · , ∆u

(k)
N−1)

T ,

and updating

u(k+1) = u(k) + ∆u(k) .
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Solutions of the Gelfand-Bratu equations for different values of λ.
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DIFFUSION PROBLEMS

Here we consider parabolic partial differential equations.

The simplest is the linear diffusion equation or heat equation :

ut(x, t) = uxx(x, t) , x ∈ [0, 1] , t ≥ 0 ,

u(x, 0) = g(x) ,

u(0, t) = u(1, t) = 0 .

This equation governs, for example, the temperature in an insulated rod of
which the endpoints are kept at the constant temperature zero, and in which
the initial temperature distribution is g(x).
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First discretize in space :

u′
j(t) =

uj−1(t)− 2uj(t) + uj+1(t)

∆x2
,

uj(0) = g(xj) ,

u0(t) = uN (t) = 0 ,

where we have introduced the notation

uj(t) ≡ u(xj , t) ,

and where ′ denotes differentiation with respect to t.

These space-discretized equations represents a system of N − 1 coupled
ordinary differential equations.
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t

x x x * x
x

N

10

0 1 2
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In matrix-vector notation we can write the space-discretized equations as

u′(t) =
1

∆x2
D u(t) ,

where

D ≡













−2 1
1 −2 1

. . .
1 −2 1

1 −2













,

and

u ≡













u1

u2

·
uN−2

uN−1













.
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Now discretize in time :

Often used is the Trapezoidal rule :

uk+1 − uk

∆t
=

1

2∆x2
D {uk+1 + uk} ,

where

uk ≡









uk
1

uk
2

·
uk
N−1









,

and
uk
j approximates u(xj , t

k) .
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Assume that the solution has been computed up to time tk.

Thus uk is known , and we want to solve for uk+1 .

Rewrite the above equation as

(I− ∆t

2∆x2
D) uk+1 = (I+

∆t

2∆x2
D) uk .

Thus to take a step in time we have to solve a tridiagonal linear system.

This method is also known as the Crank-Nicolson scheme.
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x x x * x N

1

*

t

t

2

1

1 20

t0

0
x

t
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NOTE :

• We can also use an explicit method in time, for example explicit Euler.

• But this can be a bad choice because the ODE system is stiff.

• The time step ∆t may have to be very small to have stability.
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For the system of ODEs

u′(t) =
1

∆x2
D u(t) , with D = diag[ 1 ,−2 , 1 ] ,

we can demonstrate the stiffness analytically.

In fact, we can explicitly compute the eigenvalues of the matrix

1

∆x2
D ,

as follows :

An eigenvalue-eigenvector pair λ, v satisfies

1

∆x2
Dv = λv ,

that is,

1

∆x2
(vj−1−2vj+vj+1) = λvj , j = 1, 2, · · · , N−1 , v0 = vN = 0 .
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We had the difference equation

1

∆x2
(vj−1 − 2vj + vj+1) = λvj .

Try a solution of the form vj = zj .

This gives the characteristic equation

z2 − (2 + ∆x2λ)z + 1 = 0 ,

or

λ =
z + z−1 − 2

∆x2
.

The characteristic equation has zeroes

z = z1 and z = z−1
1 .

The general solution of the difference equation then has the form

vj = c1z
j
1 + c2z

−j
1 .
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From the first boundary condition we have

v0 = 0 ⇒ c1 + c2 = 0 .

Thus we can take

c1 = c and c2 = − c .

Then
vj = c (zj1 − z−j

1 ) .

From the second boundary condition we now find

vN = 0 ⇒ c (zN1 − z−N
1 ) = 0 ,

from which
z2N1 = 1 ⇒ z1 = e

k2πi
2N .
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The eigenvalues are therefore

λk =
z + z−1 − 2

∆x2

=
e

k2πi
2N + e−

k2πi
2N − 2

∆x2

=
2 cos(k2π

2N
)− 2

∆x2

=
2(cos(k2π

2N
)− 1)

∆x2

= − 4

∆x2
sin2(

kπ

2N
) , k = 1, 2, · · · , N − 1 .
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The eigenvalue with largest negative real part is

λN−1 = − 4

∆x2
sin2(

(N − 1)π

2N
) ,

which for large N behaves like

λN−1
∼= λ∗ ≡ − 4

∆x2
.

Thus the system is stiff if ∆x is small .

EXAMPLE : To make the explicit Euler method stable we need to take
the timestep ∆t so that ∆tλ∗ lies in the circle of radius 1 centered at −1,
i.e., we must take

∆t <
1

2
∆x2 .

Using explicit Euler is often not a good idea .
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Nonlinear Diffusion Equations.

An example of a nonlinear diffusion equation is the Fisher equation

ut(x, t) = uxx(x, t) + λ u(x, t) (1− u(x, t)) ,

for
x ∈ [0, 1] , t ≥ 0 ,

with
u(x, 0) = g(x) , u(0, t) = u(1, t) = 0 .

This is a simple model of population growth with diffusion and with

maximal sustainable population equal to 1 .
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Another example is the time-dependent Gelfand-Bratu equation

ut(x, t) = uxx(x, t) + λ eu(x,t) ,

for
x ∈ [0, 1] , t ≥ 0 ,

with
u(x, 0) = g(x) , u(0, t) = u(1, t) = 0 ,

for which we have already considered the stationary equations

uxx(x) + λ eu(x) = 0 , x ∈ [0, 1] ,

with
u(0) = u(1) = 0 .
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We illustrate the numerical solution procedure for the general equation

ut(x, t) = uxx(x, t) + f(u(x, t)) , x ∈ [0, 1] , t ≥ 0 ,

u(x, 0) = g(x) ,

u(0, t) = u(1, t) = 0 ,

where

f(u) = λ u (1− u) for the Fisher equation ,

and

f(u) = λ eu for the Gelfand-Bratu equation .
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We approximate this equation as follows :

First discretize in space to get a system of ODEs :

u′
j(t) =

uj−1(t)− 2uj(t) + uj+1(t)

∆x2
+ f(uj(t)) ,

for j = 1, 2, · · · , N − 1 , with

uj(0) = g(xj) ,

u0(t) = uN (t) = 0 .

Then discretize in time using Implicit Euler :

uk+1
j − uk

j

∆t
=

uk+1
j−1 − 2uk+1

j + uk+1
j+1

∆x2
+ f(uk+1

j ) .
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Rewrite these equations as

F k+1
j ≡ uk+1

j − ukj − ∆t

∆x2
(uk+1

j−1 − 2uk+1
j + uk+1

j+1) − ∆t f(uk+1
j ) = 0 ,

for j = 1, 2, · · · , N − 1 ,

with
uk+1
0 = 0 and uk+1

N = 0 .

We can assume that the solution has been computed up to time tk,

i.e., the uk
j are known and we must solve for the uk+1

j .

Since the equations are nonlinear we use Newton’s method.
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As initial approximation to uk+1
j in Newton’s method use

(uk+1
j )(0) = uk

j , j = 1, 2, · · · , N − 1 .

Each Newton iteration then consists of solving a linear tridiagonal system

Tk+1,(ν) ∆uk+1,(ν) = − Fk+1,(ν) ,
where

Tk+1,(ν) =















1 + 2 ∆t
∆x2

−∆tfu(u
k+1,(ν)
1 ) − ∆t

∆x2

− ∆t
∆x2

1 + 2 ∆t
∆x2

−∆tfu(u
k+1,(ν)
2 ) − ∆t

∆x2

. . .
. . .

− ∆t
∆x2

1 + 2 ∆t
∆x2

−∆tfu(u
k+1,(ν)
N−1 )















and

∆u
k+1,(ν) =









∆u
k+1,(ν)
1

∆u
k+1,(ν)
2

·
∆u

k+1,(ν)
N−1









, F
k+1,(ν) =









F
k+1,(ν)
1

F
k+1,(ν)
2

·
F

k+1,(ν)
N−1









.

Then set the next approximation to the solution at time t = tk+1 equal to

uk+1,(ν+1) = uk+1,(ν) + ∆uk+1,(ν) .
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Time-evolution of solutions of the Gelfand-Bratu equations for λ = 2.
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Time-evolution of solutions of the Gelfand-Bratu equations for λ = 4.
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