
Detecting and Quantifying Different Types of
Self-Admitted Technical Debt

Everton da S. Maldonado and Emad Shihab
Department of Computer Science and Software Engineering

Concordia University, Montreal, Canada
{e silvam,eshihab}@encs.concordia.ca

Abstract—Technical Debt is a term that has been used to
express non-optimal solutions during the development of software
projects. These non optimal solutions are often shortcuts that
allow the project to move faster in the short term, at the cost
of increased maintenance in the future. To help alleviate the
impact of technical debt, a number of studies focused on the
detection of technical debt. More recently, our work shown
that one possible source to detect technical debt is using source
code comments, also referred to as self-admitted technical debt.
However, what types of technical debt can be detected using
source code comments remains as an open question.

Therefore, in this paper we examine code comments to
determine the different types of technical debt. First, we propose
four simple filtering heuristics to eliminate comments that are not
likely to contain technical debt. Second, we read through more
than 33K comments, and we find that self-admitted technical
debt can be classified into five main types - design debt, defect
debt, documentation debt, requirement debt and test debt. The
most common type of self-admitted technical debt is design debt,
making up between 42% to 84% of the classified comments.
Lastly, we make the classified dataset of more than 33K comments
publicly available for the community as a way to encourage future
research and the evolution of the technical debt landscape.

I. INTRODUCTION

The software development process is filled with challenges.
There are short deadlines, complex changes that need to
be made, high quality expectations and an ever changing
environment. Often there is much more that needs to be done
than time to accomplish it. These conditions puts developers
under increasing pressure to implement their tasks, while
achieving many conflicting constraints. In this context, some
decisions are made to allow the short term development of the
project at the cost of its increased maintenance effort in the
future. This phenomena is know as Technical Debt [1].

With the organization of the technical debt community
through the managing technical debt workshop [2], recent
work has focused on the detection of technical debt [3], [4],
studying the impact of technical debt [5] and the appearance
of technical debt in the form of code smells [6]. Despite
many efforts to detect technical debt, its detection remains a
challenge [3]. One relatively unexplored aspect of technical
debt is self-admitted technical debt, that is technical debt
reported in source code comments. Self-admitted technical
debt refers to the situation where developers know that the
current implementation is not optimal and write comments
alerting the inadequacy of the solution.

Recently, Potdar and Shihab [3] developed an approach
to identify technical debt from code comments, and through
manual inspection, were able to mine 62 patterns that ef-
fectively identify self-admitted technical debt. However, their
approach does not take into consideration the different types
of technical debt. Understanding the different types of self-
admitted technical debt is important since: 1) it helps the com-
munity understand the limitations of understanding technical
debt through code comments, 2) it allows us to complement
existing technical debt detection approaches and 3) it provides
us with a better understanding of the developer’s point of view
of technical debt.

Therefore, in this paper we examine and quantify the
different types of self-admitted technical debt. To do so, we
extract source code comments from 5 well commented open
source projects that belongs to different application domains,
namely Apache Ant, Apache Jmeter, ArgoUml, Columba and
JFreeChart. In total, we examined more than 166K comments.
We applied a set of 4 simple filtering heuristics to remove
comments that are not likely to contain self-admitted technical
debt (e.g., license comments, commented source code, Javadoc
comments). Finally, these filtering heuristics resulted in a
dataset of 33,093 comments that the first author manually
analyzed and classified into different types of self-admitted
technical debt.

When classifying the code comments, we found 5 types
of self-admitted technical debt which are: design debt, defect
debt, documentation debt, requirement debt and test debt.
Analyzing the distribution of the comments we found that the
most common type of self-admitted technical debt is design
debt, making up between 42% - 84% of all the classified
comments. In addition to our findings, we contribute a rich
dataset of self-admitted technical making the data used in
this study publicly available 1. To the best of our knowledge,
there is not similar data available and we believe that the
dataset will encourage future research in the area of self-
admitted technical providing the necessary foundation for
more advanced techniques as Natural Language Processing.

The rest of the paper is organized as follows. Section II
presents related work. We describe our approach and setup
our case study in Section III. Section IV presents the case
study results. The threats to validity are presented in Section

1http://users.encs.concordia.ca/∼e silvam/publications.html

V and in Section VI concludes the paper and discusses future
work.

II. RELATED WORK

Our work uses code comments to classify self-admitted
technical debt. Therefore, we divide the related work into two
categories: source code comments and technical debt.

A. Source code comments

A number of studies examined the co-evolution of source
code comments and the rationale for changing code comments.
For example, Fluri et al. [7] analyzed the co-evolution of
source code and code comments, and found that 97% of the
comment changes are consistent. Tan et al. [8] proposed a
novel approach to identify inconsistencies between Javadoc
comments and method signatures. Malik et al. [9] studied the
likelihood of a comment to be updated and found that call
dependencies, control statements, the age of the function con-
taining the comment, and the number of co-changed dependent
functions are the most important factors to predict comment
updates.

Other work used code comments to understand developer
tasks. For example, Storey et al. [10] analyzed how task
annotations (e.g., TODO, FIXME) play a role in improving
team articulation and communication. The work closest to ours
is the work by Potdar and Shihab [3], where code comments
were used to identify technical debt.

Our work complements the prior work using code com-
ments. Similar to the prior work, we also leverage source
code comments, however, we use the comments to identify
self-admitted technical debt. In particular, we focus on the
detection and quantification of the different types of self-
admitted technical debt.

B. Technical debt

A number of studies have focused on the study of, detection
and management of technical debt. Much of this work has been
driven by the Managing Technical Debt Workshop community.
For example, Seaman et al. [11], Kruchten et al. [12], Brown et
al. [13] and Spinola et al. [14] make several reflections about
the term technical debt and how it has been used to commu-
nicate the issues that developers find in the code in a way
that managers can understand. Alves et al. [15] proposes an
ontology on technical debt terms. In their work they gathered
definitions and indicators of technical debt that were scattered
across the literature. Their resulting ontology provides several
different types of technical debt (e.g., architecture debt, build
debt, code debt, design debt, defect debt, etc) grouped by their
nature (i.e., the factor that lead to the introduction of the debt
at the first place).

Other work focused on the detection of technical debt.
Zazworka et al. [4] conducted an experiment to compare
the efficiency of automated tools in comparison with human
elicitation regarding the detection of technical debt. They
found that there is small overlap between the two approaches,
and thus it is better to combine them than replace one with

the other. In addition, they concluded that automated tools are
more efficient in finding defect debt, whereas developers can
realize more abstract categories of technical debt.

In follow on work, Zazworka et al. [5] conducted a study
to measure the impact of technical debt on software quality.
They focused on a particular kind of design debt, namely
God Classes. They found that God Classes are more likely
to change, and therefore, have a higher impact in software
quality. Fontana et al. [6] investigated design technical debt
appearing in the form of code smells. They used metrics to
find three different code smells, namely God Classes, Data
Classes and Duplicated Code. They proposed an approach
to classify which one of the different code smells should
be addressed first, based on a risk scale. Moreover, Potdar
and Shihab [3] used code comments to detect self-admitted
technical debt.They extracted the comments of four projects
and analyzed more than 101,762 comments to come up with
62 patterns that indicates self-admitted technical debt. Their
findings show that 2.4% - 31% of the files in a project contain
self-admitted technical debt.

Our work is different from the aforementioned work that
uses code smells to detect design technical debt since we
use code comments to detect technical debt. Also, our focus
is on self-admitted technical debt. Our work advances the
prior work on self-admitted technical debt by detecting and
quantifying the different types of self-admitted technical debt
and classifying them accordingly. We also contribute a rich
data set of code comments that are classified into the different
types of self-admitted technical debt.

III. APPROACH

The main goal of our study is to identify and quantify the
different types of self-admitted technical debt found in source
code comments. Figure 1 shows an overview of our approach,
and the following subsections detail each step of it.

A. Project Data Extraction

To perform our study, we obtain the source code of five
open source projects, namely Apache Ant, Apache Jmeter,
ArgoUML, Columba and JFreeChart. We chose the afore-
mentioned projects, since they belong to different application
domains, and vary in size (e.g., SLOC), and in the number of
contributors.

Table I provides statistics about each one of the projects
used in our study. We provide details about the release used,
the number of classes, the total source lines of code (SLOC),
the total extracted comments and the number of contributors.
A source line of code contain at least one valid character,
which is not blank spaces or source code comments. In our
study, we only use the Java files to calculate the SLOC, and
to do so, we use the tool SLOCCount [16].

The number of contributors was extracted from OpenHub,
an on-line community and public directory that offers analyt-
ics, search services and tools for open source software [17].
It is important to notice that the number of comments shown
for each project does not represent the number of commented

Parse Source
Code

Heuristics to
Remove

Irrelevant
Comments

Identification of
Comment
Patterns

Analyse the
Results

Source
Code

Repository Manual
Investigation

Data Extraction

Process Data
and Find
Attributes

Link Data Define MetricsData Extraction Analyse the
Results Repositories

Parse Source
Code Filter Comments Analyse the

Results
Source
Code

Repository

Manual
InvestigationProject

Data Extraction

Fig. 1. Approach overview

TABLE I
PROJECT DETAILS

Project Release # of classes SLOC # of comments # of contributors

Apache Ant 1.7.0 1,475 115,881 21,587 74
Apache Jmeter 2.10 1,181 81,307 20,084 33
ArgoUML 0.34 2,609 176,839 67,716 87
Columba 1.4 1,711 100,200 33,895 9
JFreeChart 1.0.19 1,065 132,296 23,474 19

lines, but rather the number of individual line, block, and
Javadoc comments. In total, we obtained more than 166,756
comments, found in 8,041 Java classes.

B. Parse Source Code

After obtaining the source code of all projects, we extract
the comments from their source code. We use JDeodorant
[18], an open-source Eclipse plug-in, to parse the source code
and extract the code comments. JDeodorant is capable of
identify design flaws (i.e., bad smells) in Java projects, and
suggest refactoring opportunities to solve them. JDeodrant
uses the Eclipse AST framework to create an Abstract Syntax
Tree (AST) map of the source code. The AST map contains
detailed information about the project such as: the source code
comments, its type (i.e., Block, Single-line or Javadoc), the
line where each one of these comments begins and finishes. We
extract the aforementioned information and store all comments
in a relational database to facilitate the processing of the data.

C. Filter Comments

Source code comments can be used for different purposes
in a project like giving context, as part of the documentation,
to express thoughts, opinions and authorship, and in some
cases, to remove source code from the program. Comments
are used freely for developers and with few formalities, if
any at all. This informal environment allows developers to
bring to light opinions, insights and even confessions (e.g.,
self-admitted technical debt).

As shown in prior work by Potdar and Shihab [3], part
of these comments can be identified as self-admitted technical
debt, but they are not the majority of cases. With that in mind,
we develop and apply 4 filtering heuristics to narrow down
the comments eliminating the ones that are less likely to be
classified as self-admitted technical debt.

To do so, we developed a Java based tool that reads from
the database the data obtained by parsing the source code.
Next, it executes the filtering heuristics and stores the result
back in the database. The retrieved data contains information

like the line number that a class/comment begins/ends and the
type, considering the Java syntax, of the comment (i.e., Block,
Single-line or Javadoc). With this information we process the
filtering heuristics as described next.

We found that license comments are very not likely to
contain self-admitted technical debt, and that license com-
ments are commonly added before the declaration of the class.
Therefore, we create a heuristic that removes comments that
are placed before the class declaration. Since we know the
line number that the class was declared we can easily check
for comments that are placed before that line and remove
them. In order to decrease the chances of removing a self-
admitted technical debt comment while executing this filter we
calibrated this heuristic to not remove comments containing
one of task-reserved words (i.e., “todo”, “fixme”, or “xxx”).

We also notice that some times developers make long com-
ments, using multiple single-line comments instead of a Block
comment. This characteristic can hinder the understanding of
the message. Consider the case that the reader (i.e., human or
machine) analyze each one of these comments independently,
the message would be incomplete and the meaning lost. To
solve that problem, we create a heuristic that searches for
consecutive single-line comments and groups them as one. We
identify consecutive comments by subtracting the line number
of both comments. If the result of the difference is equals
a -1 we have a consecutive comment. For example, Single-
line comment A is placed in line number 100 and Single-
line comment B is placed in line 101. The subtraction of the
line numbers will result in -1, therefore the comments are
consecutive.

Similarly, is common to find commented source code across
the projects, and this can be due to many different reasons.
One of the possibilities is that the code is not being used, other
is that the code is used for debug purposes only. Based on our
analysis, commented source code does not have self-admitted
technical debt. Our heuristic remove commented source code
using a simple regular expression that captures typical Java

code structures.
Lastly, when analyzing Javadoc comments we found that

they rarely mention self-admitted technical debt. For the
Javadoc comments that does mention self-admitted technical
debt we notice that they usually contains one of the task-
reserved words (i.e., “todo”, “fixme”, or “xxx”). Based on this,
our heuristic remove all comments of the type Javadoc unless
they contain at least one of the task-reserved words. To do
so, we create a simple regular expression that search for the
task-reserved words before removing the comment.

The steps mentioned above significantly reduced the number
of comments in our dataset and helped us focus on the
most applicable and insightful comments. For example, in the
Apache Ant project, applying the above steps helped reduce
the number of comments from 21,587 to 4,140 comments
meaning that 19.17% of the comments were kept for analysis.
Table II provides details for each one of the projects.

TABLE II
FILTERING HEURISTICS DETAILS

Project Total # of
comments

of comments
after filtering

% of TD-
related
comments

Apache Ant 21,587 4,140 19.17 %
Apache Jmeter 20,084 8,163 40.64 %
ArgoUML 67,716 9,788 14.45 %
Columba 33,895 6,569 19.38 %
JFreeChart 23,474 4,436 18.89 %

D. Manual Classification

To classify the comments, we developed a Java based tool
that shows one comment at a time and gives a list of possible
classifications that can be manually assigned to the comment.
The list of possible classifications is based on previous work
by Alves et al. [15]. After applying the different filtering steps,
we successfully classified 33,093 comments. The more than 33
thousand comments were classified into five different types
of self-admitted technical debt, i.e., design debt, defect debt,
documentation debt, requirement debt and test debt.

The first author who made the classification has more
than 8 years of experience working in the industry as a
software engineer, during this time he designed, implemented
and maintained several programs using, in particular the Java
programming language. He developed solid skills in object
orientated programming and design patterns. We consider
that these qualifications provide the necessary background to
conduct the manual classification of the comments.

IV. CASE STUDY RESULTS

The goal of our study is to classify and quantify the
different types of self-admitted technical debt. To do so,
we divide our study in two parts first, we manually read
trough all comments identifying self-admitted technical debt
among them. Once identified, the self-admitted technical debt,
is classified into different types. Second, we quantify these

comments identifying the most common types. Our case study
is formalized with the following research question:

RQ: What are the types of self-admitted technical debt?
How frequent are the different types of self-admitted
technical debt in the studied projects ?

Motivation: As shown in previous work [3], self-admitted
technical can be an indicator of non-optimal solutions. How-
ever, technical debt is a general term, and there are many
different types of technical debt [15]. Although we know
that self-admitted technical exists, the different types of self-
admitted technical debt are still unknown. For example, are
we able to detect documentation debt from code comments?
Answering this question is important as different types of debt
have different approaches to be solved, and therefore each
different type may need a tailored solution. It also helps us
understand the opportunities and limitations of using code
comments to detect technical debt.
Approach: To identify the different types of debt found in the
comments we manually read through source code comments
as described in Section III. While examining the comments
we classify each comment by the nature of the debt, using the
descriptions provided by Alves et al. as a guideline.

During the classification we notice that some comments can
be classified in more than one type of debt (e.g., a comment
reporting a design debt can also be causing an unexpected
behavior, which is defect debt). Although this is an ambiguous
situation, and may have different interpretations depending of
who is reading the comments, we defined that each comment
would have just one classification type for the sake of clarity.

To mitigate the chance of misclassifying these comments,
we take in consideration the more meaningful type for each
comment in a given scenario. To do so, whenever a case like
this occurred, we did a more detailed investigation (i.e., by
examining the source code and any available documentation).
In total we read and classified 33,093 comments from five
open source projects. The classification took approximately
95 hours and was performed by the first author of the paper.
Results: We found five different types of self-admitted tech-
nical debt. Below, we list the different types of technical debt
that we were able to detect and provide example comments
to help the reader grasp the different types of self-admitted
technical debt comments.

• Self-admitted design debt: These comments indicate
that there is a problem with the design of the code. They
can be comments about misplaced code, lack of abstrac-
tion, long methods, poor implementation, workarounds
or a temporary solution. Lets consider the following
comments:

“TODO: - This method is too complex, lets break it
up” - [from ArgoUml]
“/* TODO: really should be a separate class */” -
[from ArgoUml]

These comments are clear examples of what we consider

as self-admitted design debt. In the above comments, the
developers state what needs to be done in order to im-
prove the current design of the code. Although the above
comments are easy to understand, during our study we
came across more challenging comments that expressed
design problems in an indirect way. For example:

“// I hate this so much even before I start writing it.
// Re-initialising a global in a place where no-one
will see it just // feels wrong. Oh well, here goes.” -
[from ArgoUml]
“//quick & dirty, to make nested mapped p-sets
work:” - [from Apache Ant]

In the above example comments the authors are certain
to be implementing code that does not represent the best
solution. Intuitively, we know that kind of implementation
will degrade the design of the code and should be
avoided.

“// probably not the best choice, but it solves the
problem of // relative paths in CLASSPATH” - [from
Apache Ant]
“//I can’t get my head around this; is encoding
treatment needed here?” - [from Apache Ant]

The above comments expressed doubt and uncertainty
when implementing the code and were considered as self-
admitted design debt as well.

• Self-admitted defect debt: In defect debt comments the
author states that a part of the code does not have the
expected behavior, meaning that there is a defect in the
code.

“// Bug in above method” - [from Apache Jmeter]
“// WARNING: the OutputStream version of this
doesn’t work!” - [from ArgoUml]

As shown in these examples there are defects that are
known by the developers, but for some reason is not fixed
yet.

• Self-admitted documentation debt: In the documenta-
tion debt comments the author express that there is no
proper documentation supporting that part of the program.

“**FIXME** This function needs documentation” -
[from Columba]
“// TODO Document the reason for this” - [from
Apache Jmeter]

Here, the developers clearly recognize the need to doc-
ument their code, however, for some reason they do not
document it yet.

• Self-admitted requirement debt: Requirement debt
comments express incompleteness of the method, class
or program as observed in the following comments:

“/TODO no methods yet for getClassname” - [from
Apache Ant]
“//TODO no method for newInstance using a

reverse-classloader” - [from Apache Ant]
“TODO: The copy function is not yet * completely
implemented - so we will * have some exceptions
here and there.*/” - [from ArgoUml]

The last example shows a comment that could be con-
sidered as having more than one type of debt. (i.e.,
requirement debt and defect debt), but as mentioned in the
classification approach, we choose to maintain one type
only for each comment. Based on our understanding, the
defect debt expressed in the comment would not exist
if the requirement debt did not exists. Therefore, the
main debt in this comment is a requirement debt (i.e.,
incomplete implementation of the copy function).

• Self-admitted test debt: Test debt comments are the ones
that express the need for implementation or improvement
of the current tests. As shown in the examples below, test
debt comments are very straight forward in their meaning.

“// TODO - need a lot more tests” - [from Apache
Jmeter]
“//TODO enable some proper tests!!” - [from
Apache Jmeter]

After classifying the comments, we notice that not all of
the types mentioned in by Alves et al. [15] could be found.
We argue that some types like people debt or infrastructure
debt are less probable to appear in source code comments.
Other types such as build debt could not be found because we
are examining comments in Java classes only, not taking in
consideration build scripts that are usually written in other
languages (e.g., Maven and Ant use XML files as build
scripts).

We find five different types of self-admitted technical
debt, i.e., design debt, defect debt, documentation
debt, requirement debt and test debt.

In addition to determining the different type of self-admitted
technical debt, we would like to quantify the different types.
Doing so will help us understand the strengths and weaknesses
of using code comments to detect technical debt. After an-
alyzing the more than 33K comments, we found that only
2,457 comments are self-admitted technical debt comments,
representing 7.42% (i.e., 2457

33093) of all the classified comments.
The percentage of self-admitted technical debt found for each
project is presented in Table III. ArgoUml is the project with
the highest percentage of self-admitted technical debt and
Apache Ant has the lowest percentage, amounting to 16.8%
and 3.2% respectively.

Figure 2 shows the percentage of each type of self-admitted
technical debt across the projects. Since each project has
a different number of comments we normalized the data,
presenting the percentages of the different types rather than the
raw numbers. For example, if a project has 100 self-admitted
technical debt comments and 10 where design debt type, we
say that the project has 10% of self-admitted design technical
debt.

Ant Jmeter ArgoUml JFreeChart Columba

P
e
rc

e
n

ta
g

e

0
2
0

4
0

6
0

8
0

1
0
0

Design debt
Requirement debt
Defect debt
Test debt
Documentation debt

Fig. 2. Self-admitted technical debt types distribution

TABLE III
SELF-ADMITTED TECHNICAL DEBT PER PROJECT

Project # of analyzed
comments

of self-
admitted TD
comments

% of self-
admitted TD
per project

Apache Ant 4,140 134 3.2
Apache Jmeter 8,163 375 4.6
ArgoUML 9,788 1,653 16.8
Columba 6,569 295 4.4
JFreeChart 4,433 219 4.9

Analyzing the Figure 2 we find that self-admitted design
debt is the most common in 4 out of 5 projects. Self-admitted
design technical debt values ranged from 42%, in Columba
project with the lowest percentage, to 84% in Jmeter and
JFreeChart, projects with the highest percentage. The second
most frequent type is self-admitted requirement debt with
values between 5% and 45%, followed by self-admitted defect
technical debt making up between 4% to 9% of the comments.
Self-admitted test technical debt ranged from 0% to 7%
whereas self-admitted documentation debt had only 0% to 5%
of the comments.

We notice that Columba and ArgoUml have the highest
occurrences of self-admitted requirement debt. Columba is a
email client application written in Java, which has 9 con-
tributors [17], and a considerable number of classes 1,711.
It is reasonable to think that developers have limited time to
develop features. Therefore, leaving comments of features that
need to be implemented in the future (i.e., requirement debt)

is more likely.
ArgoUml has a high number of contributors i.e., 87 and

yet has a hight number of self-admitted requirement debt.
Analyzing the comments we notice that there occurrences
about the need of support for internationalization and other
comments express the need to implement code to make
features compatible with newer versions of the UML language.

Based on that we argue that coupling with external changes
that are inherent of the application domain and the adoption
of the tool from users all over the world [17] had increased
the number of self-admitted requirement debt.

We find that the majority of the self-admitted technical
debt comments are design debt, which ranged from
42% to 84% across the projects. The second most
frequent type was requirement debt that ranged from
5% to 45%. The remaining types have low frequency
if considered that they represented less than 10% of
the occurrences

V. THREATS TO VALIDITY

Internal validity consider the relationship between theory and
observation, in case the measured variables do not measure the
actual factors. To classify the source code comments we heav-
ily depended on manual process due the fact that comments are
written in natural language and therefore difficult to analyze by
a machine. Like any human activity, our manual classification
is subject to personal bias and subjectivity. To reduce this bias,
in the future, we will ask to other researchers of our lab to
classify the dataset as well, verifying and discussing possible

divergences of opinion. This is important as changes in this
dataset may impact our findings.

When performing our study, we used well-commented
Java projects. Since our technique heavily depends on code
comments, our results may be impacted by the quantity and
quality of comments in a software project. To alleviate the
threat, we examined multiple projects. Moreover, there is a
risk of removing self-admitted technical debt comments while
filtering license comments. To mitigate this risk we do not
remove comments that contain one of task-reserved words (i.e.,
“todo”, “fixme”, or “xxx”).
External validity consider the generalization of our findings.
All of our findings were derived from comments in open
source projects. To minimize external validity, we chose
open source projects from different domains. That said, our
results may not generalize to other open source or commercial
projects. In particular, our results may not generalize to
projects that have a low number or no comments. Other than
that, we only analyze projects written in Java, therefore the
results obtained may not generalize to projects written in other
languages.

VI. CONCLUSION AND FUTURE WORK

The term technical debt is being used for practitioners and
researchers in the software engineer community to express
shortcuts and workarounds employed in software projects.
These shortcuts will most often impact the maintainability
of the project hindering the development if not addressed
properly. Our work explore specifically self-admitted technical
debt, that is the technical debt deliberately introduced by the
developers and reported through source code comments.

In our study we analyzed the comments of 5 open source
projects which are Apache Ant, Apache Jmeter, ArgoUml ,
Columba and JFreeChart. These projects are considered well
commented and they belong to different application domains.
We used them to understand the characteristics of self-admitted
technical debt types creating a rich dataset with more than
33,093 classified comments.

We find that self-admitted technical debt can be classified
into five types: design debt, defect debt, documentation debt,
requirement debt and test debt. We also provide concrete
examples of each one of the mentioned types and the rationale
to classify them as it was. Moreover, we find that the majority
of the self-admitted technical debt comments are design debt.
Design debt ranged from 42% to 84% across the projects.
The second most frequent type was requirement debt ranging
from 5% to 45%. Based on this result, we can say that the self-
admitted technical debt types that developers admit to the most
are related with the design of the project, potentially indicating
that developers feel the need to admit and be forthcoming
about such debt. Examining the reasons for these types of
debt is an interesting future direction that we plan to pursue.

Other contribution of our study is that we make publicly
available the resulting dataset of our classification. We hope
that this will encourage future research in the area of self-
admitted technical debt as, to the best of our knowledge,

this is the first dataset of this kind. We also think that the
information provided by this dataset can be a cornerstone for
more advanced techniques as natural language processing.

In a future work we plan to improve the current clas-
sification adding more projects to it. With a richer dataset
we expect that more patterns and characteristics of the self-
admitted technical types will be retrieved. We also plan to use
this database to mine unique sequential patterns, an advanced
technique of natural language processing, which may lead to
more automated ways to identify self-admitted technical debt.

REFERENCES

[1] W. Cunningham, “The wycash portfolio management system,” in
Addendum to the Proceedings on Object-oriented Programming
Systems, Languages, and Applications (Addendum), ser. OOPSLA ’92.
New York, NY, USA: ACM, 1992, pp. 29–30. [Online]. Available:
http://doi.acm.org/10.1145/157709.157715

[2] D. Falessi, P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical
debt at the crossroads of research and practice: report on the fifth
international workshop on managing technical debt,” ACM SIGSOFT
Software Engineering Notes, vol. 39, no. 2, pp. 31–33, 2014. [Online].
Available: http://doi.acm.org/10.1145/2579281.2579311

[3] A. Potdar and E. Shihab, “An exploratory study on self-admitted
technical debt,” in Proceedings of the IEEE International Conference
on Software Maintenance and Evolution, 2014, pp. 91–100.

[4] N. Zazworka, R. O. Spı́nola, A. Vetro’, F. Shull, and C. Seaman, “A
case study on effectively identifying technical debt,” in Proceedings
of the 17th International Conference on Evaluation and Assessment in
Software Engineering, 2013, pp. 42–47.

[5] N. Zazworka, M. A. Shaw, F. Shull, and C. Seaman, “Investigating the
impact of design debt on software quality,” in Proceedings of the Second
Workshop on Managing Technical Debt, 2011, pp. 17–23.

[6] F. Fontana, V. Ferme, and S. Spinelli, “Investigating the impact of code
smells debt on quality code evaluation,” in Proceedings of the Third
International Workshop on Managing Technical Debt, 2012, pp. 15–22.

[7] B. Fluri, M. Wursch, and H. Gall, “Do code and comments co-evolve? on
the relation between source code and comment changes,” in Proceedings
of the 14th Working Conference on Reverse Engineering, 2007, pp. 70–
79.

[8] S. H. Tan, D. Marinov, L. Tan, and G. Leavens, “@tcomment: Testing
javadoc comments to detect comment-code inconsistencies,” in Proceed-
ings of the IEEE Fifth International Conference on Software Testing,
Verification and Validation, 2012, pp. 260–269.

[9] H. Malik, I. Chowdhury, H.-M. Tsou, Z. M. Jiang, and A. Hassan,
“Understanding the rationale for updating a function comment,” in
Proceedings of the IEEE International Conference on Software Mainte-
nance, 2008, pp. 167–176.

[10] M. Storey, J. Ryall, R. Bull, D. Myers, and J. Singer, “Todo or to
bug,” in Proceedings of the ACM/IEEE 30th International Conference
on Software Engineering, 2008, pp. 251–260.

[11] C. Seaman and Y. Guo, “Measuring and monitoring technical debt,” in
Advances in Computers, M. V. Zelkowitz, Ed. Elsevier, 2011, vol. 82,
pp. 25–46.

[12] P. Kruchten, R. L. Nord, I. Ozkaya, and D. Falessi, “Technical debt:
Towards a crisper definition report on the 4th international workshop on
managing technical debt,” SIGSOFT Softw. Eng. Notes, vol. 38, no. 5,
pp. 51–54, Aug. 2013.

[13] N. Brown, Y. Cai, Y. Guo, R. Kazman, M. Kim, P. Kruchten, E. Lim,
A. MacCormack, R. Nord, I. Ozkaya, R. Sangwan, C. Seaman, K. Sul-
livan, and N. Zazworka, “Managing technical debt in software-reliant
systems,” in Proceedings of the FSE/SDP Workshop on Future of
Software Engineering Research, 2010, pp. 47–52.

[14] R. Spinola, N. Zazworka, A. Vetro, C. Seaman, and F. Shull, “Inves-
tigating technical debt folklore: Shedding some light on technical debt
opinion,” in Managing Technical Debt (MTD), 2013 4th International
Workshop on, May 2013, pp. 1–7.

[15] N. Alves, L. Ribeiro, V. Caires, T. Mendes, and R. Spinola, “Towards
an ontology of terms on technical debt,” in Managing Technical Debt
(MTD), 2014 Sixth International Workshop on, 2014, pp. 1–7.

[16] D. A. Wheeler, “Sloc count users guide,” 2004.

[17] “OpenHub homepage,” https://www.openhub.net/, accessed: 2014-12-
12.

[18] N. Tsantalis, T. Chaikalis, and A. Chatzigeorgiou, “Jdeodorant: Identifi-

cation and removal of type-checking bad smells,” in Proceedings of the
12th European Conference on Software Maintenance and Reengineering,
2008, pp. 329–331.

