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ABSTRACT
Software quality is one of the most important research sub-areas
of software engineering. Hence, a plethora of research has focused
on the prediction of software quality. Much of the software ana-
lytics and prediction work has proposed metrics, models and novel
approaches that can predict quality with high levels of accuracy.
However, adoption of such techniques remain low; one of the rea-
sons for this low adoption of the current analytics and prediction
technique is the lack of actionable and publicly available tools.

We present Commit Guru, a language agnostic analytics and pre-
diction tool that identifies and predicts risky software commits.
Commit Guru is publicly available and is able to mine any GIT
SCM repository. Analytics are generated at both, the project and
commit levels. In addition, Commit Guru automatically identifies
risky (i.e., bug-inducing) commits and builds a prediction model
that assess the likelihood of a recent commit introducing a bug in
the future. Finally, to facilitate future research in the area, users
of Commit Guru can download the data for any project that is pro-
cessed by Commit Guru with a single click. Several large open
source projects have been successfully processed using Commit
Guru. Commit Guru is available online at commit.guru. Our
source code is also released freely under the MIT license.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous; D.2.8
[Software Engineering]: Metrics—complexity measures, perfor-
mance measures

General Terms
Software Quality Analysis

Keywords
Software Analytics, Software Metrics, Risky Software Commits,
Software Prediction
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The increasing importance and complexity of software systems
in our daily lives makes their quality a critical, yet extremely dif-
ficult issue to address. Estimates by the US National Institute of
Standards and Technology (NIST) stated that software faults and
failures cost the US economy $59.5 billion a year [1].

Therefore, a large amount of recent software engineering re-
search has focused on software analytics and the prediction of soft-
ware quality, where code and/or repository data (i.e., recorded data
about the development process) is used to provide software analyt-
ics and predict where defects might appear in the future (e.g., [2,3]).
In fact, a recent literature review shows that in the past decade
more than 100 papers were published on software defect predic-
tion alone [4]. In addition to risk prediction, there has also been
growing research concentrated on conflict resolution (e.g., [5, 6]).

Nevertheless, the adoption of software prediction in practice has
been a challenge [7–9]. One of the reasons for this limited adoption
is the lack of tools that incorporate the state-of-the-art analytics and
prediction techniques [9].

To address this limitation, we present a tool called Commit Guru
that provides commit-level analytics and predictions. Commit Guru
builds on the state-of-the-art analytics and prediction work to pro-
vide developers and managers with the risk levels of their commits.
To derive the risk values, Commit Guru analyzes and presents a
number of metrics (presented in our earlier work [10,11]) that help
explain how the risk value is determined. Commit Guru is fully
automated, updates daily and is capable of analyzing any publicly
accessible git repository. Finally, Commit Guru provides a full data
dump of all the commits, along with their associated metrics, to fa-
cilitate research efforts in the area of software quality analytics and
prediction.

2. A WALKTHROUGH OF COMMIT GURU
The main goal of Commit Guru is to provide developers and

managers with analytics and predictions about their risky commits.
Similar to prior work, we consider a risky commit as a commit
that introduces a bug in the future [11, 12]. Commit Guru can be
used by developers, managers and gatekeepers to identify commits
that have introduced bugs. An overview of Commit Guru is shown
in Figure 1. Commit Guru is composed of a backend, which is
responsible for all of the analysis of the commits and a front-end,
which is responsible for the visualization of the analyzed data. To
illustrate how both, the backend and front-end, work to support
Commit Guru, we provide a brief walkthrough in this section.

2.1 Front-end of Commit Guru
When a user visits commit.guru, they first see the homepage

shown in Figure 2. From the homepage, a user can view reposi-
tories that have already been analyzed or analyze a new repository.
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Figure 1: Overview of Commit Guru

To analyze a git repository, a user enters the URL of an publicly ac-
cessible Git repository and (optionally) their e-mail address (num-
bered 1 in Figure 2). The e-mail address is only used to notify the
user when their repository has been fully analyzed. By default, all
repositories that are submitted are viewable by all visitors of Com-
mit Guru, however, a user can select if they do not want their ana-
lyzed repository to be publicly viewable. A user also has the option
of creating an account to keep track of all of his or her repositories.

Once a repository has been fully analyzed, we present it in the
recent repositories section (numbered 2 in Figure 2). Any visitor
of Commit Guru can click on the repository and quickly have an
overview of different analytics about the repository. These include:

• Project commit statistics, which show the total number of
commits and the percentage of commits that are risky (and
not risky).

• Median metric values, which show the median values for
the risky and non-risky commits. For example, if the median
number of lines of code (LOC) added for risky commits is
100 lines and for non-risky commits if 50 lines, then they are
represented as such. The values for the risky commits are
shown in red, whereas the values for the non-risky commits
are shown in green. We also measure whether the difference
in medians between the risky and non-risky commits is sta-
tistically significant or not. For the statistically significant
differences, we highlight them by adding an asterisk ‘*’ next
to the metric’s name.

In addition to the viewing the different analytics at the project
level, a user can view commit-level analytics. Clicking on the
‘commits’ tab (labeled number 1 in Figure 3) allows the user to
view all of the individual commits of the project. In this tab, there
exists two views: historical and predictive data. A user can switch
views by modifying the display dropdown (labeled number 2 in
Figure 3). The historical data view show all commits in the repos-
itory and highlights risky commits in red based on those that are
determined to be bug-inducing (i.e., risky). These commits, once
expanded, provide a link to the commit that fixed the bug in it.
Users can also apply a number of filters, e.g., filter commits by a

specific developer, order the commits based on their age. In the
predictive data view, we show only the recent commits made in
the last three months. In the prediction view, we leverage a regres-
sion model to evaluate the riskiness of each commit.

In both the predictive and historical data views, a user can click
on the individual commits to view specific metric values (labeled
number 4 in Figure 3). For each commit, we present the metric
value for the specific commit. If the value of the metric is below
the median of the non-risky commits, then it is coloured in green;
if it is higher than the value of the risky commits, it is coloured
in red; and if it is higher than the non-risky commits, but lower
than the median value of the risky commits, then the metric value
is coloured in yellow. Users can also apply a number of filters, e.g.,
filter commits by a specific developer, order the commits based on
some criteria. Lastly, a user can click on the ‘options’ tab (labeled
3 in Figure 3) to see when the repository was ingested and last
analyzed. Furthermore, a user can obtain a csv file containing all
of the commits and their corresponding metrics.

2.2 Backend of Commit Guru
To accomplish the aforementioned analysis, Commit Guru’s back-

end performs three sequential steps: ingestion, analysis (to calcu-
late analytics and determine historical risky commits), and predic-
tion (of potentially risky commits). The “Commit Guru Manager"
tracks the status’ of all projects and appropriate adds tasks (e.g,
ingestion or analysis) to a work queue. A thread pool object main-
tains a pool of worker threads and assigns tasks from the work
queue to available workers. This allows the system to perform
multiple tasks parallel in the background. Below, we describe in
a nutshell how the backend of Commit Guru works.

When a user requests a new repository to be analyzed, the front-
end creates a new row in a table called repositories. The
repositories table stores the name, location URL, user’s email,
creation date, and assigns the repository the "Waiting to be In-
gested" status. The “Commit Guru Manager" observes this, and
adds an ingestion task into the work queue. Our thread pool will
then pop this task from the work queue and dispatch an available
worker thread to start processing it. In this case, it will start in-
gesting the code changes in the repository and classify them (more
details about the classification are provided in Section 2.2.1).

Once a worker thread has finished the ingestion task, it changes
the repository’s status in the table as "Waiting to be Analyzed" and
saves the ingestion date in the repository table. The “Commit
Guru Manager" notices this and triggers a new analysis task into
the work queue. A free worker is dispatched and begins linking the
fix-inducing commits to the bug-inducing commits. The median
values of the metrics for both, risky and non-risky commits, are
also calculated (more details about the analysis step are provided
in Section 2.2.2).

When analysis is done, the worker changes the status of the
repository to "Waiting to Build Model". The “Commit Guru Man-
ager” again sees his and creates a new thread to build the regres-
sion model using the ’R’ statistical package. After the models
have been built, it stores the regression model’s coefficients into
a metrics table (more details about the prediction of risky com-
mits are provided in Section 2.2.3.). It also creates a complete CSV
data dump of all the code changes with their code change measures
and whether they were bug-inducing. This file is saved on the disk
to make it accessible for download by users. Next, it saves the
date of the dump into a column in the repository table. We create
new data dumps for each repository every month. As the “Commit
Guru Manager” knows the last time a repository was ingested, it
will also add tasks to pull new changes every day and update the
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Figure 2: Commit Guru’s Home Page

Figure 3: Commit View

median values and model’s coefficients.
Finally, when all of this is done, the “Commit Guru Manager”

changes the repository’s status to "Analyzed". The user is also no-
tified via e-mail, using Google’s SMTP Server with a gmail account
we created for Commit Guru, that the repository has been fully an-
alyzed. The user can now view the riskiness of the project’s code
commits and download data dumps of this data

2.2.1 Ingestion and Classification
As stated earlier, the first phase a project will enter is the inges-

tion and classification phase. For all new projects, we download its
repository and revision history, and store all of the project’s data
locally on the Commit Guru server. Then, we parse each commit in
the revision log and record each of the 13 change-level metrics (pre-
sented in our earlier work [11]) for each commit. After extracting
the commit metrics from the commit, we semantically analyze the
log made by the developer in order to classify the type of commit
(e.g., corrective, feature addition). We leveraged the prior work of

Table 1: Words and Categories Used to Classify Commits [13]
Category Associated Words Explanation

Corrective bug, fix, wrong, er-
ror, fail, problem,
patch

Processing failure

Feature Addition new, add, require-
ment, initial, create

Implementing a new require-
ment

Merge merge Merging new commits
Non Functional doc Requirements not dealing with

implementations
Perfective clean, better Improving performance
Preventive test, junit, coverage,

asset
Testing for defects

Hindle et al. [13] and use the list of keywords shown in Table 1 to
classify commits. If the commit log contains one of the keywords
in our defined categories, the commit is labeled as belonging to the
corresponding classification. While it is possible for a commit to
belong to several categories, we limit them to only one category
in the following order: corrective, feature addition, non functional,
perfective, and preventive. For example, if a developer fixes both,
an issue and adds a new feature, it would be labeled only as a cor-
rective change. A similar approach was used by the authors of the
SZZ algorithm [14] to determine commits that were fixing.

2.2.2 Analysis and Determining Risky Commits
Next, we start linking the risky (i.e., bug-inducing) commits to

those that are fixing commits. We link these fixing commits to the
risky commits by performing a diff to find which lines of code were
modified. Using the annotate/blame function of the SCM tool, we
can discover in what previous commits those lines of codes were
modified. These commits are then marked as a potential location
where the bug was introduced, i.e., potential risky commits.

To perform the diffs on each fixing commit in a project, we pipe
the output of the diff into bash and echo each line back with our
own delimiters at the beginning and end of each line. We do this
as it is not sufficient to simply inspect each line by separating them
through the newline character, since a line of code can contain ar-
bitrary newline characters. We split this output into regions, or by
the files modified. The first line contains information about the file
name, which we collect. First, we check if the file name ending
is in our list compiled from Wikipedia containing 144 source code
and script file extensions [15]. We do not consider other types of
files because a change in a document file is likely not the source of
a bug. Including other file types may make the algorithm confused
as it would consider code churn and documentation change as the
same type of event. Additionally, it slows down our algorithm sig-
nificantly for projects that have large change logs included in their
updates, as the algorithm has to mark each modified line individu-
ally.

Next, we look for our delimiter to find the line that contains in-
formation about the lines of code modified and the code diff. Each
region can have multiple delimiters and we refer to these as sec-
tions in the region. We divide the region up initially into two parts:
the first part contains the file information and the second part con-
tains the information about the lines of code modified followed by
the code chunk. We split the second part into two more additional
parts, which separates the information about the lines of code and
the code chunk. From the information about the lines of code mod-
ified, we extract which line number the diff begins and mark it as
the current line number. We then begin looking at the code diff and
if it begins with a ‘-’ character, we can be certain that it was a code
modification. Then, we record the line number and its correspond-
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ing file name and increment the current line number. We do this
since code additions that did not exist in previous versions of the
file may modify the line numbers. After this has been completed
for all sections in the region, we perform the SCM blame/annotate
function on all modified lines of code for their corresponding files
on the fixing commit’s parent. This will return the commit identi-
fications that previously modified them. We determine these com-
mits to have introduced the bugs corrected by the fixing commit and
mark them. Once we have successfully linked a fixing commit to a
bug-inducing commit, we mark the fixing commit as successfully
linked so to not redo this every time a repository is analyzed. Only
new fixing commits need to be linked, as we have already found
which change(s) introduced the bugs in those fixing commits.

Once the fixing and the risky commits are labeled, we calculate
the 13 commit-level metrics derived in our prior work [11]. For
each metric, we calculate its median value for two sets of commits,
risky and non-risky. We also perform a Wilcox test to ensure that
the difference in medians is statistically significant (i.e., p-value <
0.05). Then, we use the median values to present the project level
analytics and to provide the user some perspective on where each
commit falls compared to the set of risky and non-risky commits.
For example, if the set of risky commits have a median LOC added
of 100 lines, where as the non-risky set has a mean of 20 lines, then
if a commit have 10 lines it is mostly safe (as far as this one metric
is concerned).

2.2.3 Building Predictive Models
One main criteria/assumption that needs to be satisfied for the

SZZ (and our algorithm that determines risky commits) to work
is that enough time needs to have elapsed since a commit, for the
commit to have the chance to be fixed. Therefore, we also build
a predictive model that trains on historical data and makes predic-
tions for commits performed in the last three month period.

Our prediction model is a logistic regression model, although
in theory we can apply any other model. We build the prediction
model incrementally by adding one metric to the model at a time.
If the metric is statistically significant and does not cause any pre-
viously added metric to no longer be significant, it is added to the
model. We repeat this for all 13 metrics in the following order:
lines added, lines deleted, lines total, no. subsystems, no. directo-
ries, no. files, no. developers, age, no. unique changes, experience,
recent experience, subsystem experience, and entropy. Once we
build the model, we use the coefficients of the model to predict the
risk of the commits made in the last 3 months. When a user sub-
mits a repository to be analyzed, they can see the predicted risk of
their commits for any commit made in the last 3 months using the
predictive view of Commit Guru.

3. CONCLUSION
In this paper, we present our tool, Commit Guru, that performs

analytics and predicts risky software commits. Commit Guru uses
13 metrics introduced in our prior work [11] to give its analytics
and make its predictions. Commit Guru is publicly available on
the web at http://www.commit.guru. Practitioners can use
Commit Guru to identify recent commits that are more likely to
contain bugs and better understand the overall quality of a soft-
ware project. This can be useful to find those changes to prioritize
verification activities such as code inspections as well as seeing
which quality change metrics might be good indicators for bugs.
Researchers can use Commit Guru to study a large collection of
quality commits and their metrics from any GIT SCM based open
source repositories for future research in this area.
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APPENDIX
A. SOURCE CODE AVAILABILITY

Our source code is freely available under the MIT li-
cense. The back-end of the Commit Guru system can
be viewed and dowloaded at https://github.com/
CommitAnalyzingService/CAS_CodeRepoAnalyzer.
The front-end can be found at https://github.com/
CommitAnalyzingService/CAS_Web.

B. COMMIT GURU DEMONSTRATION
To demonstrate Commit Guru in action, we walk through mining

and analyzing the code changes for the open source project pip.
This is a popular tool for installing Python packages. The project’s
source code is publicly available on GitHub, which is a popular
place for developers’ to store projects using git as its version control
system. Pip can be seen on GitHub via the web at https://
github.com/pypa/pip. It has 3,944 code changes with 195
contributors and currently has 86 pull requests.

B.1 Walk Through Analyzing Pip
Adding Pip: We first get the url to pip’s git repository. This
is all we need to mine the project’s code changes and see those
that are risky through the Commit Guru web tool. We navigate to
commit.guru with our web browser. Here, we can input pip’s
git repository url and our email address as shown in Figure 4. After
we click "Start Now", the repository will start to get processed by
Commit Guru.
Overall Commit Statistics: When Commit Guru has finished pro-
cessing a repository, it will send an e-mail notification to the owner,
if this was provided. It will also show up by default to the recent
repositories list on the home page unless disabled. When we click
on the link given by the e-mail or the repository in the recent repos-
itories table on the home page, we see the overall commit statistics
as shown in Figure 5. Here, we can quickly see that 20% of code
changes are marked as bug-inducing (number 2 in Figure 5). Addi-
tionally, we can view the averages for each of the commit metrics
(number 3 in Figure 5) for the changes that were bug-inducing (col-
ored in red) or not (colored in green). Metrics with an asterisk(’*’)
indicate that the differences between the bug-inducing and non bug-
inducing commits are statistically significant. For pip, we see that
all metrics are statistically significant. Interestingly, we also learn
that the more developers that touched a file for this project, the less
likely it was to contain a bug. Other useful information can also
be found from this page, particularly for researchers. Hovering
over the blue question mark next to the metric name will display
a popup describing it. For instance, hovering over subsystem dev
experience metric will show a popup explaining that this metric
represents the number of commits the developer made in the past
to the subsystems that are touched by the current commit (number
4 in Figure 5).
Viewing Code Changes: In the overview page, there is a naviga-
tion bar for the repository to switch between different pages of the
repository (labeled as 1 in Figure 5). After clicking on the "Com-

mits" tab in the repository navigation bar, we see a list containing
the commits for this repository. By default, it shows an historical
view as shown in number 1 in Figure 6. Commits colored in red
indicate that they are bug-inducing (number 3 in Figure 6). On the
left-side for each commit, we also show it’s classification (if avail-
able). It is also possible to filter for specific commits by clicking
on the filter drop-down menu (number 2 in Figure 6) and specify-
ing the commit hash, commit message, author email, or the commit
classification.
Finding Risky Commits: Changing the display from historical to
predictive data in the drop down on the commits page (number 1
in Figure 6) will change the view to show all code changes in the
past three months and how likely they contain bug(s). There is an
additional element on the left-side for each commit (number 1 in
Figure 7). This is a percentage number that indicates the proba-
bility of it containing a bug. It is color coded accordingly: green
indicates low risk, yellow indicates medium risk, and red indicates
high risk. However, in the predictive data view, a red colored com-
mit indicates that it is more probable to contain a bug using our
regression algorithm instead of indicating that it is bug-inducing
(historical data view). Here, we can browse through all the recent
code changes and easily inspect those that are most likely to in-
troduce bugs by sorting on high risk-level (number 2 in Figure 7).
For example, we can see that commit 17352765f0 is likely to intro-
duce a new bug, making it a good target for conducting additional
verification activities (i.e., code review).
Inspecting Individual Commits: In both the historical and pre-
dictive data displays, it is possible to inspect individual commits by
clicking on it as shown in Figure 8. This will expand the box, show-
ing all the individual code change metrics (number 1 in Figure 8),
the commit message (number 2 in Figure 8), the updated file names
(number 3 in Figure 8), an option to give feedback whether it was
useful (number 4 in Figure 8), and a link to the commit that fixed
a bug it contained (number 5 in Figure 8), if applicable. Each met-
ric is color coded according to it’s risk factor based on our median
model. If the metric is less than the average of non-buggy commits,
it is green (low risk). If it is between the average of a buggy and
non buggy commit, it is colored yellow (medium risk). Finally, if it
is the same as the average of a buggy commit or higher, it is colored
as red (high risk). This is useful for quickly understanding why a
certain commit was flagged as risky in the predictive data view and
seeing a summary of which files were changed and by whom.
Downloading Data Dumps: In the repository navigation bar,
clicking on "Options" will take us to a view that allows us to down-
load a data dump of the code changes for the repository as shown
in Figure 9. It also shows the last time Commit Guru downloaded
code changes from the repository, the last time they where ana-
lyzed, and when the data dump was done. Clicking on the "Down-
load dump (.csv)" button (number 1 in Figure 9) will start the down-
load of a csv file containing all code changes with their change mea-
sures and whether they are marked as containing a bug. Figure 10
shows an example of the contents in the data dump after doing this
for the Pip project.
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Figure 4: Adding a Repository

Figure 5: Commit Statistics
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Figure 6: Commits - Historical Display
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Figure 7: Commits - Predictive Data Display
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Figure 8: Inspecting an individual commit

Figure 9: Downloading Data Dump
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Figure 10: Data Dump Contents
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