Chapter V

Wireless TCP
Outstanding issues from last lecture: Routing in Internet

- Distance vector algorithm

Figure 5.9 – Reference [1]
Outstanding issue from last lecture: Routing in Internet

Routing uses the general distance concept from topology mathematics

- Distance from A to B is not necessarily equal to the distance from B to A
 - Depends on metrics (e.g. satellite uplink and downlink)
- Links are not necessarily symmetrical
 - A may have B as adjacent node but B may not have A as adjacent node (e.g. a-symmetrical links)
 - B may have to reach A through a multi hop link
Congestion handling in wired TCP: Detailed treatment

1. Fundamental assumptions and principles
2. Key parameters
 - Slow start
3. Congestion avoidance
4. Fast re-transmit and fast recovery
Fundamental assumptions principles

- Fundamental assumptions:
 - Few or no error on physical layer:
 - Segment losses are quite exclusively due to network congestion
 - Congestions are detected in two ways:
 - Timeout (Severe congestion)
 - Duplicate ACK (Mild congestion)

- Fundamental principles
 - Never trigger congestion by sending more than what (you think) the network and the receiver could handle
 - Slow down when congestion is detected in order to relieve it
Key parameters

- Receiver window:
 - granted by receiver
- Congestion window (Cwd):
 - computed by the sender
 - Maximum size = Receiver window
- Effective window: Min (receiver window, congestion window)
Slow start

• When?
 – A connection is established or a timeout is detected
• What?
 – Determine what the network and the receiver can effectively handle
 – Slow down in case of timeout
• How?
 – Use of threshold (ssthresh) parameter
 – Congestion window reset to 1
 – Threshold set to half of current congestion window
 – Slow start procedure to determine what the network and the receiver can actually handle
Slow start

- **Timeout**
- **Threshold**
Congestion avoidance

– Normal state of affairs
 • No inferred congestion
 – Do not trigger it by sending more than what you think the network and the receiver can handle to avoid abnormal situations
 » Timeout (Slow start)
 » Duplicate ACK (Fast re-transmit and fast recovery)
Fast re-transmit and fast recovery

- **When?**
 - Receipt of 3 duplicate ACK (mild congestion)

- **What?**
 - Send immediately inferred loss segment (Fast re-transmit)
 - Slow down and determine what the network and the receiver can effectively handle (Fast recovery)
 - Wait for ACK
 - If ACK received
 » Back to normal state of affairs (Congestion avoidance)
 - Otherwise
 » Slow start
Wireless TCP

• 1 - Wireless Networks

• 2 - Problems for TCP and taxonomy

• 3. Pro-active approaches

• 4. Re-active approaches
Wireless networks

• Infrastructure – based wireless networks
 – Rely on pre-installed infrastructure (e.g. base stations / access points)
 – Examples:
 • classical (unihop) cellular networks,
 • Wireless Local Area Networks (WLANs) configured in infrastructure mode

• Infrastructure-less wireless networks
 – Deployed on the fly (no base stations / access points)
 – Examples:
 • Mobile ad hoc networks (MANETs)
 – Could be built using WLANs configured in infrastructure-less mode
Wireless networks

• Hybrid wireless networks
 – Made up of:
 • Infrastructure based portion
 • Infrastructure-less portion
 – Classical example:
 • Multi-hop cellular network
 – Classical unihop cellular network (e.g. GSM, 3G) portion
 – Mobile ad hoc network (MANET) portion to connect cellular
 phones that are outside base station coverage
 – Key benefits:
 » Increased coverage
 » Improved performance
Wireless networks

- Key characteristics
 - Signal fading
 - Dispersion, reflection and diffraction due to obstacles
 - Mobility
 - Terminal mobility (i.e. keep on-going sessions alive while roaming)
 - Handoff / Handover in infrastructure based – networks
 - Limited power and energy
Problems for TCP and taxonomy of solutions

Problems for TCP

- Random loss of segments mistaken as indication of congestion
 - May be caused by fading
 - Triggering of wrong decisions in TCP state machine
 » Unnecessary slow start
 - Burst loss of segments mistaken as indication of congestion
 - May be caused by mobility (i.e. handoff/handover)
 - Triggering of wrong decision in TCP state machine
 » Unnecessary slow start
 - Packet re-ordering
 - May be caused by mobility (i.e. handoff / handover)
 - Triggering of wrong decisions in TCP state machine
 » Unnecessary fast re-transmit and fast-recovery
Problems for TCP and Taxonomy of solutions

Several taxonomies exist

 Taxonomy used in this course

 – Pro-active
 • Avoid the problem (i.e. TCP segment loss without knowing the exact cause: congestion or random / burst error)

 – Re-active
 • Let the problem happen (i.e. TCP segment loss without knowing the exact cause)
 • Figure the exact cause and take appropriate actions
Pro-active approaches

Split TCP (basic form)
Pro-active approaches

Split TCP (Basic form)

- Applicable to networks with a fixed portion and an infrastructure based – wireless portion
 - Split the connection in two (fixed part and wireless part)
 - Cause of segment loss determined by where the loss happens and relevant decisions are taken
Pro-active approaches

Split TCP

- Sample of disadvantages
 - Violation of TCP semantics
 - ACK may arrive before segment reaches receiver because sent by base station
 - Lack of general applicability
 - Link base station – mobile may not be the last mile (e.g. multi hop cellular networks)
 - Inefficient handling of handoff / handovers
 - Need to transfer connection state from old base station to new base station
Re-active approaches

Cross layer approaches

– Let the problem happens (i.e. segment loss without knowing the cause)
– Use information from other layers including non adjacent layers to determine the cause
Re-active approaches

Cross layer approaches
 – Example: ILC - TCP
 • Sender side solution
 • Relies on a state manager that collects relevant information from all layers including
 – Link state (bad or good)
 » Bad link indicates imminent handoff and good link indicates completion of handoff
 • Upon timeout
 – Check link state
 » Good implies congestion
 » Bad implies imminence of handoff
 » Suspend TCP state
Re-active approaches

TCP probing
 - Upon timeout or receipt of 3 duplicate ACK
 - Send probe segments until the ACKs of a pair of probes are received within a specified time period
 » Why?
 » Determine whether the cause of timeout or duplicate ACKs is congestion or something else (e.g. random loss, burst loss)
 » How?
 » Use of round trip time (RTT1, RTT2) of the two probes
Re-active approaches

TCP probing

• How?
 – RTT1 and RTT2 < Best RTT
 • No congestion
 – Else
 • Congestion
 – If RTT2 > Best RTT
 » Severe congestion
 » Slow restart
 Else
 Mild congestion
 Fast retransmit and fast recovery
References

– K. Pentikousis, TCP in Wired-Cum-Wireless Environments, IEEE Communications Surveys and tutorials, fourth quarter 2000
Routing in Internet

- Distance vector algorithm

![Diagram of a network with routers and distances between nodes.](image)

Figure 5.9 – Reference [1]