
Additional information

on socket programming

Dr F. Belqasmi,

Industrial Research Post Doctoral
Fellow, Ericsson Canada

Agenda

• Multithreading

• Blocking and

Server
Threads

Server

• Blocking and
Timeouts

• Multiple recipientsClient 1Client 2

Network

Multithreading

• Iterative servers handle clients sequentially,

finishing with one client before servicing the

next.

– Work best for applications where the processing time

of each client is smallof each client is small

– Waiting time for subsequent clients may be

unacceptable

• Multithreading allows a server to handle clients

in parallel

Multithreading
• Thread example

public class OneClientHandler implements Runnable {

private Socket clntSock; // Socket connect to client

public OneClientHandler(Socket clntSock, Logger logger) {

this.clntSock = clntSock;

}

public static void handleClient(Socket clntSock) {public static void handleClient(Socket clntSock) {
try {

// Get the input and output I/O streams from socket
InputStream in = clntSock.getInputStream();
OutputStream out = clntSock.getOutputStream();
………

clntSock.close();

} catch (IOException e) { }

}

public void run() {
handleClient(clntSock);

}

}

Multithreading
• Multithreading Server example

public class MultithreadingServer {

public static void main(String[] args) throws IOException {

…

int echoServPort = Integer.parseInt(args[0]); // Server port

ServerSocket servSock = new ServerSocket(echoServPort);ServerSocket servSock = new ServerSocket(echoServPort);

// Run forever, accepting and spawning a new client thread for each connection

while (true) {

Socket clntSock = servSock.accept();

// Spawn thread to handle new connection

Thread thread = new Thread(new

OneClientHandler(clntSock));

thread.start();

}
}

}

Blocking and Timeouts

• Socket calls may block
– accept() method of ServerSocket() blocks until a

connection is established

– Socket constructor blocks until a connection is
established established

– read() and receive() block if data is not available

– write() blocks if no sufficient space in the output buffer

• A blocked method call makes the thread that is
running it useless
– E.g. waiting for lost datagrams

Blocking and Timeouts

• How to get around blocking calls

– Set an upper-bound on the maximum time to block

• Works for accept(), read() and receive()

try{

sock.setSoTimeout(timeBoundMillis);

– Use the available() method

• Check for available data before calling read()

//serverSocket.setSoTimeout(timeBoundMillis);

//datagramSocket.setSoTimeout(timeBoundMillis);

} catch (InterruptedIOException ex) { //blocking timeout is reached }

InputStream in = clntSock.getInputStream();

if (in.available()){

in.read(…);}

Blocking and Timeouts

• Connecting a socket

Try{

InetAddress addr = InetAddress.getByName("java.sun.com");

int port = 80;

SocketAddress sockaddr = new InetSocketAddress(addr, port);

//Create an unbound socket

Socket sock = new Socket();

• Writing to a socket
– The amount of time that a write() may block is controlled by the

receiving application

– Currently, Java does not provide any way to cause a write() call
to time out

Socket sock = new Socket();

int timeoutMillis = 2000; // 2 seconds

sock.connect(sockaddr, timeoutMillis);

}catch (SocketTimeoutException ex){….}

Multiple recipients

• The information provided by the server may be of
interest to multiple recipients

– Unicast a copy of the data to each recipient

• Inefficient (wastes bandwidth)

• E.g,

– The server sends 1Mbps streams– The server sends 1Mbps streams

– The network connection is 3Mbps

– Only three simultaneous users can be supported

– Networks provide a way to use bandwidth more efficiently

• Packets are duplicated by the network (and not by the
application) only when appropriate

• 2 ways:

– Broadcast

– Multicast

Multiple recipients

• Broadcasting

– Broadcasting UDP datagrams is similar to unicasting

datagrams, except that a broadcast address is used

instead of a regular (unicast) IP address

• IPv4: 255.255.255.255• IPv4: 255.255.255.255

• IPv6: FFO2::1

– All of the hosts on the same (local) broadcast

network receive a copy of the message.

Multiple recipients

• Multicasting

– A multicast address identifies a set of receivers

• IPv4: adresses between 224.0.0.0 and

239.255.255.255

• IPv6: any address starting with FF• IPv6: any address starting with FF

Multiple recipients

• Multicasting example

import java.net.MulticastSocket;

public class MulticastSender {

public void sendMulticastMessage(String msg) {

try{

Multicast message sender

try{

MulticastSocket mSocket = new MulticastSocket();

mSocket.setTimeToLive(TTL); // Set TTL for all datagrams

….

DatagramPacket message = new DatagramPacket(msg, msg.length,

multicastDestAddr, destPort);

mSocket.send(message);

mSocket.close();

}catch (IOException ex){….}

} }

Multiple recipients

Try{

MulticastSocket mSock = new MulticastSocket(port); // for receiving

mSock.joinGroup(multicastAddress); // Join the multicast group

Multicast message receiver

• Multicasting example

// Receive a datagram

DatagramPacket packet = new DatagramPacket(new

byte[MAX_MSG_LENGTH],

VoteMsgTextCoder.MAX_WIRE_LENGTH);

sock.receive(packet);

sock.close();

}

• References
– TCP/IP Sockets in Java: Practical Guide for

Programmers, Second Edition, Kenneth L. Calvert
and Michael J. Donahoo, ISBN: 978-0-12-374255-1

– “All About Sockets”
http://java.sun.com/docs/books/tutorial/networking/sohttp://java.sun.com/docs/books/tutorial/networking/so
ckets/

