Chapter IX

Internet Mail Protocols
Internet Mail Protocols

• 1 - Internet Mail Architecture
• 2 - Simple Mail Transfer Protocol (SMTP)
• 3 - Post Office Protocol (POP)
• 4. Internet Message Access Protocols (IMAP)
Internet Mail Architecture

Functional entities

- Mail User Agent (MUA)
 - Interact with end-users via user interfaces
 - Send / read emails
 » May or may not offer offline interaction possibilities
 - Format message
 » May encrypt
 - Examples
 » Web mail (no off-line interaction)
 » Microsoft proprietary systems (off-line interactions)
Internet Mail Architecture

Functional entities

– Split Mail User Agent (Split- MUA)
 – MUA with limitations
 » May be intermittently connected to Internet
 » May have limited processing power
 » Unable to authenticate
 » Unaware of time zones
Internet Mail Architecture

Functional entities

- Mail Transfer Agent (MTA)
 - Provide mail transport services
 - Enable the transportation of mails between source MUA and target MUA.
Internet Mail Architecture

Functional entities

- Mail Submission Agent (MSA) (Relatively new – 2006)
 - Act as intermediary between MUAs and MTAs
 - Enable functional separation between message submission and message transfer

» Objectives
 » Modularity
 » Configurable policies
 » Submission authentication (e.g. off-line submission)
 » Spam handling
 » Avoid unauthorized mail relaying
 » Avoid injection of unsolicited bulk mail
Internet Mail Architecture

Functional entities (There may be several entities in the same node)
Internet Mail Architecture

Main protocols

– MTA/MTA
 • Simple Mail Transfer Protocol (SMTP)
 – May also be used as mail submission protocol between split MUA agent and MTA when in separate nodes

– MUA/MTA
 • Mail retrieval between split MUA and MTA
 – Post Office Protocol (POP)
 – Internet Message Access Protocol (IMAP)
SMTP

Primary objective
- Reliable and efficient mail transport and delivery between MTAs
 - Usage as mail submission protocol will gradually disappear

Transport protocols used
- Runs usually on top of TCP
- May also runs on top of other appropriate transport protocols
SMTP

Basic structure

– Mail transport and delivery

![Diagram showing the basic structure of SMTP with MUA, MTA, SMTP client, and SMTP server]
SMTP

Basic structure
- Mail transport and delivery between MTAs
 - SMTP client
 - Transfer mail messages to SMTP servers
 » Get SMTP server IP address using DNS
 - SMTP server
 - Ultimate destination or
 - Relay
 » Act as SMTP client towards another SMTP server
 » There may be several hops between sources and destinations
 - Gateway
 » Translation service towards non SMTP servers
SMTP

Basic structure

– General characteristics
 • Command / reply
 • Plain text (no encoding)
 • State-full
 – Three states
 » Session initiation
 » Transactions
 » Session termination
SMTP

Basic structure

– Three states

 1. Session initiation
 – Three way hand shake
 » TCP connection (bidirectional) initiated by client, then server talks firsts
 » Exchange of greetings
SMTP

Basic structure

- Three states

2. Mail transactions

- Series of commands from client to transfer message(s) to server
 - Specification of sender
 - Specification of receiver
 - Transmission of message

- Series of replies from server (1 reply per command)
 - Command accepted
 - Additional commands are expected
 - Error
SMTP

Basic structure

– Three states

2. Mail transactions
 – Examples of commands
 » MAIL FROM
 » RCPT
 » DATA
 » QUIT
 – Examples of reply codes
 » 250: Requested action OK, completed
 » 503: bad sequence of commands
SMTP

Basic structure
 – Three states
 2. Session termination
 – Bidirectional transmission channel tear down
SMTP

Example: Message sent from elinor@abcd.com to Carolin@xyz.cm

-- Message

From: elinor@abcd.com
To: carolyn@xyz.com
MIME-Version: 1.0
Message-Id: <0704760941.AA00747@abcd.com>
Content-Type: multipart/alternative; boundary=qwertyuiopasdfghjklzxcvbnm
Subject: Earth orbits sun integral number of times

This is the preamble. The user agent ignores it. Have a nice day.

--qwertyuiopasdfghjklzxcvbnm
Content-Type: text/enriched

Happy birthday to you
Happy birthday to you
Happy birthday dear <bold>Carolyn</bold> <bold>Carolyn</bold>
Happy birthday to you

--qwertyuiopasdfghjklzxcvbnm
Content-Type: message/external-body;
access-type="anon-ftp";
site="bicycle.abcd.com";
directory="pub";
name="birthday.snd"

content-type: audio/basic
content-transfer-encoding: base64
--qwertyuiopasdfghjklzxcvbnm--
SMTP

Example: Message sent from elinor@abcd.com to Carolin@xyz.cm

- SMTP messages between SMTP client (elinor domain) and SMTP server (Carolin) domain
SMTP

S: 220 xyz.com SMTP service ready
C: HELO abcd.com
S: 250 xyz.com says hello to abcd.com
C: MAIL FROM: <elinor@abcd.com>
S: 250 sender ok
C: RCPT TO: <carolyn@xyz.com>
S: 250 recipient ok
C: DATA
S: 354 Send mail; end with "." on a line by itself
C: From: elinor@abcd.com
C: To: carolyn@xyz.com
C: MIME-Version: 1.0
C: Message-Id: <0704760941.AA00747@abcd.com>
C: Content-Type: multipart/alternative; boundary=qwertyuiopasdfghjklzxcvbnm
C: Subject: Earth orbits sun integral number of times
C:
C: This is the preamble. The user agent ignores it. Have a nice day.
C:
C: --qwertyuiopasdfghjklzxcvbnm
C: Content-Type: text/enriched
C:
C: Happy birthday to you
C: Happy birthday to you
C: Happy birthday dear <bold> Carolyn </bold>
C: Happy birthday to you
C:
C: --qwertyuiopasdfghjklzxcvbnm
C: Content-Type: message/external-body;
C: access-type="anon-ftp";
C: site="bicycle.abcd.com";
C: directory="pub";
C: name="birthday.snd"
C:
C: content-type: audio/basic
C: content-transfer-encoding: base64
C: --qwertyuiopasdfghjklzxcvbnm
C: .
S: 250 message accepted
C: QUIT
S: 221 xyz.com closing connection
Post Office Protocol (POP) vs. SMTP

(a) Sending host Permanent connection Message transfer agent Mailbox Receiving host

(b) Sending host Permanent connection Message transfer agent Mailbox ISP's machine POP3 server POP3 User agent User's PC
POP

Primary objective
- Enable split-MUA (less endowed MUA) to retrieve mail
 - Dynamic access to a mail drop service for mail retrieval
 - SMTP or other appropriate protocols are used for submissions
 - Runs on top of TCP
- Basic services
 - Mail downloaded and deleted
 - IMAP offers more comprehensive services
POP

Basic structure
– Mail retrieval by split MUA
POP

Basic structure

- General characteristics
 - Command / reply
 - Unlike SMTP, there may be several responses to a same command
 - Plain text (no encoding)
 - State-full
- Three states
 - Authorization
 - Transactions
 - Update
POP

Basic structure

– Three states

1. Authorization state
 – TCP connection (bidirectional) initiated by client, then server talks firsts
 – Action:
 » Client identification and authentication
 » Commands used by client
 » USER
 » PASS
POP

Basic structure

- Three states
 2. Transaction state
 - Examples of commands:
 - STAT:
 » Statistics (messages, sizes)
 - LIST:
 » List messages
 - RETR
 » Retrieve messages
 - DELE
 » Delete messages
 - QUIT
POP

Basic structure

- Three states

 3. Update state

 - Trigger:

 » QUIT command given in Transaction mode

 - Actions

 » Deleted messages are actually removed from mailbox

 » TCP connection is closed
POP

An example

S: +OK POP3 server ready
C: USER carolyn
S: +OK
C: PASS vegetables
S: +OK login successful
C: LIST
S: 1 2505
S: 2 14302
S: 3 8122
S: .
C: RETR 1
S: (sends message 1)
C: DELE 1
C: RETR 2
S: (sends message 2)
C: DELE 2
C: RETR 3
S: (sends message 3)
C: DELE 3
C: QUIT
S: +OK POP3 server disconnecting
IMAP

Primary objective

- Enable split-MUA (less endowed MUA) to retrieve mail
 - Dynamic access to a mail drop service for mail retrieval
 - SMTP or other appropriate protocols are used for submissions
 - Runs on top of TCP
IMAP

Main differences with POP

• New services
 – multiple mailboxes manipulation including concurrent access to same mailbox
 – Off-line operations

• Enhancements to POP services
 – Examples:
 » Optimizations (e.g. header downloading)
 » Storage including persistent message status storage
 » Enable access from any computer
IMAP

Basic structure
 – Mail retrieval by split MUA
IMAP

Basic structure

- General characteristics
 - Command / reply
 - Unlike SMTP, there may be several responses to a same command
 - Plain text (no encoding)
 - State-full
- Four states
 - Not authenticated
 - Authenticated
 - Selected
 - Logout
IMAP

Four states

1. Not authenticated
 - First thing after TCP connection and server greetings
 - Needed because some clients are pre-authenticated
 • A non pre-authenticated client must supply credentials and this will trigger authenticated state
 • State will automatically move to authenticated if client is pre-authenticated
 • Different greetings are used for pre-authenticated and non pre-authenticated clients
 • Example of commands
 – LOGIN
IMAP

Four states

2. Authenticated
 - After successful client authentication or automatically for pre-authenticated clients
 - Examples of valid commands
 - Mailbox manipulation
 - CREATE
 - DELETE
 - APPEND
 - SELECT (Selection of a specific mailbox)
IMAP

Four states

3. Selected

- A mailbox has been successfully selected
- A very wide range of commands related to the mailbox can now be used including
 - EXPUNGE
 - Delete all messages with the deleted flag
 - SEARCH
 - FETCH
IMAP

Four states

4. LOGOUT state

Connection termination
References

1. RFCs (Make sure to consult the most recent versions)
 - SMTP RFC
 - POP RFC
 - IMAP RFC