Comments - Elec 68661 - Fall 2011 (Quiz #1):

Roch Glitho, PhD
Associate Professor and Canada Research Chair, Concordia University, Montreal, Canada

http://users.ence.concordia.ca/~glitho/
Telecommunication Services Engineering (TSE) Lab

Procedure

- Today (Monday, October 24)
 - Answers to quiz questions
 - Copies given back to students
 - No claim / question on grades today
Telecommunication Services Engineering (TSE) Lab

Procedure

Wednesday, October 26, 3 – 5 p.m (No claim can be made after that)

- Potential claims
- Bring with the following
 - Your copy
 - This set of slides
- Please note the following
 1. If you have provided a sea of information as answer to a question, please do not pinpoint a grain of sand of correct information in the sea to claim points.
 2. If you do not get the correct routing table (question 4 – part 2) and if you still claim that there is the count to infinity problem you will still get nil for both part 2 and part 3 of the question
Telecommunication Services Engineering (TSE) Lab

Statistics

- Highest: 30 out of 30 (1 person)
- Lowest: 2.5 out of 30 (2 persons)
- Average: 15.8 out of 30
 - 27 out of 43 above 15
 - 13 out of 43 below 15
Telecommunication Services Engineering (TSE) Lab

Question 1 (5 points)

- Slide 11 (Chapter 1 – layered protocol architectures)
Question 2 (5 points)

- Pick 2 implementation approach out of the 3 possibilities:
 - Direct communications
 - Shared data bases
 - New abstractions (e.g. heap)

And give for each an architectural approach that can be implemented using it (e.g. new interfaces for direction communications, new interfaces for shared data bases, vertical calibration for shared data bases)
Telecommunication Services Engineering (TSE) Lab

Question 3 (5 points)

1. FH -------- ----HA ---------------FB-------------- ----MH

2. MH ---------- FH translated into
Question 4 (5 points)

1. After two exchanges:
 A B C D E

 . 1 . . 1 (First exchange)
 . 1 2 2 1 (Second exchange)

2. A goes down again
 After 1st exchange you should have 3 in E because E has the illusion that it can go to A through D – You get nil otherwise
 The numbers will continue increasing
 Counter to infinity
 Link state algorithm
Question 5 (5 points)

Slide 13 (Chapter 4)
Question 6 (5 points)

- First part: Many possible reasons (unconfirmed transmission, connectionless transmission)
- Second part: Port number