Chapter 3
Transport Layer

(TCP Essentials)

A note on the use of these ppt slides:

We’ re making these slides freely available to all (faculty, students, readers).
They’ re in PowerPoint form so you see the animations; and can add, modify,
and delete slides (including this one) and slide content to suit your needs.
They obviously represent a lot of work on our part. In return for use, we only

ask the following:

< If you use these slides (e.g., in a class) that you mention their source
(after all, we’ d like people to use our book!)

+ If you post any slides on a www site, that you note that they are adapted
from (or perhaps identical to) our slides, and note our copyright of this
material.

Thanks and enjoy! JFK/KWR

©Aﬁ material copyright 1996-2012
J.F Kurose and K.W. Ross, All Rights Reserved

Computer Networking
A Top-Down Approach

KUROSE | ROSS

Computer
Networking: A Top
Down Approach

6t edition
Jim Kurose, Keith Ross
Addison-Wesley
March 2012

These slides are an adapted version of the original material

Transport Layer 3-1

Chapter 3 outline

3.5 connection-oriented
transport: TCP
" segment structure
= reliable data transfer
= flow control
" connection management
* Congestion control

Transport Layer 3-2

TC P: OverVieW RFCs: 793,1122,1323, 2018, 258

% point-to-point:
® one sender, one receiver
<+ reliable, in-order byte
steam:

" no “message
. »
boundaries

<+ pipelined:
= TCP congestion and

flow control set window
size

< full duplex data:

» bi-directional data flow
In same connection

= MSS: maximum segment
size
< connection-oriented:

* handshaking (exchange
of control msgs) inits
sender, receiver state
before data exchange

< flow controlled:

= sender will not
overwhelm receiver

Transport Layer 3-3

TCP segment structure

URG: urgent data

(generally not used)™ source port# | dest port #

ACK: ACK #

valid \\\OI@owIedgement number

PSH: push data now
(generally not used) —

32 bits

A

counting

by bytes

of data

(not segments!)

'\ Sequence number

head| not
len _u;@d_U ,HBSF receive window

7

bytes

sum Urg data pointer revr willing

RST, SYN, FIN:/
connection estab

to accept

op/e'(variable length)

(setup, teardown
commands)

Internet /

checksum
(as in UDP)

/ application

data
(variable length)

Transport Layer 3-4

TCP seq. numbers, ACKs

outgoing segment from sender

Sequence numberS' sourceport#! dest port # ‘

u b)’te stream number Of acknowledgement number
first byte in segment S [] rwnd

checksum urg pointer
data
window SI
acknowledgements: A N T
"seq # of next byte ||||||
expected from other side
= cumulative ACK |
. . sent sent not- usable not
Q: how receiver handles ACKed |yetACKed butnot usable
out-of-order segments Tg“ér;\-t”) yet sent
=A: TCP spec doesn’ t say, incoming segment to sender
- up to Imp|ement0r' source port # dest port #
sequence number

‘ i rwnd

checksum urg pointer

Transport Layer 3-5

TCP seq. numbers, ACKs

Host A Host B
| V{ \
User -
types
‘C’ \

Seq=42, ACK=79, data = ‘C

host ACKs
host ACKs

receipt of
:u/ ‘C’, echoes
Seq=79, ACK=43, data= ‘C’ |pack ‘C’
receipt /
of echoed
‘C \Sep=43,ACK=K

simple telnet scenario

Transport Layer 3-6

TCP round trip time, timeout

Q: how to set TCP
timeout value?

% longer than RTT
" but RTT varies
< too short: premature

timeout, unnecessary
retransmissions

% too long: slow reaction
to segment loss

Q: how to estimate RTT?
» SampleRTT: measured

time from segment
transmission until ACK
receipt

" jgnore retransmissions

» SampleRTT will vary, want

estimated RTT “smoother”

" average several recent
measurements, not just
current SampleRTT

Transport Layer 3-7

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-8

TCP reliable data transfer

< TCP creates rdt service
on top of IP’ s unreliable

service
" pipelined segments ,
= cumulative acks let” s initially consider
= single retransmission simplified TCP sender:
timer " ignore duplicate acks
% retransmissions " ignore flow control,
triggered by: congestion control

" timeout events
" duplicate acks

Transport Layer 3-9

TCP sender events:

data rcvd from app:

% create segment with
seq #

% seq # is byte-stream
number of first data
byte in segment

» start timer if not
already running
= think of timer as for

oldest unacked
segment

" expiration interval:
TimeOutInterval

timeout;

% retransmit segment
that caused timeout

& restart timer
ack revd:

+ if ack acknowledges
previously unacked
segments

" update what is known
to be ACKed

" start timer if there are
still unacked segments

Transport Layer 3-10

TCP sender (simplified)

data received from application above

create segment, seq. #: NextSegNum
pass segment to IP (i.e., “send”)

NextSegNum = NextSegNum + length(data)
if (timer currently not running)

A S start timer
NextSegNum = InitialSeqNum

SendBase = InitialSegNum

timeout

retransmit not-yet-acked segment

with smallest seq. #
start timer

ACK received, with ACK field value y

if (y > SendBase) {
SendBase = y

/* SendBase—1: last cumulatively ACKed byte */

if (there are currently not-yet-acked segments)
start timer

else stop timer

}

Transport Layer 3-11

TCP: retransmission scenarios

Host A Hos
V{ \ull

45)
(@]
Q
£

Seq=92, 8 bytes of data

ACK=100

Seq=92, 8 bytes of data

fl

A

ACK=10C

}

lost ACK scenario

Host A Host B

3 £

SendBase=92
Seq:§2, 8 bytes of data
\

\

Seq=100, 20 bytes of dat

—— timeout ——

ACK=12C
yd

Seq=92, 8
bytes of data
SendBase=120

ACK=1 2(}
SendBase=120 /

premature timeout

SendBase=100

Transport Layer 3-12

TCP: retransmission scenarios

Host A Host

le——— timeout —*

N/

/

Seq=92, 8 bytes of data

Seq=100, 20 bytes of da

ACK=100
X

ACK=120

Seq=120, 15 bytesmA

cumulative ACK

Transport Layer 3-13

TCP ACK generation [RFC 1122, RFC 2581]

event at receiver TCP receiver action
arrival of in-order segment with delayed ACK. Wait up to 500ms
expected seq #. All data up to for next segment. If no next segment,

expected seq # already ACKed send ACK

arrival of in-order segment with immediately send single cumulative
expected seq #. One other ACK, ACKing both in-order segments
segment has ACK pending

arrival of out-of-order segment immediately send duplicate ACK,
higher-than-expect seq. # . indicating seq. # of next expected byte
Gap detected

arrival of segment that immediate send ACK, provided that
partially or completely fills gap segment starts at lower end of gap

Transport Layer 3-14

TCP fast retransmit

% time-out period often
relatively long:

" long delay before
resending lost packet

% detect lost segments
via duplicate ACKs.

» sender often sends
many segments back-
to-back

" if segment is lost, there
will likely be many

duplicate ACKs.

TCP fast retransmit

if sender receives 3
ACKSs for same data

(“triple duplicate ACKs"),

resend unacked
segment with smallest
seq #

" |ikely that unacked

segment lost, so don’ t
wait for timeout

Transport Layer 3-15

TCP fast retransmit

Host A Host B
N/ 57

T ﬂ Seq=92, 8 bytes of data

Seq= 100,W
\X

timeout

Seq=100, 20 bytes of data

A A

fast retransmit after sender

receipt of triple duplicate ACK
Transport Layer 3-16

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-17

TCP flow control

application may

application
process

remove data from

application

TCP socket buffers

... Slower than TCP
receiver is delivering —
(sender is sending)

i'm?

TCP socket

receiver buffers
N\

|

TCP
code

flow control
receiver controls sender, so

sender won’ t overflow
receiver s buffer by transmitting
too much, too fast

IP
code

1
from sender

1 Vv
|

£

1 =

receiver protocol stack

Transport Layer 3-18

TCP flow control

. 11 o b4
% receiver advertises free

buffer space by including to application process
rwnd value in TCP header rﬁ
of receiver-to-sender f Ll
segments RcvBuffer buffered data
= RevBuffer size set via T
socket options (typical default rwnd free buffer space
is 4096 bytes) .
" many operating systems t
autoadjust RevBuffer TCP segment payloads
« sender Iimits amount of
unacked (in-flight”) data to receiver-side buffering

receiver s rwnd value

+ guarantees receive buffer
will not overflow

Transport Layer 3-19

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-20

Connection Management

before exchanging data, sender/receiver “handshake”:
+ agree to establish connection (each knowing the other willing

to establish connection)
% agree on connection parameters

application

connection state: ESTAB
connection variables:
seq # client-to-server
server-to-client
rcvBuffer Size
at server,client

l/' network

Socket clientSocket =
newSocket ("hostname", "port
number") ;

application
11 1
E||:|III |
connection state: ESTAB
connection Variables:
seq # client-to-server
server-to-client
rcvBuffer Size

at server,client

network

Socket connectionSocket =
welcomeSocket .accept () ;

Transport Layer 3-21

Agreeing to establish a connection

2-way handshake:
e
 Let’s talk

® ESTAB
ESTAB

e
choose X |~

req_conn(x
"Lﬁ ESTAB

acc_conn(x)
1

ESTAB &

Q: will 2-way handshake
always work in

network!?
« variable delays

+ retransmitted messages
(e.g. req_conn(x)) due to
message loss

+ message reordering
» (11 144 .
% can t see other side

Transport Layer 3-22

A

reeing to establish a connection

2-way handshake failure scenarios:

g

choose X |~
reg_conn(

Vm

ESTAB

retransmit acc_conn(x)

req_conn(x)
ESTAB

req_conn(x)

| _ connection |
client” xcompletes [server
terminates forgets x
ESTAB
half open connection!
(no client!)

g

choose x

retransmit
reg_conn(x)

ESTAB

retransmit
data(x+1)

—
re

aq_conn(&

- M ESTAB

acc_conn(x)

ata(x+ 1L~

N\

1
client
terminates

connection
x completes

\

req_conn(x)

da&a(x*

accept
data(x+1)

server
forgets x

ESTAB
accept
data(x+1)

Transport Layer 3-23

TCP 3-way handshake

client state
LISTEN e
choose init seq hum, x
send TCP SYN msg [~~_
SYNSENT SYNbit=1, Seq{A
SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1
v received SYNACK(x)
ESTAB indicates server is live; /
send ACK for SYNACK; |~
this segment may contain | Ackbit=1. ACKnum =y+1
client-to-server data !

server state
LISTEN

choose init seq num, y
send TCP SYNACK

msg, acking SYN SYN RCVD

received ACK(y)

indicates client is live v
ESTAB

Transport Layer 3-24

TCP 3-way handshake: FSM

Socket connectionSocket =
welcomeSocket .accept () ;
A .
Socket clientSocket =
SYN(X) v newSocket ("hostname", "port
mb " ’.
SYNACK(seq=y,ACKnum=x+1) number™)
create new socket for SYN(seg=x)
communication back to client
l v
‘ ’ SYNACK(seg=y,ACKnum=x+1)

ACK(ACKnum=y+1) ACK(ACKnum=y+1)

Transport Layer 3-25

TCP: closing a connection

+ client, server each close their side of connection
* send TCP segment with FIN bit = |

% respond to received FIN with ACK

" on receiving FIN, ACK can be combined with own FIN
+ simultaneous FIN exchanges can be handled

Transport Layer 3-26

TCP: closing a connection

client state

3

ESTAB B

clientSocket.close()

FIN_WAIT _1 can no longer

send but can
l receive data

FIN WAIT 2 wait for server
T - close

TIMED_WAIT -

timed wait
for 2*max
segment lifetime

CLOSED

\

FINbit=1, seck

ACKbit=1; ACKnum=x+1

‘/Fthbit=1, seq=y

\

ACKPit=1 : ACKnum=y+1

can still
send data

can no longer
send data

server state

ESTAB

CLOSE_WAIT

LAST ACK

CLOSED

Transport Layer 3-27

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-28

Principles of congestion control

congestion:

» informally: “too many sources sending too much
data too fast for network to handle

< different from flow control!
< manifestations:
" Jost packets (buffer overflow at routers)
" long delays (queueing in router buffers)
<+ a top-10 problem!

Transport Layer 3-29

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-30

TCP congestion control: additive increase

multiplicative decrease

% approach: sender increases transmission rate (window
size), probing for usable bandwidth, until loss occurs

" additive increase: increase cwnd by | MSS every
RTT until loss detected

* multiplicative decrease: cut cwnd in half after loss

AIMD saw tooth
behavior: probing
for bandwidth

cwnd: TCP sender

additively increase window size ...

o ... until loss occurs (then cut window in half)
N

[

3

(@]

©

£

= _

[

S

»

(O]

(@)}

c

(@)

(&)

time
Transport Layer 3-31

TCP Congestion Control: details

sender sequence number space
| CWN A |

L

last byte — last byte
ACKed sent, not- ¢ent

yet ACKed
(“in-
flight”)

< sender limits transmission:

LastByteSent-
LastByteAcked

< cwnd

% cwnd is dynamic, function
of perceived network
congestion

TCP sending rate:

% roughly: send cwnd
bytes, wait RTT for

ACKS, then send
more bytes

cwnd

rate bytes/sec

22

Transport Layer 3-32

TCP Slow Start

% when connection begins,
Increase rate
exponentially until first
loss event:

" initially cwnd = | MSS
" double cwnd every RTT

" done by incrementing
cwnd for every ACK
received

% summary: initial rate is
slow but ramps up
exponentially fast

Transport Layer 3-33

TCP: detecting, reacting to loss

+ loss indicated by timeout:
* cwnd set to | MSS;

* window then grows exponentially (as in slow start)
to threshold, then grows linearly

+ loss indicated by 3 duplicate ACKs: TCP RENO

* dup ACKSs indicate network capable of delivering
some segments

* cwnd is cut in half window then grows linearly

% TCP Tahoe always sets cwnd to | (timeout or 3
duplicate acks)

Transport Layer 3-34

TCP: switching from slow start to CA

Q: when should the

exponential
increase switch to 147 TCP Reno
linear? L A
8 . 10 . \
A: when cwnd gets SE | Issthresh____ . ‘w‘
to /2 of its value 55 / R el
before timeout. 5e | / ssthresh
S , G/LTCP Tahoe l"‘,
— O/ i‘i‘
Implementation: ’ 01 2 34506 7 8 910111213 14 15
o var'iab|e SSthreSh Transmission round

<+ on loss event, ssthresh
is set to 1/2 of cwnd just
before loss event

Transport Layer 3-35

S

U

duplicate ACK

dupACKco

()

A

cwnd = 1 MSS
ssthresh = 64 KB
dupACKcount =0 >

@) (/
ssthresh = cwnd/2

cwnd = 1 MSS
dupACKcount =0
retransmit missing segment

mmary: TCP Congestion Control

new ACF = SPVANES

cwnd = cwnd + MSS ¢ (MSS/cwnd)
dupACKcount =0

transmit new segment(s), as allowed

néw ACKI ‘
cwnd = cwnd+MSS
dupACKcount =0

/)transmit new segment(s), as allowed
cwnd > ssthresh

unt++

dupACKcount ==

ssthresh= cwnd/2
cwnd = ssthresh + 3

A |-
) @ timeout
"\ %))'ssthresh = cwnd/2 .
- Sséwrﬁj =1 |\\/I|Vss duplicate ACK
dupACKcount = 0 dupACKcount++
retransmit missing segment 4
p’;o
timeout'\\ 3V
ssthresh = cwnd/2 AN
cwnd = 1 New ACK
dupACKcount = 0 wid = ssthresh
retransmit missing segment dﬁ\;I)VRCRcSoSu e dupACKcount ==
ssthresh= cwnd/2
cwnd = ssthresh + 3
retransmit missing segment

retransmit missing segment

v
A

duplicate ACK

cwnd = cwnd + MSS
transmit new segment(s), as allowed

Transport Layer 3-36

