
Transport Layer 3-1

Chapter 3
Transport Layer

(TCP Essentials)

Computer
Networking: A Top
Down Approach
6th edition

Jim Kurose, Keith Ross
Addison-Wesley
March 2012

A note on the use of these ppt slides:
We’re making these slides freely available to all (faculty, students, readers).

They’re in PowerPoint form so you see the animations; and can add, modify,
and delete slides (including this one) and slide content to suit your needs.

They obviously represent a lot of work on our part. In return for use, we only

ask the following:
� If you use these slides (e.g., in a class) that you mention their source

(after all, we’d like people to use our book!)
� If you post any slides on a www site, that you note that they are adapted

from (or perhaps identical to) our slides, and note our copyright of this

material.

Thanks and enjoy! JFK/KWR

All material copyright 1996-2012
J.F Kurose and K.W. Ross, All Rights Reserved

Transport Layer 3-2

Chapter 3 outline

3.5 connection-oriented
transport: TCP
� segment structure

� reliable data transfer

� flow control

� connection management

� Congestion control

Transport Layer 3-3

TCP: Overview RFCs: 793,1122,1323, 2018, 2581

� full duplex data:
� bi-directional data flow
in same connection

� MSS: maximum segment
size

� connection-oriented:
� handshaking (exchange
of control msgs) inits
sender, receiver state
before data exchange

� flow controlled:
� sender will not
overwhelm receiver

� point-to-point:
� one sender, one receiver

� reliable, in-order byte
steam:
� no “message
boundaries”

� pipelined:
� TCP congestion and
flow control set window
size

Transport Layer 3-4

TCP segment structure

source port # dest port #

32 bits

application
data

(variable length)

sequence number

acknowledgement number

receive window

Urg data pointerchecksum

FSRPAU
head
len

not
used

options (variable length)

URG: urgent data

(generally not used)

ACK: ACK #

valid

PSH: push data now

(generally not used)

RST, SYN, FIN:

connection estab

(setup, teardown

commands)

bytes

rcvr willing

to accept

counting

by bytes

of data

(not segments!)

Internet

checksum

(as in UDP)

Transport Layer 3-5

TCP seq. numbers, ACKs

sequence numbers:

�byte stream “number” of
first byte in segment’s
data

acknowledgements:

�seq # of next byte
expected from other side

�cumulative ACK

Q: how receiver handles
out-of-order segments

�A: TCP spec doesn’t say,
- up to implementor source port # dest port #

sequence number

acknowledgement number

checksum

rwnd

urg pointer

incoming segment to sender

A

sent
ACKed

sent, not-
yet ACKed
(“in-
flight”)

usable
but not
yet sent

not
usable

window size
N

sender sequence number space

source port # dest port #

sequence number

acknowledgement number

checksum

rwnd

urg pointer

outgoing segment from sender

Transport Layer 3-6

TCP seq. numbers, ACKs

User
types
‘C’

host ACKs
receipt

of echoed
‘C’

host ACKs
receipt of
‘C’, echoes
back ‘C’

simple telnet scenario

Host BHost A

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

Transport Layer 3-7

TCP round trip time, timeout

Q: how to set TCP
timeout value?

� longer than RTT
� but RTT varies

� too short: premature
timeout, unnecessary
retransmissions

� too long: slow reaction
to segment loss

Q: how to estimate RTT?
� SampleRTT: measured
time from segment
transmission until ACK
receipt

� ignore retransmissions

� SampleRTT will vary, want
estimated RTT “smoother”

� average several recent
measurements, not just
current SampleRTT

Transport Layer 3-8

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
� segment structure

� reliable data transfer

� flow control

� connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-9

TCP reliable data transfer

� TCP creates rdt service
on top of IP’s unreliable
service
� pipelined segments

� cumulative acks

� single retransmission
timer

� retransmissions
triggered by:
� timeout events

� duplicate acks

let’s initially consider
simplified TCP sender:
� ignore duplicate acks

� ignore flow control,
congestion control

Transport Layer 3-10

TCP sender events:

data rcvd from app:

� create segment with
seq #

� seq # is byte-stream
number of first data
byte in segment

� start timer if not
already running
� think of timer as for
oldest unacked
segment

� expiration interval:
TimeOutInterval

timeout:

� retransmit segment
that caused timeout

� restart timer

ack rcvd:

� if ack acknowledges
previously unacked
segments
� update what is known
to be ACKed

� start timer if there are
still unacked segments

Transport Layer 3-11

TCP sender (simplified)

wait

for

event

NextSeqNum = InitialSeqNum
SendBase = InitialSeqNum

Λ

create segment, seq. #: NextSeqNum

pass segment to IP (i.e., “send”)

NextSeqNum = NextSeqNum + length(data)

if (timer currently not running)

start timer

data received from application above

retransmit not-yet-acked segment
with smallest seq. #

start timer

timeout

if (y > SendBase) {

SendBase = y

/* SendBase–1: last cumulatively ACKed byte */

if (there are currently not-yet-acked segments)

start timer

else stop timer

}

ACK received, with ACK field value y

Transport Layer 3-12

TCP: retransmission scenarios

lost ACK scenario

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=92, 8 bytes of data

Xti
m

e
o
u
t

ACK=100

premature timeout

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=92, 8
bytes of data

ti
m

e
o
u
t

ACK=120

Seq=100, 20 bytes of data

ACK=120

SendBase=100

SendBase=120

SendBase=120

SendBase=92

Transport Layer 3-13

TCP: retransmission scenarios

X

cumulative ACK

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=120, 15 bytes of data

ti
m

e
o
u
t

Seq=100, 20 bytes of data

ACK=120

Transport Layer 3-14

TCP ACK generation [RFC 1122, RFC 2581]

event at receiver

arrival of in-order segment with

expected seq #. All data up to

expected seq # already ACKed

arrival of in-order segment with

expected seq #. One other

segment has ACK pending

arrival of out-of-order segment

higher-than-expect seq. # .

Gap detected

arrival of segment that

partially or completely fills gap

TCP receiver action

delayed ACK. Wait up to 500ms

for next segment. If no next segment,

send ACK

immediately send single cumulative

ACK, ACKing both in-order segments

immediately send duplicate ACK,

indicating seq. # of next expected byte

immediate send ACK, provided that

segment starts at lower end of gap

Transport Layer 3-15

TCP fast retransmit

� time-out period often
relatively long:
� long delay before
resending lost packet

� detect lost segments
via duplicate ACKs.
� sender often sends
many segments back-
to-back

� if segment is lost, there
will likely be many
duplicate ACKs.

if sender receives 3
ACKs for same data

(“triple duplicate ACKs”),
resend unacked
segment with smallest
seq #
� likely that unacked
segment lost, so don’t
wait for timeout

TCP fast retransmit

(“triple duplicate ACKs”),

Transport Layer 3-16

X

fast retransmit after sender
receipt of triple duplicate ACK

Host BHost A

Seq=92, 8 bytes of data

ACK=100

ti
m

e
o
u
t

ACK=100

ACK=100

ACK=100

TCP fast retransmit

Seq=100, 20 bytes of data

Seq=100, 20 bytes of data

Transport Layer 3-17

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
� segment structure

� reliable data transfer

� flow control

� connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-18

TCP flow control
application

process

TCP socket
receiver buffers

TCP
code

IP
code

application

OS

receiver protocol stack

application may
remove data from

TCP socket buffers ….

… slower than TCP
receiver is delivering
(sender is sending)

from sender

receiver controls sender, so
sender won’t overflow
receiver’s buffer by transmitting
too much, too fast

flow control

Transport Layer 3-19

TCP flow control

buffered data

free buffer spacerwnd

RcvBuffer

TCP segment payloads

to application process

� receiver “advertises” free
buffer space by including
rwnd value in TCP header
of receiver-to-sender
segments
� RcvBuffer size set via
socket options (typical default
is 4096 bytes)

� many operating systems
autoadjust RcvBuffer

� sender limits amount of
unacked (“in-flight”) data to
receiver’s rwnd value

� guarantees receive buffer
will not overflow

receiver-side buffering

Transport Layer 3-20

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
� segment structure

� reliable data transfer

� flow control

� connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-21

Connection Management

before exchanging data, sender/receiver “handshake”:
� agree to establish connection (each knowing the other willing
to establish connection)

� agree on connection parameters

connection state: ESTAB
connection variables:

seq # client-to-server
server-to-client

rcvBuffer size

at server,client

application

network

connection state: ESTAB
connection Variables:

seq # client-to-server
server-to-client

rcvBuffer size

at server,client

application

network

Socket clientSocket =

newSocket("hostname","port

number");

Socket connectionSocket =

welcomeSocket.accept();

Transport Layer 3-22

Q: will 2-way handshake
always work in
network?

� variable delays

� retransmitted messages
(e.g. req_conn(x)) due to
message loss

� message reordering

� can’t “see” other side

2-way handshake:

Let’s talk

OK
ESTAB

ESTAB

choose x
req_conn(x)

ESTAB

ESTAB
acc_conn(x)

Agreeing to establish a connection

Transport Layer 3-23

Agreeing to establish a connection

2-way handshake failure scenarios:

retransmit
req_conn(x)

ESTAB

req_conn(x)

half open connection!
(no client!)

client
terminates

server
forgets x

connection
x completes

retransmit
req_conn(x)

ESTAB

req_conn(x)

data(x+1)

retransmit
data(x+1)

accept
data(x+1)

choose x
req_conn(x)

ESTAB

ESTAB

acc_conn(x)

client
terminates

ESTAB

choose x
req_conn(x)

ESTAB

acc_conn(x)

data(x+1) accept
data(x+1)

connection
x completes server

forgets x

Transport Layer 3-24

TCP 3-way handshake

SYNbit=1, Seq=x

choose init seq num, x
send TCP SYN msg

ESTAB

SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1

choose init seq num, y
send TCP SYNACK
msg, acking SYN

ACKbit=1, ACKnum=y+1

received SYNACK(x)
indicates server is live;
send ACK for SYNACK;

this segment may contain
client-to-server data

received ACK(y)
indicates client is live

SYNSENT

ESTAB

SYN RCVD

client state

LISTEN

server state

LISTEN

Transport Layer 3-25

TCP 3-way handshake: FSM

closed

Λ

listen

SYN
rcvd

SYN
sent

ESTAB

Socket clientSocket =

newSocket("hostname","port

number");

SYN(seq=x)

Socket connectionSocket =

welcomeSocket.accept();

SYN(x)

SYNACK(seq=y,ACKnum=x+1)
create new socket for

communication back to client

SYNACK(seq=y,ACKnum=x+1)

ACK(ACKnum=y+1)
ACK(ACKnum=y+1)

Λ

Transport Layer 3-26

TCP: closing a connection

� client, server each close their side of connection
� send TCP segment with FIN bit = 1

� respond to received FIN with ACK
� on receiving FIN, ACK can be combined with own FIN

� simultaneous FIN exchanges can be handled

Transport Layer 3-27

FIN_WAIT_2

CLOSE_WAIT

FINbit=1, seq=y

ACKbit=1; ACKnum=y+1

ACKbit=1; ACKnum=x+1

wait for server
close

can still
send data

can no longer
send data

LAST_ACK

CLOSED

TIMED_WAIT

timed wait
for 2*max

segment lifetime

CLOSED

TCP: closing a connection

FIN_WAIT_1 FINbit=1, seq=xcan no longer
send but can
receive data

clientSocket.close()

client state server state

ESTABESTAB

Transport Layer 3-28

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
� segment structure

� reliable data transfer

� flow control

� connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-29

congestion:
� informally: “too many sources sending too much
data too fast for network to handle”

� different from flow control!

� manifestations:

� lost packets (buffer overflow at routers)

� long delays (queueing in router buffers)

� a top-10 problem!

Principles of congestion control

Transport Layer 3-30

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
� segment structure

� reliable data transfer

� flow control

� connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-31

TCP congestion control: additive increase
multiplicative decrease

� approach: sender increases transmission rate (window
size), probing for usable bandwidth, until loss occurs

� additive increase: increase cwnd by 1 MSS every
RTT until loss detected

�multiplicative decrease: cut cwnd in half after loss
c
w
n
d
:

T
C

P
 s

e
n
d
e
r

c
o
n
g
e
s
ti
o
n
 w

in
d
o
w

 s
iz

e

AIMD saw tooth
behavior: probing

for bandwidth

additively increase window size …
…. until loss occurs (then cut window in half)

time

Transport Layer 3-32

TCP Congestion Control: details

� sender limits transmission:

� cwnd is dynamic, function
of perceived network
congestion

TCP sending rate:

� roughly: send cwnd
bytes, wait RTT for
ACKS, then send
more bytes

last byte
ACKed sent, not-

yet ACKed
(“in-
flight”)

last byte
sent

cwnd

LastByteSent-

LastByteAcked
< cwnd

sender sequence number space

rate ~~
cwnd

RTT
bytes/sec

Transport Layer 3-33

TCP Slow Start

� when connection begins,
increase rate
exponentially until first
loss event:
� initially cwnd = 1 MSS

� double cwnd every RTT

� done by incrementing
cwnd for every ACK
received

� summary: initial rate is
slow but ramps up
exponentially fast

Host A

R
T

T

Host B

time

Transport Layer 3-34

TCP: detecting, reacting to loss

� loss indicated by timeout:
� cwnd set to 1 MSS;

�window then grows exponentially (as in slow start)
to threshold, then grows linearly

� loss indicated by 3 duplicate ACKs: TCP RENO
� dup ACKs indicate network capable of delivering
some segments

� cwnd is cut in half window then grows linearly

� TCP Tahoe always sets cwnd to 1 (timeout or 3
duplicate acks)

Transport Layer 3-35

Q: when should the
exponential
increase switch to
linear?

A: when cwnd gets
to 1/2 of its value
before timeout.

Implementation:
� variable ssthresh

� on loss event, ssthresh
is set to 1/2 of cwnd just
before loss event

TCP: switching from slow start to CA

Transport Layer 3-36

Summary: TCP Congestion Control

timeout

ssthresh = cwnd/2
cwnd = 1 MSS

dupACKcount = 0
retransmit missing segment

Λ

cwnd > ssthresh

congestion

avoidance

cwnd = cwnd + MSS (MSS/cwnd)
dupACKcount = 0

transmit new segment(s), as allowed

new ACK
.

dupACKcount++

duplicate ACK

fast

recovery

cwnd = cwnd + MSS
transmit new segment(s), as allowed

duplicate ACK

ssthresh= cwnd/2
cwnd = ssthresh + 3

retransmit missing segment

dupACKcount == 3

timeout

ssthresh = cwnd/2
cwnd = 1
dupACKcount = 0
retransmit missing segment

ssthresh= cwnd/2
cwnd = ssthresh + 3
retransmit missing segment

dupACKcount == 3cwnd = ssthresh
dupACKcount = 0

New ACK

slow

start

timeout

ssthresh = cwnd/2
cwnd = 1 MSS

dupACKcount = 0
retransmit missing segment

cwnd = cwnd+MSS
dupACKcount = 0
transmit new segment(s), as allowed

new ACKdupACKcount++

duplicate ACK

Λ

cwnd = 1 MSS
ssthresh = 64 KB
dupACKcount = 0

New
ACK!

New
ACK!

New
ACK!

