

Chapter VI The Other Transport ProtocolS

The Other Transport Protocols

- 1 Motivations and taxonomy
 - 2 Building on UDP: RTP / RTCP
- 3. Building on UDP: QUIC
- 4 Building from scratch: SCTP
- 5 Building from scratch: DCCP

Telecommunication Services Engineering Lab

CONCORDIA UNIVERSITY Concordia Institute for Information Systems Engineering

Motivations and Taxonomy

Motivations and Taxonomy

- Key characteristics of TCP
 - Reliability
 - Three way handshake connection
 - Re-transmission
 - Congestion control
 - Windows
 - Transmission rate reduction
 - Uni-homing

Motivations and Taxonomy

Key characteristics of UDP

- No reliability
- No congestion control
- Uni-homing

Motivations and Taxonomy

The one size (either TCP or UDP) fits all philosophy does not always work

- What about
 - Applications requiring more reliability than what is provided by TCP?
 - Multimedia session signalling
 - Applications requiring real time delivery, low reliability, but congestion control?
 - Video conferences, multi party games

Motivations and Taxonomy

Two possible approaches

- Build a new transport protocol that complements / runs on top of existing transport protocols (e.g. UDP)
 - Build in user space
 - RTP/RTCP on top of UDP and application using RTP/RTCP
 - QUIC on top of UDP
- Build a new transport protocol from scratch (i.e. runs on top of IP)
 - Build in operating system kernel space
 - SCTP
 - DCCP

Telecommunication Services Engineering Lab

CONCORDIA UNIVERSITY Concordia Institute for Information Systems Engineering

Building on UDP: RTP / RTCP

RTP / RTCP

Two complementary protocols

- Early 90s
- Primary goal: Real time media delivery with a focus on multimedia conferencing

Two complementary protocols

- Actual transportation of real time media Real-time Transport Protocol (RTP)
- Control of transportation:

Real Time Transport Control Protocol (RTCP)

RTP / RTCP

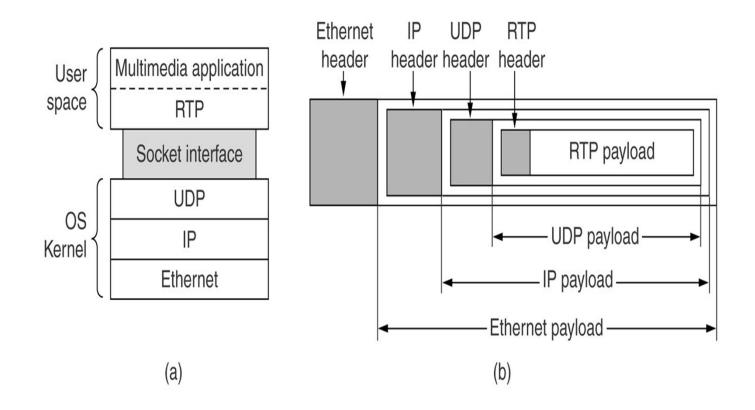
Main characteristics

RTP:

No provision for Quality of service

No guarantee for out of sequence delivery

Typically runs on top of UDP but may run on top of other protocols


RTCP:

Help in providing control by providing information on packets sent, received

Information may be used by application to build whatever it thinks is necessary (e.g. reliability, congestion control)

RTP

-+ |(1) Initiation | |

1

RTP

Mixers / translators

- Intermediate systems
 - End systems
 - Mixers / translators
- Use cases
 - Centralized conference bridges
 - Heterogeneous conferences
 - Low speed connection
 - High speed connection
 - Different encoding schemes
 - Some participants behind firewalls

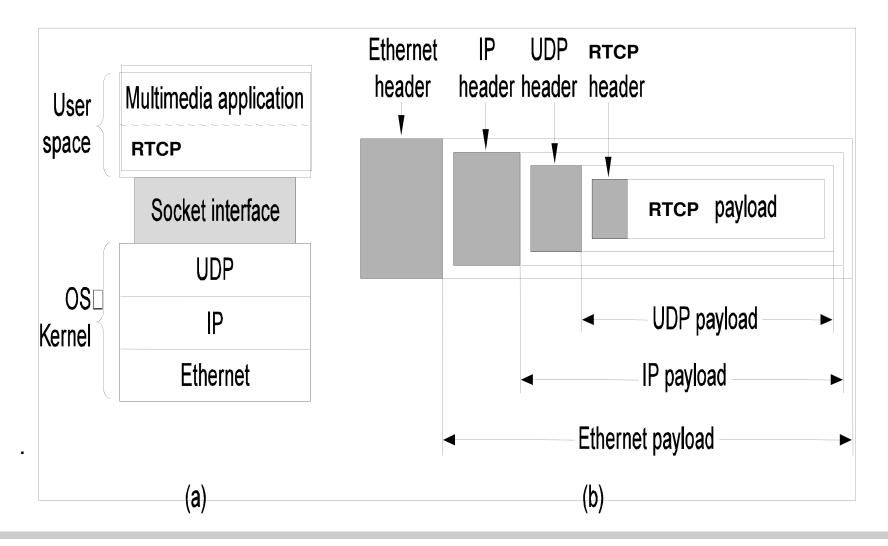
RTP

Synchronization source (SSRC)

- Grouping of data sources for playing back purpose (e.g. voice vs. video)
- An end system can act as several synchronization sources (e.g. IP phone with video capabilities)
- Translators forward RTP packets with their synchronization source intact

Contributing source (CSRC)

- A source of a stream of RTP packets that has contributed to the combined stream produced by an RTP mixer
- Mixers insert the list of contributing sources in the packets they generate


RTP

•

				32 b	its►
P	X	CC	М	Payload type	Sequence number
				Timesta	amp
				Synchronization so	ource identifier
				Contributing sou	rce identifier
	P	P X	P X CC	P X CC M	P X CC M Payload type Timesta Synchronization so Contributing sou

RTCP

RTCP concepts

Monitor:

- Application that receives RTCP packets sent by participants in an RTP session

Reports

- Reception quality feedback
- Sent by RTP packets receivers (which may also be senders)
 - May be used to build reliability, congestion control or whatever the application deems necessary

RTCP packets

Receiver report Version Time stamp Sender's packet count Reception report blocks

Concordia Institute for Information Systems Engineering

RTCP packets

.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1						
V=2 P RC PT=SR=200 length						
header						
+-						
SSRC of sender						
+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=						
NTP timestamp, most significant word sender						
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-						
NTP timestamp, least significant word						
RTP timestamp						
sender's packet count						
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-						
sender's octet count						
+=						
SSRC_1 (SSRC of first source) report						
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-						
fraction lost cumulative number of packets lost 1						
-+						
extended highest sequence number received						
interarrival jitter						
last SR (LSR)						
+-						
delay since last SR (DLSR)						
+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=						
SSRC_2 (SSRC of second source) report						
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-						
: : 2						
+=						
profile-specific extensions						
+-						

Telecommunication Services Engineering Lab

CONCORDIA UNIVERSITY Concordia Institute for Information Systems Engineering

Building on UDP: QUIC

References:

- Y. Cui et al, Innovating Transport with QUIC: Design Approaches and Research Challenges, IEEE Internet Computing, March April 2017
- 2. A. Langley et al., The QUIC Transport Protocol: Design and Internet Scale Deployment, Sigcomm 2017

Quick UDP Internet Connection (QUIC)

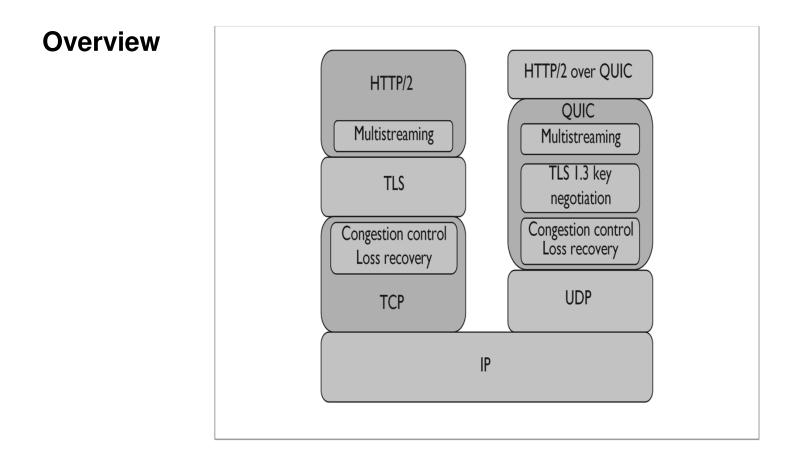
One of the most recent effort in transport protocol design

- Still under standardization (IETF)
- Initially designed by Google
 - First experimental deployment in 2013
 - Now runs on most Google clients (e.g. Chrome) and servers (e.g. Youtube)
 - 7% of Internet Traffic
 - 30% of Google Egress traffic

Quick UDP Internet Connection (QUIC)

Motivations

- Problems related to the use of TCP with HTTPs
 - TCP handshake delay
 - Head-of -Line Blocking delay
 - A loss of a segment blocks all the other segments which arrives till the lost segment is received
 - Coupling of TCP with the operation system
 - Design in user space vs. design in OS kernel space


Quick UDP Internet Connection (QUIC)

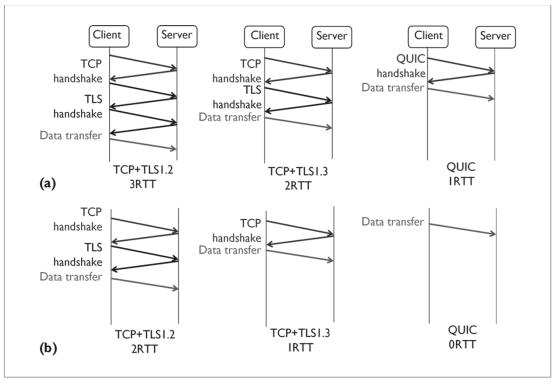
Overview

- On Transport Layer Security (TLS) / Secure Socket Layer (SSL)
 - Client server protocol Used with HTTP
 - Ensures
 - Authentication
 - Integrity
 - Confidentiality

Quick UDP Internet Connection (QUIC)

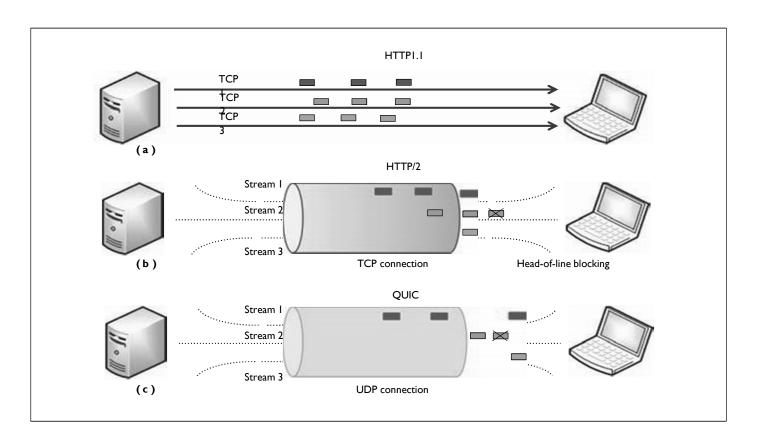
Y. Cui et al, Innovating Transport with QUIC: Design Approaches and Research Challenges, IEEE Internet Computing, March April 2017

Quick UDP Internet Connection (QUIC)


Key features

- Fast connection establishment
- Multi-streaming

Quick UDP Internet Connection (QUIC)


Fast connection establishment

Quick UDP Internet Connection (QUIC)

Multi-streaming

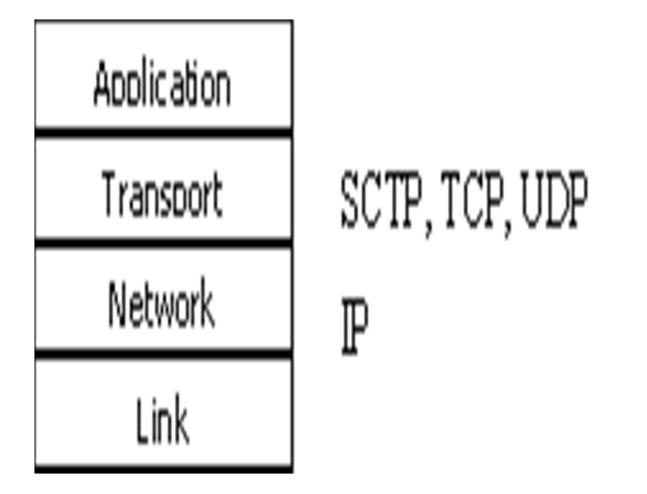
Telecommunication Services Engineering Lab

CONCORDIA UNIVERSITY Concordia Institute for Information Systems Engineering

Building from scratch: SCTP

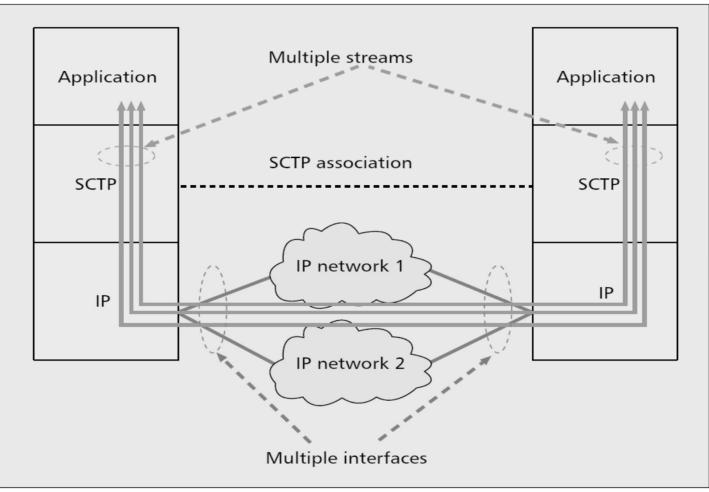
References

- 2. A. Caro et al., SCTP: A Proposed Standard for Robust Internet Data Transport, IEEE Computer November 2003
- 3. S. Fu and M. Atiquzzaman, SCTP: State of the Art in Research, Products and Technical Challenges, IEEE Communications Magazine, April 2004
- 4. P. Natarajan et al., SCTP: What, Why and How? IEEE Internet Computing, September / October 2009


Stream Control Transmission Protocol (SCTP)

Designed in early 2000s to carry multimedia session signaling traffic over IP, then subsequently extended to meet the needs of a wider range of application

- Design goals much more stringent than TCP design goals (e.g. redundancy, higher reliability)
- Offer much more than TCP
- A sample of additional features
 - 4 Way handshake instead of 3 way handshake
 - Multi-homing instead of uni-homing
 - Multi-streaming instead of uni-streaming



Overview

Overview

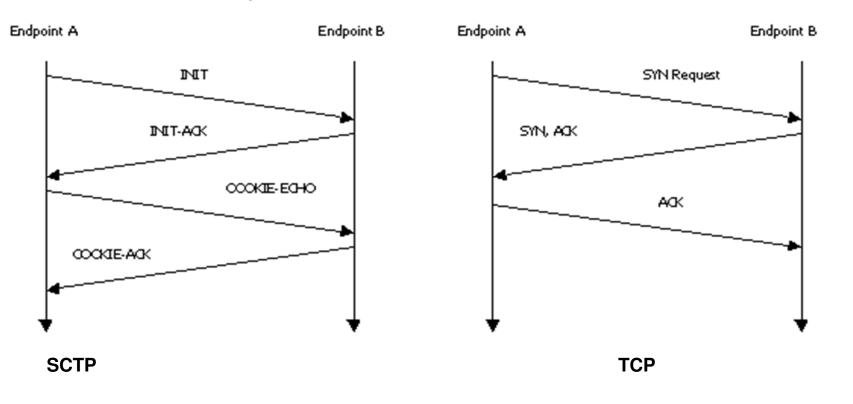
Figure 1 A schematic view of an SCTP association

Four way handshake

Why?

- Key reason: Make SCTP resilient to denial of service (DoS) attacks, a feature missing in TCP
 - DoS (SYN attack in the case of TCP)
 - Root cause: TCP maintains in memory useless state information regarding each pending connection
 - Memory get eventually exhausted
 - Potential solution: 4 way handshake

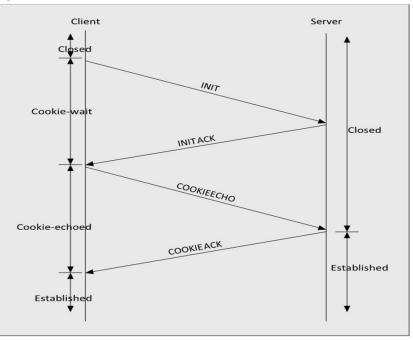
- --


SCTP

Four way handshake

Why?

- Key reason: Make SCTP resilient to denial of service (DOS) attacks, a feature missing in TCP



Four way handshake

Why?

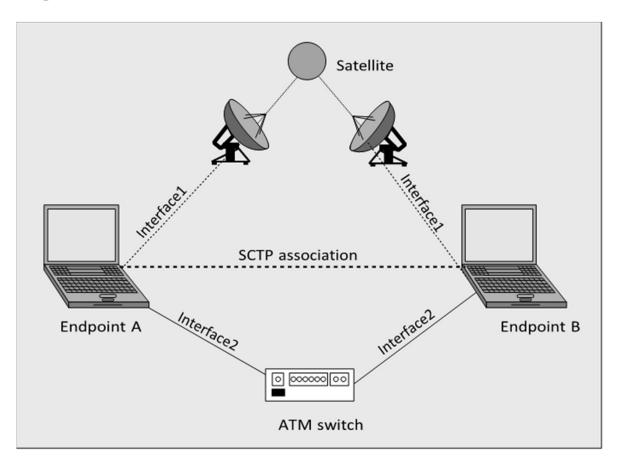
- Key reason: Make SCTP resilient to denial of service (DOS) attacks, a feature missing in TCP

S. Fu and M. Atiquzzaman, SCTP: State of the Art in Research, Products and Technical Challenges, IEEE Communications Magazine, April 2004

Multi-homing

Why?

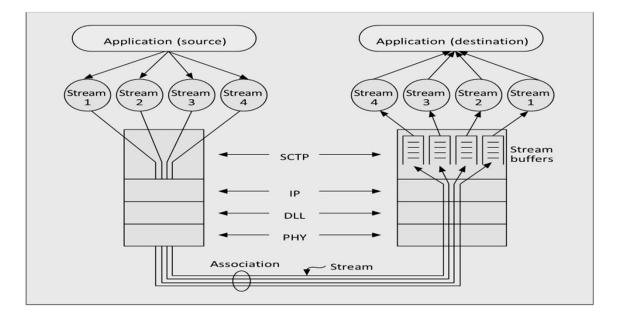
- Key reason: Make SCTP resilient in resource failures, a feature missing in TCP
 - Multi-homed host: Host accessible via multiple IP addresses
 - Use cases
 - Subscription to multiple ISP to ensure service continuity when of the ISP fails
 - Mission critical systems relying on redundancy
 - Load balancing


Multi-homing

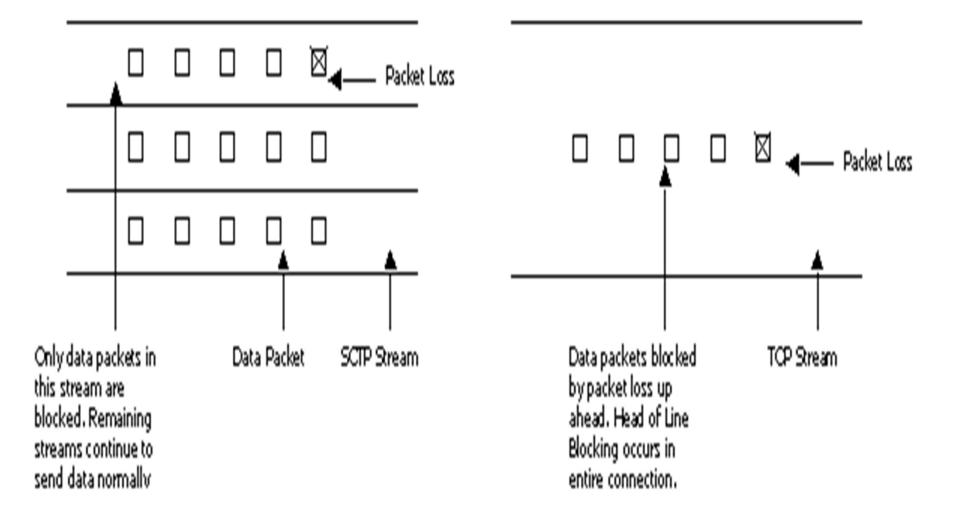
Why?

- Multi-homing with SCTP (Redundancy use case)
 - Multi-homed host binds to several IP addresses during associations unlike TCP which binds to a single IP address
 - Retransmitted data is sent to an alternate IP address
 - Continued failure to reach primary address leads to the conclusion that primary address has failed and all traffic goes to alternate address

Multi-homing


Multi-streaming

- Data from the application layer is multiplexed onto the association
 - Sequencing done within a stream
 - Segment lost within a stream is fully handled within that stream without affecting the other streams, i.e.
 - Segments following the lost one are stored / queued until the lost one is received

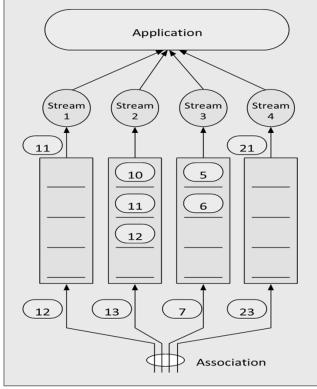

Concordia Institute for Information Systems Engineering

Multi-streaming

Multi-streaming

Multi-streaming

ILLUSTRATION 1


- Application with 4 streams (Stream 1, stream 2, stream 3, stream 4)
- Assumptions
 - Stream 1
 - SSN 11 has been delivered and SSN 12 arrives
 - Stream 2
 - SSN 9 is lost
 - Stream 3
 - SSN4 of stream 3 is missing
 - Stream 4
 - 21 has been delivered and 23 arrives

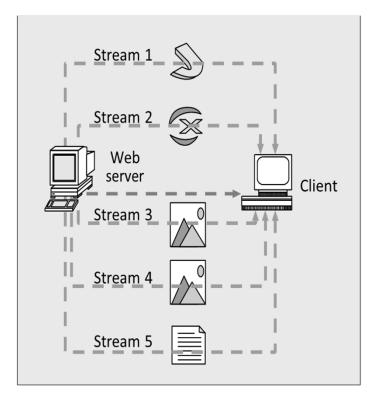
Concordia Institute for Information Systems Engineering

Multi-streaming

ILLUSTRATION 1

Concordia Institute for Information Systems Engineering

Multi-streaming


ILLUSTRATION 2

- Web browsing
 - HTML page split in four:
 - Java applet
 - Active X control
 - Two images
 - Plain text

Multi-streaming

ILLUSTRATION 2

Concordia Institute for Information Systems Engineering

Stream Control Transmission Protocol

	Protocol				SCTP
	Setup messages		Three-way hands	hake	Four-way handshake
	Shutdown messag	es	Four-way hands	hake	Three-way handshake
	Half-open support		Supported		Not supported
	Ordered delivery		Strict ordered		Ordered within a stream
	Unordered delivery		Not supported		Supported
	Message boundary		No boundary		Boundary preserved
			Stream-oriented		Message-oriented
Table 1. Comparison of TCP and SCTP.	Multihoming		Not supported		Supported
	SACK support		Optional		Mandatory
	Keep-alive heartbe	at	Optional		Mandatory
			≥ Two hours		30 seconds by default

Telecommunication Services Engineering Lab

CONCORDIA UNIVERSITY Concordia Institute for Information Systems Engineering

Building from scratch: DCCP

References

- 1. Y-C Lai, DCCP: Transport Protocol with Congestion Control and Unreliability, IEEE Internet Computing, September / October 2008
- 2. E. Kohler et al., Designining DCCP: Congestion Control Without Reliability, Sigcomm 2006

Data Congestion Control Protocol (DCCP)

Relatively "new" (Second half of the 2000s)

- Main goal
 - Delivery of real time media (somehow similar to the goal assigned to RTP / RTCP)
 - Suitable for applications such as:
 - Voice Over IP
 - Video conferencing
 - Online games
 - Video on demand

Data Congestion Control Protocol (DCCP)

Relatively "new" (Second half of the 2000s)

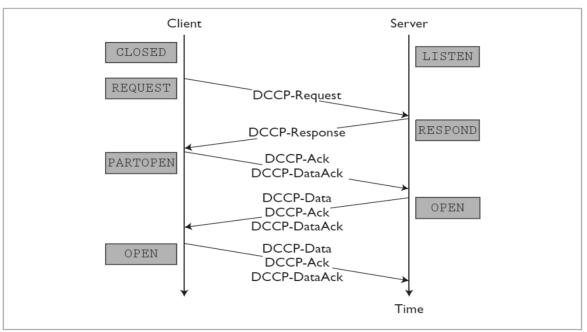
- Target applications require:
 - Real time delivery
 - Unreliability (No re-transmission)
 - Delay sensitivity

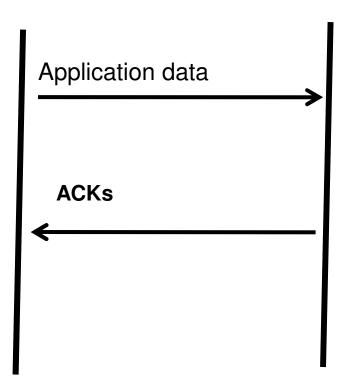
Data Congestion Control Protocol (DCCP)

Two main functions:

- 1. Establishment, management and tear of unreliable connections
- 2. Unreliable data transfer but with congestion control

Data Congestion Control Protocol (DCCP) Connection Establishment (3 Way Handshake but with built-in features to avoid DoS attacks)




Figure 2. Datagram Congestion Control Protocol connection establishment. DCCP uses a three-way handshake to establish a connection.

Y-C Lai, DCCP: Transport Protocol with Congestion Control and Unreliability, IEEE Internet Computing, September / October 2008

Data Congestion Control Protocol (DCCP)

Note: A connection is a set of two unidirectional half-connections. Possibility of Unidirectional streams (e.g. Streaming applications)

Data Congestion Control Protocol (DCCP)

Data transfer

- Enabling congestion control
 - Packets have sequence numbers
 - Client server and server client sequence numbers are independent
 - Tracking on both sides is possible
 - Acknowledgements report last received packet
- Congestion control mechanisms
 - Several options including a TCP like option

Data Congestion Control Protocol (DCCP)

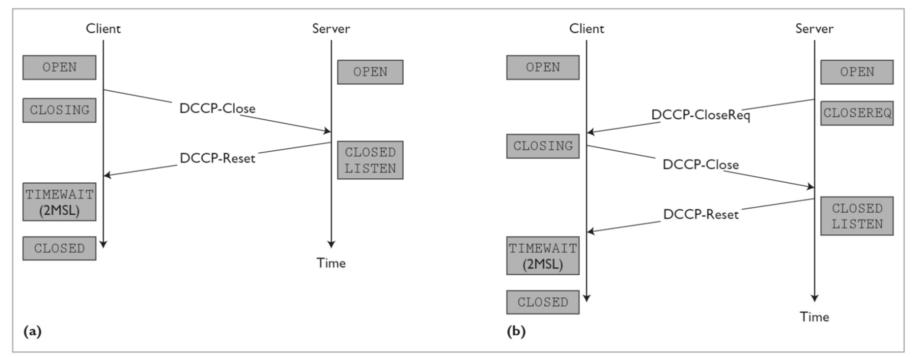


Figure 4. Datagram Congestion Control Protocol connection termination. DCCP uses two- or three-way handshakes to terminate a connection.

2. Y-C Lai, DCCP: Transport Protocol with Congestion Control and Unreliability, IEEE Internet Computing, September / October 2008

Roch H. Glitho