

Multimedia Sessions

Multimedia Sessions

- Session Initiation Protocol (SIP)
- Conferencing Basics
- An advanced conferencing concept: Floor Control

Telecommunication Services Engineering Lab

CONCORDIA UNIVERSITY Concordia Institute for Information Systems Engineering

SIP Session Signaling

Introduction: Signaling vs Media

Signaling:

- Session establishment
- Session tear down
- Changes to the session
- Supplementary services

Media:

Actual communication data: encoded voice stream, video stream,...

Introduction: SIP

Signaling Protocols:

- SIP and H.323

Media transport protocol:

- RTP
- Why SIP?
- SIP: Prime signaling system because adopted by all key next generation networks:
 - 3GPP
 - 3GPP2
 - PacketCable:

SIP: Introduction

A set of IETF specifications including:

- SIP core signalling:
 - RFC 2543, March 1999
 - RFC 3261, June 2002 (Obsoletes RFC 2543)
- SIP extensions (e.g. RFC 3265, June 2002 Event notification)
 - May have nothing to do with signalling
- IMS related extensions.
- Used in conjunction with other IETF protocols
 - QOS related protocol (e.g. RSVP)
 - Media transportation related protocol (e.g. RTP RFC 1889)
 - Others (e.g. SDP RFC 2327)

Session Initiation Protocol (SIP) - Core

- **1. Introduction**
- 2. Functional entities
- 3. Messages
- 4. SDP
- **5. Examples**

SIP: Introduction

SIP core Signaling

- A signalling protocol for the establishment, modification and tear down of multimedia sessions
- Based on HTTP

A few key features

- Text based protocol
- Client/server protocol (request/response protocol)

SIP: The Request

- **Request messages**
 - Methods for setting up and changing sessions
 - . INVITE
 - . ACK
 - . CANCEL
 - . BYE
 - Others
 - . REGISTER (Registration of contact information)
 - . OPTIONS (Querying servers about their capabilities)

SIP: The Response

Response message

- Provisional
- Final

Examples of status code 1xx: Provisional 2xx: Success 6xx: Global failure

SIP: A basic peer to peer call scenario

SIP: The functional entities

User agents

- End points, can act as both user agent client and as user agent server
 - User Agent Client: Create new SIP requests
 - User Agent Server: Generate responses to SIP requests

Proxy servers

- Application level routers

Redirect servers

- Redirect clients to alternate servers

Registrars

- Keep tracks of users

SIP: The functional entities

State-full proxy

- Keep track of all transactions between the initiation and the end of a transaction
- Transactions:
 - Requests sent by a client along with all the responses sent back by the server to the client

Stateless proxy

- Fire and forget

SIP: A call scenario

SIP: The messages

Generic structure

- Start-line
- Header field(s)
- Optional message body

Request message

- Request line as start line
 - . Method name
 - . Request URI
 - . Protocol version

Response message

- Status line as start line
 - . Protocol version
 - . Status code
 - . Reason phrase (Textual description of the code)

SIP: Examples of messages from the RFC

An example of an INVITE

INVITE sip:bob@biloxi.com SIP/2.0 Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bK776asdhds Max-Forwards: 70 To: Bob <sip:bob@biloxi.com> From: Alice <sip:alice@atlanta.com>;tag=1928301774 Call-ID: a84b4c76e66710@pc33.atlanta.com CSeq: 314159 INVITE Contact: <sip:alice@pc33.atlanta.com> Content-Type: application/sdp Content-Length: 142

SIP: Examples of messages from the RFC

An example of RESPONSE to the OPTIONS request SIP/2.0 200 OK Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKhjhs8ass877 :received=192.0.2.4 To: <sip:carol@chicago.com>;tag=93810874 From: Alice <sip:alice@atlanta.com>;tag=1928301774 Call-ID: a84b4c76e66710 CSeq: 63104 OPTIONS Contact: <sip:carol@chicago.com> Contact: <mailto:carol@chicago.com> Allow: INVITE, ACK, CANCEL, OPTIONS, BYE Accept: application/sdp Accept-Encoding: gzip Accept-Language: en Supported: foo Content-Type: application/sdp

SDP

Session Description Protocol

- Convey the information necessary to allow a party to join a multimedia session
 - Session related information
 - Media related information
 - Text based protocol
 - No specified transport
 - Messages are embedded in the messages of the protocol used for the session
 - Session Announcement Protocol (SAP)
 - Session Initiation Protocol (SIP)

SDP

Session Description Protocol Use with SIP

- Negotiation follows offer / response model
- Message put in the body of pertinent SIP messages INVITE Request / response
 OPTIONS Request / response

SDP

Session Description Protocol

- <Type> = <Value>
- Some examples
 - Session related
 - v= (protocol version)
 - s= (Session name)
 - Media related
 - m= (media name and transport address)
 - b= (bandwidth information)

SDP: Examples of messages from the RFC ...

Session Description Protocol

- An example from the RFC ...
- v=0

o=mhandley 2890844526 2890842807 IN IP4 126.16.64.4

s=SDP Seminar

i=A Seminar on the session description protocol

u=http://www.cs.ucl.ac.uk/staff/M.Handley/sdp.03.ps

e=mjh@isi.edu (Mark Handley)

c=IN IP4 224.2.17.12/127

t=2873397496 2873404696

a=recvonly

m=audio 49170 RTP/AVP 0

m=video 51372 RTP/AVP 31

m=application 32416 udp wb

a=orient:portrait

SIP – Selected Extensions

- 1. Event framework
- 2. INFO method

Event Notification

Motivation

- Necessity for a node to be asynchronously notified of happening (s) in other nodes
 - Busy / not busy (SIP phones)
 - A client A can call again a client B when notified that B is now not busy
 - On-line / Off-line
 - Buddy list

Event Notification

Conceptual framework

Event Notification

The SIP Event Notification Framework

- Terminology
 - Event package:
 - Events a node can report
 - Not part of the framework Part of other RFCs
 - Subscriber
 - Notifier
- New Messages
 - Subscribe
 - Need to be refreshed
 - Used as well for un-subscribing (expiry value put to zero)
 - Notify

Event Notification

The SIP Event Notification Framework

- More on the methods
 - New headers
 - Event

.

- Allow-Events
- Subscription state

Event Notification

An example of use: REFER Method

- Recipient should contact a third party using the URI provided in the CONTACT field
 - Call transfer
 - Third party call control
- Handled as Subscribe / notify
 - REFER request is considered an implicit subscription to REFER event
 - Refer-TO: URI to be contacted
 - Expiry determined by recipient and communicated to sender in the first NOTIFY
 - Recipient needs to inform sender of the success / failure in contacting the third party

Event Notification

Another example of use: Presence

- Dissemination/consumption of presence information (e.g. on/off, willingness to communicate, device capabilities, preferences)
 - Numerous applications
 - Multiparty sessions initiated when a quorum is on-line
 - News adapted to device capabilities
- Several standards including SIMPLE (SIP based)
 - Handled as Subscribe / notify in SIMPLE
 - Watchers / presentities
 - Explicit subscriptions
 - Explicit notifications

INFO Method

Allow the exchange of non signalling related information during a SIP dialog

- Semantic defined at application level
- Mid-call signalling information
 - DTMF digits with SIP phones
- Info carried as
 - Headers and/or
 - Message body

References

Core SIP

- SIP core signalling:
- H. Schulzrinne, an J. Rosenberg, SIP: Internet Centric Signaling, IEEE Communications Magazine, October 2000
- RFC 3261, June 2002 (Obsoletes RFC 2543)
- RFC 2327 (SDP)

SIP extensions

No overview paper

- RFC 3265, 3515 (Event framework)
- RFC 2976 (INFO Method)

Conferencing

Basics

- Introduction
- Signaling Protocols
- Media control protocols

Part I: Introduction, signalling and media control protocols

Introduction

- □ What is multiparty multimedia session
- □ Technical components
- Signaling protocols
 SIP
- Media control protocols
 - □ SIP based protocols

Introduction

What is multiparty multimedia session
How to implement
Protocols involved
Classifications

Multiparty multimedia session

- The conversational exchange of multimedia content between several parties
 - About multimedia
 - Audio, video, data, messaging
 - □ About participants
 - Any one who wants to participates the conference

How – thinking from a real life case

When organizing a conference or a meeting, what to do?

How – technical components

Signaling

- Session establishment, modification and termination
- □ Capability negotiation

Media

- □ Media handling: media transmission, mixing, trans-coding
- Media control: stands when there is a separation of signaling and media mixing entities

Conference control

- Conference policy: conference arrangement, admission control, participant management, voting
- □ Floor control: allows users of share resources such as video and audio without access conflicts.

Protocols involved

Signaling

□ H.323, SIP (Session Initiation Protocol)

Media

Media control: Megaco (Media Gateway Control protocol), SIP based media control – NetAnn/SIP MSCML (Media Server Control Markup Language), SIP media control channel framework

□ Media transport: RTP/RTCP, SRTP

Conference control

- □ Policy control: CPCP (conference policy control protocol), XCAP
- Floor control: BFCP (Binary Floor Control Protocol), TBCP (Talk Burst Control Protocol)

 Floor server control: FSCML (Floor Server Control Markup Language)

Classifications

- Open/close
- Pre-arranged/ad hoc
- With/without sub-conferencing (i.e. sidebar)
- With/without floor control
- Topology: centralized, distributed, hybrid

Signaling protocols IETF: SIP

- Conferencing models
- Scenarios

SIP conferencing models

- Tightly coupled conference
 - Dial-In Conference
 - End point invite conference server which handle the media mixing
 - Dial-Out Conference
 - Server invite all the parties into a conference
 - Ad-hoc Centralized Conference
 - Two party setup conference directly, other party added through a conference server
- Loosely coupled
 - central signaling with multicast media
- Fully distributed

P4

Focus

P2

P1

P3

SIP conference example – dial out

SIP conference example – dial in

□ SIP Based Media Control

- MSCML
- SIP media control channel framework

SIP based media control protocols MSCML (RFC 5022)

What is MSCML

- Defined initially by RFC 4722, replaced by RFC 5022
- provides services to users at an application level, services specified in user part of SIP Request URI, control between AS and MS
- Provide IVR and advanced conference service, as well as fax
- Command oriented, request/response protocol

Basic concept

There are three type of MSCML message, request, response, notification

<?xml version="1.0" encoding="utf-8"?> <MediaServerControl version="1.0"> <request> ... request body ... </request>

</MediaServerControl>

<?xml version="1.0" encoding="utf-8"?> <MediaServerControl version="1.0"> <response> ... response body ...

- </response>
- </MediaServerControl>
- MSCML messages are located in the body of SIP Request messages. Each SIP request can only embed on MSCML message
 - □ SIP request messages: INVITE, INFO
 - □ 'conf' and 'ivr' in SIP request URI specify the message type

MSCML main commands

Main requests

- □ Conference related
 - configure_conf>
 - <configure_leg>
 - <configure_team>
- □ IVR related
 - a <play>
 - acplaycollect>
 - rompt>
 - a <playrecord>
 - <stop>
- □ Event/signal (within a dialog)
 - subscribe>
 - <notification>
 - <signal>

Response

- □ ID: optional
- □ Request Type: e.g. <play>
- \Box Code: 2XX, 4XX, 5XX
- □ Text: human readable

MSCML conference management

<?xml version="1.0" encoding="utf-8"?>

•	Configure_conference is mandatory: creating a control leg for conference	<mediaservercontrol version="1.0"> <request> <configure_conference <br="" reservedtalkers="120">reserveconfmedia="yes"/> </configure_conference></request> </mediaservercontrol>
•	Configure_leg is a control leg for a dialog. It can configure the dialog's media mode	xml version="1.0" encoding="utf-8"? <mediaservercontrol version="1.0"> <request> <configure_leg mixmode="mute"></configure_leg> </request> </mediaservercontrol>
•	Can play a prompt to a conference or to a specific leg Conference terminates by sending a BYE to conference control leg BYE to a leg will just remove a participant	<pre><?xml version="1.0" encoding="utf-8"?> <mediaservercontrol version="1.0"> <mediaservercontrol version="1.0"> .example.net/en_US/welcome.au"/> </mediaservercontrol></mediaservercontrol></pre>

MSCML conference example – Create

MSCML conference example – play a prompt

Questions

Part-II

Multiparty multimedia session

- Is the conversational exchange of multimedia content among several parties.
- It has 3 main building blocks:
 - □ Signaling
 - H.323, SIP
 - □ Media control and handling
 - Megaco/H.248, NetAnn/SIP-MSCML
 - RTP
 - Conference control
 - Policy control: CPCP (conference policy control protocol), XCAP
 - Floor control

An Advanced Concept: Floor Control

Definition

Architecture

Protocols

Definition

Floor control: a mechanism that enables the management of the joint or exclusive access to the shared resources inside a conference

.e.g. audio/video channels, slide bar presentation

Floor: "A temporary permission to access or manipulate a specific shared resource or set of resources".

Architecture

- Three entities are involved in floor control:
 - Floor participant
 - Floor chair
 - Floor Control Server (FCS)

Architecture

- Two main algorithms
 - First come First Serve (FCFS)
 - Chair moderated

Protocols

1. Establish floor control connections between the different entities

2. Coordinate access to shared resources

3. Control the FCS

- □ Create/terminate floor
- □ Add participant/resource to floor
- Remove participant/resource from floor

Protocols

 Establish floor control connections between the different entities

□ SIP/SDP (RFC 4583, RFC 5239)

Coordinate access to shared resources

Binary Floor Control Protocol (BFCP)
 Talk Burst Control Protocol (TBCP)

Control the FCS

□ Megaco/H.248

□ SIP Floor Server Control Markup Language (SIP-FSCML)

Establish floor control connections between the different entities

Examples of an offer sent by a conference server to a client

m=application 50000 TCP/TLS/BFCP * a=setup:passive a=connection:new a=fingerprint:SHA-1 \ 4A:AD:B9:B1:3F:82:18:3B:54:02:12:DF:3E:5D:49:6B:19:E5:7C:AB a=floorctrl:s-only a=confid:4321 a=userid:1234 a=floorid:1 m-stream:10 a=floorid:2 m-stream:11 m=audio 50002 RTP/AVP 0 a=label:10 m=video 50004 RTP/AVP 31 a=label:11

Establish floor control connections between the different entities

Examples of an answer returned by the client

- m=application 9 TCP/TLS/BFCP *
- a=setup:active
- a=connection:new
- a=fingerprint:SHA-1 \
 - 3D:B4:7B:E3:CC:FC:0D:1B:5D:31:33:9E:48:9B:67:FE:68:40 :E8:21
- a=floorctrl:c-only
- m=audio 55000 RTP/AVP 0
- m=video 55002 RTP/AVP 31

Coordinate access to shared resources

Binary Floor Control Protocol (BFCP)

□ Standardized in RFC 4582

Negotiation of BFCP connections within SIP/SDP
 Standardized in RFC 4583

□ Advantages

- Fast (binary encoded)
- Secure
- Reliable (over TCP)
- Provides all the floor control functionalities

Protocol operations and messages/primitives

- Participant operations
 - Request a floor (FloorRequest)
 - Cancel a floor request (FloorRelease)
 - Release a Floor (FloorRelease)

□ Chair operations

- Grant a floor (ChairAction)
- Deny a floor (ChairAction)
- Revoke a floor (ChairAction)

□ Participant/Chair

- Requesting Information about Floors (FloorQuery)
- Requesting Information about Floor Requests (FloorRequestQuery)
- Requesting Information about a User (UserQuery)
- Obtaining the Capabilities of a Floor Control Server (Hello)

□ FCS operations

 Handles the participant and chair requests (FloorRequestStatus, FloorStatus, UserStatus, ChairActionAck, HelloAck, Error)

Packet Format

- □ BFCP messages
 - Consist of a common header followed by a set of attributes.
 - Use a TLV (Type-Length-Value) binary encoding
 - Floor participants, media participants, and floor chairs are identified by 16-bit user identifiers.
 - BFCP supports nested attributes (i.e., attributes that contain attributes).

Referred to as grouped attributes.

Binary Floor Control ProtocolPacket Format

Common-header format

•		32 Bit	S										
Ver	Reserved	Primitive	Payload Length										
	Conference ID												
	Transa	ction ID	User ID										

A	ttribute format																	
-	I				32	Bit	s –											->
L				1 1				l	I	I	1	1]		I	1	l	
	Туре	Μ	Ler	ngth														
			/	Attrib	ute C	Conte	ents											

Primitives

Value	Primitive	Direction
1	FloorRequest	P -> S
2	FloorRelease	P -> S
3	FloorRequestQuery	P -> S ; Ch -> S
4	FloorRequestStatus	P <- S ; Ch <- S
5	UserQuery	P -> S ; Ch -> S
6	UserStatus	P <- S ; Ch <- S
7	FloorQuery	P -> S ; Ch -> S
8	FloorStatus	P <- S ; Ch <- S
9	ChairAction	Ch -> S
10	ChairActionAck	Ch <- S
11	Hello	P -> S ; Ch -> S
12	HelloAck	P <- S ; Ch <- S
13	Error	P <- S ; Ch <- S

S: Floor Control Server

P: Floor Participant

Ch: Floor Chair

Talk Burst Control Protocol

TBCP

- □ Defined by the OMA (Open Mobile Alliance)
- □ Uses the application extension features of RTCP (RTP Control Protocol) in order to invoke floor control within the POC (Push to talk Over Cellular) environment.

Typical TBCP messages include:

- □ Talk Burst Granted
- Talk Burst Request Message
- □ Talk Burst Deny Message
- □ Talk Burst Release Message
- □ Talk Burst Taken
- □ Talk Burst Idle
- □ Talk Burst Revoke

Advantages

- □ Fast
- □ Secure

Disadvantages

□ Only provides basic floor control functionalities (e.g. no chair supported).

Control the FCS

SIP-FSCML is a non-standard alternative to H.248

- \Box Less complex
- Easy to understand and use by SIP application developers.
- It follows SIP and XML paradigms.

It enables a peer-to-peer communication model between the AS and the FCS.

This allows the FCS to be simultaneously used by multiple ASs.

Conceptual view

- □ Floor Connection
- □ Floor Session

- The control session between the application and the FCS is opened through a SIP INVITE message.
- FSCML requests to the FCS are carried in SIP INFO messages
 Each INFO message includes a single FSCML body
 - □ An FSCML body can carry any number of FSCML requests
- SIP-FSCML responses are transported in a separate INFO message
- SIP-FSCML Is a request-response protocol; with only final responses
- SIP-FSCML relies on SIP subscribe/notify mechanism, to allow applications subscribe to floor control related events

SIP-FSCML operations

- □ Open/close control connection
- □ Create floor
- □ Create floor Connection
- □ Add/remove floor to/from a conference
- □ Set/update Chair for a floor
- □ Add/remove floor participant(s)
- □ Set floor algorithm
- □ add/remove media to/from a floor
- □ Set maximum floor holders
- □ Set maximum floor holding time

Example of FSCML body

<FloorServerControl>

```
<conferenceid>the conference ID</conferenceid>
 <request type=" CreateFloor">
   <floorid>the floor ID</floorid>(mandatory)
   <algorithm>the floor control algorithm</algorithm> (mandatory)
   <maxholders>max number of floor holders </maxholders>(optional default=1)
   <maxholdingtime>max time (in seconds) a participant can hold a floor, in case someone else
                     asked for it
                                      </maxholdingtime>(optional, default 0=unlimited)
</request>
<request type="SetChair">
  <floorid>floor whose chair should be set</floorid> (mandatory)
   <chairid>the chair ID</chairid>
</request>
<request type=" AddParticipant">
  <floorid>id of the floor to which to add</floorid> (mandatory)
  <participantid>the participant ID</ participantid > (mandatory)
</request>
</ FloorServerControl>
```

SIP FSCML- A Scenario

Questions

