

On the Layers in an laaS

Individual users Other clouds Platform-as-a-service Cloud consumers
Need raw Need to outsource | Need resources on which to instantiate
(a) infrastructure excess workloads | services (VWeb, databases, and so on) for their users

Cloud management

Cloud toolkits currently do not use
virtual infrastructure managers and,
instead, manage VMs themselves

Amtlzm:h EC2 directly, without providing the full set
and other . of features of VI managers
®) public clouds

CocnNibd VMware vSphere IRV ENFITTININ
© peniebuia and others
‘ Xen ‘ KVM i VMware VM managers
()

Figure [. The cloud ecosystem for building private clouds. (a) Cloud consumers need flexible infrastructure on demand.
(b) Cloud management provides remote and secure interfaces for creating, controlling, and monitoring virtualized
resources on an infrastructure-as-a-service cloud. (c) Virtual infrastructure (Vl) management provides primitives to
schedule and manage VMs across multiple physical hosts. (d) VM managers provide simple primitives (start, stop,
suspend) to manage VMs on a single host.

B. Sotomayor et al., Virtual Infrastructure Management in Private and
Hybrid Clouds, IEEE Internet Computing, September/October 2009

r"_- - ¥ Concordia
I I

Examples of layers at which REST
could be used in laaS

= Lowest layer
= Access to individual hypervisors / containers

* Highest layer

» [nterface between cloud users (e.g. End-user
program, PaaS and cloud infrastructure), e.g.
= OpenStack
= AWS

g — Csicsidy
[]

REST Case studies

» REST for hypervisors (VMWARE)

» REST for containers (Docker)

. . = REST for cloud laaS (Openstack)

A Tutorial on using Hypervisors
and Containers through REST AP

ENCS 691 K
Instructor: Dr. Roch Glitho

Behshid Shayesteh (b_shayes@live.concordia.ca)
Mahsa Raeiszadeh (m_raeisz@encs.concordia.ca)

Outline

* Part One on Hypervisors
* Introduction to VM Workstation Player
* Introduction to REST
e Setup VMware Workstation Player REST API HTTP server
* Vmware Player REST APl explorer
* Try calling common VM management APIs using Python

* Part Two on Containers
* Introduction to Docker API
e Setup Docker HTTP server
e Docker REST API explorer
* Try calling common Docker APIs using Python

Part One: Hypervisors

Introduction to VMware Workstation Player

E’S VMware Workstation 17 Player (Non-commercial use only)

o
Player = 0

) VIrtuaIBOX does not Offer E Welcome to VMware Workstation
REST-enabled APIs = 17 Player

* Vmware Workstation Player
* Hypervisor type 2
* Free product of VMware

Introduction to REST

* REST (Representational State Transfer) is a network architectural style
for distributed hypermedia systems
* A way to reunite the programmable web with the human web

» Relies on HTTP and inherits its advantages
* Adressability, statelessness, uniform interface

e HTTP Interface
* GET, POST, PUT, DELETE

Setup VMware Workstation Player REST API
HTTP server

1. Install Vmware Workstation Player

2. Setup credentials (only first time)

* In a terminal window, change directories to the Workstation Player
installation folder and run the vmrest.exe -C command.

e Enter a user name and password as prompted.

3. Configure REST API service for HTTP

* |In a terminal window, run the vmrest command. The command returns the IP
address and port number from which you can access the HTTP service. The
default IP address is 127.0.0.1:8697.

* Open a web browser and go to http://address-returned-by-vmrest-
command.

* Click Authorize in the top-right corner of the Workstation Player APl Explorer
page.
* Enter the user name and password you configured in Step 2.

Vmware Player REST APl explorer

VMware Player REST API

vmrest 1.3.0 build-20800274

UM Management Show/Hide = List Operations ~ Expand Operations VM Power Management Show/Hide List Operations Expand Operations
vms. Returns a list of VM IDs and paths for all VMs vms/{id}power Returns the power state of the VM
vms/{id} Returns the VM setting information of a VM m LIS i Changes the VM power state
- ivms/{id)/params/{name} Get the VM config params
VM Shared Folders Management Show/Hide ~ List Operations Expand Operations
/vms/{id}/restrictions Returns the restrictions information of the VM
S8 /vms/{id}/sharedfolders Returns all shared folders mounted in the VM
m HvmsHid} Updates the VM settings
m Mvms/{id}/sharedfolders/{folder id} Updates a shared folder mounted in the VM
m Ivms/{id}/params update the vm config params -
m msi{id)/sharedfolders Mounts a new shared folder in the VM
il /vmshegistration Register VMo VM Library | mespe iy sharedfoldersifider id} Deletes a shared folder
ivmsHid} Deletes a VM
VM Network Adapters Management Show/Hide List Operations Expand Operations
Hvmsi{id}/ip Returns the IP address of a VM
ivms/{id}/nic Returns all network adapters in the VM
ivms/{id}inicips Returns the IP stack configuration of all NICs of a VM
BN vmsigaynic/indexy Updates a network adapter in the VM
Rl /vms/{id}/nic Creates a network adapter in the VM
fvms/{idy/nic/{index} Deletes a VM network adapter

11

Vmware Player REST API

* Datasets
* VMs

* Resources
* Each VM is a resource
* One special resource that lists the VMs

VM management APls

* Common VM management APIs that will be called during this tutorial
* Get list of exisiting VMs
* Get the configuration of a specific VM
» Update the resource configuration of a specific VM
* Delete a specific VM

* Link to other APIs:
* https://developervmware.com/apis/1042/#api

Interacting with Vmware Player API - Example

Alice

VMware User

VMware Rest
Server

1: GET /vms

2:200 OK

A 4

A

[{1d’: “AHC5617ULT’, ‘path’: ‘C:\\Users\\virtual

machines\\ubuntu\\ubuntu.vmx’}, {{’ld’: ‘7ZUH2G5HNF/’, ‘path’:

‘C:\\Users\\virtual machines\\windows\\windows.vmx’}}]

1: GET /vms/{vm_id}

2: 200 OK

\ 4

A

{‘ld": “AHC5617ULT’, ‘cpu’: {‘processors’:2}, ‘memory’:4096}

Show List of VM IDs
and Paths for all VMs

Show the VM
setting information
of aVM

14

Interacting with Vmware Player API - Example

Alice

VMware User

VMware Rest
Server

1: PUT /vms/{vm id}

{‘processor’: 1, ‘memory’: 1024}

2: 200 OK

»
»

A

{‘Id": ‘AHC5617ULT’, ‘cpu’: {‘processors’:1}, ‘memory’:1024}

1: DELETE /vms/{vm_id}

2: 204 OK

\ 4

A

Update the VM
settings

Delete a VM

15

Python Code to interact with Wmware Player

APl - Example

api_url =
headers = {

response = requests.get(api_url

1f response.status_code ==
()

(response.json())

(

¥
=headers)

response.status_code}")

16

Part Two: Containers

Introduction to REST API

* REST API

* REST (Representational State Transfer) is a set of architectural principles for designing networked
applications.

* RESTful APIs allow you to access and manipulate resources over the internet via HTTP methods.
* Docker Engine, a containerization platform, exposes a RESTful API for container management.

* Python and Docker:

* Python can be used to interact with Docker Engine's REST API to automate container
operations.

Docker REST AP

Docker Engine provides a RESTful APl that exposes endpoints for container management.

Key endpoints include /containers, /images, /networks, and more.
API calls are made using HTTP methods such as GET, POST, PUT, and DELETE.

To interact with Docker's REST APl in Python, you need:
* Docker Engine installed and running.

* Python installed on your system.
* The “request” library for making HTTP requests.

Python and request library
* The “request” library simplifies making HTTP requests.
* You can use it to GET, POST, PUT, and DELETE requests to Docker's APl endpoints.

Common APl Operations

e With Docker's REST APl and Python, you can:
* Create and start containers.

Stop and remove containers.

Build and manage custom images.

* Access container logs and statistics.

Configure network settings, and more.

* Visit the website below for Docker’s Engine API:

https://docs.docker.com/engine/api/v1.43/

20

Docker Engine REST API

* Datasets
* Containers
* Images
* Networks

* Resources

* Each container is a resource
Each image is a resource
Each network is a resource
One special resource that lists containers
One special image that lists containers
One special network that lists containers

Docker Engine APl - Name Resources with URIs

Container URI

Network URI

GET /containers/json

List containers

POST | /containers/create

create a container

PUT /containers/{id}/archive

Extract an archive of files or folders to a
directory in a container

DELETE | /containers/{id}

Search an image

POST /build

build an image

DELETE /images/{name}

remove an
image

GET /networks

List networks

POST /networks/create

Create a network

DELETE /networks/{id}

Remove a network

22

Interacting with Docker APl - Example

Alice

Docker User

Docker Rest

Get/Containers/json

200 OK

A

{"1d": "8dfafdbc3a40","Names": ["/boring_feynman"],"Image":
"ubuntu:latest","ImagelD":"d74508fb6632491cea586alfd7d748d
fc 274cd6fdfedee309ecdcbc2bf5ch82, }

Post/Containers/create

Server

l

1

1

|

| Show List of
] Containers

1

:

1

{"Hostname": "","Domainname": "","User": "", "AttachStdin":

“false”,Env": ["FOO=bar","BAZ=quux"],"Cmd": ["date"],"Entrypoint":

", "Image": "ubuntu",...}

201 OK

A

{"Id":"ede54eelafda366ab42f824e8a5ffd195155d853ceaec74a927f24

9ea270c743",
"Warnings": [1}

Create a Containers

23

Interacting with Docker APl - Example

Alice

Docker User

Docker Rest
Server

Delete/Containers/{id}

»

204

L}

No content

A

404

{"message": "No such container: c2ada9df5af8.“}

Put/Containers/{id}/Update

A 4

204 No content

A

Remove a container

Updating a Docker Container
Configuration

24

Enable Docker API Port

* Docker Desktop -> Setting -> General

Docker Deskiop Upgrade plan Q_ Search for

Settings

Give feedback =

General
Resources
Docker Engine

Kubernetes

Extensions

40 Software updates
»

Features in development

General
D Start Docker Desktop when you login

Choose theme for Docker Desktop

(O ught () park (@ Use system settings

Choose container terminal
@ Integrated O System default

Determines which terminal is launched when opening the terminal from a container.

Expose daemon on tcp://localhost:2375 without TLS

T T T O T T T E S TS T TC IS TR to the daemon. It also makes yourself vulnerable to remote code execution attacks:

Use with caution.

Use the WSL 2 based engine

WSL 2 provides better performance than the Hyper-V backend. Learn more 5

D Add the *.docker.internal names to the host's etc/hosts file (Requires password)

Lets you resolve *.docker.internal DNS names from both the hest and your containers. Learn more &5

25

Example Python code for listing containers

Trequests

docker_base url =

containers_endpoint =
response = requests.get(

response.status_code ==
contailners = response.json()
container containers:

print(

print(

OpenStack Compute API

REST Modelling procedure
OpenStack Compute key concepts

Applying the procedure

UNIVERSITE

Q/T’Concordla

UNIVERSITY

Examples of REST Modelling
(OpenStack - Compute)
Note: Slides prepared by Yassine Jebbar,
Teaching Assistant

\'-/.T Concordia University
Engineering and

Computer Science
] Concordia Institute for
Information Systems Engineering

OpenStack Compute API

REST Modelling procedure
OpenStack Compute key concepts

Applying the procedure

-

The procedure — First Part

Figure out the data set

Split the data set into resources

IIIIIIIIII

IIIIIIIIII

The procedure — Second Part

For each resource:
= Name the resources with URIs

= |dentify the subset of the uniform interface that is exposed by the
resource

= Design the representation(s) as received (in a request) from and
sent (in a reply) to the client

= Consider the typical course of events by exploring and defining
how the new service behaves and what happens during a
successful execution

g — Csicsidy
[]

OpenStack Compute (REST-based) Key Concepts

* OpenStack Compute 1s a compute service that provides server
capacity in the cloud.

* Compute Servers come in different flavors (virtual hardware
configuration) of memory, cores, disk space, and CPU, and can be
provisioned in minutes.

* Interactions with Compute Servers can happen programmatically
with the OpenStack Compute API.

OpenStack Compute Key Concepts

* Server: A virtual machine (VM) instance, physical machine or a
container in the compute system.

* Flavor: Virtual hardware configuration for the requested server.
Each flavor has a unique combination of disk space, memory
capacity and priority for CPU time.

* Image: A collection of files used to create or rebuild a server.
Operators provide a number of pre-built OS images by default.

OpenStack Key Concepts

* Server Management: Enable all users to perform an action on a
server.
Example: » Create/Delete/Resize/Reboot Server
» Show Server(s) Details

* Flavor Management: Show and manage server flavors.

Example: » Create/Delete/Update Flavor
» Show Flavor(s) Details

* Image Management: Show details and manage images.
Example: > List Images

» Show Image Details

» Delete Image

Applying the procedure — Data Set

e Servers
* Flavors

* Images

Applying the procedure — Split Data Set into Resources

Each server is a resource
Each flavor 1s a resource
Each image is a resource
One special resource that lists servers
One special resource that lists flavors

One special resource that lists images

Bggeoeaga

Applying the procedure — Name Resources with URIs

Server URI

[/servers
List Servers

/servers
Create Server

/servers/detail
List Servers Detailed

/servers/ {server_id}
Show Server Details

fservers/ {server_id}
Update Server

/servers/ {server_id}
Delete Server

/servers/ {server_id} faction
Reboot Server (reboot Action)

/servers/ {server_id} /action
Resize Server (resize Action)

Flavor URI

Jflavors E

List Flavors

/flavors

Create Flavor E

/flavors/detail
List Flavors With Details

[Mlavors/ {flavor_id}
Show Flavor Details

/flavors/ {flavor_id}
Update Flavor Description

/flavors/ {flavor id}
Delete Flavor

Image URI
/images/detail
List Images With Details

/images/ {image_id}
Show Image Details

/images/ {image_id}
Delete Image

Example: Listing and Creating Server

{ "servers": [{ "id": “1", "links": [{ "href":

Alice Openstack
Openstack User Compute
: | 1: GET:/servers 51
I I "1 :
| 1

. . 2: 200 OK v
I Mmoo o e = m————— - a1
: I
: I

1
"http://openstack.example.com/v2/6f70656e737461636b I
1

l— L 20342065766572/servers/1", "rel": "self" }, ...}
LN | I

L

I 3: POST:/servers I

|
I | |
1 "server": { "name": "auto-allocate-network", "imageRef": | |
1 "70a599e0-31e7-49b7-b260-868f441e862b", "flavorRef": 1 |
1 "http://openstack.example.com/flavors/1", "networks": "auto" } } 1 I

| |
I 2:200 OK I I
|< __________________________ T I
{"serverl: { "OS-DCF:diskConfig": "AUTQ", "adminPass": "6NpUwoz2QDRN", "id": "f5dd173b-6804-445a- I
a6d8-c705dad5b5eb", "links": [{ "href": | |
"http://obenstack.exampIe.com/v2/6f70656e737461636b20342065766572/servers/f5Hc173b-6804-445al
36d8-c70:5dad5b5eb", "rel": "self" },... } : I

Show List of Servers

Create Server

Example: Resizing Server

Alice Openstack
Openstack User Compute

— RESTSeérver

3: POST:/servers/1/action

{"resize" : { "flavorRef" : "2", "OS-DCF:diskConfig": "AUTO" } }

2:200 OK

Resize Server

x
1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

4

|

|

1

|

|
-------------------------q--

References

https://docs.openstack.org/api-guide/compute/general info.html

https://docs.openstack.org/api-ref/compute/?expanded=

UNIVERSITE

Q/T’Concordla

UNIVERSITY

Case Study — REST for Conferencing

http://users.encs.concordia.ca/~glitho/

e —
[]

References

F. Belgasmi, C. Fu, R. Glitho, Services Provisioning in Next Generation Networks: A
Survey, IEEE Communications Magazine, December 2011

F. Belgasmi, J. Singh, S. Bani Melhem, and R. Glitho, SOAP Based Web Services vs.
RESTful Web Services: A Case Study for Multimedia Conferencing Applications, IEEE

Internet Computing, July/August 2012

— UNIVERSITE

[]

UNIVERSITE

!/T’Concordla

UNIVERSITY

Examples of REST Modelling
(Messaging)

\-/f Concordia University
Engineering and

Computer Science
] . Concordia Institute for
Information Systems Engineering

Examples of RESTful Web Services

URL
Resources Base URL: http://{serverRoot}/{apiVersion}/ HTTP action

smsmessaging
Qutbound SMS message GET: read pending outbound message requests
requests RAKRARL G S g s POST: create new outbound messages request
Qutbound SMS message GET: read a given sent message, along with its

foutbound/{senderAddress}/requests /{requestld}

request and delivery status delivery status

Inbound SMS message GET: read all active subscriptions POST: create new

subscriptions (L message subscription
S GET: read individual subscription
ORI o e A finbound/subscriptions/{subscriptionid} DELETE: remove subscription and stop corre-

message subscription : g
. P sponding notifications

Table 2. A subset of ParlayREST SMS resources.

T — kil
[]

Examples of RESTful Web Services

Application Sarver

1 : POST outbound SMS request -
|

SIS Create resource and allocate reques[l&ﬁ

sending 2 : Hesponse with created resource including requestid

3| : GET delivery status of request using reguestig

=T 4 : Response with delivery status
Inbound 5 : POST inbound SMS online subscription
SMS
notification Create resource and allocate su bscripticnlﬁ’]
.;;"L ___

6 : Response with created resource incl. subscriptignid

some time Iatenb'[

=
7 : POST notification 1o the notifyURL specified in the sulpscription
__:_-_.

8 : Response
. At later Iimél]
9 : DELETE the subscription

application < 10 T Response
specified as -
notifyURL

To another

ERSITE

v Figure 4. Sample scennario for SMS handling. E:,?,rfsl.?,

UNIVERSITE

!/T’Concordla

UNIVERSITY

Examples of REST Modelling
(Conferencing)

\-/f Concordia University
Engineering and

Computer Science
] . Concordia Institute for
Information Systems Engineering

Case Study On Conferencing

1. A stepwise procedure

2. On conferencing semantics

3. Applying the procedure to
conferencing

IIIIIIIIII

IIIIIIIIII

The procedure — First Part

Figure out the data set

Split the data set into resources

r‘_

IIIIIIIIII

IIIIIIIIII

The procedure — Second Part

For each resource:

= Name the resources with URIs

= |dentify the subset of the uniform interface that is exposed by the
resource

= Design the representation(s) as received (in a request) from and
sent (in a reply) to the client

= Consider the typical course of events by exploring and defining how
the new service behaves and what happens during a successful

execution

g — s
[]

On Conferencing semantics

= The conversational exchange of multimedia
content between several parties

= About multimedia ~ =2
= Audio, video, data, messaging @@ :}2‘:@
& Y

= About participants
= Any one who wants to participates the conference

On Conferencing semantics

Classification:

= Dial-in / dial-out

= Open/close

* Pre-arranged/ad hoc

= With/without sub-conferencing (i.e. sidebar)
= With/without floor control

IIIIIIIIIII

h_ Geoncardls
[|

On conferencing semantics

= Case considered in the use case

= Create a service that allows a conference
manager to :
= Create a conference
= Terminate a conference
= Get a conference status
= Add users to a conference
= Remove users from a conference
= Change media for a participant
= Get a participant media

IIIIIIIIII

[]

Applying the procedure — First part

1. Data set

Conferences
Participants
Media

IIIIIIIIII

[]

Applying the procedure — First part

2. Split the data set into resources
= Each conference is a resource
= Each participant is a resource
= One special resource that lists the participants

= One special resource that lists the conferences (if we consider
simultaneous conferences)

h_ M
[|

Applying the procedure — Second part

3. Name the resources with URIs

= [l root the web service at
http.//www.confexample.com/
= | will put the list of conferences at the root URI

= Each conference is defined by its ID:
http.//www.confexample.com/{confld}/

= A conference participants’ resources are subordinates of the
conference resource:

= The lists of participants:
http.://www.confexample.com/{confld}/participants/

= Each participant is identified by his/her URI:
http.://www.confexample.com/{confld}/participants/{participantURI}Y/

h_ =St
[|

Applying the procedure — Second part

Exposed subset of the uniform interface

Data representation operation

Resource
Operation HTTP action Client->server Server->client
<conference=
Create: establish ~ POST: =<description> discuss project </description= http:/’www.confexample/conf23@exam
a conference http://confexample.com/ <maxPartidpants=10</maxParticipants= ple.com
<fconference>
Conference
Read: Get GET: .
conference status httpy/confexample.comy/{confid} None <status>Active</status>
Delete: end DELETE:
a conference httpz/confexample.comy{confid} None Nene
< participants:=
< participant=
Read: Get list GET: =<uri=alice@ericsson.com=</uri=
of a‘ Hicinants http/confexample.com/{confld}y None < status=Connected </status>
P pa participants <fparticipant=>
e-:-f:[‘::articipan‘tszr
< participant =
List of Create: Add POST: < participant> =uri=alice@ericsson.com=/uri=
plart?ciparltl[sl p:?_?ic?bam . httpz/confexample.comy{confld}/ alice@ericsson.com <link=http;/confexample.comy{confid}/
participants </participant= participants/alice@ericsson.com</link>
=</participant=
: GET:
Rﬂi:ij":iG::“a status http/confexample.com/{confld}y MNone <status=Invited </status >
particip participants/{ participantURI}
Delete: remove DELETE:
rt" iDant http/confexample.com/{confld}y MNone None
4 participan participants/{ participantURI}
\d/

\/Concordia

UNIVERSITY

Applying the procedure — Second part

Alice Conf app
REST dient REST server Boh
1 : POST{http/fwww.confexample.com)
2 : 203 accepted{httpfhw.cunfexampe.t:c:rw'ii-nﬂ @confexample.com)
r The server|creates the conference b]
3:200 0K
4 : GET{http://mww.confexample.comyconfl @canfexample.com)
5:200 0K
6 : POST(httpy/fwnw.confexample.com/cpnfl @confexample.comy
participants, bobi@ericsson.com)
7 : 202 accepted
The server adds the participant(s) tp the conference P—‘1
8 1 INVITE
9: OK i
10 : ACK |
11 : 200 OK
v _ rdia
v UNIVERSITY

—— L
e

Applying the procedure — Second part

9. What might go wrong?

= Conference

Operation Server->Client Way it may go wrong
Create Success: 200 OK The received request is not correct
(POST) Failure: 400 Bad Request | (e.g. has a wrong body)

Success: 200 OK The targeted conference does not
Read (GET)| Failure: 404 Not Found exist
Delete Success: 200 OK The targeted conference does not
(DELETE) Failure: 404 Not Found exist

rvm—!_) § Concordia
[]

Applying the procedure — Second part

9. What might go wrong?
= Participant(s)

ailure: 404 Not Found

Operation Server->Client Way it may go wrong
Creat Success: 200 OK » The received request is not correct
(;gas% Failure: 400 Bad Request | (€.g. has a wrong body)
Failure: 404 Not Found |« The target conference does not exist
Read (GET) Success: 200 OK » The target conference does not exist
Failure: 404 Not Found » The target participant does not exist
Update Success: 200 OK * The received request is not correct
(PUT) Failure: 400 Bad Request | » The target conference does not exist
Failure: 404 Not Found | . The target participant does not exist
Delete Success: 200 OK » The target conference does not exist

* The target participant doeg Rot gxist

The End

g — Tcancsin
[|

