

nteligent Networks

INSE 7110 – Winter 2004 Value Added Services Engineering in Next Generation Networks Week #1

Roch H. Glitho- Ericsson/Concordia University

Outline

- 1. Essentials of circuit switched telephony
- 2. Introduction to value added services
 - 3. IN fundamental principles and concepts
 - 4. IN four plane architecture
 - 5. References

Essentials of circuit switched telephony

- Circuit switching vs. packet switching
 - Local loops, telephone exchanges and trunks
- Signaling
- Beyond fixed telephony

Circuit switching vs. packet switching

Principal Criteria	Circuit switched	Packet switched
Dedicated Physical path	Yes/No	Yes/No
Derived criteria	Circuit switched	Packet switched
Call set up required	Yes/No	Yes/No
Possibility of congestion during communication	Yes/No	Yes/No
Fixed bandwidth available	Yes/No	Yes/No
Non optimal usage of bandwidth	Yes/No	Yes/No

A simplified telephony network ...

Roch H. Glitho- Ericsson/Concordia University

January 2004

Signaling ...

Establishment, modification and tear down of calls

- User Network Signalling
 - Between user and home office
 - On/off hook, dial tone ...
 - Carried over local loops
- Network Network signalling
 - Between telephone exchanges
 - Initially in-band (Same trunks as voice)
 - Out-band in modern circuit switched telephony
 - Signalling data carried over a separate and overlay packet switched network (Signalling System no7 – SS7)

Signaling ...

Criteria	In-band signaling	Out-band Signaling
Potential capacity	More / less	More / less
Potential speed	More/less	More/less
Room for fraud	More/less	More/less
Flexibility (e.g. mid-call signaling)	More / less	More / less

A Simplified SS7 network architecture ...

SS7 Protocol stack ...

SS7 Network Service Part ...

- Message Transfer Part (MTP)
 - Level 1
 - Physical layer (signalling data layer functions)
 - Bit rates: 56 kbps / 64 kbps
 - Level 2
 - Similar to data network bit oriented protocols (e.g. HDLC)
 - Adaptation to stringent performance requirements (e.g Fill in signalling units when there is no traffic)
 - Error correction, monitoring
 - Flow control
 - Level 3
 - Message handling (e.g. routing, distribution)
 - Signalling network management (e.g. diversion from an unavailable route with loss or duplication)
- Signalling Connection Control Part (SCCP): Add to MTP the possibility of having connection oriented communication

Integrated Service Digital Network (ISDN) - User Part

Beyond fixed telephony ...

Cellular telephony

- Mobile Switching Centre
 - Switches used in cellular telephony Additional features for mobility management
- Home location register (HLR) /Visitor location register (VLR)
 - Keep information on user location
- Base stations
 - Access point to cellular networks
 - Communicate with end user terminals
 - Control cells
- Signalling in cellular networks
 - SS7 based

Mary a Montreal subscriber receives a call while in Vancouver

Roch H. Glitho- Ericsson/Concordia University

January 2004

Beyond fixed telephony ...

First generation cellular networks (70s - 80s)

- Analog systems, circuit switching based
 - Total Access Communications Systems (TACS) UK
 - Advanced Mobile Phone Systems (AMPS) USA/Canada
 - Nordic Mobile Telephone System (NMT) Scandinavia

Second Generation (90s – early 00s)

- Digital systems, circuit switching based
 - GSM Europe mainly However, gaining ground in North America
 - D-AMPS (Digital version of AMPS)
 - PDC (Japan)

Second Generation (90s – early 00s)

- Still digital, but more capacity
- Packet switching based
- Two main standards
 - UMTS
 - CDMA 2000

Introduction to value added services ...

- 1. Services
- 2. Life Cycle
- 2. Service Engineering

Services ...

Basic service offered by circuit switched telephony: Two party voice call

Value added services

Anything that goes beyond two party voice call

- Telephony services
 - interact will call control
 - » Call diversion
 - » Call screening
- Non Telephony services
 - Web access from a cell phone
 - » Surfing
 - » Email

Service life cycle ...

Four phases

- Creation (also known as construction)
 - Specification, design/coding, and testing
- Deployment
 - Service logic (or executable) resides on specific node(s) and needs to be deployed there
- Usage
 - Subscription/billing, triggering, features interactions
- Withdrawal
 - Removal from network

Service Engineering ...

Key issue: How to engineer "cool" services

- In more academic terms
 - Issues related to the support of all the phases of the life cycle.
 - Creation
 - Deployment
 - Usage
 - Withdrawal
 - These issues are architectural issues
 - Concepts, principles, rules
 - Functional entities, interfaces and algorithms

Service Engineering ...

Why is it an important discipline?

- Business standpoint
 - High quality two party voice call is now a commodity
 - Value added services are needed to attract subscribers and generate revenues.
- Engineering standpoint
 - It is less than trivial
 - Example: Service creation
 - Secure and selective access to network resources is required
 - Related issues: Level of abstraction, security framework, service creation tools ...etc.

Roch H. Glitho- Ericsson/Concordia University

IN Fundamental concepts and principles

- 1. Introduction
- 2. The 2 principles
- 3. Concepts

Introduction ...

The pre-IN era

- Service logic embedded in switching software

IN

- Has emerged in the ITU-T based on work done at Telcordia (alias Bellcore), in the late 80s
- Basis for:
 - AIN (North America fixed network)
 - Wireless Intelligent Networks (WIN) (D-AMPS wireless network)
 - Customized Application Mobile Enhanced Logic (GSM wireless network)

IN: Fundamental Principles

1. Separation of switching software and service logic

Main implication: Need for an interaction model between switching and service

- Functional entities / nodes
- Protocols

2. Standardization of capabilities for building services

Main implication: Need for "components" that can be used in various ways for building services

IN: Fundamental Concepts

Call model

- Phases for setting up and tearing down calls
 - IN call model or basic call process: call model with the possibility to invoke service
 - » Point of invocation
 - » Point of return

Service independent building blocks (SIB)

Components used to build services

- Have a logical start and one or more logical ends
- Are chained to build services

Capabilities set

- A set of potential services
- A given call model
- A set of SIBs
- A set of functional entities
- A protocol

IN: A Brief History of Capability Sets

Capability set 1 (CS1) - 1992

- Most widely deployed
- Developed in the context of state monopoly fixed networks operators
 - Little/no support for internetworking and mobility
- Focus on two party call call related services (e.g. call forward, call screening)
 - No support for multiparty, multimedia
- Used in the rest of this course to illustrate IN

Capability set 2 (CS2) - 1997

- Much less deployed
- Developed in the context of deregulation and mobile telephony
- Much more complex than CS1. E.g.
 - Call party handling for conferencing (e.g. call leg, connection point)
 - Call unrelated functions

IN: A Brief History of Capability Sets

Capability set 3 (CS3) - 1999

- No known commercial deployment
- Attempt to correct the numerous mistakes / ambiguities in CS2
- A few new features: number portability

Capability set 4 (CS4) – 2001 (The end of the road)

- No known commercial deployment
- Very high level of ambition
 - Object oriented components
 - Videoconferences
 - And much more
- Too little in terms of output
- Emergence of alternatives (e.g. Parlay, JAIN)

IN Four Plane Architecture ...

- 1. Service plane
- 2. Global functional plane
- 3. Distributed functional plane
- 4. Physical plane

IN: A four planes conceptual architecture

IN: Service Plane

Services as seen by end-users are made of features and features are specified in groups

Examples of CS1 Feature groups

- Charging
 - Split, reverse
- Routing
 - Call forward
- Restriction
 - Originating call screen, terminating call screening
- Numbering
 - One number, abbreviated dialling, private numbering plan
- User interactions
 - Originating user prompting, destination user prompting
- Other features
 - Call transfer, call hold

IN: Service Plane

Examples of services made of specific features

Free phone

- One number (800 in North America) feature
- Reverse charging feature

Calling card

- Charging feature
- Originating user prompting

IN: Global Functional Plane

Components (I.e. SIBs) used to build the services

Examples of SIBs from CS-1

- Basic call process
 - Basic SIB
 - Point of invocation
 - Point of return
 - Passes the call data (e.g. caller / callee) to the first SIB in the chain)
- Screen
- Charge
- Compare
- Translate
- Service data management

IN: Global Functional Plane ...Simplified Free phone

IN: Distributed Functional Plane ...

The functional entities

- Service Control Function (SCF): the entity that contains the service logic
- Usually implemented as a separate node The Service Control Point (SCP)
- Service Switching Function (SSF): the entity that implements the call model – Enables the switching between "switching software and service logic)
- Call Control Function (CCF): the entity that contains the switching software - Knows at any given time the call state (e.g. busy, ringing)
- SSF and CCF are usually implemented in a separate node The Service Switching Point (SSP)
- Service data point (SDP): data base that keeps service data such as number translation tables
- Usually integrated with SCP
- Service management function (SMF): subscriber management and service management
- (SRF): Functions such as announcement playing, conference bridging

IN: Physical Plane ...

Functional entities can be grouped in nodes as manufacturers wish

The Intelligent Network Application Protocol (INAP) is used for communications between nodes.

- Request / Reply application level protocol
- Messages transported over SS7
- SS7
 - Overlay packet switched networks
 - Used for outband signalling
 - Made of
 - Message transport part
 - Application part

IN: Physical Plane ...

INAP protocol stack	Intelligent Network Application Part (INAP)	
	Transaction Capabilities Application Part (TCAP)	Application layer
	Signalling Connection Control Part (SCCP)	
	Message Transfer Part 3	Network layer
	Message Transfer Part 2	Data link layer
	Message Transfer Part 1	Physical layer

IN: Physical Plane ...

Transaction Capabilities Application Part – Message structure

Component portion	
Component	
Component	

Roch H. Glitho- Ericsson/Concordia University

IN: Physical Plane ...

Transaction Capabilities Application Part Message

Component portion	
Invoke	
Invoke	

IN: Physical plane - **INAP/TCAP for free phone**

IN: Retrospective ..

A revolutionary concept

- Separation between service logic and switching software
- Standardisation of service capabilities instead of services

With mixed results

- Reasonable installed basis, but
- Lack of openness
 - Standardised building blocks (e.g. SIBs) did not open telecommunication networks to third parties
 - Components are not interfaces
 - Too many "proprietary" SIBs
- Service creation and deployment remain relatively slow
 - Immaturity of methodologies and tools
 - New service logic in SCPs often required "adjustments" to call model in SSP

References

- 1. J. Zuidweg, Next Generation Intelligent Networks, Artech House 2002 (Chapter 2 – Intelligent Networks)
- 2. A. R. Moderassi and R. Skoog, Signaling System No7: A Tutorial, IEEE Communications Magazine, July 1990, available at:http://www.comsoc.org/livepubs/surveys/public/4q98issue/reprint4q.html
- A. Tanembaum, Computer Networks, 4th edition, Prentice Hall 2003 (Chapter 2.5 The public switched telephone system network)