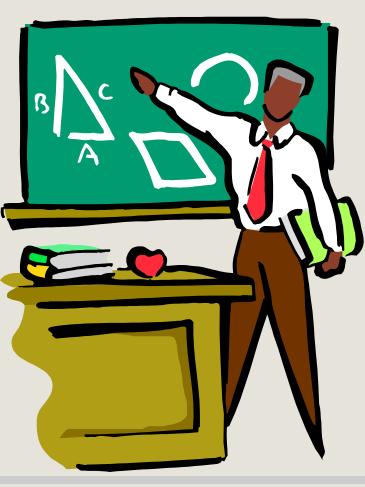

INSE 7110 – Winter 2004 Value Added Services Engineering in Next Generation Networks Week #5

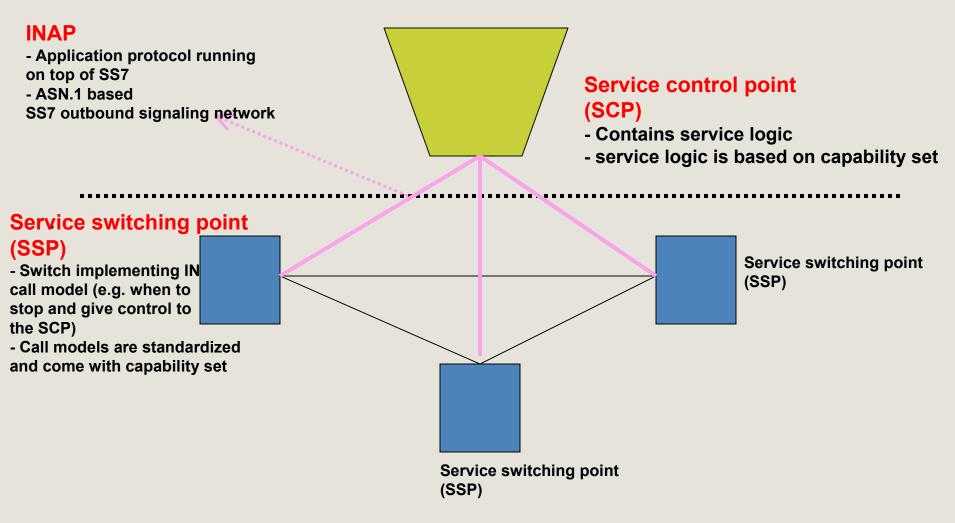
Roch H. Glitho- Ericsson/Concordia University

Legacy based service architectures ...

Expectations and Legacy based service architectures


Roch H. Glitho- Ericsson/Concordia University

Re-using IN



1. Introduction

- 2. Issues and tentative solutions
- 3. A case study
- 4. Retrospective

Introduction: IN again ...

Introduction: History and motives

History

- Approach popular in the early days of NGN

- . Several IETF draft standards
- . A few initiatives in ITU-T

Motives

Business:

Re-use of IN infrastructure

Technical:

Internet telephony standards emerged without credible service engineering components IN principles are well known

The first issue ...

Communication between NGN switches and SCPs.

- Next generation switches do not support SS7
- INAP is ASN.1 based while some Internet Telephony protocols (e.g. SIP) are text based

Tentative solutions ...

Three main approaches

- First: Put the burden on the SCP side
 - IP transport
 - support of text based protocol (if SIP)
- Second: Put the burden on the NGN switches sides (e.g. support of SS7
- Third: Gateways

The second issue ...

Call models

- IN call models were built explicitly for circuit switched telephony
- NGN "call models" were built without IN in mind

Tentative solutions

The call model issue: Two main approaches

- Integrated call model

- Call models (I.e. H.323/SIP and IN) running in parallel and interacting

A Case Study: IN Services for Converged Telephony (Ref. 1) ...

Background

- Prototype built by Lucent in 2000
 - H.323 based
- Challenges
 - Communications
 - Burden put on SCCP side (IP used between NGN and SCCP)
 - . Call model
 - Soft SSP on top of an H.323 gatekeeper

A Case Study: IN Services for Converged Telephony (Ref. 2) ...

Main features

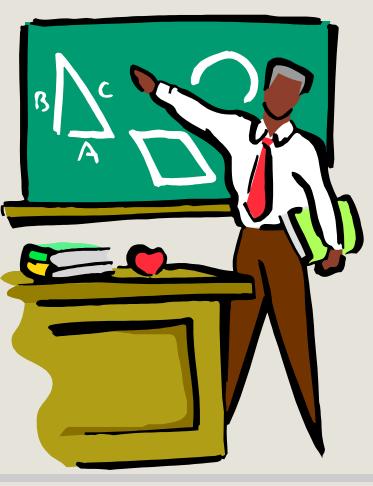
- Integration of IN based call model with H.323 call model
 - Possibility to invoke IN services from an H.323 gatekeeper
- Re-use of existing services with no change
- Rapid deployment of new services
- Services supported
 - Number portability
 - Call forwarding
 - Caller name display
 - On-line communications center

A Retrospective ...

The initial interest is understandable

- IN principles are well known
- IN has a relatively large installed base

However IN cannot fit the bill for several reasons such as


- Relatively small range of services can be developed using IN principles
- Third parties are not really allowed in IN world
- Creation and deployment are slow

The prospects

- The approach is outdated
- Main standardisation bodies have given up on it (for Internet Telephony):
 - IETF
 - 3GPP

Inter-working with IN: PINT

- 1. Introduction
- 2. Benchmark services
- **3. Architecture**
- 4. Simplified example
- 5. Pros / cons

Introduction

PSTN/Internet Inter-working (PINT)

IETF initiative

Build new end user services in NGN/Internet domain based on PSTN capabilities

- Services initiated in NGN/Internet domain but executed in the PSTN domain

Re-use as much as possible the emerging NGN protocols in the architecture

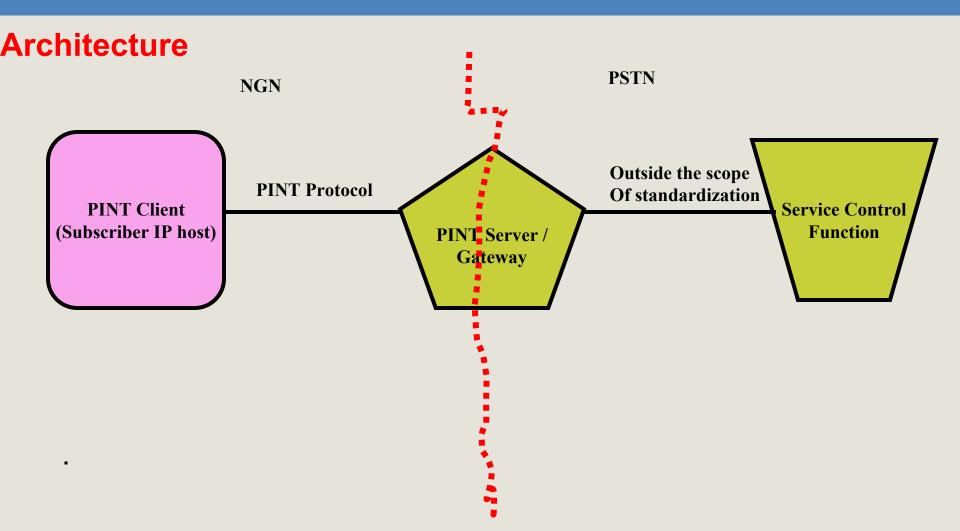
- SIP
- SDP

Use a sample of services as benchmarks

Benchmark services

Click to dial

- Callee and caller given as parameters
- Call established in PSTN


Click to fax

- A pointer to the content may be given as input parameter

Click to speak / send / play content

- A pointer may be given to the content

PINT Protocol

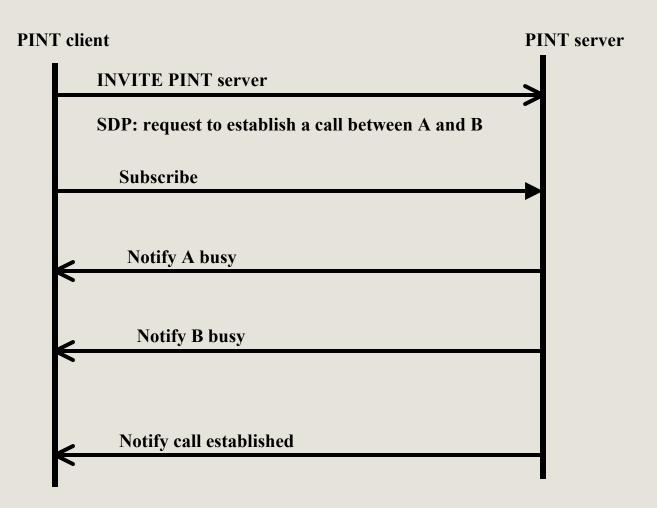
SIP messages, but with a different semantics

- REGISTER
 - Used by a PINT gateway/server to inform a proxy/redirect of the services it can offer
- INVITE
 - Used by the PINT client to request a specific service
- BYE
 - Used by the PINT client to cancel a previously sent request

PINT Protocol SIP messages, but with the same semantics

Subscribe Unsubscribe Notify

- Used by PINT clients to be informed of the progress/outcome of a request



PINT Protocol

SDP messages, but with a different semantics

- Used to specify the request (e.g. call) and carry the pertinent parameters (e.g. caller, callee)
- Examples of new keywords
 - Network type (TN) and address type (RFC2543)
 - Attribute Tags to pass information to the telephone network
 - Selection of specific service provider
 - Presentation restriction attribute (callers not divulged)
 - Require attribute
 - To force a server to decline an attribute it does not understand

- C->S: INVITE sip:R2C@pint.mailorder.com SIP/2.0
- Via: SIP/2.0/UDP 169.130.12.5
- From: sip:anon-1827631872@chinet.net
- To: sip:+1-201-456-7890@iron.org;user=phone
- Call-ID: 19971205T234505.56.78@pager.com
- CSeq: 4711 INVITE
- Subject: Sale on Ironing Boards
- Content-type: application/sdp
- Content-Length: 174
- v=0
- o=- 2353687637 2353687637 IN IP4 128.3.4.5
- s=R2C
- i=Ironing Board Promotion
- e=anon-1827631872@chinet.net
- t=2353687637 0
- m=audio 1 voice -
- c=TN RFC2543 +1-201-406-4090

. C->S: INVITE sip:faxback@pint.mailorder.com SIP/2.0 Via: SIP/2.0/UDP 169.130.12.5 From: sip:john.jones.3@chinet.net To: sip:1-800-3292225@steam.edu;user=phone;phone-context=+1 Call-ID: 19971205T234505.66.79@chinet.net CSeq: 4713 INVITE Content-type: application/sdp Content-Length: 218

v=0

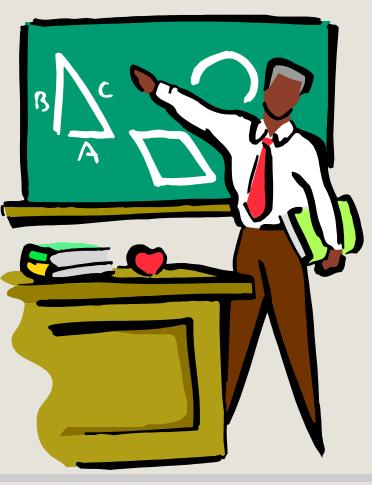
o=- 2353687660 2353687660 IN IP4 128.3.4.5 s=faxback e=john.jones.3@chinet.net t=2353687660 0 m=application 1 fax URI

. C->S: INVITE sip:faxserver@pint.vocaltec.com SIP/2.0 Via: SIP/2.0/UDP 169.130.12.5 From: sip:scott.petrack@chinet.net To: sip:faxserver@pint.vocaltec.com Call-ID: 19971205T234505.66.79@chinet.net CSeq: 4715 INVITE Content-type: application/sdp Content-Length: 267

v=0 o=- 2353687700 2353687700 IN IP4 128.3.4.5 s=faxserver e=scott.petrack@chinet.net t=2353687700 0 m=image 1 fax tif gif c= TN RFC2543 +972-9-956-1867 a=fmtp:tif uri:http://petrack/images/tif/picture1.tif a=fmtp:gif uri:http://petrack/images/gif/picture1.gif

Pros and cons

Pros


- Useful set of services
- Simple architecture
- Fits well in an environment where SIP/SDP is already installed

Cons

- Rely on the assumption that SIP/SDP will become quickly widespread
 - The assumption does not hold
 - The use of SIP/SDP become more a stumbling block than a stepping stone for the widespread usage of the standards
 - Proprietary implementations become widespread
- May not fit well in a real NGN environment
 - Calls will be established without using the PSTN

Inter-working with IN: SPIRITS

- 1. Introduction
- 2. Benchmark services
- **3. Architecture**
- 4. Pre-SPIRITS (proprietary) implementations
- 5. Pros / cons

Introduction

Services in the PSTN / Intelligent Network Requesting Internet Services (SPIRITS)

IETF initiative

Build new end user services in PSTN domain based on NGN/Internet capabilities

- Services initiated in PSTN domain but executed in the Internet domain

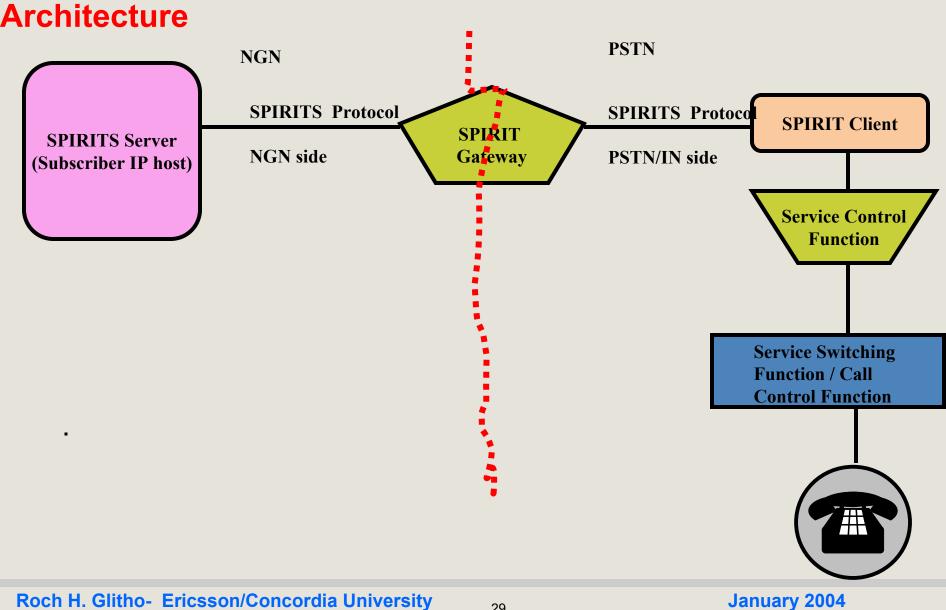
Re-use as much as possible the emerging NGN protocols in the architecture

- SIP
- SDP

Use a sample of services as benchmark

Benchmark services

Internet call waiting (ICW)


- Being informed of incoming PSTN calls while line busy because of Internet connection
- Specify the desired treatment for the call (e.g. accept, reject, forward, play announcement)
- PSTN carries out specified treatment

Internet call id delivery

Internet call forwarding

- A pointer to the content may be given as input parameter

Protocol requirements (NGN side)

- Communications between PINT server and PINT gateway
- SIP as basis
 - SDP for carrying parameters (or Multi-purpose Internet Mail Extensions (MIME))
 - Subscriber / notify
 - PINT extensions (optional requirement)

Protocol requirements (PSTN/IN side)

- Communications between PINT client and PINT gateway
 - IN related requirements
 - CS3
 - Conversion between ASN.1 / binary encoded parameters ans text encoded ones.

The actual protocols have not been specified

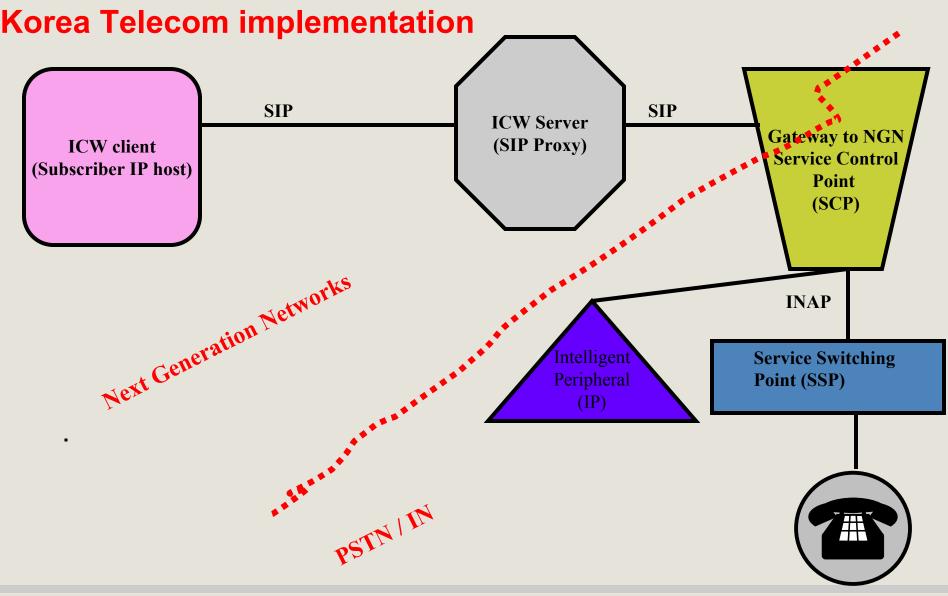
Pre-SPIRITS implementations

A very wide range

A few described in detail in an IETF RFC

- Korea Telecom
- Lucent
- NEC
- Telia / Nortel

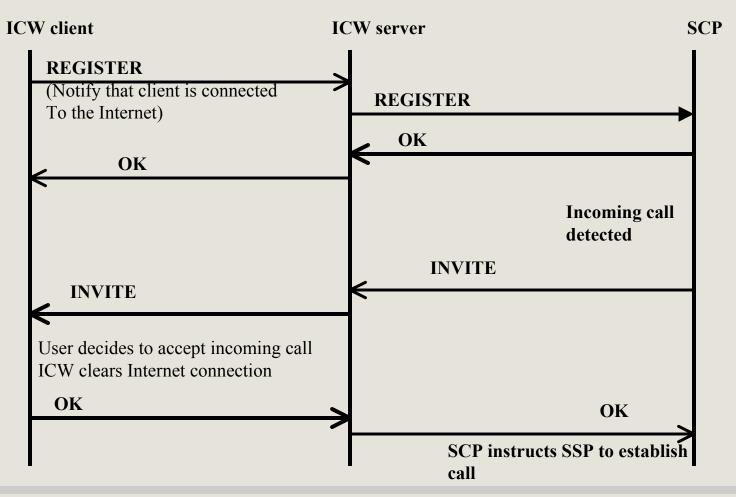
Korea Telecom implementation


Functionality

- Comprehensive Internet Call Waiting
- Flexible activation / de-activation

Network entities

- IN side
 - CS-1 based entities / protocol
 - SCP (SCF, SDF, plus a gateway to NGN world)
 - Intelligent Peripheral (IP)
 - INAP (SCP/IP communication and SCP/SSP communications)
- NGN side
 - SIP based entities
 - ICW server system (acts as SIP proxy/redirect server)
 - ICW client system (application running on subscriber PC)

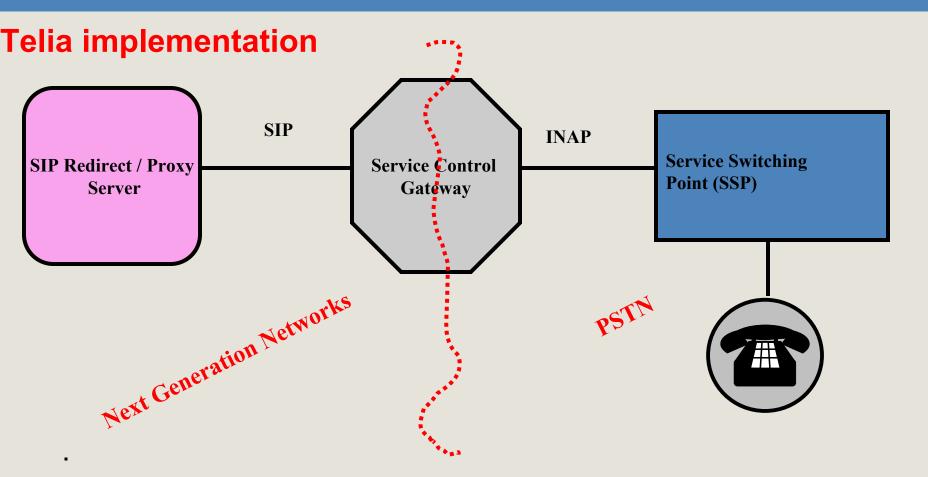

Roch H. Glitho- Ericsson/Concordia University

January 2004

Korea Telecom implementation

A simplified call flow ...

Telia implementation


Benchmark services

- Call transfer and number portability
- Call waiting and call offering for announcing a pending call
- Call screening and and do not disturb for filtering incoming calls
- Free phone ...

Main principle

- use of a SIP redirect/proxy server

Telia implementation

Server operating in redirect mode Number portability for calls initiated in PSTN Call screening Free phones

Server operating in proxy mode Call initiated in PSTN and redirected to a number in NGN

Pros and cons

Pros

- Useful set of services
- Simple architecture

Cons

- Too little, too late
 - Protocols not fully specified
 - Large number of deployed proprietary systems
 - Emerging proprietary systems for taking incoming calls without disconnecting from the Internet

To probe further ...

Re-using IN

- 1. ⊤-C Chiang et al., IN Services for Converged (Internet) Telephony, IEEE Communications Magazine, June 2000, Vol.38 No6, pp.108-115
- 2. R. H. Glitho, Alternatives to Today's IETF and ITU-T Advanced Service Architectures for Internet Telephony: IN and Beyond, *Elsevier Computer Networks 35 (2001)*, April 2001, pp. 551-563

Inter-working with IN

- 1. S. Petrack and L. Conroy, The PINT service protocol: Extending SIP and SDP for IP Access to Telephone Call Services, RFC 2848, June 2000
- 2. I. Faynberg et al., Service in the public switched telephone network / intelligent network (PSTN/IN) requesting Internet services (SPIRITS): Protocol requirements, RFC 3298, August 2002
- 3. I. Faynberg et al., Pre-SPIRITS Implementations of PSTN-initiated services, RFC 2995, November 2000