INSE 7110 – Winter 2005
Value Added Services Engineering in Next Generation Networks
Week #5
Definition ...

Signaling protocol neutral architecture

- Service architecture applicable to networks using any signalling protocol
 - Circuit switched telephony signalling protocol (i.e. SS7/ISUP/INAP)
 - Next Generation signalling protocols
 - H.323
 - SIP
 - Megaco
- Applicable to both circuit switched telephony and next generation networks
Today’s signaling protocol neutral architectures ...

JAIN JCC/JCAT
- JAIN community product
 - Applicable to SS7/ISUP/TCAP, SIP and H.323
 - Has lost momentum to Parlay

Parlay
- Discussed in this course

Call Processing Language (CPL)
- Discussed in this course
Signaling protocol neutral architectures …

1. Parlay
2. CPL
OSA/PARLAY

1. Introduction
2. Business model
3. Interactions
4. APIs
5. Case Study
6. Pros and cons
PARLAY forum

- Created in 1998 as close forum
- Open since 2000
- Include most major players from telecommunications and computer industries (e.g. Ericsson, Lucent, Siemens, IBM)
- Fourth release of specifications recently released

Relationship of Parlay specifications to 3GPP specifications

- API called Open Service Access (OSA) in 3GPP
 - Thus Parlay/OSA
 - Joint development
Introduction

OSA a tool kit of Virtual Home Environment (VHE)

- VHE
 - 3GPP concept for service mobility
 - Access to services from any location and with any terminal (within the limit of the terminal capabilities)
 - Include several tool kits:

OSA allow third party to access 3GPP next generation networks

- OSA application servers
 - reside in third party domains
 - Access 3GPP network functionality via service capability servers (SCS) (i.e. gateways)
Introduction

PARLAY main goal: Open up telecommunication networks

- Enable new business models
- Use open information technology middleware
- Make telecommunication network capabilities available for application development
 - Two types of APIs
 - Services APIs
 - Expose the network capabilities (e.g. call control, presence)
 - Framework APIs
 - Make the use of the service APIs secure, accountable and resilient (e.g. security, registration, authentication)
The business model

• Introduction
 – TINA-C inspired business model
 – Terminology: Services mean network capabilities

• Roles
 – Client application
 • Consume/use the services (e.g. network capabilities)
 • Equivalent to end users in TINA-C.
 – Enterprise operator
 • The entity that subscribes to the services
 • Subscriber in TINA-C
 – Framework operator
 • Entity that handles the subscriptions
 • Equivalent to the retailer in TINA-C
General model

(1) Service Registration

Enterprise Operator (Subscriber)

(2) Service Subscription

Framework Operator (Retailer)

(3) Service Usage

Client Application (End User)
Commonly deployed model …
Interactions

Application and framework

Authentication
• Peer to peer model
• Allow framework to check that application is “who” it claims to be and application to check that framework is “who” it claims to be
• Usually used in only one direction (i.e. framework checking).

Authorisation
• Determination of what the application can do once authenticated

Discovery
• Once authenticated applications can get info on available APIs

Establishment of service level agreement
• Usually done off-line
Interactions

Services/APIs and framework
Registration / De-registration
• Allow services to register/de-register to/from the framework
Interactions (Taken from reference [2])

1: authentication
2: request Registration interface
3: register factory
4: authentication
5: request Discovery interface
6: discover Service
7: Select Service + sign SLA
8: create Service Manager
9: return Service Manager
10: return Service Manager
11: Use service

1 – 3 registration/discovery, 4-11 run time communications establishment ….
The APIs

Figure 2 Parlay APIs interfaces
The APIs

Some common characteristics

Specifications include

• High level specification in UML (Universal Modelling Language)
• API specifications for several IT technologies
 – CORBA IDL
 – WSDL
 – Java

Two modes of communications

• Synchronous
• Asynchronous
Framework API: Make the use of the service APIs secure and resilient

 Trust and security management

 Event notification

 Service discovery

 Service registration

 Integrity management (e.g. load management)

 Service agreement
Framework API: Make the use of the service APIs secure and resilient

Trust and security management – Examples of method
AbortAuthentication ()
AuthenticationSucceeded ()
Challenge ()
TerminateAccess ()
InitiateAuthenticationWithVersion ()
Service API: Give access to network capabilities

- Call control
- User interactions
- Generic messaging
- Mobility
- Terminal capabilities
- Connectivity management
- Account management
- Charging service
- Data session control
- Presence and availability management
An example of Service API: Call control

- Generic call control service
- Multiparty call control service
- Multimedia call control service
- Conference call control service
The call control API

Call model

- Terminal
 - End point (Not covered in the current specifications)
- Address
 - Represents a party in a call (E.164 number, IP address)
- Call
 - Abstraction of the physical call that occurs in a network
- Call leg
 - Logical association between a call and a party involved in a call
The call control API

Generic call control
- Two party voice call only
- Remain in Parlay for historical reasons

Multiparty call control
- Establishment of calls with any given number of users
- Root of the inheritance tree

Multimedia call control
- Add multimedia (e.g. media negotiation) capabilities

Conference call control
- Add conferencing capabilities
Conferencing / multiparty sessions

Basis of a wide range of applications
- Voice/videoconferencing
- Multiparty gaming
- Distance learning
- And more …

Categorization schemes
- With / without sub-conferences
- Pre-arranged vs. ad hoc
- With / without floor control
 - Floor control: Who can be heard / seen
- Where the media is mixed (e.g. Centralized vs. decentralized)
- Dial-in (Meet-me) vs. dial-out
Conferencing with Parlay

Examples of methods ...

- CreateConference ()
 - Parameters include the number of sub-conferences
- CheckResource ()
- ReserveResources ()
- FreeResources ()
- PartyJoined ()
- SplitSubconference ()
- MergeSubconference ()
- FloorRequest ()
A case study on PARLAY/OSA and SIP: Run For Your Life game (Described in detail in reference [3])

- 1 - Introduction
- 2 - Game
- 3 - Architecture
- 4 - Mapping
Introduction

Run-For-Your-Life

- Built from scratch in Ericsson Research lab in Montreal Canada
- Demonstrated at several trade shows (e.g. ICIN 2001, Parlay Munich meeting, Parlay Hong Kong meeting)
- Objectives assigned to the game design
 - Extensive usage of call control capabilities
 - Have fun …
Introduction

Objective of the case study ...

Aim at helping in tackling two issues:

1. PARLAY Call Control APIs that cannot be mapped onto SIP
 – What are they?
 – What is the impact on service creation?

1. SIP semantics that are not visible in PARLAY APIs as per today’s specification
 – What are they?
 – What is the impact on service creation?
The game ...

A multiparty cooperative game

- Group of people trapped in a house with several rooms set to burn/explode in a given time
- Can escape only if password is found
- Letters making the password scattered in selected rooms of the house
- People ending up in the same room can exchange hints about the password via audio and chat
- Game can be assimilated to a conference with as sub-conference people ending up in a same room

Requiring a set of well defined conferencing functionality

- Conferencing
- Sub-conferencing
The game...
Architecture ...

GAME SERVER

PARLAY / SIP GATEWAY

- **Signaling Control Unit**
- **Media Control Unit**

TCP/IP

PARLAY

Game client

SIP

RTP

Game client
Architecture

Signaling Control Unit
- Parlay handler
- PARLAT/SIP Glue
- SIP Handler

Media Control Unit
- MEGACO/H248
- Media Manager
- Media Handler
- Media Handler
- Media Handler
- RTP Handler
Figure 5 - Mapping for dial-in
Dial out ...
The mapping ...

PARLAY Call Control Services that cannot be mapped onto SIP
- There seems to be none
- However the mapping can be done in several ways in some cases

SIP semantics that are not visible in PARLAY APIs as per today’s specification
- There exist a few (e.g. Possibility of a caller to state for instance that the call should not forwarded)
- PARLAY may be extended to cater to these features
Pros and cons ...

Pros

- PARLAY/OSA allows the creation of a wide range of services including services that combine different types of network capabilities (e.g. call control, mobility, presence)
- Parlay allow the creation of services that span several network technologies (e.g. Sip, H.323, 3GPP, soft-switches)

Cons

- The level of abstraction is still low
 - 3N+1 calls were required to create a conference call in older versions of Parlay – The number is now N+1
- Parlay is not easy to grasp by people with no circuit switched telephony/IN background
 - Call leg concept
The Call Processing Language

1. Introduction
2. Requirements
3. Constructs
4. Example
5. Pros and cons
Introduction ...

Specificities:
- Only architecture that aims at service creation by end-users

Prime target: Un-trusted parties
- Direct use
- Use via a graphical user interface
 • Higher level of abstraction
 • Mapping done by middle ware
Introduction ...

Targeting end-users has a few consequences:

– Stringent language requirements

– Need to upload scripts to servers
 • REGISTER has been proposed for SIP
 • No mechanism has been proposed for H.323
Requirements on language (From the RFC).

Lightweight, efficient easy to implement

Easily verifiable for correctness

Executable in a safe manner

Easily writeable and parsable

Extensible

Signaling protocol independence
Constructs for an XML Based CPL ...

Switches
- Choices the script can make
 - Address, string, time, priority

Signaling operation
- Cause signalling events in underlying protocol
 - Proxy, redirect, reject

Location modifier
- Add/remove location
Simplified example from the RFC ...
Pros and Cons ...

Highly suitable for service creation by end-users
- End-users familiar with scripts / XML
- End-users unfamiliar with scripts / XML (via GUI)
- Offer required security

However:
- Very few end-users are interested in creating service
- CPL is highly unsuitable for service creation by providers / third parties
 - Range of services that can be created is limited
 - More powerful tools exist
- Service logic and service data need to reside in the same script
To probe further ...

PARLAY:
3. R. Glitho and K. Sylla, Developing Applications for Internet Telephony: A case Study on the use of Parlay Call Control APIs in SIP Networks, IEEE Network, Forthcoming

JAIN JCC/JCAT
JSR 00021 http://www.jcp.org/aboutJava/communityprocess/review/jsr021/
R. Jain et al. Java Call Control and Session Initiation Protocol (SIP). IEICE Transactions on Communications, December 2001

CPL
RFCs