H.323, Megaco/H.248 and Soft-Switches

INSE 7110 – Winter 2006
Value Added Services Engineering in Next Generation Networks
Week #5
Outline

1. H.323
2. Megaco/H.248
3. Soft-switches
H.323

1. Introduction
2. Functional entities
3. Signaling protocols
4. H.323 vs. SIP
H.323: Introduction

An umbrella ITU-T standard including

– signalling standards:
 • H.225.0
 • Q.931
 • H.245
– Others (e.g. H.324 Terminal for low bit rate multimedia communications)
H.323: The functionality entities

Terminals
- End point
- Used for real time two way multimedia communications with another end point

Gatekeeper
- Control how terminal access networks
- Provide address translation

Gateway
- End point
- Used for communications between H.323 terminals and terminals in the PSTN

Multipoint control unit (MCU)
- Provides centralized conferencing functionality
H.323 signaling: Registration Admission and Status (RAS)

Key features

- ASN.1 based messages
- Request / reply protocol
- Signaling between end-points
 - Terminal or gateway
 and
 - Gatekeeper
- Use unreliable channels
 - Retries
 - Timeouts
RAS: Gatekeeper discovery …
RAS: Admission request ...
H.323 signaling: Call Set Up (H.225)

Key features
- ISUP signaling (Q.931) based
- ASN.1 based messages
- Transaction oriented protocol
- Signaling between end-points
 - Terminal or gateway and
 - Gatekeeper
- Use reliable channels
RAS: Call set up - No gatekeeper ...

Call Signalling Messages

Endpoint 1

Setup (1)
Call proceeding (2)
Alerting (3)
Connect (4)

Endpoint 2

T1527150-97
RAS: Call set up - 1 gatekeeper ...

- Setup (1)
- Call proceeding (2)
- ARQ (3)
- ACF/ARJ (4)
- Alerting (5)
- Connect (6)

RAS Messages

Call Signalling Messages
RAS: Call set up - Two gatekeepers ...

Endpoint 1
ARQ (1)
ACF/ARJ (2)

Gatekeeper 1
Setup (3)
Call proceeding (4)
Alerting (7)
Connect (8)

Gatekeeper 2

ARQ (5)
ACF/ARJ (6)

Endpoint 2

RAS Messages
Call Signalling Messages

T1527190-97
H.323 signaling: Media signaling (H.245)

Key features
- ASN.1 based messages for
 - Master/slave determination
 - Capabilities negotiation
 - Logical channel signaling
- Several modes
 - Request/reply
 - Commands
 - Indications
- Signaling between end-points
 - Terminal or gateway
 - Gatekeeper
- Use reliable channels
H.323 signaling: Master / slave determination

```
INCOMING
AWAITING
RESPONSE

IDLE

OUTGOING
AWAITING
RESPONSE

DETERMINE.indication  REJECT.indication  DETERMINE.confirm

DETERMINE.request  REJECT.indication  DETERMINE.confirm
```
H.323 signaling: Capabilities exchange

- IDLE
- AWAITING RESPONSE
- TRANSFER.request
- REJECT.indication
- TRANSFER.confirm
H.323 signaling: Capabilities exchange

- IDLE
 - TRANSFER.indication
 - REJECT.request
 - REJECT.indication
 - TRANSFER.respor

- AWAITING RESPONSE
H.323 signaling: Logical channels

- ESTABLISH.request
- ESTABLISH.indication
- ESTABLISH.response
- ESTABLISH.confirm
- OpenLogicalChannel
- OpenLogicalChannelAck
H.323 signaling: Logical channels

T103
2
3
0

outgoing

RELEASE.request
CloseLogicalChannel
RELEASE.confirm
CloseLogicalChannelAck

incoming

RELEASE.indication

2
0
H.323 signaling: An important feature - Fast connect

Introduced as an afterthought in H.323
Allow call set up and logical channel set up using a single message
- FASTCONNECT
 - Include as parameter fast start to indicate that logical channel should be opened
 - May be refused by the other end (Fast connect refused)
H.323 signaling: Putting it together … alternative 1

1 ARQ
2 ACF/ARJ
3 Setup
4 ARQ
5 ACF/ARJ
6 Connect

Call Signalling Channel Messages

RAS Channel Messages
H.323 signaling: Putting it together…alternative 2

H.245 Control Channel Messages

Call Signalling Channel Messages

RAS Channel Messages

1. ARQ
2. ACF/ARJ
3. Setup
4. Setup
5. ARQ
6. ACF/ARJ
7. Connect
8. Connect
9. H.245 Channel
H.323 signaling: Putting it together - alternative 3

1. ARQ
2. ACF/ARJ
3. Setup
4. Setup
5. ARQ
6. ACF/ARJ
7. Connect
8. Connect
9. H.245 Channel
10. H.245 Channel

Gatekeeper Cloud

Endpoint 1

1 2 3 8 9

4 5 6 7 10

Endpoint 2

H.245 Control Channel Messages
Call Signalling Channel Messages
RAS Channel Messages
Megaco / H.248

1. Introduction
2. Genesis
3. Concepts
4. Protocol
5. Call cases
Megaco/H.248: Introduction

Primary motives for decomposing gateways between PSTN and next generation networks:

– Scalability
– Specialization
– Opening up of market to new players

Side-effect

– Possibility of using the part of the decomposed gateway for call control
 • Soft-switches
Megaco/H.248: Introduction

Media Gateway controller

Media gateway control protocol

Media Gateway Media Gateway Media Gateway
Megaco/H.248: Genesis

A long history starting in 1998
- Simple Gateway Control Protocol (SGCP)
 - Text based encoding, limited command set
- IP Device Control Protocol (IPDCP)
 - A few more features to SGCP
- Media Gateway Control Protocol (MGCP)
 - Merge of SGCP and IPDC
- Media gateway Decomposition Control Protocol (MDCP)
 - Binary encoded
- Megaco / H.248 (Joint IETF / ITU-T specifications)
 - A compromise
 - Both text based and binary encoding
 - A wide range of transport protocols(e.g. UDP, TCP, SCTP)
Megaco/H.248: Concepts - Termination

Source or sink of media
- Persistent (circuit switched) or ephemeral (e.g. RTP)
- IDs
 - Unique or wildcard mechanism (ALL or CHOOSE)
- Properties/descriptors
 - Unique ids
 - Default values
 - Categorization
 - Common (i.e. termination state properties) vs. stream specific
 - For each media stream
 - Local properties
 - Properties of received streams
 - Properties of transmitted streams
 - Mandatory vs. optional
 - Options are grouped in packages
Megaco/H.248: Concepts - Termination

Examples of properties/descriptors

- **Streams**
 - Single bidirectional stream
 - Local control: Send only – send/receive ...
 - Local: media received
 - Remote: media sent

- **Events**
 - To be detected by the MG and reported to the controller
 - On hook / Off hook transition

- **Signals**
 - To be applied to a termination by the MG
 - Tones
 - Announcements

- **Digit map**
 - Dialling plan residing in the MG
 - Detect and report events received on a termination ..
Megaco/H.248: Concepts - Context

Context (mixing bridge)
- Who can hear/see/talk to whom
- Association between terminations
- May imply
 - Conversion (RTP stream to PSTN PCM and vice versa)
 - Mixing (audio or video)
 - Null context
 - Terminations that are not associated with no other termination (e.g. idle circuit switched lines)
 - Topology
 - Precedence
Megaco/H.248: Protocol - Commands

- Add termination to a context
- Modify the properties of a termination
- Subtract a termination from a context
- Move a termination from a context A to context B
- Audit (values or capabilities)
- Notify
- ServiceChange (specific type of notify – terminations about to be taken out of service)
Megaco/H.248: Protocol - Transactions

Possibility to send several commands in one go

- Transaction Request
- Transaction Reply
- Transaction pending
Several alternatives

An example

- **UDP/IP**
 - Unreliable, timeouts / resends
 - At most once functionality required (Receivers should keep track of received commands)
Megaco/H.248: PSTN / NGN Interconnection …

INVITE

ISUP “INVITE” to PSTN

OK

ISUP “OK” to MGC

ACK

Add RTP stream to context

Add PCM stream to context

RTP

PCM

User in NGN — MGC — MG — User in PSTN
Megaco/H.248: Conferencing ...
Megaco/H.248: Megaco IP phones

Phone considered as a media gateway ...

- Terminations
 - User interface
 - Audio transducers
 - Hands free
 - Headset
 - Microphone

- Interactions
 - Add
 - Move
 - Subtract
 - Modify
Soft-switches

1. Introduction

2. Overview

3. A simplified call case
Soft-switch: Introduction

A “side effect” of media gateway decomposition
- Aggressively promoted by the soft-switch consortium, now known as the International Packet Communication Consortium (IPCC)
 - Adoption of existing standards (e.g. SIP, H.323, MGCP, Megaco)
- Gateway controller (plus some additional features) acts as a switch
 - Switching in software instead of hardware
- Can act as local exchange (class 5) or toll centre (class 4)
 - Lower entry costs for new incumbents
 - New local telephony networks and “by pass” for long distance call providers
- Soft-switches vs. classical switches debate
 - Scalability
 - Reliability
 - QoS
Soft-switches: Overview

Soft-switch (Media Gateway Controller + Some intelligence)

- ISUP
- H.323 or SIP
- MGC protocols

Media Gateway Media Gateway Media Gateway
Soft-switches: Overview

An example of soft-switch as class 5 replacement ...

- Soft-switch
 - Signaling (e.g. ISUP, SIP)
 - MGC protocol
 - Media Gateway (Residential gateway)
 - Media (i.e. RTP)

- Soft-switch
 - MGC protocol
 - Media Gateway (i.e. Residential gateway)

...
An example of soft-switch as class 4 replacement ...

Soft-switch

Signaling (e.g. ISUP, SIP)

MGC protocol

RTP for media

Soft-switch

Media Gateway

ISUP signaling

PCM for media

Class 4 switch

Media Gateway

PCM for media

ISUP signaling

Class 4 switch
Soft-switch: A simplified call case (Calling card)

Caller Local exchange Soft-switch MG MG Soft-switch Local exchange

Call to access number (I.e soft-switch) →

Verification (e.g. account, Digit analysis) →

Info request (e.g. card number, Callee number) ←

Call request (e.g. SIP, SIP-T) ←

Call request (ISUP) →

PCM ←

RTP ←

PCM →
References ...

1. Moderassi and S. Mohan, special issue, Advanced Signaling and Control in Next Generation Networks, IEEE Communications Magazine, October 2000 – Include papers on:
 - H.323
 - SIP

2. Additional references on Megaco/H.248
 RFC 3525 (The protocol)
 RFC 3054 (IP Phone)