

Chapter I – From Circuit Switched Telephony to Next Generation Networks

http://users.encs.concordia.ca/~glitho/

Concordia Institute for Information Systems Engineering

Outline

 Before Next Generation Networks
Basics of Next Generation Networks (NGN)

Circuit Switched Telephony

Telecommunication Services Engineering (TSE) Lab Before Next Generation Networks: Essentials of Circuit Switched Telephony

- Key concepts
- Fixed Telephony
- 2G (e.g. GSM)
- 2.5 G (e.g. GPRS)

Telecommunication Services Engineering (TSE) Lab Key Concepts: Telephony

Call / Session: Real time / Conversational exchange of media Two components: Signaling Media (e.g. voice, video)

Signaling: Establishment, modification and tear down of calls

Key concepts: Circuit switching vs. packet switching

Principal Criteria	Circuit switched	Packet switched
Dedicated Physical path	Yes/No	Yes/No
Derived criteria	Circuit switched	Packet switched
Call set up required	Yes/No	Yes/No
Possibility of congestion during communication	Yes/No	Yes/No
Fixed bandwidth available .	Yes/No	Yes/No
Non optimal usage of bandwidth	Yes/No	Yes/No

A simplified fixed telephony network ...

Fixed Telephony: Signaling

- Network Network signalling
 - Between telephone exchanges
 - Initially in-band (Same trunks as voice)
 - Out-band in modern circuit switched telephony (Do not use same trunks as voice)
 - Example: Signalling System no7 SS7

Fixed Telephony: Signaling System No7 (SS7)

- Network Network signalling
 - Signalling data carried over a separate and overlay packet switched network
 - Development initiated in the 80s and completed in the early 90s
 - Most widely deployed signalling system
 - Used initially for two party voice call signalling
 - Then subsequently for other applications such as Short Message Service (SMS)

SS7 Protocol stack

Fixed Telephony: A simplified two party call

Mobile Telephony: History (Circuit switched based)

First generation cellular networks (70s -)

- Analog systems, circuit switching based
 - Total Access Communications Systems (TACS) UK
 - Advanced Mobile Phone Systems (AMPS) USA/Canada
 - Nordic Mobile Telephone System (NMT) Scandinavia

Second Generation (90s -)

- Digital systems, circuit switching based
 - GSM Europe mainly However, gaining ground in North America
 - D-AMPS (Digital version of AMPS)
 - PDC (Japan)
 - CDMA One

History (Packet switched based)

Third Generation (early 00s -)

- Still digital, but more capacity (X Mbits)
- Packet switching based
- Two main standards
 - UMTS
 - CDMA 2000

Fourth Generation (2004/2005 -)

- Still digital, but more capacity (XX Mbits)
- Packet switching based
- Several radio access standards (e.g. Long Term Evolution (LTE), Wimax)
- 1 Core network standard that enables the co-existence between "old" radio access (e.g. CDMA 2000) and new radio access (e.g. LTE, Wimax)

Functional entities (2G)

Generic Cellular telephony network

- Mobile Switching Centre
 - Switches used in cellular telephony Additional features for mobility management
- Home location register (HLR) /Visitor location register (VLR)
 - Keep information on user location
- Base stations
 - Access point to cellular networks
 - Communicate with end user terminals
 - Control cells
- Signalling in cellular networks
 - SS7 based

Functional entities (2G)

Generic Cellular telephony network

- Mobile Switching Centre
 - Switches used in cellular telephony Additional features for mobility management
- Home location register (HLR) /Visitor location register (VLR)
 - Keep information on user location
- Base stations
 - Access point to cellular networks
 - Communicate with end user terminals
 - Control cells
- Signalling in cellular networks
 - SS7 based

Functional entities (2G)

GSM specifics

- Base stations
 - Base Transceiver Station (Actual base station)
 - Base station controller (BSC)
 - Controls a set of base stations
- Equipment Identity Register
 - Use for security purpose
 - Can blacklist stolen mobile stations

Functional entities

http://www.willassen.no/msl/node4.html

More on GSM – Air interface

GSM – TDMA (Initial rate: around 20 kbits / second)

http://www.willassen.no/msl/node4.html

More on GSM – Cell structure

GSM - cells

http://www.willassen.no/msl/node4.html

Roaming scenarios

- Mary turns her phone one
- John calls Mary
- Alice calls Mary

Mary a Montreal subscriber turns her phone on while roaming in Vancouver

John in Montreal calls Mary

Alice in Vancouver calls Mary

2.5 G

Target solely data services

- Use packet switching principles between mobiles and bases stations for:
 - Faster connection set up
 - Higher data rates
 - Lower cost
- Rely on new nodes which communicate using packet switching principles

No impact on telephony

- Still based on circuit switching principles
- No change at all on the circuit switched part of 2G

GPRS as illustration

New class of nodes:

- GPRS Support Node (GSN)
 - Serving GPRS Support Node (S-GSN)
 - Entry point
 - Gateway GPRS Support Node (G-GSN)
 - Gateway to the external packet switched network (e.g. Internet)

New interfaces

- Interface S-GSN / G-GSN
- Interface S-GSN with the existing GSM nodes

References

- 1. Tanembaum, Computer Networks, 4th edition, Prentice Hall 2003 (Chapter 2.5 The public switched telephone system network)
- 2. R. Moderassi and R. Skoog, Signaling System No7: A Tutorial, IEEE Communications Magazine, July 1990
- 3. M. Rahnema, Overview of the GSM System and Protocol Architecture, IEEE Communications Magazine, April 1993
- **4.** C. Bettstetter, H-J Vogel, J. Eberspacher, GSM Phase2+, General Radio Service GPRS: Architecture, Protocols and Air Interface, IEEE Communications Surveys & Tutorials, Third Quarter 1999, Vol. 2, No3

TU-T Next Generation Network Vision

Layering in next generation networks

Services (Basic services + valueadded services)

Transport (Below IP + IP + transport layer)

Layering in next generation networks

Services (value-added services) also called application / services

Services (Basic service) also called call/session

Transport (Below IP + IP + transport layer) also called bearer

Examples of technologies for next generation networks

- Transport technologies (Examples)
 - Wimax, long term evolution (LTE)
- Call / session technologies (Examples)
 - SIP, H.323
- Value added services (or services technologies) Examples
 - SIP servlets, Web services

The ITU-T Vision of Next Generation

- Fundamental characteristics
- Architectural framework

Fundamental characteristics (or requirements, or design goals) Categorization scheme used in this lecture

- Layer independent characteristics
 - Impact all layers
- Layer specific characteristics
 - Impact specific layers

Fundamental characteristics (or requirements, or design goals) Categorization scheme used in this lecture

- Layer independent characteristics
 - Business model
 - Separation of concerns
 - Regulatory issues
 - Inter-working with legacy
- Layer specific characteristics
 - Network capacities
 - En-user services and their provision

Fundamental characteristics Layer independent characteristics

- Business model
 - Unrestricted access to different service providers
 - Has a lot of implications
 - Plug and play by end users when it comes to subscriptions
 - Last mile from provider A
 - Internet access from provider B
 - Telephony services running on the last mile from provider C
 - Streaming services running on last mile from provider D

Fundamental characteristics Layer independent characteristics

- Separation of concerns
 - Separation of control functions between bearer, call/session and application / service
 - Decoupling of service provision from transport and provision of open interfaces
 - Independence of service related functions from underlying transport technologies

Fundamental characteristics Layer independent characteristics

- Compliance with all regulatory issues
 - Emergency communications
 - Lawful interception
 - Security

Fundamental characteristics Inter-working with legacy

Through open interfaces

Fundamental characteristics Layer dependent characteristics

- End-user services and their provision
 - Support of a wide range of services, applications and mechanisms based on building blocks
 - Generalized mobility (terminal, end-user and services)
 - Unified characteristics for the same service as perceived by the user
 - Converged services between fixed and mobile

Fundamental characteristics Layer dependent characteristics

- Transport
 - Broadband
 - Multiple last mile technologies
 - Packet based transfer

Architectural framework

Architectural framework

Architectural framework

References

- C-S and D. Knight, Realization of the Next Generation Network, IEEE Communications Magazine, October 2005, Vol. 43, No. 10
- K. Knightson et al., NGN Architecture: General Principles, Functional Architecture, and Implementation, IEEE Communications Magazine, October 2005, Vol. 43, No. 10

