Chapter IV –
Mobile Ad Hoc Networks and Wireless Sensor Networks

http://users.encs.concordia.ca/~glitho/
Telecommunication Services Engineering (TSE) Lab

Outline

1. Mobile Ad Hoc Networks (MANET)
2. Wireless Sensor Networks (WSN)
Mobile Ad Hoc Networks

1. General concepts
2. Below IP
3. IP Layer: Routing
4. Transport Layer
5. Applications layer challenges
Mobile ad hoc networks

Networks that can be deployed, anywhere, any time

Some of the characteristics:
- Infrastructure-less
- Dynamically changing network topologies
- Physical layer limitations
- Variation in link and node capabilities
- Energy constraints
Categorization

- Stand alone

Or

- Connected to a fixed infrastructure (e.g. 3G, 4G, Internet)
Key application areas

- Natural disasters (e.g. earthquake)
- Battlefield.
Below IP: The Off-the-shelf building blocks

Wireless PANs -
BlueTooth
1 Mbps
- PHY (RF Layer)
 - Fast frequency hopping
- MAC (Baseband Layer)
 - Basic structure:
 - point to point
 - Master / slave
 - Piconet
 - Point to multipoint
 - 1 master controlling several slaves
 - Scatternets
 - 2 or more overlapping Piconets
 - Nodes which are part of more than one Piconet act as bridges
Below IP: The Off-the-shelf building blocks

Wireless PANs -
BlueTooth (The most popular)
Scatternets can be used as basis for multihop ad hoc networks
However:
- Few implementations of BlueTooth support scatternets
- Many open research issues
 - Efficient inquiry
 - Scatternet / piconet scheduling
- No working BlueTooth multihop ad hoc network test bed
- But simulators
Below IP: The Off-the-shelf building blocks

Wireless LANs -

1. IEEE 802.11 (a, b, c, d, e, f and g) – WiFi
 - Most popular Off-the-Shelf building block
 - 1 – 54 Mbps
 - Two modes:
 - Infrastructure Mode Basic Service Set (IM-BSS)
 - Access points
 - Connections to a fixed network (e.g. 3G, Internet)
 - Independent Basic Service Set (IBSS)
 - No access point
 - Stand alone mode
Below IP: The Off-the-shelf building blocks

Wireless LANs –
IEEE 802.11 (a, b, c, d, e, f and g) - WiFi

- PHY
 - Most popular
 - Direct Sequence Spread Spectrum (DSS)
 - Orthogonal Frequency Division Multiplexing (OFDM)
 - More recent
 - Enable high rates
Below IP: The Off-the-shelf building blocks

Wireless LANs -
IEEE 802.11 (a, b, c, d, e, f and g) - WiFi

- MAC
 - Distributed Coordination Function (DCF)
 - Work in both IM-BSS and IBSS mode
 - Carrier Sense Multiple Access – Collision Avoidance (CSMA/CA)
 - Most popular
 - Point Coordination Function (PCF)
 - Polling scheme
 - Work only in the IM-BSS mode
 - Has lost momentum
IP Layer: Routing

Pro-active approaches -
- Each node maintains the route to every other node
- Periodic updates
- Derived from wireline traditional routing approaches
- Examples
 - Distance sequenced distance vector (DSV)
 - Optimized link state routing (OLSR)
IP Layer: Routing

Reactive approaches -
- On-demand (built when needed)
- Some examples
 - Ad hoc On Demand Vector Routing (AODV)
 - Dynamic Source Routing (DSR)
Examples of reasons for which TCP does not perform well in MANETs

- Misinterpretations
 - Interpret “wrongly” as congestion:
 - Packet loss
 - Frequent path breaks

- Network partitioning and re-merging
 - Due to randomly moving nodes

Two categories of solutions:
- Enhanced TCP
- Brand new transport protocols
Telecommunication Services Engineering (TSE) Lab

Application Layer Challenges: The case of Multimedia Sessions

Examples of challenges common to signaling and media handling

1. No centralized entity
2. Optimal usage of resources
3. Lightweight
4. Independence of lower layer protocols (e.g. Routing)
5. Scalability
Application Layer Challenges: The case of Multimedia Sessions

Signaling specific challenges

Dynamic propagation of conferencing information (e.g. who has joined, who has left)

Very challenging in MANETs due to the frequent changes in topology

- Voluntary departure (easy to handle)
- Forced departure (trickier)
Telecommunication Services Engineering (TSE) Lab

Application Layer Challenges: The case of Multimedia Sessions

Media handling specific challenges
- Limited quantity of streams
- Synchronization (streams delivery with proper ordering and timing)
- Attendance with different media compression format

Very challenging in MANETs because there is no possibility to have a centralized mixer
Potential solution: clustering

- **Creation:** When initiating a session.
- **Member Change:** When a new participant joins.
- **Splitting:** When a new participant joins and reaches \(S_v \).
- **Merging:** When a participant leaves and reaches \(M_v \).
- **Deletion:** When terminating a session.
- **Member Change:** When participants leave.
Telecommunication Services Engineering (TSE) Lab

To probe further …

1. S. Basagni et al., editors, Mobile ad hoc networking, IEEE / Wiley Press, 2004

Wireless Sensor Networks

1. General concepts
2. Transport, network, MAC and PHY
3. Middleware
Wireless Sensors

Small scale autonomous devices that can sense, compute and communicate ambient information

- Ambient information
 - Space
 - e.g. location, velocity
 - Environment
 - e.g. luminosity, level of noise
- Physiology
 - E.g. blood pressure, heartbeat
Telecommunication Services Engineering (TSE) Lab

Wireless Sensors
Wireless Sensor Networks (WSNs)

- **Sensors**
 - Do the actual sensing

- **Aggregators**
 - Logical representatives of regions of interest
 - Summarize data for regions

- **Sinks**
 - Collect data from all sensors / aggregators
 - Interact with end – user services / applications via gateways

- **Gateways**
 - Dual interfaces
 - Bridge WSNs and outside world
Telecommunication Services Engineering (TSE) Lab

Applications areas

Numerous
- Military
- Environment
- Health
- Home
- Industry
A Layered View

Application Level

Networking Level

Communications Level

Transport Network

Data Link

Middleware / Enablers

End user application
Transport

- Transport layer in general
 - Bridge between network layer and application layer
 - Multiplexing / de-multiplexing
 - End to end data delivery with reliability required by application
 - Connection-less vs. connection oriented
- Traffic regulation
 - Flow control / congestion control
Transport

- Unsuitability of classical Internet transport protocols
 - TCP
 - Overhead due to 3 way handshaking, wireless nature of WSN
 - UDP
 - Lack of flow and congestion control mechanisms
Transport

- Requirements for transport in WSN
 - Reliability (Transmission of event features from sensors to sink and transmission of commands / programming tasks from sink to sensors)
 - Congestion control (Avoid event detection impairment at sources such as aggregators)
 - Self configuration (adaptations to mobility, temporary failure, power down)
 - Energy awareness
 - Biased implementation (Fair usage of resources – heavier burden on sinks)
 - Constrained routing / addressing (No end to end global addressing)
Telecommunication Services Engineering (TSE) Lab

Transport

- Two groups of protocols
 - Event to sink transport
 - Sink to sensors transport
Network layer (Routing)

- Data centric
 - Sensors do not usually have specific IDs
 - Data centric protocols
 - Route based on data description
 - Attribute naming (e.g. area where temperature > 20 degrees)
 - Data aggregation / fusion
 - Some examples
 - Flooding
 - Gossiping
MAC

- Requirements specific to WSNs
 - Energy efficiency
 - Topology awareness
 - Spatial correlation

- Categorization
 - Contention based protocols
 - Hybrid medium access
PHY

- Examples of technologies
 - Ultra wide band
 - Low energy level
 - Short range
 - Broadband (XXX Mbits)
 - Infrared
 Middleware challenges

- Limited power and resources
- Scalability, mobility, dynamic network topology
- Heterogeneity
- Dynamicity (e.g. energy, processing power)
- Real world integration (e.g. on volcanoes)
- Quality of service
- Security
Examples of middleware technologies

- Low level commands
- Data bases
- Web services
Low level commands

- Used for debugging/configuring/upgrading firmware/retrieving data readings
- Commands sent by a proprietary client / standard text interfacing application (i.e. telnet)
- Requires a full understanding of the particular instance of WSN (algorithms or technology)
give desc of approach
what research work uses this
MAIN drawback

APIs
- low level: specifying ip/port, special flags, programming construct, following a sequence of prog operations

tt, 13/12/2005
-Low level APIs

- Based on high level programming languages or specialized languages (i.e. NesC)
- Relatively low level of abstraction
- Some security features, no publication/discovery
- Ex: MIT crickets, Sensoria sGate, EmberNet
t4

give desc of approach
what research work uses this
MAIN drawback

APIS
- low level: specifying ip/port, special flags, programming construct, following a sequence of prog operations

tt, 13/12/2005
Data Base approaches

- Treat the WSN as a data base
 - May use a standard query language or an extension
 - Queries are sent to the sink
 - Can be used with most programming languages
- Some examples
 - TinyDB
 - MICA2
 - COUGAR
Web Services

End-users

Applications

Sensor Networks

WEB SERVICES !!!
To probe further
