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Abstract

Measuring the Effectiveness of Microsoft Authenticode: A Systematic

Analysis of Signed Freeware

Mina Jafari

Recent studies have shown that Authenticode, the Windows code signing standard

for portable executable files, can be abused by potentially unwanted programs (PUP)

and malware to evade detection and bypass Windows protections. These studies dis-

cuss improper signature checks by frameworks (e.g., anti-virus programs), key mis-

management, improper verification by certificate authorities (CAs) and underground

certificate trade as weaknesses that can be abused in Windows code signing public

key infrastructure (PKI). We explore the Authenticode signatures of supposedly be-

nign applications in the wild to gain a clearer understanding of this mechanism so

that we can identify potential issues that can undermine trust in Authenticode. For

studying the blackbox of the Authenticode, we tackle the main challenge of doing

a measurement study on Authenticode, lack of a comprehensive corpus of Windows

code signing certificates. As placing trust in the freeware that is downloaded from

web is one significant use case of code signing, we target eight popular download

portals as source of our dataset and collect 106K Windows applications. We present

an analysis framework for studying code signing certificates and extract 27K certifi-

cates from signed executable applications. This framework provides a crawler for

automated download of applications from download portals. Furthermore, as part of

our analysis framework, we develop a linter that is specifically designed for Authen-

ticode certificates. Both of our tools are in the process of release for public use of

researchers. Our results identify issues in the code signing certificates that the Au-

thenticode validation fails in preventing them. Usage of inadequately secure hash and

public key algorithms such as MD5, SHA1 and 1024-bit RSA, missing or invalid Key

Usage and Extended Key Usage, missing revocation information, non-critical Basic

Constraints for CA certificates are examples of the issues that potentially undermine

both integrity and authenticity assurance that Authenticode provides.
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Chapter 1

Introduction

1.1 Motivation and Overview

When we download third-party software from web, how can we decide to trust the

application that will be installed and/or executed on our computer? Code signing

PKI can assure us about authenticity and integrity of an application. Windows code

signing verifies if an application has been signed by a legitimate author and has not

been tampered after applying the signature. If Authenticode signature is verified

successfully, name of the authenticated publisher will be provided to the user. Then

it is up to the user’s decision if he wants to install or launch an application from the

authenticated publisher. If Authenticode signature is not verified, the user will be

warned that the application comes from an unknown publisher.

Signed applications can bypass system protections such as Microsoft Defender

SmartScreen [33] as well as browser protections and anti-virus programs that forgo

scanning of signed binaries. Signed malware such as Stuxnet [11] and Flame [32] or

the recent destructive wiper ZeroCleare [19] that leverages a signed driver to bypass

Windows hardware abstraction layer are examples of established trust and privilege

that is given to the signed binaries by system protections.

The trust that code signing establishes mainly relies on PKI, the same infras-

tructure used by SSL/TLS certificates. Numerous studies and testing approaches

[3, 5, 7, 10, 17, 36] that were conducted on SSL/TLS certificates have revealed cases

of certificate misissuance as well as vulnerabilities in different implementations of

certificate validation. However, code signing certificates have not been tested in a
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systematic way against similar vulnerabilities that can potentially undermine the ef-

fectiveness of Windows code signing. A comprehensive set of Code signing certificates

cannot be easily collected. In contrast, TLS certificates can be collected simply by

scanning the IPv4 address space of search engines such as Censys [37]. Moreover,

there is no systematic logging service such as Certificate Transparency (CT) for Win-

dows code signing certificates. On the other hand, Windows code signing has one

single propriety implementation unlike SSL/TLS that have several implementations

and libraries that are being used by numerous open source products. In consequence,

SSL/TLS implementations have been exercised and tested more compared to the

closed source implementation of the Authenticode.

Prior studies on Windows code signing relied on the datasets of certificates that

were extracted from malicious or potentially unwanted binaries. To achieve a more

generic view of the issued certificates in the wild, we target supposedly benign ap-

plications as the source of our dataset. We collect a dataset of 106,623 applications

that are distributed on the web. Filtering the unique signed applications that contain

executable files results in obtaining 27,789 unique signed applications. We analyze

Authenticode signatures of these applications as a subset of issued signatures in the

wild. We examine Authenticode signatures of these applications to find discrepancies

and violations that can breach security of Windows code signing. More importantly

we want to shed light on the flaws that are not prevented by Windows Authenticode

validation.

As mentioned earlier, the lack of a comprehensive dataset of code signing certifi-

cates and the closed source implementation of the Authenticode validation make it

more challenging to evaluate Windows code signing. Besides, available documenta-

tion for the Wintrust library and related APIs are also limited. Thus, they cannot

provide a detailed view of Authenticode validation’s logic. On the other hand, not

all the error messages are descriptive or clear enough to certainly identify the source

of the problems. All these issues would add up to the unclear understanding and

limited visibility to Windows code signing. So, for acquiring a clearer insight, we

conduct an external evaluation on Windows Authenticode. We take an approach

similar to the adversarial testing of the SSL/TLS implementations done by Brubaker

et al. [5]. They provided artificial test certificates to several SSL/TLS implementa-

tions and libraries and used the differences of the test results as oracles for identifying
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flaws in the implementation. Differential testing is not applicable to evaluation of the

Authenticode since it is the only propriety implementation of Windows code signing

from Microsoft. However, we leverage the idea of generating synthesized test certifi-

cates. This enables us to also test Authenticode against unconventional certificates

that are not seen in the wild. This method also alleviate the lack of a comprehensive

dataset. Authenticode signatures are supposed to be in compliance with the Baseline

Requirements for the Issuance and Management of Code Signing Certificates [13].

So, we develop a set of test cases according to these requirements and examine our

corpus of code signing certificates as well as our synthesized certificates against these

tests. We determine the violations according to the failed tests and determine if the

Authenticode validation would prevent them.

Our tests show breaches of trust in both of the authenticity and integrity assurance

that Authenticode provides. In terms of integrity, the Authenticode validation still

accepts the broken MD5 and SHA1 hash algorithms. An adversary can exploit MD5

collision attack to use a forged certificate for signing malicious code. In other words,

an adversary does not need to invest more effort and resources for finding an exploit

for SHA1 hash algorithm, which is also accepted by Authenticode. Padded Authen-

ticode signatures is also a known vulnerability which is still seen in the wild. This

vulnerability can be abused for breaking the integrity of software without altering the

signature. An Authenticode signature itself is not involved in the calculation of the

binary’s digest. Moreover, the Authenticode signature is encapsulated in a specific

data structure padded with zeros, so that the length of the data structure becomes

multiple of eight bytes. This design allows an adversary to modify a binary without

invalidating the Authenticode signature. We also observe usage of inadequately se-

cure public key algorithms suh as 512-bit and 1024-bit RSA in our corpus of data

while the Authenticode validation accepts them. In terms of authenticity, we observe

several violations regarding the certificate extensions and constraints. For example,

a certificate that may not be authorized for code signing (missing both Key Usage

and Extended Key Usage extensions) can validate successfully. Unspecified certifi-

cate policy, violated basic constraints, non-critical Key Usage, invalid bit settings for

the Key Usage and unavailable revocation information are some other examples of

these violations. Moreover, the Authenticode validation does not maintain checks to

prevent these violations. Table 1 summarizes our findings and their corresponding
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Component Finding Implication

X.509 Certificate
Version

Certificates can be of version
one

There is no way to check if
a certificates is authorized for
code signing

Certificate Policy
Extension

This extension is missing in the
leaf certificates

There is no way to check if pol-
icy of the certificate is valid

Basic Constraints
Extension

Certificates contain two Basic
Constraints; one with the CA
bit set to true and the other
one with the CA bit set to false

An end-entity certificate can
take action as a rogue CA

CA certificates have non-
critical Basic Constraints
extension

Authorization check can be
disregarded if this extension
has an unrecognizable value

Certificates without any Ba-
sic Constraints, Key Usage and
Extended Key Usage exten-
sions can validate

Authorization check can be by-
passed

Key Usage
Leaf certificates do not have
this extension

Authorization check can be by-
passed

Extension Leaf certificates have non-
critical Key Usage Extension

Authorization check can be
disregarded, if this extension
has an unrecognizable value

Leaf certificates violate the re-
quired bit settings for the Key
Usage extension

An unauthorized certificate
such as a timestamping certifi-
cate can be used for code sign-
ing

Extended Key Usage
Extension

Leaf certificates have invalid
value set for this extension

An unauthorized certificate
such as a TLS server authen-
tication can be used for code
signing

Revocation
Distribution Points

Leaf certificates do not contain
any OCSP or CRL points

Revocation information will
not be available for such certifi-
cates. Thus, they can remain
valid despite of being revoked

OCSP and CRL points have
unreachability issues

Revocation status will not be
taken into account for the Au-
thenticode validation. Thus, it
is likely that a revoked certifi-
cate would be deemed valid

Table 1: Summary of Findings

4



implications that can undermine effectiveness of code signing.

It is noteworthy that our findings can be classified into two folds: findings that

are observed in real valid certificates and findings that are observed in our valid

synthesized certificates. For example, our finding regarding the certificates of version

one has not been observed in the wild, however, Authenticode validation accepts a

code signing certificate of version one. Thus, since it can be abused by an adversary,

we report it as a security issue. On the other hand, identifying the violations relies

on the effective date of the constraints and the issue date of the certificates. So, since

Table 1 intends to provide a summarized view of our findings, we mention each finding

as a generic statement. The quantitative numbers of the occurrences are presented

in Chapter 4.

1.2 Thesis Focus

We intend to examine a subset of Authenticode certificates that are used for sign-

ing supposedly benign applications. Authenticode validation code is propriety and

since detailed steps of the validation are not clear, there is a need for an external

evaluation of this mechanism. Besides, X.509 system, the underlying component of

Authenticode, is prone to vulnerabilities which has been uncovered in studies re-

lated to SSL/TLS certificates. We aim to determine if this mechanism is functioning

properly and consistently. For this end, we investigate code signing certificates for

potential issues and examine Authenticode validation functionality while exposed to

any potential vulnerabilities. We use our collected corpus of data to study specifica-

tion violations seen in the wild. We report potential violations as evidence of CAs’

misissuance or bad practices of software publishers. Furthermore, if any potential vi-

olation is validated successfully, we specify shortcoming of Authenticode validation in

preventing security critical issues. The primary objective of this thesis is to evaluate

the effectiveness of Windows code signing mechanism by systematical analysis of a

corpus of signed applications distributed in the wild. As part of this objective, we

aim to answer the following research questions:

Question 1. How prevalent is misissuance of code signing certificate in the wild

or in other words, how conformant are issued Authenticode signatures to the code
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signing baseline requirements?

Question 2. Does Authenticode validation prevent potential violations and flaws?

Question 3. What are design features of Authenticode that can be abused by an

adversary?

1.3 Contributions

1. We tackle two main challenges of doing a measurement study on the Windows

code signing mechanism: the lack of a comprehensive dataset, and the limited

visibility to the Authenticode’s closed source implementation. We design a

framework for collecting signed applications distributed by third party software

publishers on the web. We design an analysis framework which leads to the

development of a certificate linter specifically for Authenticode. We are in the

progress of publicizing both of our frameworks for researchers.

2. We conduct an exploratory analysis on the effectiveness of Windows code signing

in the wild.

(a) Our results show existence of violating certificates in the wild. These viola-

tions are involved with critical extensions and constraints of code signing

certificates such as Basic Constraints, Key Usage, Extended Key Usage

and revocation distribution points. More importantly, we highlight that

the Authenticode validation does not prevent violating certificates in the

wild. In other words, we shed light on the lack of effectiveness of Authen-

ticode regarding both of the authenticity and integrity assurance that it

is supposed to maintain for the end-user. Usage of a weak hash algorithm

such as MD5 and SHA1 is still observed in valid code signing certificates in

the wild, for example, 94 applications in our dataset used MD5 as digest

algorithm as late as 2017. Weak public key algorithm such as 1024-bit

RSA is not observed in the valid certificates of our dataset, however, our

tests shows that it is accepted by Authenticode validation.

(b) We report evidence consistent with the code signing certificates misis-

suance of certificate authorities. Analysis of 27,789 unique signed appli-

cations reveals violations in requirements and constraints of code signing

6



certificates that can potentially undermine the effectiveness of the Authen-

ticode. Our results shows that these violating certificates were issued as

recent as 2017, 2018, and 2019 by known authorities such as GlobalSign,

Comodo, Symantec, Digicert, Microsoft, Intel and Dell.

1.4 Outline

Next chapters of this thesis are organized as follows. Chapter 2 provides necessary

background and literature related to this dissertation. In Chapter 3, we describe

our approach for studying effectiveness of Authenticode in the wild. We introduce

our data collection and analysis frameworks and tools. Chapter 4 presents statistics

regarding our dataset as well as results of our tests and analysis. Eventually, Chapter

5 concludes.

7



Chapter 2

Background and Related Work

2.1 Background

In this section, we present the necessary background information for the Authenticode

and its known potential abuse.

2.1.1 Code Signing

Code signing is a specific use of certificate-based digital signatures that enables end-

users to verify the identity of the software publisher and confirm that the software

has not been modified since it was signed. Operating systems (OS) such as Microsoft

Windows, MacOS and Android validate digital signatures during installation or exe-

cution of programs that request to run with high privileges. Warnings about unsigned

code can cause end-users to abandon installation or execution. MacOS manages code

signing by Xcode1 and Codesign. Android also has three schemes for APK signing.2

Code signing is critical for IoT (Internet of Things) devices as well. The firmware,

operating system and application update processes are highly sensitive and can be a

major target for attackers. Companies provide different code signing solutions and

services for IoT.

We intend to study the code signing standard of Microsoft Windows; since Win-

dows is the most commonly installed desktop OS and has the largest number of users

1https://developer.apple.com/documentation/xcode
2https://source.android.com/security/apksigning
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globally. Code signing can significantly aid to protect many users against cyber se-

curity attacks that involve malicious applications. Likewise, any vulnerability in the

code signing mechanism can impact a large number of systems.

2.1.2 Authenticode Overview

Microsoft Authenticode is the Windows code signing standard for portable executa-

bles (PE). When an application carries a valid digital signature, it means that both

of the identity of the author and the integrity of the software are verified. However,

the signature itself cannot verify intent of the software. Ensuring the end-user about

the identity of the software publisher is one of the use cases of digital signature.

Furthermore, this signature is used as an indicator of clean reputation by system

and web protections as well as anti-virus programs. In other words, these protection

mechanisms treat unsigned files with more suspicion.

Authenticode is based on the public-key cryptography standard (PKCS)#7 and

uses X.509 v3 certificates [14] to bind identity of the software publisher to the signed

file. The established trust is anchored in the assurance of the X.509 v3 certificate

that is issued by a publicly trusted certificate authority. Furthermore, signed code

is encouraged to be countersigned by a timestamping authority. A timestamp main-

tains lifetime validity for the signed code. In other words, the expiration of the code

signing certificate will not cause the Authenticode signature to expire. However, if

a certificate authority revokes a certificate for reasons such as private key compro-

mise, this certificate will be no longer valid regardless of its timestamp or validity

period. These are components of Authenticode infrastructure. Any breaches in these

components can undermine effectiveness of Authenticode mechanism.

2.1.3 Authenticode Structure

Authenticode signature, which is comprised of the hash value of the portable exe-

cutable (PE) file, a signature generated by the software publisher’s private key and

the X.509 certificates of the publisher is contained in the PKCS #7 SignedData struc-

ture and is appended to the end of the PE file. Furthermore, a description and/or the

URL of software publisher and a timestamp may be added to the signature optionally.

This PKCS #7 data is encapsulated in WIN CERTIFICATE structure (declared in
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Wintrust hedear file). WIN CERTIFICATE structure is padded by zeros so that its

length be a multiple of eight. Thus, its length is not always same as length of the

PKCS #7 data that contains signature. For calculating hash of a PE file, three fields

of the PE file are skipped: The PE file’s checksum, the Authenticode signature it-

self and the pointer to Authenticode signature (the red fields indicated in Figure 1).

Hence, modification of these specific fields will not alter the signature.

2.1.4 Authenticode Validation

WinVerifyTrust [16] API can be used to verify signature of a PE file. For this

purpose, the trust provider of this function is set to the WINTRUST ACTION

GENERIC VERIFY V2 policy which specifies the criteria that needs to be satisfied

for Authenticode verification. We explain how signatures are verified against this

policy according to Windows documentation [14]. Integrity of PKCS #7 that is con-

taining the signature will be verified according to PKCS #7 Cryptographic Message

Syntax standard. Then certificate of the software publisher is required to be verified.

Thus, the certificate chain is built to a trusted root certificate using X.509 chain

building rules.3 The signing certificate must contain code signing value for extended

key usage (EKU) or the entire chain must contain no EKUs. The certificate must be

within its validity period or it should carry a valid timestamp. Furthermore, revoca-

tion checking is optional but it is used in many Windows applications and components

such as Signtool. The final step is comparing the original hash value of the PE file

with the signed hash. If these two hash values do not match, it implies that the file

has been altered after it was signed and signature validation will fail.

2.1.5 Known Potential Abuse

As mentioned before when Authenticode skips some places of the executable file (the

PE file’s checksum, the Authenticode signature itself, and the pointer to the signature)

for calculating hash of the PE file. The reason is that these places need to be modified

after the file is signed. Thus, modification of these specific fields will not invalidate the

signature. As padding signature with extra data, post-signing would not change the

signed code, if for any reason part of a program’s source code refers to this location, it

3Specified by IETF RFC 3280

10



Figure 1: Overview of Signed PE File Format [14].

can be exploited by an adversary. Reports were submitted to Microsoft that software

has used this space to embed URLs for downloading installers. These embedded

URLs were abused by adversaries for downloading malware. We examine our corpus

of Authenticode signatures to see how prevalent are padded signatures in the wild.

This vulnerability is intended to be caught by Microsoft as malformed signature error

(error code 0x80096011).

2.2 Related Work

We discuss related work in two key areas: measurement studies on Windows Code

signing PKI and measurements on TLS certificates.

2.2.1 Windows Code Signing PKI

Sophos [38], Kotzias et al. [24], Alrawi et al. [1] and Kim et al. [22] studied code

signing PKI abuse by PUP and malware. They showed that suspicious files were
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signed using legitimate certificates issued by trusted CAs.

Kotzias et al. [24] performed a static analysis on Authenticode abuse and effec-

tiveness of existing defenses. They analyzed 356K samples collected from malware

datasets (mainly from VirusShare [30]) between 2012 to 2015. 96% of their samples

have been flagged as malicious or potentially unwanted by more than three engines

on VirusTotal [15]. They studied the digital signature, certificate chain, certificate

revocation and timestamp of signed binaries after filtering out benign samples. They

used these static features to classify and cluster their samples. They also gathered a

list of abused certificates that are still valid. Furthermore, they highlighted a problem

with the Authenticode that allowed a timestamped signed binary validate success-

fully even after its code signing certificate has been revoked. They proposed hard

revocation as a solution.

Similar to the work of Kotzias et al. [24], Alrawi et al. [1] explored attributes

of certificates for the aim of classification and characterizing malware. Their dataset

included over 3 million malware collected from a commercial feed during one month

(July 2015). They provided a high-level overview of selected attributes obtained from

processing of malicious samples. These attributes included issue and expiry dates,

validation duration, chain length, CA counts, TSA counts, issuing CAs, country,

and common name. Their analysis intended to provide a representation of signed

malware population by calculating number of occurrences of incidents in their corpus

of certificates.

Kotzias et al. [24] and Alrawi et al. [1] both reported that majority of the signed

binaries in their datasets were PUPs and they concluded that malware was not

prevalently signed. Kim et al. [22] did a measurement study on the code signing

abuse; specifically on the commonly used methods and the security consequences

of the abuse. They categorized root causes of Authenticode abuse by malware to

three classes of weaknesses in code signing PKI: inadequate client-side protections,

publisher-side key mismanagement and CA-side verification failures. Another study

by Kozák et al. [25] particularly highlighted underground trade as another method

that allows malware to acquire a valid code signing certificate.

Kim et al. [2] did a measurement study on effectiveness of revocation, as a primary

mitigation method against Authenticode abuse. They collected a dataset from three

sources publicly released by prior studies [24, 1, 9] and Symantec internal repository

12



which is proprietary. Thus, the collected data is mostly extracted from abusive cer-

tificates. They collected the largest dataset of code signing certificates and they did

the first measurement study on the revocation process of Authenticode. The result

of their analysis was findings about the three involved roles in the revocation process:

Tracking down the abusive certificates, effective revocation of these certificates, and

publicizing the revocation information. Significant delay in discovery of compromised

certificates and updating revocation information, wrong revocation dates, unreach-

ability and dysfunction of CRL, and OCSP servers were instances of their findings.

All these shortcomings would lead to successful validation of a signed malware which

undermines security and effectiveness of Authenticode.

Compared to prior studies that mainly focus on suspicious binaries, we examine

code signing certificates of supposedly benign applications. For collecting benign

applications, we are inspired by prior work [31]. Rivera et al. [31] assessed abuse

in distributed software by download portals, websites that categorize and host free

proprietary software for download. Their goal was understanding the percentage of

undesirable programs distributed by download portals. They reported percentage of

PUP and malware in 20 download portals. They quantified number of binaries that

were detected by at least one engine on VirusTotal [15] as well as number of binaries

that were detected by more than three engines, so that they Could provide a more

conservative ratio. They reported a ratio for the observed PUP and malware across all

the studied portals ranging between 8% (conservative) and 26% (lax). After collect-

ing the binaries, they processed and executed these files in a sandbox. The processing

included extracting static information about the file such as the name and type of

the file, collecting the scan report of the file from VirusTotal, decompressing the file’s

archive and checking of Authenticode signature for signed binaries. They processed

Authenticode signature of signed applications at the final step of their analysis for

confidently identifying publisher of software. They used Microsoft-provided Authenti-

code validation tool for verifying the Authenticode signature. Moreover, they further

processed the X.509 leaf certificates to extract information such as Subject CN, Issuer

CN, PEM and DER hashes, validity period, signing hash, digital signature algorithm,

signed file hash, and public key.

Prior studies on signed malware and PUP explored weaknesses that allow an ad-

versary to sign malicious code. However, these weaknesses were limited to failures
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in CA’s identity vetting process and protection of issued signing keys. Bad practices

and issues in the construction and issuance of code signing certificates have not been

studied in a systematic way and consequently we do not know if Authenticode valida-

tion can defend against such potential issues. Similar to our goal, Kotzias et al. [24]

highlighted this scenario that a timestamped certificate could remain vaild despite of

being revoked and Kim et al. [23] highlighted security problems in revocation process

such as CA’s mismanagement of CRL and OCSP, and showed that it could not be

prevented by Authenticode validation. We examine effectiveness of other steps of

validation against flawed certificates as well as revocation checking.

2.2.2 TLS Certificates

Both TLS and Authenticode use public key infrastructure. Numerous TLS studies

focused on the evaluation of PKI and digital signatures. In this section we also discuss

prior works on the TLS certificates, since we are inspired by them for the analysis

and testing of X.509 certificates.

Durumeric et al. [10] studied HTTPS certificate ecosystem uncovering problems

that can undermine security of the ecosystem. They collected 42.4 million unique

X.509 certificates from 109 million hosts by doing 110 exhaustive scans of the IPv4

HTTPS ecosystem during a course of 14 months. They used this dataset to study

security questions related to certificate authorities and site certificates. Their inves-

tigation regarding the leaf certificates used by websites is similar to part of our work.

They studied the public keys, the signature algorithms and the depth of these certifi-

cates. They highlighted that half of the trusted leaf certificates in their dataset used

inadequately secure 1024-bit RSA key in their chain as well as the usage of broken

MD5 as signature algorithm in April 2013 which is four years after publication of

“MD5 Considered Harmful Today” [34].

Brubaker et al. [5] proposed Frankencert for adversarial testing of the logic be-

hind certificate validation in different SSL/TLS implementations and libraries. They

leveraged synthetic certificates to generate unusual test cases that are generated from

combination of randomly mutated parts of SSL/TLS certificates. They tested func-

tionality of seven different implementations/libraries and browsers while provided

with these frankencerts. For interpreting the result of these tests they used differen-

tial testing. If one certificate was validated by one SSL/TLS implementation while
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rejected by another implementation, the discrepancy was investigated to find poten-

tial flaw in individual SSL/TLS implementations. Diffential testing with 8,127,600

frankencerts uncovered 208 discrepancies.

The purpose of generating frankencerts was generating a set of test certificates

carrying different combinations of attributes and extensions that were not seen in

the existing certificates in the wild; however, they may be crafted into a certificate

by an adversary. In other words, these frankencerts represented corner cases. Meth-

ods such as random fuzzing could not generate sound test cases, since it is unlikely

that randomly generated strings could form a parsable certificate. Frankencerts are

syntactically well-formed, however, they may violate the constraints required for a

valid certificate. Thus, these certificates could verify if SSL/TLS implementations

check these constraints properly. As frankencerts are parsable certificates that may

violate the X.509 semantics, they could test code paths that were hardly executed

and consequently identified potential flaws in certificate validation. These flaws could

not be found by testing of normal certificates. We also leverage synthesized certifi-

cates to create unconventional test cases to explore proprietary implementation of

the Authenticode validation. The Authenticode implementation have not been stud-

ied and tested as thorough as SSL/TLS implementations. Thus, our goal is gaining

a clearer and more detailed view of the implementation along with exercising the

implementation by certificates that are not commonly seen in the wild.

After Frankencert, numerous studies [17, 7, 36, 3] propose methods and tools to

reveal a more comprehensive list of potential vulnerabilities. Kumar et al. [26] in-

troduced Zlint tool to quantify HTTPS certificate misissuance in the wild. This

tool reassessed the misissuance prevalence in the wild. Certificate authorities usu-

ally fail to adhere to applicable standards due to implementation errors or lack of

concern while they are constructing certificates. Their tool tests certificates against

policies set forth by the CA/Browser Forum Baseline Requirements and RFC 5280

and highlights the flaws. Their result showed that since 2012, misissuance has de-

creased significantly. In 2017, only 0.02% of certificates had errors. This improvement

majorly caused by the large authorities that construct consistant certificates. How-

ever, misissuance and reported bad practices correlated with small authorities that

construct non-conformant certificates.

In contrast, no prior work focuses on scrutinizing the code signing certificates and
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evaluation of Authenticode validation. Our work shows that similar problems that

have been reported for SSL/TLS certificates exist in issued code signing certificates

and can lead to potential security vulnerabilities.
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Chapter 3

Methodology

One main challenge for the measurement of the Authenticode is the lack of a compre-

hensive dataset of code signing certificates. Unlike SSL/TLS certificates, code signing

certificates are not being logged in a centralized transparent way such as certificate

transparency (CT). That is why it would be difficult to systematically collect a com-

prehensive list of the issued certificates and all the binaries that have been signed

using them. The other challenge is the limitation that we have for studying Windows

Authenticode as a proprietary product. Not only its source code is not available, its

documentation provides limited explanation for the steps being checked for Authenti-

code validation. Thus, the order and details of the steps are not clear. Even studying

of its functionality through testing and code analysis is challenging. How can we ver-

ify the output of our tests or interpret the test results? As the Windows code signing

standard has only one proprietary implementation from Microsoft, methods such as

differential testing that has been used to uncover the discrepancies in the SSL/TLS

implementations and libraries [5] could not help us. For code analysis, the provided

documentation of the APIs do not cover the details and the order of calling of the

APIs for implementation of each step.

We tackle these challenges by designing two frameworks for data collection and

analysis. To shed light on the issues of Windows code signing, we collect a dataset

of signed applications distributed by third-party software publishers. We process the

Authenticode signatures to extract attributes of code signing certificates. This infor-

mation includes version, validity period, cryptographic algorithms, extensions, revo-

cation distribution points, and issuers of the certificates as well as software publisher’s
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Figure 2: Data Collection and Analysis Pipeline.

URL and description. Then according to the Baseline Requirements for Issuance and

Management of Publicly-trusted Code Signing Certificates [13], we investigate the

extracted information to reveal weaknesses and flaws that can potentially be abused

by adversaries.

3.1 System Overview

As illustrated in Figure 2, our data collection and analysis pipeline consists of five

steps: application collection, input data preparation, data labeling, signature parsing,

and Authenticode analysis.

Data Collection. The code signing certificates which were studied in the

prior papers [22, 25, 23, 1, 24] were mainly extracted from malware and PUP.

However, we intend to study the code signing certificates of supposedly benign

binaries. One of the most important use cases of code signing certificates is

assuring users about authenticity and integrity of third-party software that is

downloaded from the web. Thus, for studying the effectiveness of the Authen-

ticode mechanism in the wild, we target download portals as distributors of

third-party software on the web. Targeting download portals as source of our

dataset would allow us to understand if applications are being properly signed

in the wild and whether in case of misissuance, if the Authenticode validation
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can effectively prevent faulty signatures.

Input Data Preparation. The collected dataset of applications consists of

different file types. As we intend to analyze signed executable files, we filter files

with .exe extension as well as compressed files that might contain executable

files, including zip, rar, 7-zip, gzip, tar and bzip2. Part of the downloaded

applications do not contain any executable files. They have these file types:

XML, ASCII, PDF, ELF, JPEG, Composite, etc. Then we extract compressed

files and search file directories recursively to locate all the executable files. We

use Bash and Powershell scripts to automate this process.

Data Labeling. We use VirusTotal file scanning API to determine if a file

is benign, potentially unwanted or malicious. Our collected dataset consists

of supposedly benign files that are distributed on the web. So, first question

that we aim to answer is how many files in our dataset are benign, malware, or

PUP using the threshold-based approach that is proposed by Kwon et al. [27].

According to a study by Zhu et al. [39], the majority of the research studies (82

out of 93) that used VirusTotal for data labeling leveraged a threshold-based

method. In line with a prior study [22], we use introduced metrics by Kwon

et al. [27]: Cmal and rpup. First metric shows the total number of VirusTotal

engines that detect a file, and second metric determines the percentage of en-

gines labeling a file as potentially unwanted. For calculating rpup, labels that are

indicators of PUP are filtered using the same set of keywords (“adware”, “not-a-

virus”, ”not malicious”, “potentially”, “unwanted”, “pup”, “pua”, “riskware”,

“toolbar”, “grayware”, “unwnt” and “adload”) utilized by Kwon et al. [27].

We consider binaries with Cmal >= 20 and rpup <= 10 as malware and binaries

with Cmal >= 20 and rpup > 10 as PUP. We report benign files with a conser-

vative threshold of Cmal = 0 (which occurs when no antivirus engine detects a

binary as malicious) and with a less conservative threshold of 0 < Cmal < 20.

We do not intend to filter only benign files for our analysis for two reasons.

First, the purpose of this data labeling is to have more insight about the col-

lected binaries. We leverage this information to compare signatures of benign

applications with potentially unwanted and malicious applications to see how
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conformant they are to the code signing requirements and specifications. Sec-

ond, as Zhu et al. [39] discussed we cannot totally rely on the VirusTotal labels.

Thus, we also analyze signed files that are labeled as badware.

Signature Parsing. We developed a tool to extract information regarding

Authenticode signed executable files. Our tool first determines if an executable

file is signed or not and then it will extract the signature’s information from

each signed binary and store it in a database. This information includes details

about the issuers, validity, version and extensions of code signing and times-

tamping certificates. In this step we collect the required input for the analysis

components. We use AuthenticodeExaminer [28] library to develop this tool.

Authenticode Analysis. First we measure how conformant are the issued

Authenticode signatures and corresponding certificates to the baseline require-

ments. Then, we check if faulty signatures can pass Authenticode validation.

For our analysis, we design and set up three components: Authenticode linter,

OCSP/CRL checker, and validation checker. Our linter is a test suite that is

specifically developed for Authenticode based on the specifications mentioned in

Baseline Requirements for Issuance and Management of Publicly-trusted Code

Signing Certificates. The OCSP/CRL checker determines if revocation distri-

bution point is accessible for a code signing certificate. The OCSP/CRL test

cases would verify if revocation distribution points are properly provided by the

certificates and if these points are reachable. Eventually, the validation checker

determines if Authenticode validation would prevent the potential violations.

It is noteworthy that we execute the Authenticode linter and the validation

checker on Windows 10 Pro version 1909 and the validation checker uses Sign-

tool from Windows Kits 10.0.18362.0 . For testing the reachability of the CRL

and OCSP servers, we use Wget command-line tool on Linux.

3.2 Framework Implementation

To tackle the existing challenges of studying Windows Authenticode, we design and

implement two frameworks for data collection and analysis. We developed a crawling

tool to collect a dataset of distributed applications on the web. Furthermore, our anal-

ysis framework results in the development of a certificate linter specifically designed
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for Windows code signing. In this section, we discuss our design and implementation

thoroughly.

3.2.1 Application Crawler

We redesign and implement a tool that is previously proposed by Rivera et al. [31].

This tool facilitates automatic downloading of Windows applications from a download

portal, a website that provides software for download. Download portals generally

follow similar design layouts; some of them list all the provided applications and some

of them only list popular applications categorized based on platform, usage, or both.

We target the most inclusive list of applications that each portal provides, and filter

Windows applications. Regardless of usage or popularity of the software, we intend

to collect all the applications offered by each portal. We choose eight out of 20 portals

that have been crawled by Rivera et al. These are the top eight portals that during

the course of our download provided the largest number of applications[31].

The automation tool that was proposed by Rivera et al. [31] is not publicly

available. Thus, we need to redesign this tool. It is noteworthy that in the course

of our redesign, we add a new functionality to our crawler so that it can monitor

progress of downloading. We also improved error handling in our crawler so that our

tool become more tolerant for network errors and can retry for the failed downloads.

Our tool is in the process of release for public use of researchers.

Our tool sets up an iterable list of applications. We check the selected portals

manually to determine the most inclusive application list that each of them provide.

These lists are categorized based on the names of applications, popularity or usage

(such as gaming, security tools, business, home and desktop, etc). Each category itself

is comprised of several pages. Our tool locates all the web elements that represent

categories; then it traverses all the pages under each category. For moving between

pages, we check each portal manually to determine the web element that forwards

to the next page. Portals usually provide a next/forward button. However, in some

cases we extract a URL pattern that can be dynamically generated for corresponding

page number that we intend to visit at each iteration.

On the other hand, some portals use one single page to present all the applications

under each category and they would appear on the page dynamically as the page is
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scrolled down. For these portals, our program scrolls down to the end of the page

and then starts locating all the web elements that represent applications. These are

parts of our program that require customization based on the design of a website.

Each application usually has its own page, presenting specifications and the cor-

responding download link. The reported size of each application is retrieved from its

web page and stored in a database. We use this information to adjust a threshold.

This threshold determines the waiting time that is needed for each download to be

completed and refines functionality of our tool.

We use Selenium web driver,4 a popular tool for automated web browsing, with

the Chrome browser. Selenium is commonly used for automating web related tasks;

however, it is not able to verify if download is completed successfully. When the

driver sends the request, it does not have any built-in option to keep track of the

status of the browser anymore.

We experienced download failures for similar reasons as enumerated in [31]. These

reasons can be classified into two folds: Unreachability of the download link, or

timeouts that can happen because of network issues on client or server ends. We

leverage other Java libraries such as REST Assured, Jsoup and java.io to monitor

progress of each download. First, we send a GET request and record the received

response code in our database. If response code is 200, 301, 302 or 303, we expect

it to be reachable. Thus, our tool will continue clicking on the link and initiating

download. Receiving these response codes would not guarantee a successful download.

We leverage a monitoring component on the file system. This component compares

status of download directory before the start of each file download and after a specific

threshold. This threshold will be calculated based on the file size and network speed.

After reaching this threshold, our monitoring component will verify if download has

completed successfully by checking the size and name of the last modified file in

the directory. The last modified file should have recorded file size. Regarding the

name, when Chrome browser downloads a file, it assigns an intermediate file extension

“crdownload”. If last modified file name has this extension, it means that download

has failed or it is still in progress. We discriminate these two cases by monitoring the

size of this file in one minute intervals. If size changes, it indicates the latter case and

our monitoring tool would wait for the download to be completed. This method helps

4https://www.selenium.dev/documentation/en/
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Algorithm 1: Data Collection from a Download Portal

Data: A download portal
Result: Downloading applications offered by a portal
Assigning URLs of categories to an iterable data structure;
for all the categories do

for all the pages do
for all the applications in each page do

Retrieve platform of application;
if couldn’t retrieve platform of application then

Insert URL and corresponding failure code into database;
else

if Platform is Windows then
if Download URL is not reachable then

Update database with corresponding URL and failure
code;

else
if Size of application is retrievable then

Update wait threshold based on size and network
speed;

else
Use default wait threshold;

end
Start download;
while download is in progress do

Wait;
end
Verify if download completed successfully;
Update database with corresponding URL and
success/failure code;

end

else
Continue to next application

end

end

end

end

end

23



Portal
Alexa ranking

Oct. 2019 Downloaded
EXE ZIP RAR 7-ZIP GZIP TAR BZIP2 OTHER All Types∗

uptodown 461 7333 3476 274 23 19 - - 635 11760
softonic 227 9734 3499 150 18 11 - 3 755 14170

softpedia 2353 6461 3791 237 86 45 - 8 572 11200
tucows 19536 13611 2936 8 7 2 - - 336 16900

freewarefiles 29272 3309 2813 69 32 9 - 6 281 6519
geardownload 893701 11253 4186 37 7 12 - 2 496 15993

bytesin 65866 1281 695 13 - 3 - 2 118 2112
soft112 4717 12477 12440 461 97 1955 11 264 264 27969

total 65459 33836 1249 270 2056 11 285 3457 106623

∗Not necessarily unique per portal.

Table 2: Applications Collected from Download Portals

our tool to tolerate sudden changes in our university’s public network. Some portals

do not report the size of the application or the reported size is not correct. For these

cases, we define a default threshold (12 minutes). This threshold would work for a

relatively large file. These cases were not observed frequently. Thus, the overall delay

they cause would be negligible. An overview of our tool is indicated using Algorithm

1.

A summary of collected dataset of Windows applications are provided in Table 2.

In total, 106,623 applications have been collected in August 2019.

3.2.2 Authenticode Linter

We design a linter that is comprised of a set of tests. The purpose of this tool is to

identify the potential security breaches in an Authenticode signature. Potential errors

may be made by the CAs upon issuing the code signing certificates or upon signing

a binary (such as padding the signature). To identify potential errors, we codify

the policies set forth by the Baseline Requirements for Issuance and Management of

Publicly-trusted Code Signing Certificates. Our test cases assure that each leaf code

signing certificate is conformant to these requirements. We also develop test cases

based on known abuses that can potentially undermine the security of Authenticode.

To develop this linter, we are inspired by AuthenticodeLint,5 the only existing linter

for Authenticode that provides 16 rules for testing a signed binary. Although these

5https://github.com/vcsjones/AuthenticodeLint
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rules can provide insights regarding the security of a signature, they are not specif-

ically developed based on the specifications. Therefore, they could not be sufficient

for the aim of uncovering flaws based on the baseline requirements and policies. Not

only we aim to uncover these issues, we study functionality of Authenticode valida-

tion toward them. We cover the MUST clauses of code signing specifications that

correspond to ERROR severity level in standards documents. We also note that the

baseline requirements have been continually evolving and some requirements are not

retroactive, especially for Microsoft Authenticode that maintains compatibility with

the older environments. As a result, an effective date has been maintained for the

designed tests. Each test case is only applied to the certificates that were issued after

the corresponding effective date.

3.3 Authenticode Analysis

As mentioned before, Authenticode has a proprietary implementation with closed

source code and it has very limited documentation. Thus, the logic behind signing and

validation processes are not clear. This makes analysis of Authenticode challenging.

We tackle this challenge by designing test cases based on 1) known vulnerabilities

of Authenticode and 2) policies set by the Baseline Requirements for Issuance and

Management of Publicly-trusted Code Signing [13].

3.3.1 Baseline Requirements for Code Signing Certificates

In standards documents, failure to adhere to MUST clauses corresponds to errors. As

we aim to evaluate functionality of Authenticode, we codify the requirements with

MUST severity level that are maintained for signing certificates as a set of tests. If

a certain test case fails, it can be due to an implementation error. We intend to

predict potential issues using these test cases. However, we note that some issues

are the intentional design features of Authenticode so that it maintains compatibility.

Therefore, passing each test case depends on a maintained effective date. We do not

expect certificates for conformance to a specific requirement, if they were issued prior

to the corresponding effective date. In the following we describe our designed set of

tests for analyzing Authenticode and discuss the potential security issues.
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Certificate Version. Certificates must be of type X.590 version three. The

major difference between version two and three is the addition of certificate

extensions. Some of these extensions such as Key Usage, Extended Key Usage

and Basic Constraint play a critical role for PKI security and consequently trust

that Authenticode aims to maintain. Moreover, old certificates especially root

and intermediate ones with version one or two still exist in the wild. Thus,

checking of the certificate version is required.

Strong Hash Algorithm. Using broken hash algorithms such as MD5 or

SHA1 can break security of the Authenticode signature. Flame malware is an

example that used chosen-prefix collision attack to produce a counterfeit version

of a legitimate certificate issued by Microsoft. Another abuse scenario is exploit

of a MD5 or SHA1 collision attack on a legitimate signed binary. An adversary

can copy signature of a legitimate software and append it to his malicious code.

As it has the same digest, the appended signature would be valid.

Requirements for Basic Constraints. This extension determines if a certifi-

cate is authorized to act as a CA certificate or as an end-entity certificate. Thus,

checking of this extension is required for code signing certificates. Otherwise,

an adversary can use an unauthorized certificate for issuing Authenticode sig-

nature and break Authenticode trust. In a prior TLS study [5], violating cases

have been reported. Thus, we implement test cases for examining the presence

of duplicate extension as well as proper setting of CA field for intermediate and

end-entity certificates.

Presence of Certificate Policies. This extension must be present in all the

signing certificates. It indicates the policies that are followed by the issuer for

certificate issuance as well as other operational practices such as revocation.

Requirements for Key Usage. This extension defines authorized usages of

a certified public key. Thus, its presence is critical for validation. We examine

bit settings of this extension that are specifically required for code signing to

be set to DigitalSignature. Defined purposes by Key Usage and Extended Key

Usage must be consistent [6].

Requirements for Extended Key Usage. This extension defines purposes
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that can be used by certified public key in addition or instead of purposes

determined in the key usage extension. This extension must contain specific

value of id-kp-codeSigning for code signing certificates and must not contain

anyExtendedKeyUsage or serverAuth value which is intended for TLS WWW

server authentication [6]. If a violation of these requirements could not be caught

by validation process, a TLS or timestamping certificate (for example) can be

abused for signing applications. This will break the authenticity assurance that

Authenticode is supposed to maintain; considering that the vetting process that

is required for obtaining a TLS certificate is not the same as the one required

for Authenticode.

Strong Public Key Algorithm. Since all the valid code signing certificates

in our dataset used RSA algorithm, we only verify the minimum required key

size for RSA which must be 2048 bits.

Requirements for CRL Points. CRLDistributionPoint is the extension

maintained for providing CRL access point. Presence of this extension is op-

tional for code signing certificates. However, if it is present, there are specific

requirements that are obliged to be met. It must not appear as a critical exten-

sion. Moreover, the HTTP URL of the CRL service for corresponding certificate

authority must be provided.

Requirements for OCSP Points. AuthorityInformationAccess is the ex-

tension maintained for providing OCSP access point. This extension must be

present and must be set to critical in code signing certificates. The extension

must contain HTTP URLs of the corresponding certificate authority’s OCSP

responder as well as HTTP URL of the root CA’s certificate. We examine all

the signed binaries to see if the access points for revocation information are

provided properly.

Validity Period. Validity of a certificate starts from the issue date of a cer-

tificate and ends on the expiry date of the certificate; determined by the two

specific fields of notBefore and notAfter. Maximum validity period for code

signing certificates must not exceed 39 months.

Timestamped Signature. Timestamping is an optional extra step in the code
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signing process. When a signed application is timestamped, its signature will be

preserved permanently, unless it gets revoked for a specific reason such as private

key compromise. If a signed application is not timestamped, its signature will

become invalid upon expiration of its corresponding code signing certificate. For

software authors, it will not be easy to recollect the distributed software among

users and renew their signatures. Considering the distributed nature of code

signing, timestamping is a worthwhile option for software authors. We examine

the prevalence of timestamped signatures in our dataset.

3.3.2 Complementary Adversarial Testing

We developed a set of test cases according to the code signing requirements and known

vulnerabilities. These test cases reveal issues in the code signing certificates that are

collected from the web. However, we also intend to exercise the code paths of the

Authenticode validation that would not be executed normally. In other words, we

want to test corner cases that may not appear in the wild. Therefore, we customize the

Frankencert tool that is proposed by Brubaker et al. [5] for the adversarial testing

of the SSL/TLS implementations and libraries. Frankencert generates synthesized

certificates that may be completely different from the conventional certificates. This

tool gets a set of certificates as seeds and break them down into parts. Then, it will

mutate random combinations of these parts so that they satisfy the ASN.1 grammar

for X.509. These synthesized certificates will be parsable. But, they may violate the

X.509 semantics and include unconventional combinations of extensions, extension

values, critical and non-critical flags for the extensions, etc.

Synthesized Code Signing Certificates. We use our corpus of certificates as

seeds and generate 500,000 certificates. These synthesized certificates are made from

randomly mutated parts of the real certificates of our dataset. Application authors

do not have to use only Microsoft-provided signing tools such as Signtool [8]. We

use both Signtool and OsslSignCode [4] to sign 500,000 dummy executable files and

we provide the synthesized certificates to both of these tools. OsslSignCode accepts

all the certificates for signing the executable files. However, Signtool only accepts

294,255 certificates for signing and after applying the signature by Signtool, only
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55,453 files could pass the Authenticode validation. This indicates that the mini-

mum requirements checked by Signtool during the signing process are not the same

as the minimum requirements for validation. A binary does not have to be signed

by a Microsoft-provided signing tool, necessarily. So, there is no guarantee that a

third-party signing tool does a thorough check for the code signing requirements and

issues a sound signature. Although in this test the Authenticode validation prevents

81.15% (238,802/294,255) of the potentially faulty certificates, yet we cannot be sure

that the Authenticode validation can effectively prevent all the possible flaws.

We find out 719 certificates in our dataset that are not approved by Signtool for

signing, however, they could pass the Authenticode validation. Unlike similar ap-

proaches, we could not inspect the closed source code of Authenticode to identify

the root causes of the rejected certificates. We could not use differential testing to

find discrepancies in certificate validation due to the fact that Windows code signing

has only one implementation from Microsoft. Chktrust [18] is an open source im-

plementation for Authenticode. But, Chktrust yields less accurate results compared

to Microsoft-provided implementations such as Signtool and Sigcheck [35]. Thus, we

did not find its test results insightful or reliable. As a result, we could not leverage

differential testing for interpreting the test results or identifying discrepancies. Yet,

we analyze these 719 validated certificates and report the found discrepancies based

on the baseline requirements for code signing.

With the help of our test cases, we found violations that are only seen in the

invalid certificates of our dataset. The reason for validation failure in these violating

certificates does not originate from the found violation itself. As the detailed steps

of Authenticode validation and the order of them are not clear, it is likely that some

issues are hidden behind some other errors. For example, the violations that are

only seen in the self-issued certificates are deemed invalid because of an untrusted

root error. There is a possibility that there are maintained checks for these specific

violations. However, other errors such as an untrusted root have occurred earlier in

the process of validation checking. Hence, the validation process exits with an error

code before reaching to that specific check in the implementation. Therefore, we could

not verify if the Authenticode validation can effectively prevent such violations.

We use these synthesized certificates to see if the aforementioned violations can

pass the Authenticode validation.

29



Chapter 4

Results

4.1 Summary of the Input Data

We start by providing information about our input data and the effect of the prepa-

ration step on our dataset. As depicted in Table 2, we collected 106,623 applications

from eight download portals. After removing duplicate applications and extracting

executable files, we have 79,128 distinct applications. Other than duplicate files,

some of the archive files could not be decompressed successfully or do not contain

executable binaries.

4.2 Signed Applications in the Wild

In this section we want to understand the current status of code signing in the wild.

4.2.1 Overview

The collected dataset is a sample of freeware offered by the third-party software pub-

lishers on the web. Among our dataset, 35.11% (27,789/79,128) of these applications

are signed. Our result shows that compressed applications have a relatively smaller

share among the signed applications (13.05% (3,629/27,789)). These applications

have compressed data types including zip, rar, 7-zip, gzip, tar and bzip2. However,

86.94% (24,160/27,789) of the applications are not compressed and have .exe file type.
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Portal Count (%)
filecluster 1071/1741( 61.51%)
geardownload 5355/12174 ( 43.98%)
softpedia 3408/8732 ( 39.02%)
soft112 5853/15222 ( 38.45%)
softonic 3753/11610 ( 32.32%)
uptodown 2507/8598 ( 29.15%)
tucows 4363/15487 ( 28.17%)
freewarefiles 1479/5564 ( 26.58%)
Total 27789/79128 ( 35.11%)

Table 3: Number of Signed Applications Distributed by Download Portals

Table 3 shows that 61.51% of the applications distributed by Filecluster are signed

which is the largest among the other seven portals. Bearing in mind that Filecluster

is offering the least number of applications, this is due to a relatively less variety

in the offered applications. Besides, these portals do not require publishers to sign

their applications. Thus, differences in the number of signed applications per portal

can result from differences in the software authors that distributed their applications

through these portals.

Signed Applications Unsigned Applications
Portal Benign Benign PUP Malware Benign Benign PUP Malware

(Cmal = 0) (0 < Cmal < 20) (Cmal = 0) (0 < Cmal < 20)

geardownload 3912 1468 96 0 4602 3078 21 1
filecluster 813 259 2 0 353 326 8 4
softonic 2674 1019 26 1 4782 3154 41 11
softpedia 2540 829 37 0 3046 2386 48 14
freewarefiles 1190 290 3 0 2658 1573 4 1
uptodown 1594 849 59 0 3498 2570 81 17
soft112 4101 1419 108 0 5584 3820 26 3
tucows 2620 1586 154 3 5389 5679 111 12
Total(Unique) 16200 6478 458 4 25757 19815 329 62
Verified Signature 14719 5323 380 4 - - - -

Table 4: Distribution of Signed Malware/PUP in the Wild

Our next question is regarding the scope of code signing abuse in the wild. In other

words, we want to measure the prevalence of distributed signed badware (PUP and

malware). Prior work [38, 1, 24, 22] have studied abuse of code signing by both of the

malicious and potentially unwanted applications. However, their datasets are mainly
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biased on the suspicious binaries. We provide quantitative numbers on maliciousness

of a subset of supposedly benign applications that are distributed on the web.

As depicted in Table 4, 39.37% (22,678/68,250) of the benign applications are

signed. 88.37% (20,042/22,678) of their signatures are validated successfully. Also,

58.19% (458/787) and 6.45% (4/66) of suspicious files are signed with respectively

potentially unwanted and malicious applications. The number of signed suspicious

files shows that ill-intentioned publishers abuse signatures to make their badware

seem more legitimate. It is also worth noting that the number of signed suspicious

binaries for Geardownload, Soft112, and Tucows portals are more than the number

of unsigned suspicious files. 82.96% (380/458) of PUP and 100% (4/4) of malware

carry valid signatures. As results show, number of malicious files in our dataset is

limited.

Problem #Occurrences #Distinct Certificates

Expired 42 23
Revoked 8 7
Bad Digest 6 1
Malformed Signature 6 3
Total 62 34

Table 5: Observed Problems with Signatures of PUPs/malwares

4.2.2 Verification Errors

We take a closer look at the problems of unverified signatures for both benign and sus-

picious applications. 1,434 applications carry invalid certificates as indicated in Table

7. Expired certificate is the most common issue observed for 812 applications. 78 of

them get this error, although they are timestamped. Checking validity and signing

times of the timestamp certificates shows that these signatures were timestamped,

although the code signing certificates were expired. However, there are cases that

the signatures were timestamped while the code signing certificates were valid and

we could not identify any problem with their validity periods. Figure 4 in appendix

A indicates a screenshot of an example certificate. The error message claims that a
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required certificate is not within its validity period, although all the certificates in the

chain are valid. These error messages that are not clear and relevant would dissuade

users from using a program and consequently impact the usability of this security

mechanism. Furthermore, if an error message is ambiguous, users will not be able to

find the reason of the error. For example, the Crypto policy error (presented in Table

14, Appendix A) does not contain relevant and specified information for the users.

Consequently, users would not be able to do anything to resolve the problem and it

would impact the experience of the product negatively. Moreover, the worst case for

this security product is that users would bypass the prompt message and proceed to

the installing or launching of the application.

Validation Error
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Comodo 8742 (28.89%) 677 (21.62%) 343 250 1 53 29 0 1
Symantec 4263 (14.08%) 240 (7.66%) 224 6 0 0 10 0 0
Verisign 4185 (13.83%) 582 (18.59%) 435 35 20 1 91 0 0
DigiCert 3599 (11.89%) 130 (4.15%) 100 18 3 0 9 0 0
Thawte 2304 (7.61%) 250 (7.98%) 69 144 12 2 20 1 2
GlobalSign 2017 (6.66%) 159 (5.07%) 85 52 2 0 17 0 3
Usertrust 1411 (4.66%) 172 (5.49%) 149 0 0 0 23 0 0
Microsoft 1068 (3.52%) 12 (0.38%) 2 0 0 6 6 0 0
Sectigo 788 (2.60%) 0 (0%) 0 0 0 0 0 0 0
Go Daddy 516 (1.70%) 42 (1.34%) 36 2 0 0 4 0 0
StartCom 450 (1.48%) 168 (5.36%) 121 45 0 0 2 0 0
Certum 405 (1.33%) 24 (0.76%) 21 0 0 0 3 1 0
WoSign 324 (1.07%) 15 (0.47%) 9 5 0 0 1 0 0
Starfield 51 (0.16%) 8 (0.25%) 7 0 0 0 1 0 0
SSL.com 12 (0.03%) 0 (0%) 0 0 0 0 0 0 0
Total 30258 3130

Table 6: Top known Issuer Organizations

Another problem with the invalid signatures is using malformed signature that is

only observed for the suspicious applications. Problem of a malformed signature orig-

inates from a vulnerability in the Authenticode validation. This vulnerability allows

injection of data into an Authenticode signature without invalidating it. Microsoft
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resolved this problem in security advisory 2915720 [20]. Stricter Authenticode vali-

dation, implemented with MS13-098, was planned to be enabled from June 10, 2014.

But, later in July 29, 2014, they decided to disable enforcement of the default stricter

verification behavior in the supported releases of Microsoft Windows, and they made

it available as an opt-in feature. It is mentioned in the Wintrust documentation that

setting the EnableCertPaddingCheck registry key under the Wintrust config enables

stricter verification. We could not find this registry key in Windows 10. So, we get

this specific error for six applications without changing the default settings which is

not in compliance with the Microsoft documentation.

In contrast, our linter reveals this discrepancy that 24 applications in our dataset

carry valid padded signatures. This fact that none of these applications are benign

implies that a legitimate publisher would not risk his application to be leveraged by

malware. These padded signatures can be used as a heuristic to identify abuse of

digital signatures.

Problem #Occurrences #Distinct Certificates

Expired 812 383
Untrusted Root 305 213
Revoked 192 62
Chaining 109 51
Bad Digest 8 3
Crypto Policy 7 6
Test Root 1 1
Total 1434 716

Table 7: Observed Problems with Signatures of Benign Applications

Table 6 summarizes the statistics of the issued Authenticode certificates by the

top known certificate authorities. We categorize invalid certificates of each organiza-

tion based on the validation error. Expired certificates are the most prevalent reason

for the validation failure. The second common error is a revoked certificate. Num-

bers of occurrences of both expired and revoked certificates are high for StartCom

issuer compared to the total number of signatures that are observed from this issuer

in our dataset. In contrast, Symantec has respectively low numbers of expired and
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revoked certificates. The other validation errors such as MalformedSignature, Bad-

Digest, Chaining and UntrustedRoot do not relate to the issuers. Bad practices or

abuses conducted by software authors would result in these errors.

4.2.3 Publisher Information

SpcSpOpusInfo in the Authenticode structure is maintained for the publishers to

specify the program name, the description, and a website URL containing more in-

formation about the signer. 14,892 applications in our dataset have not provided

proper information regarding the publisher. 87.81% (13,077/14,892) of them carry

valid signatures. 55.86% (8,319/14,892) do not provide any name or description and

61.17% (9,110/14,892) do not provide any URL. 0.03% (519/14,892) of the accompa-

nying URLs are not valid URIs; “www.bitdefender.com”, “iMagicPtyLtd”, “http:

//$(LANG_CIMAWARE_DOMAIN)/main/products/deletefixphoto.php”, “http://”,

“/windowsxp/home/downloads/bliss.asp” and “www.edrawsoft.com.” are exam-

ples of invalid entries. 49.92% (7,435/14,892) do not provide any name, any descrip-

tion or any URL.

4.3 Specifications Violations

Another question that we want to answer is if applications are being signed properly.

If not, the validation process will defend against the violations? To answer these

questions, we identify potential violations in the wild by examining the signatures to

see if they conform to the baseline requirements for code signing. Our authenticode

linter codifies these requirements and policies. Our linter’s test cases determines the

specifications that are violated in the wild and our validation checker component tests

if the validation process would prevent the violations.

First version of the code signing baseline requirements was published in Septem-

ber 2016. Microsoft has added the requirement to use these specification as a new

standard by February 1, 2017. We specifically present results of our test cases after

this date to demonstrate effectiveness of this document, as well. As depicted in Table

8, the number of observed problems in the wild significantly decreased following that

35

www.bitdefender.com
iMagic Pty Ltd
http://$(LANG_CIMAWARE_DOMAIN)/main/products/deletefixphoto.php
http://$(LANG_CIMAWARE_DOMAIN)/main/products/deletefixphoto.php
http://
/windowsxp/home/downloads/bliss.asp
www.edrawsoft.com.


date. Yet, the existence of a valid signature that is created using a faulty certificate

implies that the validation process does not take specific checks into account.
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Problem Valid Total Valid Total

#occurrences∗∗ #certs∗∗∗ #occurrences #certs #occurrences #certs #occurrences #certs
certificatePolicies
is not present

1195 620 1785 971 43 15 116 58

basicConstraints is
present, but CA
field is set true

0 0 14 9 0 0 0 0

keyUsage is not
present

967 574 1500 886 43 15 106 47

keyUsage is not
marked critical

184 13 223 31 3 3 6 5

For keyUsage,
CRLSign bit
positions are set

0 0 2 2 0 0 0 0

For keyUsage,
keyCertSign bit
positions are set

0 0 4 3 0 0 0 0

For keyUsage, digi-
talSignature bit po-
sitions are not set

967 574 1501 887 43 15 107 48

For extKeyUsage,
the value id-kp-
codeSigning is not
present.

67 37 398 269 1 1 61 29

For extKeyUsage,
the value server-
Auth is present.

0 0 1 1 0 0 2 2

∗ Effective date.
∗∗ Depicts number of distinct applications signed by violating certificates.
∗∗∗ Depicts number of distinct violating certificates.

Table 8: Specification Violations Found in the Wild

4.3.1 Certificate Version

We observe 18 distinct applications carrying version one code signing certificates.

These applications are signed by 11 distinct certificates, however, none of them are

valid and they are not issued by any known certificate authorities. Their validation

fails due to the chaining error or the untrusted root. Yet, it is worth mentioning

that version one code signing certificates in our synthesized corpus of data could
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successfully pass the validation, which implies that the version field is not checked for

Authenticode validation.

This question is raised that version one certificates can skip the checking of the

critical extensions such as the Basic Constraints. We design a specific test case to

validate a version one certificate that does not have any Basic Constraints extension.

If a certificate has the Key Usage extension and the Extended Key Usage extension

defined for code signing and does not have the Basic Constraints extension, it cannot

pass the validation. However, if a certificate does not have any Key Usage extension,

any Extended Key Usage extension and any Basic Constraints extension, it can pass

the validation. Based on this test, we conclude that the Authenticode validation

expects all the certificates to be of version three and regardless of the certificate

version, the checking of the Basic Constraints extension depends on the Key Usage

and the Extended Key Usage extensions.

4.3.2 Certificate Extensions

The majority of our dataset are signed by version three certificates. The important

characteristic of version three certificates is presence of extensions. Besides, from

technical point of view, difference between code signing certificates and TLS certifi-

cates originates from differences in bit settings of the Key Usage and the Extended

Key Usage extensions. Thus, we find it essential to examine the requirements that

are specifically set for the extensions of code signing leaf certificates.

Certificate Policies

The number of issued certificates that do not carry this extension has decreased

since 2017. Yet, we observe 15 valid certificates issued by Microsoft in 2017,

2018, and 2019 that do not contain this extension. The number of valid signa-

tures indicates that this extension is not checked for the Authenticode valida-

tion.
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Basic Constraints

If this extension is present in a leaf certificate, the CA field must be set to false.

For all the CA certificates that contain public keys used to validate the digital

signatures on the certificates, the CA field must appear as critical and must be

set to true. Thus, a leaf code signing certificate with a CA bit set to true is

invalid. CA bit is set to true in nine certificates of our dataset. However, none

of them could pass validation. Eight of them are self-signed certificates and

the corresponding validation error message explains that “A certificate chain

processed, but terminated in a root certificate which is not trusted by the trust

provider”. The other certificate is not self-signed, however, it does not contain

the intermediate CA certificate. Thus, it throws this error: “A certificate chain

could not be built to a trusted root authority”.

First error message received for the self-signed certificates cannot verify if

Authenticode validation maintains any specific check for this extension or not.

For the latter case, the error message shown through the Windows file explorer

indicates that “The issuer of this certificate could not be found”. So, apparently

the failure originates from the chain building. For further investigation of the

maintained checks for this extension, we use our synthesized certificates. We

could verify that a leaf code signing certificate cannot be validated if its CA field

is set to true. However, our investigation reveals three other violations: presence

of duplicate extensions, not critical extension for the intermediate certificate,

and version one certificate without any extensions. These three violations will

not cause the validation fail which is a semantic error that can be leveraged by

an adversary to bypass the crucial requirements related to the Basic Constraints

extension.

Prior work [3] reported the first violation as a security vulnerability for TLS

certificates. This vulnerability can be security critical for certificates that have

two Basic Constraints extensions; one with the CA field set to true while the

other one has its CA field set to false. This can allow an end-entity certificate

to take action as a rogue CA. Second violation is the missing critical flag which

may allow a platform (for example the Authenticode validation) to disregard

the Basic Constraints extension if its value is not recognizable. This can lead
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to improper checking of certificate’s authorization. The third violation can be

security critical as well. According to the baseline requirements, only version

three certificates should be used for code signing. Nevertheless, version one

certificates that do not have any extensions could be validated successfully re-

gardless of the authorization check.

Key Usage

This extension must be present to ensure that a certificate is authorized for

its purpose. In our corpus of data, 574 valid certificates that were issued before

February 2017 do not contain this extension. These certificates are issued by

Microsoft, Thawte, and Centrum. 15 certificates with the same problem were

issued after this date by Microsoft.

This extension must be marked as critical. 13 valid certificates issued by

Intel, Dell, Cetrum, ACNLB, and Verisign in 2001, 2008-2011, 2014, and 2016

violate this specification. Three valid certificates issued by Intel in 2018 have

the same problem.

Regarding the bit positions for the Key Usage extension, the digitalSignature

bit must be set. This bit position in one certificate in our dataset is not set. The

Key usage of mentioned certificate is nonRepudiation. This certificate could not

pass validation since its issuer is not trusted. The signature properties in the

Windows file explorer shows no problem corresponding to the invalid Key Usage

Extension. In other words, a certificate that is not authorized for code signing

can pass Authenticode validation. We further verified this using our synthesized

certificates. There are some certificates having their Key Usage extension set

to CrlSign and KeyCertSign and their Extended Key Usage extension set to

TimeStamping that could successfully pass the Authenticode validation.

We also observe a self-signed certificate issued in 2018 with none value for

the key usage. Properties field of the certificate shows this error message: “This

CA Root certificate is not trusted. To enable trust, install this certificate in the

Trusted Root Certification Authorities store”. Furthermore, the other 574 valid

certificates issued before February 2017 and those 15 certificates that are issued
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after this date, do not contain this extension either. Among our synthesized

certificates, we have cases that do not contain any Key Usage extension and

their Extended Key Usage extension is only set to TimeStamping, and they

could successfully be validated. This indicates that Key Usage is the other

extension that is not checked properly for the Authenticode validation.

The bit positions of keyCertSign must not be set for the Key Usage extension

as well. Three certificates have their keyCertSign bit positions set. One of them

is not verified because the integrity of the signature could not be verified. The

second certificate is self-signed and is not verified because it terminates with

an untrusted root. The third certificate is not self-signed, however, it does not

contain its issuer certificate. It is noteworthy that the CA bit for this certificate

is set to true, although it is an end-entity certificate. However, the validation

failure does not originate from this problem nor the problem with the Key Usage

extension. We observe a similar problem for the CRLSign bit positions in the

Key Usage extension. These bit positions must not be set either, however, 133

certificates in our synthesized dataset are valid in spite of having their keyCert-

Sign and CRLSign bit positions set.

Extended Key Usage

This extension is required for code signing certificates and must be set to id-kp-

codeSigning. The numbers reported in the eighth row of Table 8 indicate that

not all the certificate authorities are conformant to this specification. However,

according to the Wintrust library documentation, certificates with no Extended

Key Usage are also accepted by the WINTRUST_ACTION_GENERIC_VERIFY_V2

policy.6 This question is raised that how verification process checks if a cer-

tificate is authorized for code signing. For example, we observe three valid

signatures that are issued by certificates from Certum in 2007-8 without any

Key Usage or Extended Key Usage extensions defined. Furthermore, there are

cases in our synthesized certificates that do not contain any Key Usage exten-

sion and the Extended Key Usage extension exists, however, it is not set to the

6https://docs.microsoft.com/en-us/windows/win32/seccrypto/

example-c-program--verifying-the-signature-of-a-pe-file?redirectedfrom=MSDN
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id-kp-codeSigning. This implies improper checking of the Extended Key Usage

extension as well.

Three certificates in our dataset have serverAuth value present for the Ex-

tended Key Usage extension, however, their corresponding signatures are not

validated successfully. The validation failure originates from an untrusted root

and problem with the chaining since the issuer’s certificate is not appended. For

the further investigation of the maintained checks for this extension, we use our

synthesized certificates. Our investigation reveals that Authenticode validation

does not prevent leaf certificates that have the serverAuth value present for

their Extended Key Usage extension.

4.3.3 Cryptographic Algorithms

Code signing baseline requirements enforce cryptographic constraints for the digest

algorithm, RSA, DSA and ECC curve. Some of these algorithms such as MD5 and

RSA with 512-bit and 1024-bit key sizes were cracked several years before the publica-

tion of the Code Signing baseline requirements. We report our results before and after

the chosen effective date of Microsoft for the first version of the baseline requirements

which is February 1, 2017.

Public Key Algorithm

All the code signing certificates in our dataset used the RSA algorithm. The

minimum required key size for RSA is 2048 bits. As indicated in Table 9,

all the valid signatures issued after February 2017 meet this requirement and

used 2048-bit and 4096-bit key sizes. We also observe 43 distinct applications

carrying 15 distinct self-signed signatures that used 1024-bit key size. Thus,

our results show that the legitimate code signing certificates that are issued by

known certificate authorities satisfy the minimum security requirements for the

public key algorithm. On the other hand, we observe that the Authenticode

validation does not reject the weak key sizes. 1741 and 11 distinct applications

respectively used 1024-bit and 512-bit key sizes and their signatures validated

successfully.
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Digest Algorithm

So far, we discussed the violations that would affect the authenticity assurance

of Authenticode. Now, we want to talk about the integrity assurance that Au-

thenticode provides. Hash algorithm is used in several places in the process of

signing a file. As we discuss the integrity assurance of a software, we are refer-

ring to the hash algorithm that is used for calculating hash of a code. However,

same vulnerability exists for the hash algorithms that are used by the corre-

sponding certificates.
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Algorithm
Key Size #occurrences∗∗ #certs∗∗∗ #occurrences #certs
RSA 4096 83 38 76 24

RSA 2048 10049 3823 5681 1646

RSA 1024 1741 916 0 0

RSA 512 11 10 0 0

∗ Depicts the effective date for the baseline code signing requirements.
∗∗ Depicts number of distinct applications carrying valid signatures.
∗∗∗Depicts number of distinct valid signatures.

Table 9: Observed Public Key Algorithm and Key Size in the Wild

If a hash algorithm is broken, the signed hashes could be abused by malicious

code authors. Both MD5 and SHA1 are broken hash algorithms. MD5 is dep-

recated by Microsoft in security advisory 2862973 [12] which has been effective

since February 2014. According to this announcement, Microsoft will allow the

signed binaries that were signed before March 2009 to continue to work even if

the signing certificate used the MD5 hash algorithm.

As indicated in Table 10, 667 applications in our dataset carry a valid sig-

nature that used the MD5 digest algorithm, although they were issued after

March 2009. We also report the number of signatures that applied this weak
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hash algorithm after 2017 for two reasons: To demonstrate the recent appli-

cation of this broken hash algorithm by software publishers and to bring into

attention the fact that validation process do not prevent the application of a

weak digest algorithm for the digital signatures. These certificates are issued

by Comodo, Thawte, Symantec, GoDaddy, and Sectigo.

Effective date
After March 2009 After January 2017

Hash Algorithm #occurrences∗ #certs∗∗ #occurrences #certs
MD5 667 290 94 28

SHA1 7711(2) 2860(2) 4775(11) 1363(3)

SHA256 650(1080) 193(294) 1456(2096) 519(573)

SHA384 0 0 1(0) 1(0)

SHA512 0 0 4(1) 3(1)

∗ Depicts number of distinct applications carrying valid signatures.
∗∗Depicts number of distinct valid primary signatures (secondary signatures).

Table 10: Digest Algorithms Used in the Wild

Collision and chosen-prefix attacks are now practically feasible on SHA1

[21]. In other words, even a limited academic budget can afford the required

resources and cost for breaking SHA1. Microsoft has announced a plan since

2015 [29] for phasing out this protocol, however, this plan left code signing

unaffected. We report quantitative numbers regarding the usage of SHA1 in

the wild. Dual-signing is a solution proposed for supporting older versions of

Windows. Our results indicate the number of primary and secondary signatures

that use MD5/SHA1/256/384/512 algorithms.

Among 94 applications that used MD5 digest algorithm (after January 2017)

for their primary signature, 14.89% (14/94) of them are dual signed using

SHA256 digest algorithm. Likewise among 4,775 applications that used SHA1

digest algorithm (after January 2017) for their primary signature, 43.12% (2059/

4775) of them are dual signed using SHA256 digest algorithm and one of them

is dual signed using SHA512 digest algorithm.
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Figure 3: Observed Timestamp Authorities in the Wild

4.3.4 Certificate Validity Period

Another requirement that has been overlooked about certificates is their validity

period. A code signing certificate issued to a subscriber or signing service must not

have a validity period of more than 39 months. In our dataset 539 applications are

signed by 121 distinct certificates with the validity period of more than 39 months.

These are the applications that have been signed after February 2017 and are validated

successfully in spite of violating this requirement. These certificates were issued by

Comodo, Symantec, Sectigo, DigiCert, Go Daddy, and GlobalSign.

Contained HTTP URL #certs∗

Both CRL and OCSP 7075/7398
OCSP only 11/7398
CRL only 301/7398
No OCSP 312/7398
No OCSP and no CRL 11/7398
∗Depicts number of distinct certificates.

Table 11: OCSP/CRL in Valid Certificates
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After expiration of a code signing certificate all the signatures that were issued by

this certificate would become invalid unless they have been timestamped during the

validity period of the certificate. 87.56% (20,153/23015) of the distinct applications

of our dataset have timestamps. 95.90% (19,327/20,153) of these applications carry a

valid signature. As indicated in Figure 3, Symantec, UserTrust, Verisign, GlobalSign,

and Digicert are the top five timestamping servers that have been frequently used by

our signed binaries.

Error #Occurrences∗ #URLs∗∗ Issuer[s]

Name or service not known 6084 9 Verisign, AOL, Starssl,
Safescrypt, Whosign, Go-
daddy, SSL.com, Swiss-
sign

Read error connection reset by
peer in headers

2027 2 Trustcenter, Globaltrust

Error 404 not found 1638 1 Globalsign

Error 403 forbidden 2909 2 Microsoft

Error 530 no description 279 1 Globalsign

Error 503 no healthy IP available
for the backend

15 1 Globalsign

Error 503 service unavailable 9 2 Globasign, Swisssign

Error 503 first byte timeout 7 5 Whosign, Globalsign

Error 522 no description 2 1 Globalsign

Error 503 Timed out while wait-
ing

3 3 Globalsign

Error 502 bad gateway 1 1 Globalsign

Error 520 no description 1 1 Globalsign

Error 500 internal server error 1 1 Swisssign

Total 12976 30

∗Depicts total number of occurrences for the corresponding problem.
∗∗Depicts number of distinct CRL URLs that are observed having the corresponding problem.

Table 12: Observed Errors for Unreachable CRL URLs

The next requirement that plays an important role in maintaining the effective-

ness of Authenticode is the proper implementation of revocation checking. Prior work

[23] has studied the effectiveness of revocation as the primary mitigation mechanism

against abusive usage of code signing certificates. Kim et al. [23] emphasized on the
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importance of the effective and prompt revocation of abusive certificates and dissem-

ination of the revocation information. However, we want to show that even if this

information is maintained properly by certificate authorities, proper application of

this information in the Authenticode validation is determinant. Authenticode valida-

tion applies a soft-fail revocation checking policy. So, if the revocation information is

not accessible for any kind of reasons, the certificate will be trusted regardless of its

actual revocation status.

The revocation information of a certificate is provided through the CRL or OCSP

method. From a technical point of view, this information is presented to platforms

using the CRLDistributionPoint or authorityInformationAccess extension of a certifi-

cate. According to the specification [13], CRLDistributionPoint may be present, but

authorityInformationAccess must be present in a code signing certificate. Both exten-

sions must contain the HTTP URL of the CRL/OCSP service of the corresponding

CA. Furthermore, authorityInformationAccess must contain HTTP URL for the root

CA’s certificate. Seven valid certificates in our dataset do not contain the HTTP

URL of their root CA. These certificates are issued by Thawte, Verisign, Usertrust,

Certum, and America Online in 2003, 2004, 2007, 2008, 2010, and 2011. 17 valid

certifiactes contain the HTTP URL for the root CA’s certificate, however, they do

not provide the URL of their CA’s OCSP responder. These certificates are issued

by GlobalSign, WoSign, GeoTrust, Microsoft, Dell, Intel, ACNLB, and RBC Hosting

Center in 2006-2012, 2014, 2015, and 2019.

70 applications in our dataset are signed since February 2017 using 38 distinct

certificates that do not contain any OCSP or CRL extensions. None of them are

validated. Verification errors are due to the fact that they are self-signed. So, they

are caught by an untrusted root or failed chaining (because of not containing a trusted

CA certificate). No recent misissuence by the certificate authorities is observed in our

dataset. According to the documentations of the Crypto API,7 revocation checking

will be done if the chain building successfully terminates in a trusted root certificate.

Thus, these self-signed samples cannot aid us to verify if the Authenicode validation

takes revocation information into account effectively or not. However, it is noteworthy

that 534 applications in our dataset are signed by 312 valid certificates before 2017

that have no OCSP URL provided (depicted in Table 11). 11 valid certificates are

7https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/

windows-server-2008-R2-and-2008/ee619754(v=ws.10)?redirectedfrom=MSDN
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issued by Thwate in 2000-2003 and do not contain CRL extention either.

Even if the information for the CRL and OCSP points were provided properly,

these servers may not properly serve and respond to the requests according to a prior

study [2]. Thus, we want to test the CRL and OCSP servers that are provided for this

corpus of supposedly benign applications in the wild. The question here is that are

all these servers always reachable? If not, how often the malfunctioning may happen?

Error #Occurrences∗ #URLs∗∗ Issuer[s]

Name or service not known 4147 6 AOL, Globaltrust, NLB,
Starssl, safescrypt, Swiss-
sign

No certificate subject alternative
name matches

2026 1 Verisign

Error 404 not found 2023 1 Swisssign

Read error in headers (connec-
tion reset by peer)

2017 2 SSL.com, safescrypt

Error 403 forbidden 62 1 Godaddy

Error 503 backend unavailable
connection timeout

19 6 Globalsign

Error 503 first byte timeout 11 6 Globalsign

Error 500 internal server error 6 1 NLB

Error 503 service unavailable 2 1 Swisssign

Read error in headers (connec-
tion timeout)

1 1 safescrypt

Error 503 service temporarily
unavailable

1 1 Globalsign

Total 10315 27

∗Depicts total number of occurrences for the corresponding problem.
∗∗Depicts number of distinct OCSP URLs that are observed having the corresponding problem.

Table 13: Observed Errors for Unreachable OCSP URLs

We extract 117 distinct CRL points and 48 distinct OCSP points from our set of

binaries. We examine the reachability of the CRL and OCSP URLs from December

21, 2019 to July 11, 2020 every two hours. In total, 2418 requests were sent to each

CRL and OCSP servers. In Table 12 we report the frequency of each error that

we receive for the unreachable CRL URLs. In total, 4.58% (12,976/282,906) of the

requests failed. In other words, 4.58% of the code signing certificates are validated

without completing the revocation checking due to the soft-fail policy of Authenticode
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validation. We categorize the unreachability problems based on the errors. As the

total number of occurrences indicates, 61.53% (8/13) of the observed problems are

temporary; that is they were not persistent in the course of all the attempts. Yet, if

any of these problems occurs upon validation checking of a certificate, the revocation

checking would be dismissed.

As indicated in Table 12 and 13, respectively 25.64% (30/117) of the CRL URLs

and 56.25% (27/38) of the OCSP URLs were unreachable at least once throughout

the time of our test. We categorize the unsuccessful requests to both CRL and OCSP

servers based on the error code that we receive. Variety of the observed errors is

an evidence of unreliable nature of network. Thus, Authenticode validation cannot

rely on the revocation checking using CRL/OCSP servers. The number of occur-

rences and the URLs that encountered each error imply that these network problems

were not commonly persistent. Furthermore, the origins of all these failures were not

located at the server side. So, some of these network issues are inevitable and the

reachability of the CRL and OCSP servers cannot be guaranteed. On the other hand,

since revocation is the critical defense mechanism against notorious abuse scenarios of

Authenticode, constant availability of the revocation information is essential. There-

fore, the soft-fail policy of Authenticode leaves a significant breach in the validation

checking of code signing certificates.
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Chapter 5

Discussion and Recommendations

In this section we briefly mention challenges of this study and discuss the insights that

we gain throughout our analysis. Furthermore, we provide suggestions to improve the

usability and effectiveness of the Authenticode mechanism.

This thesis presents a systematic analysis of Authenticode signed benign applica-

tions. We tackle the challenges of studying code signing certificates by designing two

frameworks for data collection and analysis. As part of these frameworks, two tools

are developed and are in the process of release for the public use of researchers: An

application crawler that automates collection of distributed applications on the web

and, an Authenticode linter that codifies the baseline requirements and investigate

for the potential security issues and bad practices.

In the course of our study, we encounter ambiguous error messages for both of the

signing and validation processes of Authenticode. These prompt messages are not

specific enough and use technical jargon. Moreover, they do not provide directions

for resolving the issue or further action. The lack of thorough documentation for

Authenticode would worsen this issue. Not only these issues will impact the usability

of this security mechanism, but also it makes the external evaluation and analysis of

Authenticode challenging for researchers. For our analysis, we rely on the baseline

requirements that are set by CA/Browser Forum Code Signing Working Group in

addition to the limited documentation of Authenticode.

Our results suggest that Authenticode does not strictly follow the baseline require-

ments and its functionality is not always in compliance with its own documentation.

Successful validation of padded signatures or violating certificates are examples of the
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inconsistency. We identify exceeding validity period, improper dissemination of revo-

cation information (missing CRL/OCSP URLs or unreachable CRL/OCSP servers),

usage of weak hash algorithms such as SHA1 and MD5, usage of weak public key

algorithm, improper checking of certificate authorization (missing Key Usage and

Extended Key Usage extensions or invalid bit settings for Key Usage or Extended

Key Usage extensions) and missing certificate policies are violations and bad prac-

tices conducted by the certificate authorities or software publishers.

We generate a set of synthesized code signing certificates so that we can do fur-

ther investigation regarding the violation cases. We leverage OsslSignCode [4], an

openssl-based signing tool, in addition to Signtool [8] for signing binaries. Not all the

synthesized certificates could satisfy the minimum requirements requested by Sign-

tool for signing. But, OsslSignCode approved all the certificates for signing. We

observe that those binaries that are signed using OsslSignCode could be validated by

Windows Authenticode. This observation shows that the requirements of the Authen-

ticode validation process are not the same as the requirements of Windows signing

process. Therefore, if a software publisher uses a third-party signing tool, there is no

guarantee that it maintains all the requirements. This can leave a breach of trust in

the Authenticode mechanism.

Recommendations. Eventually, we provide two recommendations as workaround

solutions for the discussed issues. Adding a logging system to the code signing PKI

can help to overcome the distributed nature of the Authenticode signed applications.

Timestamping servers are a good option for providing this service to the public since

they are readily equipped for similar data recording. The other option can be public

scanning websites such as VirusTotal that collect whitelists and blacklists of cer-

tificates and their corresponding signed binaries. These platforms are equipped for

efficient data collection and analysis. They can extract required information of the

code signing certificates from signed binaries and store them for public use. Cer-

tificate authorities can demand a mandatory additional step for their customers to

submit their signed applications to these logging systems. This transparency that a

logging system can provide to the code signing PKI can mitigate the abuse. Besides,

it makes extended test and research on this infrastructure more feasible; considering
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that research has significantly contributed to the health and improvement of TLS

certificates.

We provide another recommendation for improving the effectiveness of revocation

checking. A simple workaround for this problem is providing user with an informative

message that explains that validation check could not be completed for a specific

reason such as a network problem. This allows a user to make an informed decision

regarding the proceeding with the application. The other workaround is blacklisting

certificate authorities that do not maintain proper revocation information. Besides,

Authenticode can assign reputation to each CA, based on frequency of successfull

OCSP/CRL requests.
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Authenticode Verification Error Messages

Problem Error Message Error Code

Bad Digest The digital signature of the object did not
verify

0x80096010

Malformed
Signature

The digital signature of the object is mal-
formed. For technical detail, see security
bulletin MS13-098

0x80096011

Expired A required certificate is not within its va-
lidity period when verifying against the
current system clock or the timestamp in
the signed file

0x800B0101

Revoked A certificate was explicitly revoked by its
issuer

0x800B010C

Untrusted
Root

A certificate chain processed, but termi-
nated in a root certificate which is not
trusted by the trust provider

-

Crypto
Policy

Signature did not pass crypto policy -

Chaining A certificate chain could not be built to a
trusted root authority,

0x800B010A

Test Root The certification path terminates with the
test root which is not trusted with the cur-
rent policy settings

0x800B010D

Table 14: Authenticode Verification Errors
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Expired Certificate Error Message

Figure 4: Expired Certificate
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