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Abstract

Detecting Privacy Leaks Through Existing Android Frameworks

Parul Khanna

The Android application ecosystem has thrived, with hundreds of thousands of appli-

cations (apps) available to users; however, not all of them are safe or privacy-friendly.

Analyzing these many apps for malicious behaviors is an important but challeng-

ing area of research as malicious apps tend to use prevalent stealth techniques, e.g.,

encryption, code transformation, and other obfuscation approaches to bypass detec-

tion. Academic researchers and security companies have realized that the traditional

signature-based and static analysis methods are inadequate to deal with this evolving

threat. In recent years, a number of static and dynamic code analysis proposals for

analyzing Android apps have been introduced in academia and in the commercial

world. Moreover, as a single detection approach may be ineffective against advanced

obfuscation techniques, multiple frameworks for privacy leakage detection have been

shown to yield better results when used in conjunction.

In this dissertation, our contribution is two-fold. First, we organize 32 of the

most recent and promising privacy-oriented proposals on Android apps analysis into

two categories: static and dynamic analysis. For each category, we survey the state-

of-the-art proposals and provide a high-level overview of the methodology they rely

on to detect privacy-sensitive leakages and app behaviors. Second, we choose one

popular proposal from each category to analyze and detect leakages in 5,000 An-

droid apps. Our toolchain setup consists of IntelliDroid (static) to find and trig-

ger sensitive API (Application Program Interface) calls in target apps and leverages
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TaintDroid (dynamic) to detect leakages in these apps. We found that about 33%

of the tested apps leak privacy-sensitive information over the network (e.g., IMEI,

location, UDID), which is consistent with existing work. Furthermore, we highlight

the efficiency of combining IntelliDroid and TaintDroid in comparison with Android

Monkey and TaintDroid as used in most prior work. We report an overall increase in

the frequency of leakage of identifiers. This increase may indicate that IntelliDroid is

a better approach over Android Monkey.
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Chapter 1

Introduction

Android is an operating system designed for mobile devices such as smartphones and

tablets. It provides a lot of features for users but its openness empowers any developer

to write applications and thus extend its feature set. The increasing market share of

the Android platform is partly caused by a growing number of apps available on the

Android market. App developers can easily upload their applications to the Android

Market or other third-party markets with little if any, security vetting processes.

Google makes use of a dynamic analysis tool known as Google Bouncer [31], an

automated system that screens submissions to the Google Play Store. Even though

Google Bouncer can detect some of the malicious applications, malicious applications

have been successful in bypassing the vetting process [28]. Therefore, it is possible

for users to download a malicious application from the Google Play Store.

The Android application framework comes with default security features aimed

at restricting what applications can do. It features a fine-grained permission system

allowing the user to review the permissions app requests and grant or deny access to

resources. However, recent studies have found that permissions cannot ensure all of

the security properties [40]. Consequently, there are security guarantees users cannot

have from the system. In practice, many applications are doing malicious activities.
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For example, in November 2016, researchers uncovered a family of Android-based

malware namely Gooligan [11], that compromised more than 1 million Google ac-

counts, hundreds of them were associated with enterprise users. According to a report

by Forbes [21], the infection begins when a user downloads and installs a malware-

infected app on a vulnerable Android device. Gooligan then downloads a rootkit from

the Command and Control server that takes advantage of multiple Android exploits.

In July 2016, another malware called HummingBird [29] was uncovered. The main

purpose of the HummingBird malware was to trick users into clicking on mobile and

web advertisements to generate advertising revenue for its parent company.

As these malicious apps become widespread and risks increase, Android’s secu-

rity is more and more studied. A number of static analysis [20, 69, 26, 3, 5, 4, 63]

and dynamic [19, 55, 30, 32, 22] analysis frameworks have been proposed to detect

privacy-sensitive behaviors in Android applications. For example, TaintDroid pre-

sented by Enck et al. [19] can detect privacy leaks by using a dynamic taint-tracking

method. TaintDroid can provide useful results if it is provided with the direct inputs

to trigger malicious behavior from the application. To this end, Wong et al. intro-

duced IntelliDroid [63], a generic Android input generator that can be configured to

produce inputs specific to a dynamic analysis tool. Gilbert et al. [22] tested a va-

riety of categories of applications by generating random user events for 30 minutes.

However, this can only achieve 40% or less code coverage in all cases. Hornyack et

al. presented AppFence [30], a dynamic system implemented as modifications to the

Android framework that prevents attacks against user privacy via data shadowing.

On the other hand, for static analysis of applications, one of the first approaches

was Kirin [20], which recovers the set of permissions requested by applications with

the goal of identifying potentially malicious behaviors. Other existing works include

RiskRanker [4] and DroidRanger [69], which rely on symbolic execution and a set of
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heuristics to detect unknown malicious applications. FlowDroid [5] and DroidSafe

[26] propose precise static taint analyses to detect potentially malicious data flows.

As a way of helping users to think about the permissions requested by various apps,

and make informed decisions, Lin et al. [36, 48, 35] proposed a system called Pri-

vacyGrade. In particular, PrivacyGrade uses static analysis and crowd-sourcing to

capture user expectations of sensitive resources used by mobile applications. It later

summarizes each app’s privacy in the form of a grade ranging from A to D.

Summary of these proposals shows there is not a clear-cut solution that addresses

every issue. Either static analysis or dynamic analysis, both approaches can be used

separately or in conjunction, but each one has its own limitations. Malicious appli-

cations can fool static analysis frameworks by employing encryption and/or trans-

formation techniques [68, 47]. Also, dynamic analysis frameworks can be evaded by

anti-emulation techniques [39]. Since there is no robust proposal that addresses all the

issues, it is very interesting to survey these proposals and compare them analytically

against each other.

In existing app analysis proposals, many researchers rely on dynamic analysis to

detect privacy-sensitive behaviors and often use Android emulators for the experi-

ments. However, existing Android emulators possess a couple of limitations. For

example, they cannot emulate IMEI, MAC and GPS sensors - components like these

are likely to be used by malware applications. Also, malware apps are capable of

detecting emulation and as a result can behave normally by not doing any kind of

malicious activity [16].

It is interesting to replicate existing frameworks with real applications (on a real

device) and evaluate a large number of apps for privacy leakages. Therefore, in this

dissertation, we adapt popular static and dynamic analysis frameworks that rely on

approaches for automatically extracting behavior of Android applications. To ensure
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better coverage of functionality and permissions used by applications, we leverage

IntelliDroid [63], a generic targeted input generator for Android applications. Intel-

liDroid obtains information of each app by decompiling the APKs into classes and

determines trigger paths for all the functions in the APK. On the other hand, we

use TaintDroid to detect privacy-sensitive behavior dynamically. TaintDroid alerts

information leaks inside an Android app via dynamic taint tracking. It uses the con-

cepts of taint sources, from which sensitive information (e.g., IMEI, text messages,

contacts or GPS data) is obtained, and taint sinks, which are interfaces to the out-

side world (e.g., using data networks or sending SMSs) where tainted information is

usually not expected to be sent. When tainted data reaches a taint sink, TaintDroid

issues a warning to the user in the form of notification (more detailed information on

TaintDroid is provided in Chapter 3).

In IntelliDroid’s original work, the authors tested IntelliDroid and TaintDroid on

malware samples from the Android Malware Genome Project [65]. The framework

successfully detected privacy leaks in malware samples. However, in our analysis, we

focus on using IntelliDroid and TaintDroid with real-world applications, both from

the official Android market and third party markets.

In particular, this dissertation comprehensively surveys the state-of-the-art app

behavioral analysis proposals and highlights the methodology they rely on to detect

privacy-sensitive leakages. Also, we analyze 5000 real-world Android applications us-

ing two popular frameworks (static and dynamic) and characterize application behav-

ior for security and privacy leakages. We found that more than one-third of the tested

apps leak privacy-sensitive information over the network. We also report an overall

increase in the frequency of leakage of identifiers. The following sections hightlight

more details about our objectives, contributions, and outline for this dissertation.
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1.1 Objectives

We structure the thesis around two objectives:

1. Analytically compare existing Android application analysis frameworks.

2. Test application behaviors under different frameworks.

The two objectives have been validated through rigorous experiments as com-

plete as possible.

1.2 Contributions

The primary contributions of our work are as follows:

1. Survey. We survey the state-of-the-art analysis platforms and provide a high-

level overview of the methodology they rely on to detect privacy leakage and

application behavior. In total, we characterize 32 comprehensive app analysis

frameworks with a focus on securing the applications from privacy leaks and

detecting malicious apps for sensitive data leakage.

2. Evaluation. We make an in-depth evaluation of 5000 real world Android ap-

plications to characterize application behavior for privacy violations such as

attempts to retrieve user’s sensitive information, send SMS, or access location

of the device. Experiments include analysis with existing static and dynamic

analysis frameworks, application classification based on leakage, and behavior

characterization. We also conduct a cross-validation experiment to analyze the

behavior of applications using different techniques.

3. A Scalable Test Framework. Given the enormous growth of the number

of applications, it is very hard to analyze more and more applications in a
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given period of time. In general, analyzing a large set of applications manually

is very time consuming and error-prone process. To overcome this state of

affairs, we write scripts and made changes in framework source to automate

the analysis process. For example, we fully automate the static and dynamic

analysis components of IntelliDroid for handling large volumes of applications

and satisfy our setup requirements.

1.3 Outline

The rest of the document is organized in the following way:

1. In Chapter 2, we provide an overview of the background information about

Android architecture along with its permission enforcement scheme.

2. In Chapter 3, we provide a taxonomy of existing static and dynamic analysis

tools and frameworks.

3. In Chapter 4, we shed light on our threat model.

4. In Chapter 5, we provide the detailed explanation of our evaluation methodol-

ogy.

5. In Chapter 6, we provide information about our analysis dataset & setup details.

We also provide insights on why we use a real device instead of a simple Android

emulator.

6. In Chapter 7, we provide experiment results and observations.

7. In Chapter 8, we discuss the limitations of our evaluation.

8. In Chapter 9, we provide conclusion and a brief discussion for this dissertation.
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Chapter 2

Background

Before we discuss the details of our toolchain setup and methodology, it is important

to understand how Android and its applications work. In this chapter, we provide a

short introduction into the Android system architecture. In the end of this chapter,

we also shed light on Android’s security mechanism.

2.1 Android System Architecture

The Android operating system is built on the top of the Linux kernel and organized

in a layered architecture consisting of four layers: (i) the Linux kernel, (ii) Android’s

native system libraries and Dalvik virtual machine runtime, (iii) Android’s application

frameworks, and (iv) a collection of installed applications. Figure 1 and the following

sections briefly describe the basic blocks of an Android’s system architecture.

2.1.1 Linux Kernel

The bottom most layer in the Android architecture is known as the Linux kernel.

It helps in abstraction between the hardware of the device and contains all the key

drivers for the Android based phones to work. It provides services such as memory
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Figure 1: Android system architecture. TaintDroid is implemented inside the Dalvik VM

and can inspect all the Java-based tasks (in grey).

and process management, access control, and a driver framework. Android uses a

customized version of the Linux kernel with a few special additions. These include

wake-locks, a memory management system that is more aggressive in preserving mem-

ory, the Binder IPC driver (to mediate interactions between apps), and other features

that are important for a mobile embedded platform like Android.

2.1.2 Libraries

On the top of Linux kernel sits the set of libraries. The libraries consist of C and

C++ code that compiles to the native binary format. The functionality in these li-

braries is exposed to applications from the third party developers through the Android

framework.
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2.1.3 Android Runtime

This is the third section of the architecture and sits next to the libraries. It has the

key component named DVM (Dalvik Virtual Machine). It is a Java virtual machine

specially designed for Android. DVM uses Linux features like memory management

and multi-threading which are also used by the Java programming language. With

the help of DVM, every Android application has its own process and instance. DVM

performs the compilation and execution of Java code each time the application is

launched.

The recent version of Android uses a different approach for the Runtime. Android

introduced ART Runtime with the Android KitKat (Android 4.4) that applies Ahead-

of-Time (AoT) compilation to convert Dalvik bytecode into native code. ART uses a

different approach as compared to the DVM. ART compiles the APK into machine

code during the process of installation of APK file. Compilation in ART is done

during installation of the APK.

2.1.4 Application Framework

Application framework provides applications in the form of rich Java classes which

are used by the developers to design their own app. Most components in this layer are

implemented as applications and run as background processes on the device. Many

components are responsible for managing basic phone functions like receiving phone

calls, or text messages or monitoring power usage. It consists of the application

manager, content provider, notification manager and location manager.
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2.1.5 Applications

The top most layer in Android system architecture is the application layer and is

responsible for the interaction between end users and the device. The general ap-

plications are installed in this layer only. Address book, browser, games are few

examples of such applications installed in this layer.

2.2 Android Applications

Android application package (APK) files are used to distribute and install application

software and middleware on Android operating system. APK files are the ZIP file

formatted packages based on the JAR file format which has .apk extensions

To secure the applications, Android application sandbox helps to isolate the app

data and code execution from the other apps. It provides an application framework

with a common security functionality like cryptography, permissions, and IPC. As

per the documentation of Android [24], it implements the principle of least privilege

as each application has access to only the components it requires to do its work.

2.2.1 Application Components

We now outline a number of core application components that are used to build

Android apps. For information on Android application fundamentals, we refer to the

official documentation [24].

2.2.1.1 Activities

An activity represents the visual view of an app. Usually, an app consists of a list

of Activities, instances of which are loaded every time the user is trying to interact

with the app in the foreground. Activities together can be termed as the face of an
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app. Activities, in turn, use Fragments, Views to render UI (user interface) related

entities. A social networking app, for example, might have the possibility to start the

music app’s play activity to start playback of a received audio file. Also, Activities

consists of various states:

1. An activity is present in active or running states if it is in the foreground.

2. An activity is in paused state if it has lost focus but is still visible for the end-

user. Though the activity is paused it retains a copy of its state and other

information from it is the active state.

3. An activity is in stopped state if it is no longer visible to end-user. The user

can still retrieve the state of the app if the app is still running. Under the low

memory conditions, Android system will often kill these no longer used apps to

free the memory so that memory can be used by other active applications.

Storing the state information of an Activity can be facilitated using various methods

available as part of the Activity API in Android.

2.2.1.2 Services

Services are components that run in the background to perform long-running op-

erations such as playing music, handle network transactions, interacting content

providers etc. It does not have any UI. The music application, for example, will

have a music service that is responsible for playing music in the background while

the user is in a different application. Services can be started by other components of

the app such as an activity or a broadcast receiver. Moreover, service can run in the

background indefinitely even if the application is destroyed.
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2.2.1.3 Content Provider

Content providers make a specific set of the application’s data available to other

applications. They manage a shared set of application data. For example, contact

information data is stored in a content provider so that other applications can query it

whenever they require. A music player may use a content provider to store information

about the current song being played, which could be further used by a social media

application to update the user’s ‘current music playing’ status.

2.2.1.4 Broadcast Receivers

Broadcast receivers respond to broadcast messages from other applications or from the

system itself. These messages are sometimes called events or intents. For example,

the SMS app broadcasting information about an SMS has being received and let

other applications know about the ongoing event. Broadcast receivers do not have a

user interface and are generally used to act as a gateway to other components. They

might, for example, initiate a background service to perform some work based on a

specific event.

2.2.1.5 Intents

Intents are asynchronous messages which allow application components to request

functionality from other Android components. Intents allow users to interact with

components from the same applications as well as with components contributed by

other applications. For example, an activity can start an external activity for taking

a picture.
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2.3 APK File Architecture

The previous sections briefly outlined various components of Android system which

are necessary for an app to run on Android. This section gives an overview of various

components of an APK file. An APK (application package) file is the file format used

to distribute applications in Android. APK packages comprise of the key component

of an Android application which is the dex file created after compiling the bytecode of

all the java source files in Android. Following are the details about other components

present in an APK file.

1. Android Manifest. The Android manifest presents essential information

about the application to the Android system, information the system must have

before it can run any of the application’s code. Every application comes with an

AndroidManifest.xml file that informs the system about the app’s components.

The AndroidManifest.xml file contains information about application package,

including components of the application such as activities, services, broadcast

receivers, content providers etc. The Androidmanifest.xml also specifies ap-

plication requirements such as special hardware requirements (e.g., accessing

camera or GPS sensor), or the minimum API version necessary to run an app.

To access protected components (e.g., location access, or access to sd card), an

application needs to be granted permission. All necessary permissions must be

defined in the app’s AndroidManifest.xml. This way, during installation, the

Android OS can prompt the user with an overview of used permissions after

which a user explicitly has to grant the app access to use these components.

2. lib. This directory usually contains compiled the code of various supporting

libraries which are referred usually in the application components. This direc-

tory, in turn, has different directories representing the processor base for which
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the libraries are compiled for e.g., arm, x86, MIPS etc.

3. res. This directory contains the resources which are used in the application.

An example of resources can be various images required in the UI layout of an

Activity.

4. assets. This directory contains application assets. These can be accessed

programmatically in Android using AssetManager.

5. classes.dex. The dex file generated after compiling the bytecodes of all the

java source files in the applications.

6. resources.arsc. This is a precompiled binary of the contents of resource

directory mentioned above.

7. META-INF. In order for the system to maintain a unique identity of authors

of applications, apps are required to be signed before installation in Android.

The contents of this directory contain the manifests and certificates of its digital

signature.

2.4 Android Security Mechanisms

This section provides an overview of the Android security mechanisms. The focus of

Android security is primarily about protecting user data, system resources, and app

isolation. To achieve these goals, Android provides the following features;

2.4.1 Sandbox

Application sandbox is a means to isolate the applications from each other in the

Android system by assigning a UID and a set of permissions.
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When the application is installed on the device, it runs in its own sandbox and

other applications cannot access or interfere. An application can only access its

own files unless other applications explicitly assign the access permissions to this

application. For example, if the applications are created by the same developers, the

developers can make these applications share the same UID, then these applications

will run in the same sandbox and share the resources in that sandbox.

2.4.2 Application Signing

Application signing is used to ensure the application security. It creates a certification

between developers and their applications.

Before placing an application into its sandbox, the application signing creates

a relationship between the UID and the application. The applications couldn’t be

run on the Android without signing. With the same UID, that is, running in the

same sandbox, the applications can share the permissions and communicate with

each other.

By using application signing, the application update process can be simplified.

Since different versions of the same application have the same certificate, the package

manager can verify this certificate. Then, the old version is replaced, the new version

can have the permissions already granted to the old version. What’s more, the appli-

cation signing can also ensure that an application cannot communicate with another

unless using the ICC. But if the author is the same, the author can use the same

application signing to enable the direct communication among his/her applications.

2.4.3 Inter Component Communication

Android platform provides a secure ICC that is similar to IPC to the Unix system

[34]. ICC is provided by the binder mechanism which is in the middleware layer of
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Android. The binder is a remote procedure call that is a custom Linux driver. ICC

is achieved by intents. An intent is a message that shows the target with some data

optionally. It can be used in explicit communication if it identifies the name of the

receiver, or used in the implicit communication that let the receiver see if it can access

this intent or not.

2.4.4 Permission Model

An application is isolated when it’s executed in the sandbox. When the applications

want to access some sensitive features, such as camera, location, telephony, network.

Android provides a permission model to achieve this goal.

Permissions mechanism is used to make some restrictions when the applications

want to access the sensitive APIs of the operating system.

As discussed in Section 2.3, an application developer can declare all the permis-

sions required in the Androidmanifest.xml file. Before the application is installed on

the device, the system will ask the users if they grant the permissions to this appli-

cation. If the users agree to grant all requested permissions to the application, the

installation continues, otherwise, the installation cancels. Unlike iOS, the user can-

not choose which permissions they want to grant and which permissions they want

to deny. Moreover, the application can get the permissions through the application

signing.

The permissions have four levels, normal permissions, dangerous permissions, sig-

nature permissions and signature/system permissions. Normal permissions can be

granted automatically; dangerous permissions are inferred to those granted by the

users; signature permissions are granted within the same sandbox; signature or sys-

tem permissions are granted to pre-installed applications or the applications installed

by the root.
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Chapter 3

Android App Analysis Frameworks

Since 2010, there has been a steep increase in research about the Android application

behavior analysis. This could be explained by the fact that the Android is popular,

open-source, which eases analysis and modification of the OS, and that millions of

applications are available for analysis. A number of existing static and dynamic

analysis proposals focus on analyzing Android applications for privacy leaks. In this

chapter, we organize 32 of the most recent and promising privacy-oriented proposals

on Android app analysis into two categories: static and dynamic analysis.

3.1 Characteristics

For our survey, we group common characteristics of the target frameworks and tools

into a set of sub-categories: Type of framework, methodology, and deployment. We

use these attributes to compare the frameworks in Tables 1 and 2.

3.1.1 Type of Framework

The type of a framework describes the goal of the research done. We further categorize

the following different types of proposals:
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1. Analysis. Frameworks that helps analyzing Android applications for privacy-

sensitive leaks, application internal mechanism (e.g., IntelliDroid and Taint-

Droid both belong to this category).

2. Detection. Frameworks that help in detecting and reporting privacy leaks or

malicious behavior in Android applications (e.g., TaintDroid).

3.1.2 Methodology

Since the rise of these static and dynamic analysis frameworks and tools, different

approaches are used to analyze and detect privacy leaks in the applications. In our

view, the most common approaches used by existing proposals are explained below:

1. Dynamic. In this category, we list those frameworks that use dynamic analysis

techniques to analyze Android applications. The proposals in this category

record the application behavior during the runtime.

2. System Calls. Frameworks that capture Android system calls made by an

application.

3. Method Tracing. Frameworks (dynamic analysis) that keep track of specific

method invocations.

4. Static. Frameworks that use static analysis techniques on target applications

(e.g., IntelliDroid uses static analysis to generate API inputs for the target

application).

5. Decompilation. Frameworks that apply decompilation techniques on the

target APKs.
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3.1.3 Deployment

In this category, we discuss the various deployment methods used by the researchers

for the implementation of the frameworks:

1. Android apps Frameworks that analyze regular Android applications.

2. APK Frameworks that provides an Android application (APK) for deployment.

3. OS modification Frameworks that are deployed on Android OS. In this case,

the Android OS needs to be patched with framework files. For example, Taint-

Droid and IntelliDroid require modification of Android OS.

4. WebApp/Script Proposals that are available in the form of the web applica-

tion or scripts/package.

3.2 Taxonomy of Approaches for Analyzing Apps

In this section, we characterize the state-of-the-art reverse engineering tools and

frameworks listed in Tables 1 and 2. These tools and frameworks have reported

the pervasiveness of privacy disclosures in Android apps. We categorize our current

analysis approaches into two types: static and dynamic analysis.

3.2.1 Static Analysis

This class describes tools and frameworks that are used to investigate Android appli-

cations using static analysis. In static analysis frameworks, the analysis is conducted

by disassembling the APK packages and analyzing the decompiled code. The control

flow of an app is determined by events and callbacks for system-event handling. This

section also includes information on decompilers and disassemblers that are used by
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popular static analysis tools. Following are the more details on popular static analysis

tools and frameworks listed in Table 1:

1. Tools. The packaging model of Android apps requires the entire code to be

shipped into a one single APK file. The APK is then decompiled for processing

and analysis.

Following are the common reverse engineering tools that help research analysts

for static analysis of applications by implementing a Dalvik bytecode decompiler

or disassembler.

(a) APKinspector [53] is a GUI static analysis tool to analyze the Android

applications. The goal of this framework is to help analysts and reverse

engineers to visualize compiled Android packages and their corresponding

dex code. APKinspector provides both analysis functions and graphic

features for the users to gain deep insight into the malicious apps. In

particular, it provides detailed CFGs, call graphs, static instrumentation

and APK information for analysis.

(b) Apktool [61] is a very popular tool for reverse engineering closed binary

Android apps. It decodes resources to nearly the original form and rebuilds

them after making some modifications.

(c) DeDexer [42] disassembles the .dex class files into Jasmin-like syntax and

creates an individual file for every class conserving the package directory

structure for easy reading and manipulation.

(d) Dare [12] framework re-targets Android applications in .dex or .APK

format to the traditional .class files. Dare cannot reassemble the dis-

assembled intermediate class files like apktool.
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IntelliDroid
2016 [63] X X X X X

DroidSafe
2015 [26] X X X X X X

Dex2Jar
2015 [43] X X X X

FlowDroid
2014 [5] X X X X X X

DroidAPIMiner
2013 [3] X X

WHYPER
2013 [44] X

DroidRanger
2012 [69] X X

RiskRanker
2012 [27] X X

Dare
2012 [12] X X X X

Androguard
2012 [14] X X X X X

APKinspector
2012 [53] X X X X

DroidChecker
2011 [10] X X X

apktool
2010 [61] X X X X

DeDexer
2009 [42] X X X X

Table 1: Comparison between state-of-the-art static analysis tools and frameworks.
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(e) Dex2Jar [43] is a tool for converting Android’s dex formatted files to Java

byte-code. Given an Android APK, the tool can convert it directly into a

.jar file and vice versa.

2. IntelliDroid

Category: Analysis and detection

Type: Static and targeted API analysis (output can be used for a dynamic

analysis tool that monitors the execution of an Android application)

IntelliDroid [63] is a static analysis framework for automatically generating in-

puts for targeted applications, specific to a dynamic analysis tool.

The inputs generated by IntelliDroid can be effectively used to trigger the ma-

licious behavior in the target applications. For generating inputs, IntelliDroid

can be provided with a list of sensitive targeted APIs and it will automatically

detect the occurrences of targeted APIs in the application and will generate

inputs to trigger them. IntelliDroid’s static component is also capable of deter-

mining the order in which input has to be provided.

One of the challenging issue in detecting privacy leaks is that not all the appli-

cations reveal their malicious behavior when they are installed or even run on

the device. Instead, the malicious behavior can be triggered based on different

conditions. For instance, a group of malware can stay hidden until an API is

triggered by an event (activating its malicious functionality). Some events are

independent of user interactions with the application (i.e. network connection),

yet some others are based on user input. However, testing mobile application is

not a simple task due to a variety of inputs and heterogeneity of the technologies.

Solving this problem, IntelliDroid obtains information of each app by decom-

piling the APKs into classes and aAndroidmanifest.xml file. It further scans
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the entire decompiled classes and determines trigger paths for all the functions

in the APK. IntelliDroid is more promising than popular fuzzing tool Android

Monkey [25] in terms of input generation and static analysis as it uses an entry-

point discovery mechanism to identify paths for targeted APIs.

Also, it is known that Android applications use activity driven graphical user

interface heavily. Therefore, simply running the application for some time may

leave many application’s functionalities un-executed and is difficult to figure

out if the application is a threat to the user or the device. There are different

execution paths in an application and only a small number is covered by merely

starting or running the application. Since dynamic analysis checks the executing

code’s behavior, to provide better, if not full, coverage the static analysis tool

can provide user inputs so that more paths can be covered.

As a comprehensive static analysis solution, IntelliDroid develops a call graph

(partial) from the discovered entry points. This call graph is further used to

look for all the calls to functions and constructors of Android callback listeners

and to add listener methods to the list of entry points. The framework uses

information about dynamic analysis in conjunction with static analysis of the

APK file provided. It generates a set of paths that are specific to dynamic

analysis framework and triggers malicious behavior to be detected.

For our evaluation methodology, we adopt the original model of IntelliDroid’s

design and working. Therefore, our evaluation methodology and IntelliDroid’s

original methodology is the same. We explain the methodology and the design

of IntelliDroid (including the changes we made in the original framework) in

Chapter 5.

3. DroidSafe
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Category: Analysis and detection

Type: Information flow static analysis, Taint analysis

DroidSafe [26] is a static application analysis tool designed to analyze malicious

information flows in Android source code and APK files. DroidSafe tracks infor-

mation flows from sources (Android API calls that inject sensitive information)

to sinks (Android API calls that may leak information) for the target Android

applications. It uses a combination of static and dynamic analysis to report the

flow of information (tainted or not). This combination is enabled by accurate

analysis stubs, a technique that enables the effective analysis of code.

4. FlowDroid

Category: Analysis and detection

Type: Information flow static analysis, Taint analysis

FlowDroid [5] provides a highly precise static taint analysis that is fully object-

sensitive, flow-sensitive, and context-sensitive. FlowDroid effectively analyzes

and determine connections from source to sink for a targeted application. The

focus of FlowDroid is to detect information leakage in the Android applications.

FlowDroid covers various types of taint analyses, which include context, flow,

field, object-sensitive, and lifecycle aware taint analysis. The code source of

FlowDroid is publicly available.

5. WHYPER

Category: Analysis

Type: Application behavior analysis, Risk assessment

WHYPER [44] framework uses Natural Language Processing (NLP) techniques

to determine at he need for a given permission in an application’s description.
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The goal of WHYPER is to examine permissions for an app, whether the app

description provides any indication for the requirement of the permission.

6. DroidAPIMiner

Category: Analysis

Type: Malware analysis

DroidAPIMiner [3] uses a robust and efficient approach for describing Android

malware that relies on the API, package, and parameter level information. It

follows a generic data mining approach that aims to build a classifier for An-

droid apps. To predict if an app is benign or malicious, the classifiers rely on

the semantic information within the bytecode of the applications ranging from

critical API calls, package level information and some dangerous parameters

invoked.

7. DroidRanger

Category: Detection

Type: Static analysis using heuristics-based filtering scheme

DroidRanger [69] recognizes suspicious behaviors from all possible malicious ap-

plications and detects the Android features that may be misused. The frame-

work extracts fundamental properties associated with each app (e.g., the re-

quested permissions and author information) and organizes them along with

the app itself in a central database for efficient indexing and lookup. Addi-

tionally, DroidRanger also uses heuristics-based detection engine to uncover

malware that has not been reported before.

8. RiskRanker

Category: Analysis
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Type: Application behavior analysis, Risk assessment

RiskRanker [27] performs signature-based analysis for the detection of known

exploits on Android applications. It statically classifies applications into mul-

tiple security risk categories. Then, it prioritizes potential risks from the tar-

get untrusted apps and narrow downs the search space to a manageable size.

RiskRanker aims at detection, permission analysis and data-flow analysis in

Android malware. Applications using a combination of dynamic code loading

and native code execution are labeled as high-risk apps by RiskRanker.

9. Androguard

Category: Analysis and detection

Type: Reverse engineering, Malware analysis

Androguard [14] is a popular static analysis tool based on python and can

run on Linux/Windows/OSX, provided python is installed in the system. It

can effectively disassemble and decompile Dalvik Bytecode back to Java source

code. Given two APK files, it can also compute a similarity value to detect

repackaged apps or known malware. It also has modules that can parse and

fetch information from the app’s XML files. Due to its flexibility, it is used by

some other (dynamic) analysis frameworks that need to perform some form of

static analysis. The important features of Androguard are: finding app code

similarities, a risk indicator for apps, and managing a database of signatures

for malicious apps.

10. DroidChecker

Category: Analysis and detection

Type: Taint tracking, Control flow tracking
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DroidChecker [10] is an automated framework to detect capability leaks in An-

droid applications. It targets applications that use at least one permission while

containing unprotected components that are publicly visible. DroidChecker uses

inter-procedural control flow graph analysis (CFG) and static taint checking to

detect exploitable data paths in an Android application. It also aims at dis-

covering privilege escalation attacks and only analyzes exported interfaces and

APIs from the applications that are classified as dangerous.

3.2.2 Dynamic Analysis

Dynamic analysis frameworks rely on the run-time behavior of the apps to classify

them as malicious. Under the umbrella of this concept, privacy leakage detection

is done by following a runtime data flow tracing model: finding feasible traces from

predefined source APIs (the ones that read and leak private data) to sink APIs (the

ones that send private data out of the device). Dynamic analysis is performed while

the app is being executed on real devices or emulated environments. Following is the

summary of dynamic analysis frameworks listed in Table 2.

1. CopperDroid

Category: Analysis and Detection

Type: Behavioral analysis

CopperDroid [57] is a dynamic analysis framework that captures OS level event

sequences and high-level Android specific behaviors in Android applications.

CopperDroid leverages QEMU (an open source machine emulator and virtual-

izer) to automatically conduct black-box dynamic analysis on Android applica-

tions. The VM-based system makes use of dynamic system call analysis in order

to determine Android behaviors. CopperDroid also has the ability to determine
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CopperDroid
2015 [57] X X X X X X

TaintDroid
2014, 2010 [19] X X X X X

Andrubis
2014 [37] X X X X X X X X X

Mobile-SandBox
2013 [54] X X X

SandDroid
2013 [58] X X X X X X X X

AppsPlayGround
2013 [46] X X X X X X X X

DroidScope
2012 [66] X X X X X X X

SmartDroid
2012 [67] X X X X X X X

Google Bouncer
2012 [31] X X

Aurasium
2012 [64] X X X

I-ARM-Droid
2012 [13] X X

QUIRE
2012 [17] X X

Droidbox
2011 [15] X X X X X X X

Andromaly
2011 [51] X X X

AppFence
2011 [30] X X X

CrowDroid
2011 [9] X X

XManDroid
2011 [8] X X

AASandBox
2010 [7] X X X X X X

Table 2: Comparison between state-of-the-art dynamic analysis frameworks.
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whether a malware was initiated using Java, JNI, or native code.

2. TaintDroid

Category: Analysis

Type: Information-flow tracking, dynamic taint tracking, and analysis

Figure 2: The simplified architecture of TaintDroid taint analysis.

TaintDroid [19] is one of the first dynamic analysis engines introduced for An-

droid apps. It performs taint tracking to precisely analyze how private data

is obtained and released at runtime. In achieving this, it adopts an efficient

way to handle taint storage. It also defines taint propagation rules on Dalvik

instructions across API calls. As TaintDroid handles taint analysis of Dalvik

instructions across API calls at runtime, it is resistant to Java reflection and

code encryption. In addition, TaintDroid can be loaded into real devices, allow-

ing for real-time monitoring of actual hardware and sensors. These advantages

have made TaintDroid be used widely in Android app behavior analysis.

Figure 2 gives a more clear explanation of TainDroid taint analysis. The steps

followed in Figure 2 are explained below:
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(a) Application4 accesses private data (IMEI).

(b) IMEI is saved in variable ‘A’.

(c) Variable ‘A’ evolves and propagates through variable ‘B’ and variable ‘C’.

(d) Application4 attempts to leak the value stored in variable ‘C’ to the at-

tacker and a taint log notification is generated.

As TaintDroid is implemented as an extension to the Dalvik virtual machine, it

can oversee all the activities which run above it (recall Figure 1). The framework

uses the concepts of taint sources, from which sensitive information (e.g., IMEI,

address book, location data or private device identifiers) is obtained, and taint

sinks, which are interfaces to the outside world (e.g., using data networks or

sending SMSs) where tainted information is usually not expected to be sent.

When tainted data reaches a taint sink, TaintDroid issues a warning to the

user.

TaintDroid is an easy to use with a static analysis tool and can be easily in-

tegrated with any supporting static analysis framework. For instance, Intel-

liDroid using TaintDroid can trigger and detect sensitive- privacy leaks. In

original work, authors show that IntelliDroid’s event chain detection and device-

framework interface input injection enabled it to effectively generate inputs that

trigger targeted APIs in a corpus of malware.

3. Andrubis

Category: Analysis and Detection

Type: Static and dynamic analysis

Andrubis [37] performs static as well as dynamic analyses and allows uploading
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APK files using a web interface.1 Andrubis [37] leverages various techniques like

VMI and monitors events in the Dalvik VM, as well as native code for system

calls through QEMU VMI. Andrubis has an extensive feature set, including

support for the native code loading. A major limitation of Andrubis is, it still

runs on Android version 2.3.4 which is too outdated for current Android ap-

plications. Andrubis leverages TaintDroid to track sensitive information across

application borders in the Android system.

4. Mobile-SandBox

Category: Analysis

Type: Static and dynamic analysis

Mobile-Sandbox [54] is a static and dynamic analyzer for Android applications

with the purpose to support malware analysts to detect malicious behavior.

In the static analysis, it parses the application’s AndroidManifest.xml file and

decompiles the application. It also performs dynamic analysis on target ap-

plication in order to log all performed actions including those stemming from

native API calls. Mobile-Sandbox also allows regular users to submit apps for

analysis via a web application. It uses a combination of static and dynamic

analysis techniques.

5. SandDroid

Category: Analysis and detection

Type: Static and dynamic analysis

SandDroid [58] is an online Android app analysis tool. SandDroid performs

detailed static and dynamic analysis on the target applications and presents

the results graphically to the user. It leverages Androguard [14] and DroidBox
1
http://anubis.iseclab.org
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[15] to track sensitive information across application borders in the Android

system. Besides its comprehensive analysis approach, it also provides security

rating to the applications based on the results of the analysis.

6. AppsPlayGround

Category: Analysis

Type: Dynamic analysis

AppsPlayground [46] is a framework that automates the analysis of Android ap-

plications and monitors taint propagation (using TaintDroid), specific API calls

and system calls. Kernel level monitoring is also implemented in the framework

to defend against known exploits. AppsPlayground focuses on detecting evasion

and using automated exploration techniques for increased coverage of the code

of the application and therefore to trigger the malicious behavior of an appli-

cation. Its main contribution is a heuristic-based smart black-box execution

approach to explore the app’s GUI. The testing approach used in AppsPlay-

Ground is similar to Android monkey exerciser to explore possible application’s

GUI points.

7. DroidScope

Category: Analysis

Type: Static and dynamic analysis

DroidScope [66] is an analysis tool that utilizes a VM-based system in order to

detect malware. Droidscope uses Virtual Machine Introspection to reconstruct

Dalvik and native code instruction traces. Specifically, DroidScope reconstructs

both the kernel and system-level semantics in order to facilitate malware analy-

sis. Furthermore, DroidScope utilizes three tiers of APIs to emulate an Android

device. These three tiers include the hardware, Android OS, and Dalvik VM.
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Results indicate that DroidScope was effective in assessing malware samples

with low overhead. One of the major limitations of Droidscope is it is bound to

emulator-use only.

We have already discussed in Chapter 1 that malware applications can detect

the use of an emulator and may decide not to start malicious activities in this

scenario [16].

8. SmartDroid

Category: Analysis and detection

Type: Static and dynamic analysis

The SmartDroid2 framework statically extracts the function call graph and ac-

tivity call graph of Android applications. It then dynamically traverses these

graphs to find elements that trigger conditions to expose an app’s sensitive

behavior.

9. Google Bouncer

Category: Analysis and detection

Type: Possibly dynamic (no official confirmation)

To detect the malicious behaviors of apps, Google introduced Google Bouncer

[31], a malware scanning service to detect malicious in-store apps. Google

Bouncer performs a set of analyses on new applications, applications already

in GooglePlay, and developer accounts for malicious behavior. It also analyzes

new developer accounts to help prevent malicious and repeat-offending devel-

opers from coming back. As Google Bouncer is a proprietary project, therefore,

no information about its methodology is available.
2
http://sanddroid.xjtu.edu.cn
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10. Aurasium

Category: Detection

Type: Repackaging APKs, Privacy policy enforcement

Aurasium [64] automatically repackages arbitrary applications and closely watches

the behavior of security and privacy intrusions such as attempts to retrieve a

user’s sensitive information by target applications. To attach sandboxing code,

Aurasium exploits Android’s unique application architecture of mixed Java and

native code execution and introduces libc interposition code. Because of this,

Aurasium is capable of mediating almost all types of interactions between the

application and the Android OS. Also, Aurasium bypasses the need to root

the device when modification of the Android OS is required. The behavior of

the application can be modified or the flow of the information can be followed.

Additionally, Aurasium has the ability to detect and prevent cases of privilege

escalation attacks.

11. I-ARM-Droid

Category: Detection

Type: Reference monitor, Rewriting framework

I-ARM-Droid is an inline reference monitor-based approach to enforce security

policies in Android OS. In I-ARM-Droid, the framework user first identifies

a set of security sensitive API methods and then specifies proposed security

policies, which can be further tailored to a set of target applications. Then

the framework automatically rewrites the Dalvik bytecode in the application,

where it interposes on all the invocations of these API methods to implement

the desired security policies.
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The approach used by I-ARM-Droid does not allow the instrumentation of ap-

plications on the phone so far, however, it supports to instrument calls to any

Java method and covers reflective Java calls.

12. QUIRE

Category: Detection

Type: Tracking call chain

QUIRE [17] is a framework proposed to detect and protect ‘confused deputy

attacks’ which are a kind of privilege escalation attack exploiting the vulnera-

bility of the security model of Android. It is available in the form of a group of

extensions to the Android operating system that enables applications to prop-

agate call chain context to downstream callers and to authenticate the origin

of data that they receive indirectly. The set of Android extensions provided

by QUIRE allows apps to defend themselves against confused deputy attacks

on their public interfaces and enable mutually untrusting apps to verify the

authenticity of incoming requests with the Android. QUIRE is a backward

compatible OS extension to the Android operating system that allows existing

Android applications to co-exist with applications that make use of QUIREs

services.

13. Droidbox

Category: Taint Analysis

Type: Dynamic analysis

DroidBox [15] uses TaintDroid to detect privacy leaks by modifying Android’s

core libraries. It also comes with a Dalvik VM patch to monitor the Android

APIs and report file system and network activity, the use of cryptographic

operations and cell phone usage such as sending SMS and making phone calls.
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In the newer version release of DroidBox, it utilizes bytecode rewriting instead

of modifying the core Android libraries.

DroidBox is openly available and has been used as a base system by in several

other dynamic analysis platforms including Andrubis [37], Mobile-Sandbox [54],

and SandDroid [58].

14. Andromaly

Category: Detection

Type: Malware detection

Andromaly [51] is a behavior-based detection framework for Android based de-

vices. It is a host-based intrusion detection system and can continuously mon-

itor various resources and classify malicious applications. It exploits machine

learning algorithms to detect intrusion on Android OS. Andromaly considers

the occurrences of higher level events and use them to detect intrusion but has

been tested only on proof-of-concept malware.

15. AppFence

Category: Detection

Type: Malware detection

AppFence [30] is a lightweight extension of the Android to enforce information

flow policies at runtime. AppFence keeps track of the propagation of private

information by leveraging TaintDroid. When the privacy leakage is detected,

AppFence either blocks the leakage at the sink or shuffle the information from

the source (e.g., by using fake contact information). Keeping usability into con-

sideration, the authors proposed multiple sets of access control rules and also

conducted empirical studies to gather the best policies in practice for deploy-

ment with AppFence.
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16. CrowDroid Category: Detection

Type: Malware detection

Crowdroid [9] is a lightweight client application that monitors system calls in-

voked by a target mobile application, preprocesses the calls, and sends them to

cloud where a clustering technique helps determine whether the application is

malicious. CrowDroid uses strace, a debugging utility for Linux and some other

Unix-like systems, to monitor every system call and the signals it receives. It

identifies malicious behavior and detects malware utilizing popular K-means

algorithm on the server side.

17. XmanDroid

Category: Detection

Type: Heuristic based analysis, Detection of covert channel attacks

XmanDroid [8] is a device-centric and policy-driven runtime monitoring sys-

tem that regulates communications between different applications on Android

platform. It allows real-time detecting and blocking privilege escalation attacks

by using ICC. XManDroid monitors the communications of the applications,

then compares them with a set of pre-defined security policies. It also claims

to stop collusion attacks that communicate via channels other than Android’s

standard IPC mechanism. Evaluation results show that the performance over-

head imposed by XmanDroid is below human perception and have very little

performance effect on overal working of Android.

18. AASandbox

Category: Analysis and Detection

Type: Static analysis, dynamic analysis, and API monitoring
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AASandbox [7] was the first system (presented in October 2010) combining

static and dynamic analysis for the Android platform. It implements a system

call monitoring approach using a loadable kernel module. Furthermore, it uses

the resulting system call footprint to discover possibly malicious applications.

The framework allows identification of software reliability flaws and to trigger

malware without requiring source-code. The framework makes use of dynamic

approach by collecting run-time behavior analysis and also the I/O system calls

generated by the applications. Unfortunately, AASandbox is not maintained

anymore.

3.3 Discussion

The goal of this survey was to introduce the existing static and dynamic analysis

proposals for analyzing Android apps. We characterized several recent proposals into

different categories (e.g., analysis, risk assessment, detection, static analysis tools,

etcetera). Considering the way that author’s implemented the proposed solution,

Table 1 and 2 shows the comparison results for all the covered works in this survey.

We have discussed very high-level details specific to each proposal in the previous

section. However, we discuss a few limitations common limitation(s) of the both

categories as follows.

Static analysis. Most static analysis frameworks cannot handle obfuscation

techniques such as code encryption and dynamic code-loading [68, 47]. More critically,

while Android apps are generally developed in Java, compiled to Java bytecode, and

only then converted to Dalvik bytecode. Some frameworks perform analysis only on

DEX bytecode, limiting its effectiveness in practice.

For tools like Android Monkey and other automated UI exercisers, a major prob-

lem is that it is difficult to guarantee that all malicious behaviors can be triggered
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during testing. Just measuring the code/path coverage of the app might not be suffi-

cient as malicious apps can easily hide malicious behaviors deep inside the program.

One option to solve UI exercisers problems is to use a static analysis tool that accesses

the application sensitive APIs problematically.

Dynamic analysis. The way of implementation for all the surveyed proposals

in both categories is different.

For dynamic analysis, the frameworks can be implemented on the application level

or framework and Linux kernel level. As shown in Table 2, most proposals modify

the framework and Android OS. The need to modify the Android OS comes from

this fact that dynamic solutions are based on app activities. Therefore, the only way

to monitor the applications activities such as system calls is modifying the kernel or

the framework. The main problem with rooting the device and making changes in

the Android OS for an implementation is that in fact, they may make the device

unsafe and vulnerable to attacks. Also, many of the dynamic analysis proposals for

identifying privacy-sensitive behavior suffer from false positives, which can effect the

detection results.

Another thing to consider is, a majority of dynamic analysis proposals do not

assume the use of native code in Android apps. Native code must also be considered

in developing new detection and analysis algorithms due to its wide presence in real-

world apps. In our survey, Mobile-Sandbox [54] is the only proposal that is able to

track native code API calls.
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Chapter 4

Threat Model

This dissertation considers a threat model in which the frameworks we deploy in

our toolchain can detect applications aiming to gain and abuse sensitive resources

of Android stealthily. More specifically, this work assumes an application can abuse

Android resources and permissions to access sensitive data. In general, we consider

a privacy leak to be any transfer of user’s personal data (e.g., contacts, location) or

any information that helps to identify the device uniquely.

1. It is challenging to draw a clear line between the malicious activity and a normal

operation of mobile applications. A large number of malware samples harvest

the private data stored in the mobile device and send the data to remote servers

with malicious intent. This form of information leak attack could have more

impact on users when the financial credential is targeted. However, to make our

goals more evident, this dissertation defines the information as private data leaks

without user’s consent. Our work does not distinguish the difference between

personal data being used by an app for user-expected application functionality;

nor do we attempt to differentiate between safe and malicious leaks. Another

key point is, it is very difficult to learn the intentions of the developer during
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the development of the application.

2. Our work focuses on Android applications leaking private sensitive information

within the scope of the Android security model for Android 4.3 or lower. We

are not concerned with vulnerabilities or bugs in Android OS code, the SDK,

or the Dalvik VM which runs applications. The trusted computing base for

the frameworks we leverage for our analysis is the Android framework, Linux

kernel, and the Dalvik virtual machine.

3. Some applications that work on Dalvik does not work on ART. While we were

analyzing the apps, we found that many applications were crashing (the ones

we downloaded from Google Play Store). The applications were crashing be-

cause the app developers always tend to target newer Android versions to use

latest features. Unfortunately, the newer features are written for applications

according to the ART system, which TaintDroid framework does not support.

Therefore, TaintDroid is not able to analyze many new applications. We exclude

such apps from our analysis.

4. Android apps can load code at runtime to dynamically extend their function-

ality. However, this technique comes with severe security implications. While

dynamic code loading is popular for legitimate reasons, such as loading exter-

nal add-on code, shared library code from frameworks, or dynamically updating

code during beta and/or A/B testing, it is especially interesting for malware. In

our toolchain, apps are analyzed only once by IntelliDroid, malicious apps can

download and load their malicious payload later at runtime to evade detection

in dynamic analysis. As the dynamically loaded code is downloaded at runtime,

our work does not aim to detect inputs for the dynamically loaded code.
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Chapter 5

Methodology

In this chapter, first, we discuss various building blocks of the information flow track-

ing framework used in our analysis. Later, we discuss types of sensitive informa-

tion that can be detected by the TaintDroid framework. In the end, we discuss the

methodology of our cross-validation approach.

We demonstrate toolchain work flow in Figure 3 for a single application. As

depicted in this figure, our toolchain contains two major phases: static analysis and

dynamic analysis. In the first phase, we leverage IntelliDroid for pre-processing of the

APK files. In the second phase, we rely on the TaintDroid framework for dynamic

analysis.

To conduct our experiment on regular Android applications, the runtime informa-

tion inside the app should be fully monitored while it is being executed. Hence, the

crucial function in our approach is to track and record the specific privacy sensitive

activities that may take place in the application. In order to validate our setup and

scripts, we repeated the analysis done by original authors of IntelliDroid on malware

samples provided by Android Genome Project [65] and got similar results as the

original study. Our detailed methodology for the analysis is given below:
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Figure 3: The simplified architecture of our IntelliDroid and TaintDroid toolchain analysis

workflow for a single APK.

5.1 Static Analysis

In this phase, we adapt IntelliDroid’s original methodology to process and analyze

the APK files. To scale-up the process, we introduce few modifications and scripts in

the work-flow of the toolchain. More details of the steps followed in this phase are

described in the following sections:

5.1.1 Preparing the Dataset of Target APKs

Our dataset includes a variety of applications from different categories and sources.

We discuss detailed information about our dataset in Section 6. We follow the steps

below to install a batch of APKs on our Android device

1. We categorize all the applications in our dataset and sorted them into their
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respective categories (e.g., Entertainment, Social, Business, Transportation).

2. We write a script to create flashable zip packages for all the sorted APKs. On

average, each batch of zip package had nearly 100 APK files from each category.

3. Then, we upload the TWRP recovery image [2] on our Android device. TWRP

is an open-source software custom recovery image for Android-based devices.

TWRP allows the installation of custom ROMs, kernels, and add-ons (e.g.

Gapps, custom zip packages).

4. Finally, we flash the target APK zip packages on our Android device using

TWRP recovery options.

5.1.2 Pre-processing APKs

We process our target APKs using pre-processing scripts provided by the IntelliDroid

framework. In this phase, IntelliDroid derives the path constraints for each call path

made in application code. In this stage, the applications are unpacked and converted

to Java bytecode using decompilation tools. The preprocessing stage makes use of

APKParser [18] and Dare [12] frameworks to decompile and converted apps to Java

bytecode.

5.1.3 Building Input Constraints

After the APKs files are translated to java bytecode, the generated files are passed

to IntelliDroid’s static component. The static component makes use of WALA [59]

static analysis libraries. In general, WALA is used for static analysis, call graph

construction and inter-procedural data-flow analysis of the provided code.

To perform the static analysis on the APK code, IntelliDroidAppAnalysis compo-

nent identifies invocations of targeted API and find target call paths from the handlers
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that lead to the targeted API in the application. A list of targeted APIs is passed to

IntelliDroidAppAnalysis component for processing. For example, in our analysis, we

use taintdroidtargets.txt file provided by the IntelliDroid’s original work for building

the targeted API inputs. This list contains multiple Source and Sink APIs that are

tagged has privacy sensitive by the original authors (More information on our Target

APIs is given in Section 5.4).

For generating the input constraints, IntelliDroid develops a call graph to get an

accurate representation of execution flows between different methods in the applica-

tion. The call graphs are mainly used to search for the targeted APIs.

Considering time taken for generating input constraints, we observe that a few con-

straint building processes were taking significant amount of time and system memory

to generate the inputs. As a result, these processes occupied all the system resources

leading to the system crash. As per our observation, a simple application takes around

5 minutes to generate the inputs (average calculated for 100 apps). We had written a

script to automatically build targets for a set of APKs using the commands provided

by the IntelliDroid framework to execute in a specified period of time (i.e., 300 sec-

onds). If the time limit is not satisfied, our script will kill the ongoing process and

will initiate the next build in the list. Once the path generation is completed, in the

final step, these paths along with information for dynamic analysis are then injected

to the core device framework of Android for further analysis.

5.2 Dynamic Analysis

In this phase, we initiate IntelliDroid’s dynamic client script from our host machine.

The dynamic client host program is responsible for connecting to the Android device

client program by using Android Debug Bridge (adb) [23]. The dynamic client helps

in injecting and triggering the input paths into Android’s core device framework.
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The core of dynamic client for IntelliDroid uses the z3 constraint solver [38] to trigger

path inputs. As shown in Figure 3, the Android device runs a system service called

IntelliDroidService, which further connects to the host machine to receive inputs from

the IntelliDroid client.

5.2.1 Trigger Paths

In this phase, input triggers with sensitive APIs are sent to the Android device. When

the trigger instructions are being sent to the device, the input execution activates the

trigger-based behavior, which enables us to observe the trigger-based behavior in a

controlled environment. We modified IntelliDroid’s dynamic client script to automat-

ically trigger n inputs generated in the static analysis phase for each application.

5.3 Log Collection

Figure 4: Log collection process subsystem.

Android helps in providing a mechanism to collect and view the system debug
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output. The logs are collected in a circular fashion serially from various mobile

applications and different portions of the systems as well. During the dynamic analysis

phase, we use the logcat command to capture and filter the logs that are collected

from the various applications.

The process of identifying the logs specific to TaintDroid is very straight forward

as TaintDroid automatically labels (taints) data from privacy-sensitive sources and

transitively applies labels as sensitive data propagates through program variables,

files, and IPC messages. When tainted data are transmitted over the network, or

otherwise leave the system, TaintDroid logs the data’s labels, the application respon-

sible for transmitting the data, and the data’s destination.

Figure 4 shows our log collection subsystem. At first, when the APK file is exe-

cuted in the device, logcat actively collects the logs of applications. Later, our script

processes the logs with the details like APK package name, timestamps, crashed

applications, and tainted data information.

5.4 Taint Sources and Sinks

In this section, we discuss in detail how we identify sensitive functionalities that could

leak user’s data. Table 3 enumerates the resources that TaintDroid’s authors consider

as privacy sensitive. As per original work, if there is a flow of privacy sensitive data

from an information source through a sink, such a flow is referred as privacy leak.

Following is the detailed explanation of sensitive information sources listed in Table

3.

1. Sources. API calls that return private device information are considered as

information sources (e.g., location, IMEI, address book, etc). Our setup tracks

7 types of private information tagged as privacy sensitive by TaintDroid;
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Taint Category Function
IMEI User Identification Obtain IMEI of the device
AppID Application Identification Reference to the Application Identifier
Android ID User Identification Obtain 16 digits Android ID
UDID User Identification Obtain/Create unique device identifier
Location Accessing Resources Obtain Location of device
Contacts Accessing Resources Accessing AddressBook of device
System Status Accessing Resources Accessing state of running applications
SMS Accessing Resources Reading SMS from device

Table 3: Target sensitive information sources and their functionality.

(a) Location Information. Location information represents the current

location of the Android user. Malicious apps can track device location

with automated location tracking, geo-fencing, and activity recognition

[60]. With location data, an app can predict a user’s potential actions,

recommend actions, or perform actions in the background without user

interaction. Before an application can receive any location data, the de-

veloper must request location permissions. There are two location permis-

sions that can be used to access location, ACCESS_FINE_LOCATION

and ACCESS_COARSE_LOCATION.

(b) Phone Identifiers. Applications can send phone identifiers to remote

network servers. TaintDroid tracks 6 different phone identifiers: phone

number, IMEI (device ID), IMSI (subscriber ID), ICC-ID (SIM card se-

rial number), UDID (unique device identifier), Android ID(16 digit device

identifier), and AppID (Application package identifier):

i. IMEI. Every smartphone device has a unique 15 digit code, called an

IMEI (International Mobile Equipment Identity) number. IMEI of a

user device can be accessed by applications without requiring explicit

user authorization.

ii. AppID. Every Android app has a unique application ID that looks
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like a Java package name, such as com.example.myapp. This ID

uniquely identifies the app on the device and in Google Play Store.

If a developer wants to upload a new version of his app, he must keep

the same application ID as the original APK, otherwise, Play Store

treats the APK package as a completely different application.

iii. AndroidID and UDID. AndroidID is an another unique identi-

fier used for tracking the devices. In general, AndroidID and UDID

are used by ad networks and advertisers to track the user’s devices

for targeted advertisements. Typically, apps would pass this ID to ad

networks, which would store it and use it to track users as they inter-

acted with various apps. Thus, it can be unsafe if device ID is sent

to unauthorized users of malicious attackers together with other user

information. The Android ID could only be reset by wiping the entire

device. Notably, many developers leverage IMEI number and device

ID as UDID [49, 45]. Android apps can read this identifier from the

device if READ_PHONE_STATE permission is granted.

In the release of Android 4.4, Google introduced a new identifier called

the AdvertisingID. This new ID is subject to a new user setting can be

used to opt-out of behavioral advertising. According to Google, when

a user activates this Opt-Out setting, the Advertising ID will only be

used for contextual advertising, reporting security and fraud detection.

To enhance privacy, the new advertising identifier is not connected to

personally-identifiable information or associated with any persistent

device identifier (e.g., IMEI, MAC address, etc.).

(c) Contacts. Contact information provides the app access to the address

book of the Android device. An application can access contact information
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directly by calling ContentResolver methods or by sending intents to a

contacts app. The READ_CONTACT permission is required by an app

to access the address book.

(d) CurrentApps. Applications in Android can check the status of currently

running applications in the OS. For this they have to call Activity Manager

by using getRunningAppProcesses or getRunningTasks in their app.

2. Sinks. The tainted data identified by dynamic platform leaves the device at a

taint sink. The functionality that can help data exit the device are considered

as sinks by TaintDroid.

(a) Network/File. Relevant API calls in the Webview, Outputstream,

DataOutputStream, and HttpURLConnection objects are considered as

sinks.

(b) SMS. The sendTextMessage() function in object SmsManager is also

considered as a sink. SMS information represents the SMS storage of the

device. Malicious applications can export the SMS data from the device

to a Microsoft Excel file or remote SQL database. To fetch SMSs from the

device, the READ_SMS permission is required. To send SMSs from the

device, the WRITE_SMS permission is required.

5.5 Cross Validation

To compare the results of our original approach with other existing methods, we

tested 100 randomly selected applications from our dataset in different environments.

For this, task, we scripted to load the applications automatically into the Nexus 4

phone, start the application, and capture the logs generated by the dynamic analysis

framework.
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In the first case, we manually executed randomly selected applications with only

TaintDroid running on the device and recorded the application activity. In the second

case, we use a combination of Android Monkey [25] and TaintDroid. Android Monkey

is used to randomly exercise the user interface (UI) of the application. Monkey is a

program running on Android that feeds the application with pseudo-random streams

of user events such as clicks and touches, as well as a number of system-level events.

While the triggered interaction sequences include any number of clicks, touches, and

gestures, the Android Monkey specifically tries to hit buttons. As some use cases

might require repeatable analysis runs without any random behavior introduced by

the Monkey, we can also provide a fixed seed in order to always trigger the same

interaction sequences. We follow the following steps to analyze applications with

Monkey:

1. The installation of a given APK is done with the help of adb. Here the adb

copies the APK into the device and then runs the PackageManager, which is

an essential part of Android and installs it into the system. This means that

the APK will be unzipped and copied to the specified directories.

2. After installation, the application is imported into the Android system and can

be launched with the help of the Android Monkey.

3. As per our strategy, Monkey has the role of a simulator of human interaction

on the to examined application.

During the runtime of Monkey, there are exactly 1000 generated events with 1000

ms delay in between. For example, after the application installation is completed the

Android Monkey will be started via adb shell monkey -p $ACTIVITY -vv –throttle

1000 1000. This tells the Monkey to start the activity associated with the application

and generate 1000 random user events which will be used to simulate normal user
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behavior. Initially, we chose more than 1500 random events to simulate normal user

behavior and tested it on few applications. However, we noticed that applications

started crashing after a certain number of events (e.g., 1000), therefore we choose 1000

events to simulate the stable user behavior and prevent applications from crashing.

In addition to analyzing the logs automatically, we manually inspected the log

files generated under the proposed testing scenarios and compared the results of both

approaches with our original evaluation results.

Although the number of entries in log files is typically large enough for manual

inspection, this approach is obviously not scalable and the system can be improved

by developing further techniques.
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Chapter 6

Dataset and Setup

In this chapter, we describe our analysis dataset and the setup we used for our analy-

sis. We collected free APKs available on the Play Store (a Google-proprietary service

which allows browsing and downloading of applications that were published by dif-

ferent developers) and other sources as explained below. A total of 5,000 APK files

were collected. Following are the details of our dataset.

1. Android Apps from CCSL We collected applications from Carleton Univer-

sity’s App Observatory [1] (managed by Carleton Computer Security Lab). We

analyze around 4500 applications from this dataset source. The dataset has

previously been used in existing research [6].

2. PrivacyGrade.org This website characterizes permission leakage in popular

free Android apps available on Google Play Store applications [35]. Grades

are assigned using a privacy model that designed by the developers of the

website. Grades range from A to D, where A stands for least privacy offending

application and D stands for most offending applications. This privacy model

measures the gap between people’s expectations of an app’s behavior and the

app’s actual behavior. For example, most people don’t expect applications
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like Calculator to use location data, but surprisingly, many of them actually

do. This kind of surprise is represented in the privacy model as a penalty

to an app’s overall privacy grade. In contrast, most people do expect apps

like Google Maps to use location data. This lack of surprise is represented in

PrivacyGrade’s privacy model as a small or no penalty. We analyze around 500

applications from this dataset source rated in C and D category of PrivacyGrade.
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Figure 5: Dataset.

Pre-processed APKs. The target APKs were pre-processed by IntelliDroid’s

static analysis component. In this phase, IntelliDroid derives the path constraints

for each targeted API in application code. In some cases, IntelliDroid was not able
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to built API input constraints within a reasonable amount of time. In this case,

we simply set a timeout of 300 seconds. As seen in Figure 5, around 70% of total

applications were able to go through static analysis phase, rest 30% of them failed to

compile in specified amount of time.

As per our final pre-processing results, despite the technical difficulty in certain

cases, our overall approach offers great practical value for the analysis of trigger-based

behavior in Android applications.

6.1 Setup

In existing dynamic analysis work [9, 19, 55, 30, 32, 22, 63], researchers rely on dy-

namic analysis to extract privacy sensitive behaviors and often use Android emulators

for the experiments. However, Android emulators have some limitations.

Currently, Android emulators cannot emulate following components that are likely

to be used by malicious applications.

1. No support for IMEI number (00000 is returned, IMEI information leaks ac-

counts for the maximum share of all the data leaks in our results).

2. No support for MAC Address.

3. No support for real world GPS testing.

4. No support for Camera.

5. No support for Sensors (Acceleration sensor, Gravity sensor, and Gyroscope)

6. No support for determining network connected state (This check is present in

most of the applications)
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Also, a number of companion chips like WLAN, Bluetooth, GPS, Radio are present

on the actual device and interact with the CPU in ways that are not predictable and

hard to simulate on the emulator. Moreover, malicious apps may detect emulation

[16, 56, 52] and as a result, it does not execute the payload to evade the detection.

To overcome this state of affairs, we use an LG Nexus 4 device with Quadcore 1.5

GHz CPU, 2 GB memory, and 8 GB internal storage for our experiment. The test

device runs a custom built Google Android firmware, i.e., Jelly Bean 4.3 with Linux

kernel version 3.4.39.

For the dynamic analysis setup, we download and compile the latest TaintDroid

targeting aosp-arm-eng, which is based on Android 4.3 released in July 2013 (android-

4.3-r1). On the other hand, for IntelliDroid dynamic analysis client, we download

IntelliDroid dynamicclient patches from IntelliDroid’s Github [62] and patched them

to the Android base source code.
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Chapter 7

Results

In this chapter, we give a summary of detected privacy leakages during dynamic

analysis. Figure 7 summarizes the information sources most commonly leaked to the

network by the applications.

Leakage specific to uniquely identifying the device is significantly more than apps

accessing resources: overall, 33.09% of total apps leak information over the network.

Most applications leak device specific identifiers, such as the IIMEI, IMSI and the

Android ID. The case of IMEI information leaks accounts for the maximum share

of all the data leaks. We find that around 76% of applications were leaking IMEI

Name Category Leaked Data Fetching Method No. of Downloads

Brightest Flashlight Productivity IMEI, Location HTTP 50M-100M
Camera 360* Photography IMEI, Location HTTP 450M-500M
GoBattery Tools Location HTTP 10M-20M
GoLocker Personalization IMEI, Location HTTP 100M-150M
GoSMS Pro* Communication Address book, IMEI HTTP 100M-150M
Fruit Ninja* Games (Arcade) IMEI HTTP 100M-500M
My Talking Tom Games (Casual) IMEI HTTPS 100M-500M
AngryBirds* Games (Arcade) IMEI HTTP 500M-1000M
Trial Xtreme* Games (Racing) IMEI HTTPS 50M-100M
Speedtest Tools IMEI, Location HTTP 10M-50M

Table 4: Information leaks detected by IntelliDroid and TaintDroid for the most popular

applications (as of March 2017); Applications marked with (*) have multiple versions.
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number of the device. Interestingly, some applications transmit device’s IMEI details

up to 16 times to several servers during the runtime.
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Figure 6: Statistics of applications

An existing report [41] has identified that leakage of names and phone numbers

from the user’s address book is more common amongst malware than it is amongst

benign apps. Instead, regular applications mainly leak the location, an information

source less commonly leaked by malware applications. In 30% of applications, user’s

location coordinates were leaked out. Android has two categories of location data:

coarse and fine. Coarse location data uses triangulation from the cellular network

towers and nearby wireless networks to approximate a device’s location, whereas

fine location data uses the GPS module on the device itself. We do not differentiate

between coarse and fine location data as we believe any leakage of location information

to be important.

For instance, popular fitness applications continuously track the distance of the

running course and allow the phone user to calculate the calories. This kind of apps

reads device location continuously no matter if the application is running in the back-

ground. We also observed similar kind of pattern of location tracking in navigation

and transportation applications. Among the leaked data types, the location and GPS

location seem similar but actually, have a delicate difference in getting the location
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information. There could be several ways to find the location of a phone. Applica-

tions can fetch the location information of a device through the network instead of

the GPS. In particular, when the user is inside a building or surrounded by high-rise

buildings, known as a GPS Dead Zone, the location should be resolved by the net-

work. In our experiment, the location and GPS location are both tainted whenever

the location data leaks happen. However, most privacy leaks occur at the early time

of app’s execution and discontinue without explicit inputs.

Among all the identifiers, Android ID is the one with least risk, as it can be

changed at any time [33]. Around 48% of applications leak Android ID. Other iden-

tifiers like UDID i.e., 45% of apps are leaking can be used for long-term tracking.

Developers manage to assign the application any persistent device identifier marked

as UDID. For example, many developers assign UDID identifiers value of IMEI, IMSI,

etc. In general, the identifiers are permanently associated with either the device or

the SIM card.

Concerning accessing information on the device, only 3 (0.11%) applications tried

to access SMS and address book during the dynamic analysis phase. Due to very

small number of applications leaking address book and SMS details, we do not list

them in Figure 7 (same for the apps that access system services). Also, there is is

a possibility that these applications were accessing address book content just for the

functionality of the app.

We also characterize information leaks for the most popular applications (with

download’s in millions) from our dataset. Table 4 summarizes our characterization

results for the most popular apps. In this table, we also crawl the number of downloads

to highlight the number of affected users.

Figure 8 shows statistics of apps (in %)that leak atleast one identifier from each

category. This categorization is based on a total of 1500 apps. A large number
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Figure 7: Distribution of identifiers leaking.

of the APKs in our target dataset were not categorized. Also, tracking category

of each uncategorized APK manually is a very time-consuming task.Therefore, our

categorization results are based on a subset of our dataset (i.e., for 1500 apps).

Categorical classification shows that transportation and weather applications ac-

count for the maximum share of location data leaks. It is notable that most of the

applications in these 2 categories highly rely on permissions and functionality (e.g.,

GPS navigation apps, location and device tracking for weather updates etcetera). We

are uncertain if these identifiers and sensitive data are used for malicious purposes.

The problem is that many apps may have a good reason to use them because several
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different things can be covered by one permission and there’s no good place to see

exactly what they all mean. It is possible that sometimes an app that is tracking

different identifiers and location information is saving the settings in the cloud to tie

them to a user. Applications like Google Maps, Waze, Community GPS navigation,

ROUTE 66 etcetera heavily rely on features like location tracking to uniquely identify

the device. A rough location fetched through a Wi-Fi Access Point database works

well enough for tracking approximate location but sometimes applications need to get

precise.

Utility applications like Swift Wifi, DolDolLauncher, GoLocker, GOweatherFore-

cast, GoSMS, Camera 360 and My talking tom use several permissions to grab mobile

analytics data. As seen in Figure 7, many applications have full access to the phone

state, IMEI, IMSI/phone number and location of the device. Also, the frequency of

connections made with the remote server is very high. After doing a manual check,

on every GO app, including GoLocker and GoLauncher, we found that they all have

the same design and pattern.

Similarly, popular games Fruit Ninja, Drag Racing access full phone state every

minute. Kids reading book NoraEGame access device information up to 60 times.

On the other hand, popular utility app Brightest flashlight application for LED torch

fetches the device precise location and sinks out the location information to a remote

server. It is very clear from these applications that accessing location and unique

details of the device has nothing related to the functionality of the application.

It is also possible that ad libraries associated with the applications may use fetched

information for targeted advertisement. An ad library linked with application ap-

plication may correlate a user’s ad traffic across each application they’ve installed

containing their ad library. This is because every ad provider consistently transmits

the same UDID field (hashed or unhashed UDID value) regardless of the application
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in which it is included. For example, if one ad library in an application sends An-

droid ID or IMEI, every application on a user’s device containing the same ad library

will transmit the same value, allowing these companies to correlate the information

provided by all of the user’s applications that use the exactly same ad library.

Additionally, a further concern involves a network sniffer that may track users

private information. There are cases in which many applications transmit device

identifying information in clear text.

As seen in Figure 7, many applications transmit location information to the de-

velopers. For example, we found a Calculator application capturing both IMEI and

location of the device to the developer directly. This shows that many users are not

aware of the permissions used by the applications. There are chances that the devel-

oper may use this location for various malicious purposes but it’s also not obvious,

why an app needs the permission.

We found that, in around 10 seconds, IMEI and AppID information are likely to

be leaked no matter if input triggers have started or not. On the other hand, the

remaining of identifiers and location leaks seem to take place when all the inputs are

triggered normally. We also found that most other data leaks occur while the apps

under test are triggered functions by IntelliDroid dynamic client framework.

For our analysis, we also collected a miscellaneous dataset of 200 applications

from Carleton’s App Observatory dataset. These applications were rated as the safest

applications with no leakages by F-Droid. In our analysis, we found only 2% of the

applications leaking device information to the remote server. The low detection rate

validates that most applications were safe and were leaking no sensitive information

off the device.

As already discussed in Section 4, TaintDroid only supports Android applications

targeting version 4.3 or lower. After the release of Android 4.4 (KitKat), Android
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got a major architectural update as, Google decided to introduce another way of

executing apps on top of the Android operating system i.e., ART. Android 4.3 uses

Dex bytecode, which is completely different from ART. Our results show that the

applications developed for Dalvik work normally when running with ART. Whereas,

applications developed for ART fail to execute on Dalvik after initialization.
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Figure 8: Statistics of apps that leak atleast one identifier from each category. This

categorization is based on a total of 1500 apps.

7.1 Cross Validation

We perform three different experiments for cross validation of our results. All three

analysis environments are enumerated below;
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1. IntelliDroid and TaintDroid

2. TaintDroid and Android Monkey

3. TaintDroid only
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Figure 9: Cross validation evaluation results.

As described in Chapter 5, we use static analysis to generate inputs for the target

app. We then trigger each input automatically from the host machine and calculate

the differences in the leaks during the phase of dynamic analysis.
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Based on the summary of the logs collected for the evaluation, we found that

some applications leaks are activated based on events that are independent of the

user interaction while some others are only activated on the activity triggered by

Android Monkey and IntelliDroid.

In a few cases, IntelliDroid input triggers for an application to leak details of IMEI

(or ICCID) leak while with only TaintDroid there is no leak. This is because, with

IntelliDroid, the different execution paths of the application are parsed in advance

(during static analysis) and later triggered programmatically.

Overall results for comparative analysis are shown in Figure 9. In total, Intel-

liDroid and TaintDroid were able to detect around 89 applications leaking IMEI

details to a remote server. Whereas, in the case of app executed under TaintDroid

enviorment only, TaintDroid failed to detect 5 applications leaking the same identi-

fier. This result states that in the scenario of manual testing, only a small number

of functions are covered by interacting or running the application. Hence, there are

fewer leaks as compared to automatic input trigger methods.
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Figure 10: Comparision between frequency of the user data leakage using three different

methodologies.

The major observation we made in the comparison experiment is the difference
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Figure 11: Average rate of frequency leakage using three different methodologies.

in the number of requests being sent to the remote servers in all three cases. Figure

10 shows the comparison of the rate of frequency leakage for a subset of applications

we analyzed. Similarly, Figure 11 characterizes total average of the frequency of

identifiers, leaked by all the applications in our dataset.

For all the applications, specifically for the TaintDroid only environment, we

recorded little count of information leaks in our logs (in terms of frequency of leak-

ages). However, in the case of Android Monkey and IntelliDroid, we detect that the

applications attempted to establish a connection to a remote server multiple times

(the highest for IntelliDroid). For example, Camera 360, a photo editing application

established a connection to a remote server more than 200 times/min. Whereas, only

3 times when running under the scenario of simple TaintDroid and 120 times, in the

case of Android Monkey. Similarly, we found that content sharing application Bump

also leaks the device identifiers and location multiple times with a remote server.

In our results, IntelliDroid was able to detect 41 application leaking location de-

tails. However, in the case of only TaintDroid, we were able to detect 38 applications
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leaking location information and missed 3 applications leaking location information

to a remote server. Android Monkey also missed 1 location leak as compared to

IntelliDroid.

The Monkey program tends to generate bugs with the instrumentation. 15% of the

total applications crashed while we were using Monkey on them. On the other hand,

Android Monkey and IntelliDroid do not use the same approach to trigger paths. Still,

they have approximately the same number of detection in case of tracking AppID.

7.2 Analysis Time

Our static analysis phase costs around 416 hours to analyze all 5,000 apps. The

analysis time can be further reduced by distributing the analysis workload to multiple

machines.

Our dynamic taint analysis costs 3 to 5 minutes to verify a certain path reported

by static analysis, depending on the search space and the complexity of the app. 70%

of total apps were executed in the dynamic analysis phase, rest 30% of them failed

in pre-processing (as discussed in Chapter 6). The dynamic taint analysis costs us

around 250 hours to analyze approx 5000 apps.
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Chapter 8

Limitations

1. Implicit Flows. A fundamental limitation of dynamic taint tracking is the

inability to track implicit information flows via control flow. TaintDroid shares

this limitation.

2. OS Compatibility. The dynamic analysis framework TaintDroid was orig-

inally designed for the virtual-machine-based system (i.e., Dalvik VM), and

implemented on Android version 2.1 to Android 4.3. The core functioning of

the framework utilizes the internal memory of Dalvik VM for taint storage and

propagation. However, to enhance the performance and battery life of Android

devices, Google pushed changes to the master branch of AOSP that remove

the Dalvik virtual machine and replace it with ART that uses ahead-of-time

(AOT) compilation runtime system. The newer ART runtime is an Ahead-of-

Time compiler that processes application instructions before they are needed.

Standing for Android Runtime, ART was introduced in Android 5.0 and re-

placed Dalvik as the platform default. Therefore, we cannot use TaintDroid for

the newly-designed runtime and can only be supported up to Android 4.3.

3. Application Compatibility. Most Android apps should just work without
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any changes under ART. While we were analyzing the apps, we found that many

applications were crashing (the one’s we downloaded from Google Play Store).

The applications in our test suite were crashing because of the app developers

always tend to target newer Android versions so as to use latest features. Un-

fortunately, the newer features are written for applications according to ART

system, that TaintDroid framework does not support. Therefore, TaintDroid is

not able to analyze many new applications.

4. Native Code Taint tracking. It is known that TaintDroid tracks taint

calls for Dalvik bytecode only. Native code taint tracking would likely require

dynamic binary instrumentation or VM introspection. TaintDroid currently

does not use such methods for native code taint tracing; these methods result

in a typical slowdown of 10x to 30x [50] for the code and hence are not very

attractive from the performance perspective.
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Chapter 9

Conclusion and Discussion

Along with the increasing prevalence of Android smartphones, the number of

Android apps including malware apps is increasing. In spite of deployed Android

security mechanisms, many apps take advantage of the default Android security

weaknesses to misuse the granted resources. The increasing capabilities of the

Android devices open new doors for attackers to exploit different types of links,

sensors, services related to user’s device. Thereby, researchers have proposed

many tools and frameworks to control the outreach of vulnerabilities in Android

devices.

In this dissertation, at first, we surveyed 32 most promising proposals for two

major app analysis categories (i.e., static and dynamic analysis). From our

survey, it is evident that both static and dynamic analysis techniques have

its own limitations. Depending on the main objective of each proposal, the

way of implementation for proposed works is different. The proposed works

are primarily behavior-based and their main contribution is tracking the apps

privacy-sensitive behavior and also to restrict them from doing any kind of mali-

cious activities. We highlighted and characterized several important features of
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state-of-the-art app analysis proposals and introduced their methodology. We

also compared them considering their type, features, functionality and known

limitations.

For the evaluation, we conclude that using static analysis tools in conjunction

with dynamic analysis tools provide clearer results than rest of the methods.

We found that about 33% of the tested apps leak privacy-sensitive information

over the network (e.g., IMEI, location, UDID), which is consistent with existing

work. The case of IMEI information leaks accounts for the maximum share

of all the data leaks. Furthermore, we also report an overall increase in the

frequency of leakage of identifiers (with IntelliDroid and TaintDroid).

Many dynamic analysis proposals rely on testing application behavior on An-

droid emulators [7, 9, 67, 66, 46, 37]. Due to several limitations of emulators

as discussed in Chapter 6, we wanted to test applications on a real device and

find out the difference. On the basis of our results, we conclude that the using

a real device is more promising as compared to the emulator. It provides more

realistic values of device identifiers (e.g., IMEI, ICCID, UDID), which is not

possible in case of emulators).

Considering the limitations of automatic exercisers (like Android Monkey) or

manual analysis, it is clear that the approach used by IntelliDroid is better than

Android Monkey or other UI exercisers. The technical problem with Android

Monkey and similar tools is they cannot guarantee that all malicious behaviors

can be triggered during the testing of apps. As an example, consider a malicious

application with special characteristics. In this case, the application will fetch

user’s personal information after 2 hours of app launching (time bomb) or only

when it is attached to a PC (logical evasion). In this case, if we will use Android

Monkey exerciser to trigger this behavior, it is expected to fail. On the other
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hand, there is a chance that IntelliDroid may trigger the behavior (provided

that target API is known). It is notable that some events are independent of

user interactions with the application (i.e. the existence of the network, etc),

yet some others are based on user input.

However, testing mobile application is a non-trivial effort due to a variety of

inputs and heterogeneity of the technologies. Therefore, it is difficult for UI

based exercisers to have full coverage.

With this snapshot of the overall app analysis frameworks landscape, we thus

hope that the security community can better explore various potential opportu-

nities to further design robust and promising solutions to detect privacy leakages

in Android applications and devices, including addressing the remaining chal-

lenges.
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