
BINTYPE: A SCALABLE TYPE INFERENCE TOOL

FOR COMPILED C PROGRAMS

Briti Sundar Mondal

A thesis

in

The Department

of

Concordia Institute for Information Systems Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of Master of Applied Science

in Information Systems Security at

Concordia University

Montréal, Québec, Canada

August 2016

c© Briti Sundar Mondal, 2016

Concordia University
School of Graduate Studies

This is to certify that the thesis prepared

By: Briti Sundar Mondal

Entitled: BinType: A Scalable Type Inference Tool for Compiled

C Programs

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Information Systems Security)

complies with the regulations of this University and meets the accepted standards

with respect to originality and quality.

Signed by the final examining committee:

Dr. Arash Mohammadi Chair

Dr. Amr Youssef Examiner

Dr. Govind Gopakumar External Examiner

Dr. Mohammad Mannan Supervisor

Approved
Chair of Department or Graduate Program Director

2016

Dr. Amir Asif, Dean

Faculty of Engineering and Computer Science

Abstract

BinType: A Scalable Type Inference Tool for Compiled C Programs

Briti Sundar Mondal

Reverse-engineering program binaries often relies on the recovery of high-level data

abstractions. In particular, recovering variables and their type is challenging as most

such information is lost during compilation. Although past proposals seem to have

addressed this problem, their approaches are either not scalable and suffer from cov-

erage issues (e.g., dynamic analysis), or yield insufficient precision by staying too

conservative (e.g., static analysis). Furthermore, most recent works lift assembly to

Intermediate Representation (IR), which standardizes low-level operations, and may

lose some useful semantics for type inference. In this thesis, we propose BinType, a

static analysis-based, scalable, precise and conservative tool that works directly on

x86 assembly to automatically reveal type information of variables and function ar-

guments. BinType is 45% more precise than TIE (NDSS’11) on a dataset 3.5 times

larger, and orders of magnitude faster than its underlying algorithm. We also show

that our tool makes a significant impact on the accuracy of a recent tool on binary

to source matching.

iii

Acknowledgments

I am grateful to Dr. Mohammad Mannan, Associate Professor of Concordia Institute

for Information Systems Engineering (CIISE), for supervising my research work. His

inspiration, encouragement and continuous support to conduct my research and to

prepare this thesis is gratefully acknowledged.

I am profoundly grateful to have benefited from the thorough review of Dr. Mo-

hammad Mannan and Xavier de Carné de Carnavalet during the writing of the thesis.

I am also thankful to Dr. Mohammad Mannan for providing me all the necessary

disassembled files throughout my work using IDA Pro.

Majority of this work was done as part of the National Defence NSERC Research

Partnership Program in collaboration with Google project titled “Software Finger-

printing for Automated Malicious Code Analysis”, in which I would like to thank

specially Dr. Mourad Debbabi, Principal Investigator (PI), who recommended me

the path of type inference and provided valuable feedback throughout the project. I

am also grateful to the project’s Co-PIs Dr. Amr M. Youssef, Dr. Lingyu Wang, Dr.

Benjamin C. M. Fung and Dr. Mohammad Mannan for their guidance.

I would also like to thank Suryadipta Majumdar, Lianying Zhao and Dr. Anup

Sinha for their insightful suggestions and advice, along with my lab mates for their

enthusiastic discussions.

I am extremely thankful to my family member for their unconditional affection

and continuous support. I dedicate this thesis to the soul of my beloved father, who

iv

always encouraged me to touch my dream.

v

Contents

List of Figures ix

List of Tables x

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis statement . 5

1.3 Contributions . 5

1.4 Outline . 6

2 Background and Related Work 7

2.1 Background . 7

2.1.1 High-level source code . 7

2.1.2 Source code compilation steps 9

2.1.3 Applications of type inference 14

2.2 Related Work . 15

2.2.1 Decompilation . 16

2.2.2 Variable recovery . 16

2.2.3 Dynamic analysis . 17

2.2.4 Static analysis . 18

2.2.5 Argument recovery . 19

vi

2.3 Key ideas and assumptions . 19

2.3.1 Existing solutions . 20

2.3.2 Key ideas . 21

2.3.3 Assumptions . 22

3 Overview and Example 24

3.1 Overview . 24

3.2 Example . 26

4 Design 31

4.1 BinType’s type inference methodology 31

4.1.1 BinType typing system . 31

4.1.2 Function argument recovery 32

4.1.3 Complex type segregation . 35

4.1.4 Format string analysis . 36

4.1.5 Constraint generation and solving 37

4.1.6 Type sinks . 37

4.1.7 Type-revealing instructions 38

4.1.8 Signed and unsigned types . 38

4.2 Type inference algorithm . 38

4.2.1 Inter procedural type analysis 44

5 Evaluation 45

5.1 Implementation and experiment settings 45

5.2 Experimental results . 46

6 Application of BinType 53

6.1 CodeBinPlus . 54

vii

6.2 Evaluation . 55

7 Conclusion 58

Bibliography 63

viii

List of Figures

1 Steps in a compilation process . 10

2 A typical compilation process . 10

3 Function stack . 12

4 An overview of BinType showing different components and their work

flows . 24

5 BinType type lattice . 32

6 User interface of BinType . 45

7 Impact of format string in type inference 47

8 Distance of each variable type from the original type (lower distance

indicates better accuracy) . 48

9 Conservativeness of identified variable types by BinType and Hex-Rays 48

10 Precision of identifying function arguments 51

11 Overall design of CodeBinPlus (adapted from CodeBin [50]) 53

12 Efficiency of BinType features to converge the ranking results 57

ix

List of Tables

1 Inferred types from IDA Pro assembly instructions 30

2 Inferred types by prior work (Hex-Rays, REWARDS and TIE) and

BinType for Listing 3.2 . 30

3 Mapping between C types and types in our lattice system 32

4 Typing rules for constraint generation and solving 35

5 Running example for the type inference algorithm 43

6 Comparison between BinType and TIE’s static analysis (Table 2 in [41]) 49

7 BinType scalability . 51

8 CodeBinPlus test dataset . 54

x

Chapter 1

Introduction

1.1 Motivation

Compilation of high-level languages to binary inherently obscures data abstractions

such as function arguments, local variables and their types, as their use is converted

to a limited set of operations in registers and segmented memory regions. Recovering

such lost abstractions is a prerequisite for several reverse-engineering applications,

including binary program analysis [16], binary rewriting [25, 57], binary to source

matching [47, 46, 39], function prototype identification [18], open-source software

license violations [29] and function clone detection [36, 27].

The first step in reverse engineering data abstractions is often to identify function

boundaries, then identify local variables, function arguments and returns. Identifica-

tion alone has been the subject of various work, cf. [10, 11, 18, 25, 41], often relying

on algorithms similar to the value-set analysis (VSA [9]). The next step is to infer

the type of the identified variables, generally performed through the use of dynamic

and static analysis techniques.

Dynamic analysis-based solutions utilize emulation or instrumentation tools such

as: a) QEMU [13], an emulator used in Laika [21]; b) PIN [44], which controls the

1

execution of a process through the Linux ptrace API, used in REWARDS [42] and

TIE [41]; or c) KLEE [19], generating inputs through symbolic execution to cover

a high number of possible execution paths, used in Howard [53]. These solutions

execute a program, possibly several times on various inputs, and collect and analyze

runtime traces. While this process reveals actual behaviors and memory values, it

is essentially resource-intensive and slow; cf. Howard [53]: “[i]t takes several hours

to obtain reasonable coverage of real-life applications”. To avoid long running times,

only one execution trace can be analyzed at the expense of limited code coverage,

e.g., REWARDS only covers about 30% of all functions and heap-allocated variables

in the ten binaries analyzed in a single run.

Static analysis-based solutions (e.g., Hex-Rays [31], TIE [41], and [25]) analyze

the whole program binary, since they are not limited to a given execution path, and

they usually perform significantly faster than dynamic analysis approaches. However,

they require additional effort to identify variables and understand memory-related

behaviors that are not directly observable.

Both types of analysis share several key ideas, including type sinks, type-revealing

instructions, and refining type precision as the analysis proceeds. TIE follows a com-

bination of static and dynamic approaches to infer types, and claims better accuracy

than REWARDS (for the dynamic analysis part) and Hex-Rays (for the static analy-

sis part). TIE’s authors also define the concept of conservativeness, i.e., the algorithm

should prefer to output a general type (e.g., reg32) than a possibly incorrect precise

type (e.g., unsigned int). They show that Hex-Rays [31], an industrial state-of-the-art

reverse engineering tool that uses proprietary heuristics to infer types, often outputs

incorrect precise types such as int instead of pointer types [41].

Most approaches also leverage Intermediate Representation (IR) such as BIL

2

(e.g., [41]) or LLVM IR (e.g., [25]) to standardize low-level operations, and per-

form their analysis on such a sanitized form. While working on IR may enable

platform-independence, this may sometimes mandate the use of platform-specific

details back into IR—e.g., understand the meaning of specific registers (e.g., ebp,

esp) and their relationship with function arguments that are dependent on calling

conventions (e.g., [41]).

Although several academic solutions have been proposed in the last decade for type

recovery, and claimed better results than the leading commercial solution Hex-Rays,

none provide convincing evidence to satisfy both accuracy and scalability. ElWazeer

et al. [25] bring scalability to type inference with similar results in terms of accuracy

as TIE (considered the state-of-the-art in this thesis), but much faster than TIE;

however, their focus is on binary rewriting, which does not always require precise

type recognition. Furthermore, leading proposals such as REWARDS and TIE are

still unavailable to the public or the research community, several years after their

publication;1 whereas the algorithm used in ElWazeer et al. is protected by US

Patent [12]. Moreover, the comparison between existing proposals is fragile at times,

as only bar charts and a few selected numbers are documented. We highlight the

need for making such tools publicly available, and publishing more precise results for

an easy comparison.2

We propose a static analysis-based reverse engineering approach called BinType,

which directly analyzes x86 instructions to automatically reveal type information of

variables and function arguments from stripped binaries. We will make open-source
1We emailed authors of some of these tools; we either got no response, or the authors simply

stated that their tool has not been maintained.
2For example, TIE shows the average distance between inferred and actual types for individual

binary in Coreutils in a graph, but does not provide real numbers (except for 5 out of 87 binaries)
and the overall score across all binaries; we extrapolate the overall score to be around 1.6 from Fig.
12 in the TIE paper [41] (the average appears to be around 1.42 in TIE’s presentation slides [40,
slide 49 (left)]). However, ElWazeer et al. [25] report this overall average distance to be 2 for TIE
(lower is better).

3

our BinType implementation, and our evaluation shows that BinType is both scalable

and precise, while remaining conservative as in TIE. To the best of our knowledge,

only Hex-Rays works directly on disassembled instructions as we do, while others

either work on runtime traces or IR. However, Hex-Rays is a closed source tool, with-

out much documentation of its design. Moreover, in Section 5.2, we show that type

inference and function arguments recovery of Hex-Rays is quite inaccurate. While

several proposals also consider complex data structures (e.g., [9, 11]), we focus on the

recovery of precise primitive C types, while segregating complex types, i.e., we detect

when a type is complex but do not infer its precise type. Detecting accurate type for

complex data structures is largely an open problem, and most current proposals are

still rudimentary, see e.g., [53, 42].

We leverage IDA Pro to disassemble the target binary program, which additionally

provides the function boundaries, and information on variables for each identified

function. Then, our arguments recovery module extracts function arguments for each

function. Finally, the assembly instructions along with variables and arguments are

used for type inference. The type inference module performs static analysis to infer

data types from the given context and instruction semantics (e.g., standard library

function calls, and type revealing instructions), as considered in past work [42, 41].

We improve related techniques to infer types from x86 instructions, and also introduce

format string analysis to improve our precision (not considered earlier). Inferred types

are propagated backward and forward for typing dependent variables. At the end of

the analysis, we perform an inter-procedural analysis to refine types by treating all

identified function prototypes as a sink point.

4

1.2 Thesis statement

In this work, our main goal is to type inference from x86 assembly instructions. To

achieve this objective we explore following research questions:

Question 1. Is it possible to infer variable types directly from x86 dissembled

instructions in a scaleable and precise manner?

Question 2. Can we apply our extracted information to any real world reverse

engineering application?

1.3 Contributions

Our main contributions are as follows:

1. We present BinType, a static analysis tool to recover the type of variables

(e.g., function arguments, return, local variables) directly from disassembled

x86 binaries. BinType is fast and scales well; it can process about 25,000

assembly instructions/second in a regular desktop machine. It also outperforms

existing solutions in terms of preciseness and conservativeness.

2. We build on existing techniques from past work, and introduce new mechanisms,

such as the use of x86 calling conventions, uninitialized registers, and format

string analysis. Our result indicates that the new techniques play a significant

role in identifying precise types.

3. We evaluate BinType using the most comprehensive dataset so far (3.5x larger

than TIE). We use 148 binary files (704,658 assembly instructions) from six

open source projects, in contrast to TIE’s evaluation on Coreutils (87 binaries,

totaling 203,997 instructions). Our average distance (0.87) from the source type

5

is better than TIE (1.6); note that, distance zero is ideal. Our inferred types

are also conservative more than 91% of the time.

4. We demonstrate applicability of BinType for binary to source matching, where

our extracted features (e.g., function prototypes, string literals) make a signifi-

cant impact on the accuracy of an existing proposal [50].

1.4 Outline

This thesis is organized as follows. Chapter 2 describes the background and related

work on type inference. Chapter 3 gives an overview of BinType. Section 4 details our

design including improvements on existing techniques. After providing the experiment

setup and accuracy of our obtained results in Chapter 5, we investigate a real-world

application of BinType in Chapter 6 and finally, conclude our work in Chapter 7.

6

Chapter 2

Background and Related Work

In this chapter, we discuss the relevant background and literature related to our

dissertation.

2.1 Background

2.1.1 High-level source code

High-level programming languages (e.g., C, C++, Java, Python) are used to imple-

ment computer applications, which are later transformed to software artifacts un-

derstood by a computer. All high-level source code contain human understandable

syntax and semantic that allow to implement a logic in a much easier and less error

prone way than low-level languages (e.g., assembly). Moreover, these high-level lan-

guages follow closer syntax between each other that allows a programmer to easily

switch from one language to another. Here, we discuss some high-level features (e.g.,

variables (function arguments and local variables), variable types, standard library

functions and formate strings) of C language, which are related to our work, using a

sample example in Listing 2.1.

7

The sample function read_string_from_file receives a file name. Inside the func-

tion body, it reads a fix length of string from the file and displays it to a standard

output. At the end, it returns the read status; the status value is one for a successful

read, otherwise zero.

1 #include <stdio.h>

2 #include <string.h>

3 #include <stdlib.h>

4

5 int read_string_from_file (char* file)

6 {

7 char str [1000];

8 FILE *filePtr;

9

10 if ((filePtr=fopen(file ,"r")) == NULL){

11 printf("Error! opening file");

12 return 0;

13 }

14

15 fscanf(filePtr ,"%s",str);

16 printf("Value of string is: %s",str);

17 fclose(filePtr);

18

19 return 1;

20 }

21

22 int main (int argc , char* argv [])

23 {

24 int status = read_string_from_file("file.txt");

25 return 0;

26 }

Listing 2.1: An example of high level source code C

8

The function contains two local variables str, filePtr and one argument file; str

and file are char*, and filePtr is a FILE*. It invokes four other functions: fopen,

printf, fscanf and flcose, that are not defined in the program context. In C, these

functions are known as standard library functions, which follow fixed specifications

and their interface is defined in C header files (e.g., stdio.h, stdlib.h). For instance,

the function fopen is used to read a file content. It receives a file name and access

mode (e.g., r indicates only a file read) as arguments, and returns a file pointer. The

function fclose takes the return file pointer by fopen as an argument and closes the

file. Functions fscanf and printf are used to read data from the file and show it on

the display. Both functions take a format string as arguments; format specifiers in

a format string represent the arrangement of data read and write. Here, the format

specifier %s indicates that a string value is read and displayed.

2.1.2 Source code compilation steps

The high-level programming language is converted to machine understandable pro-

gram through the compilation, which allows a program to run on a machine. This

process varies from language to language. For instance, compilation of Java source

code is entirely different from the compilation of a C source code. C is run as a stan-

dalone program in x86 machine, where Java is operated on a virtual machine called

Java Virtual Machine (JVM) [43]. Here, we discuss the compilation steps of C that

is one of the most common programming languages [55]. The steps of C source code

compilation are illustrated in Figure 1.

Compiler. A compiler transfers C source code to assembly. During the compilation,

compiler removes all the high-level information (i.e., function prototypes, variables,

data structures) and translates to assembly instructions. Our goal is to facilitate

the reverse engineering process by retrieving this information. In Figure 2 depicts

9

Compiler

Assembly language
file

Assembler

Object code file

More object code file

Linker

C source file

Executable file

Figure 1: Steps in a compilation process

the details of a compiler’s intermediate steps. We use an example source code (see

Listing 2.2) taken from [40] to demonstrate the steps.

The source code contains a function foo that has two arguments (char* buf and

unsigned int* out), a local variable unsigned int c, and it returns a unsigned int value.

During the compilation, the compiler first checks the type information of received

arguments, local variables and return; replaces the type information according to its

data length; and they are put into the stack slots. Listing 2.3 and Listing 2.4 represent

the code after replacing the type information and afterwards positions in stack slots

respectively.

Source code Type checking Types removing
Variables

transformation
Machine code

translation
Binary code

Figure 2: A typical compilation process

10

1 unsigned int foo(char *buf , unsigned int *out)

2 {

3 unsigned int c;

4 c = 0;

5

6 if (buf) {

7 *out = strlen(buf);

8 c = *out - 1;

9 }

10

11 return c;

12 }

Listing 2.2: Example source code

1 [32-bit] foo([32-bit] buf , [32-bit] out)

2 {

3 [32-bit] c;

4 c = 0;

5

6 if (buf) {

7 *out = strlen(buf);

8 c = *out - 1;

9 }

10

11 return c;

12 }

Listing 2.3: Type checking and removing

11

Arguments
.
.
.

ebp + 8

Returns address

Saved ebp

Local variables
ebp – 4

.

.

.

Figure 3: Function stack

Figure 3 shows the orientation of a function stack frame to demonstrate how ar-

guments and variables are organized inside the stack. Arguments are always inserted

into the top stack during the function call, where all local variables are placed into

lower stack addresses. For instance, arguments buf and out are put into the top stack

positioning in [+8] and [+12], where local variable c is put in lower stack [−12] in

Listing 2.4. Finally, the entire code is transformed to assembly instructions where

variables locations (arguments, local variables and return) are used through the direct

or indirect memory accesses. At Line 4 in Listing 2.5, a value zero is assigned into

the stack slot [−12] that actually holds the variable c. If we look at Line 4 of the

original source code (Listing 2.2), c is equal to 0 (c = 0), which is equivalent as the

above-mentioned assembly instruction.

1 [32-bit] foo(

2 [32-bit] [+8],

3 [32-bit] [+12])

12

4 {

5 [32-bit] [-12];

6 [-12] = 0;

7 if ([+8]) {

8 *[+12] = strlen ([+8]);

9 [-12] = *[+12] - 1;

10 }

11 return [-12];

12 }

Listing 2.4: Assigning variables into memory

1 push %ebp

2 mov %esp ,%ebp

3 sub 0x28 ,%esp

4 movl 0x0 ,-0xc(%ebp)

5 cmpl 0x0 ,0x8(%ebp)

6 je 804844d <foo+0x2e >

7 mov 0x8(%ebp) ,%eax

8 mov %eax ,(%esp)

9 call 804831c <strlenplt >

10 mov 0xc(%ebp) ,%edx

11 mov %eax ,(%edx)

12 mov 0xc(%ebp) ,%eax

13 mov (%eax) ,%eax

14 sub 0x1 ,%eax

15 mov %eax ,-0xc(%ebp)

16 mov -0xc(%ebp) ,%eax

17 leave

18 ret

Listing 2.5: Translated assembly code

13

Assembler and linker. An assembler translates the obtained assembly instructions

into an object file. Finally, the linker creates an executable by linking the object files

and required modules to run the object files.

2.1.3 Applications of type inference

In this section, we describe the usefulness of different applications that need or directly

benefit from type inference.

1. Binary to source matching – Source code of software always allows a pro-

gram analyst to understand the logic in a much easier way. In most source

code of commercial software and malware is not available. Understanding

the functionalities of such software needs low-level instruction analysis. Low-

level programs contain less program semantics and require additional steps

(e.g., extraction of control flow graphs, call graphs) to get program structures.

While, identification of reused functions inside program binaries provide more

details information about the software and speed up the reverse engineering

process([47], [39]).

2. Reverse engineering – The goal of reverse engineering is to understand the

binary for further analysis. The analyst may not have access the source code or

debug symbols of the binary. Type inference allows to infer high-level semantics

of a program’s functionality by recovering the missing debug symbol tables from

stripped binaries ([32], [28], [34]).

3. Decompilation – Decompilation retrieves a pseudo source code from as-

sembly that provides meaningful information to understand the program

([26], [49], [20], [15]). Identifying variable types is one the most challenging

tasks during decompilation [23].

14

4. Binary code rewriting – Rewriting a binary program allows a programmer to

add new features, modify the binary functionality [38], enhance the security [8]

and port the program into another architecture [51], [52], [33]. Typing variables

accurately makes the programmer’s job easier by identifying absolute memory

addresses that may need to re-adjust during program rewrite.

5. Binary code reuse – Reusing binary code is useful when the source code is not

available for that binary. Extraction of a functional code block (e.g., function)

allows a programmer to add that functionality directly to many other applica-

tions. It also provides a unique benefit in malware analysis ([37], [56], [59]).

One of the main challenges here is to identify the code interface that involves

the recovery of function prototypes and return.

6. Vulnerability detection, analysis, and prevention – Another use case

of type inference is vulnerability analysis [53]. Type information provides the

location of variables and return addresses (e.g., pointer, buffer) and their size

that enables detecting buffer overflows. The modification of this vulnerable

location prevents buffer overflow exploitation.

7. Program clone detection – Type information can enable to identify a pro-

gram. This feature improves the accuracy of a binary clone detection that is

commonly used in the malware analysis ([27], [14], [24], [35]).

2.2 Related Work

In this section, we discuss work from previous research that is related to type in-

ference. We divide the relevant approaches into four categories: (1) decompilation,

(2) variables recovery, (3) static and dynamic methods and (4) arguments recovery.

15

We present TIE and REWADRS in more details in Section 2.3 to provide a better

understanding of type inference by static and dynamic analysis.

2.2.1 Decompilation

Researchers have previously suggested the idea of using type inference to support

decompilation [48], [45], [23]. However, the work done until now used to infer C types

directly, while we go for a type system that allows to choose exact or closest type for

each variable. This helps to avoid misleading about type information in the binaries.

Moreover, some high-level features including register arguments, floating point stack

variables and data types are not detected by them either. Boomerang [26], a well-

known open source decompiler, has several limitations: (1) one has to assign the

register arguments manually, (2) it does not detect any floating point stack operations

and (3) makes a type guess (i.e., int) for each variable.

Phoenix is considered as an academic state-of-the-art decompiler. It is developed

on top of BAP [16] and uses a modified version of TIE [41] to infer types. It improves

the structure type analysis of TIE, but the analysis time makes it impractical for

regular use [25].

VSA is to subdivide the memory regions into variable-like entities, based on how

memory is accessed. For every memory location and register, it derives an over-

estimation of the set of addresses on which the variables span, and represent them

with an upper and lower bound, and a stride,

2.2.2 Variable recovery

Balakrishnan et al. [9], [10], [11] propose a binary analysis technique called value-

set analysis (VSA) that could help detect syntactic structures of variables, such as

field offsets, sizes, and simple structures. VSA subdivides the memory regions into

16

variable-like entities, based on how memory is accessed and later derives an over-

estimation of the set of addresses on which the variables span. The method they

use involves the binary level points-to analysis and abstract interpretation. This

method allows to identifying data structures and variables from binary, not their

type. Moreover, their solution is also not scalable and possibly impractical for real

world implementation. Comparatively, the technique we propose to identify complex

type is rather scalable and straightforward.

2.2.3 Dynamic analysis

A dynamic-analysis-based solution utilize emulation tools (e.g., PIN [44]) to execute

programs, observe execution, collect runtime traces, and finally perform trace analysis

to identify program variables and data structures.

REWARDS [42] proposed an idea to infer the type information from the well-

known functions (e.g., standard library call, system call). Whenever a standard li-

brary function call (e.g., strcat) is detected inside a program, REWARDS labels the

related memory locations according to the known arguments type. Moreover, it prop-

agates the information backward and forward to refine more variables. Slowinska et

al. [53] implement Howard on the top of REWARDS. They advanced REWARDS by

identifying data structures on both heap and stack and complicated structures (e.g.,

array, nested array). However, dynamic analysis requires emulating the whole pro-

gram, which is a resource-consuming and slow process. In addition, it suffers from the

well-known coverage issue (i.e., not all paths are explored), which makes the analysis

incapable of handling program control flows.

17

2.2.4 Static analysis

A static analysis-based approaches initially employ some knowledge about well-known

function prototypes and instruction mnemonics. Then, its use a heuristics method

(e.g.,Hex-Rays [31], DIVINE [10]) to identify the variable information and apply the

employed knowledge base for type inference.

Hex-Rays [31] which is always considered as an industrial state-of-the-art tool in

reverse engineering, uses proprietary heuristics to infer the type. We found out that

it always guess a signed integer type for an identified variable and next try to refine

the result if possible. Assigning a predetermined type without justification produces

inaccurate result; the same observation is reported by TIE [41].

TIE follows a combination of static and dynamic (similar to REWARDS) approach

to infer the type information, which claims better accuracy by comparing their result

with REWARDS and Hex-Rays. In static analysis, TIE leverages BAP to collect

the BIL instructions from binary and performs VSA to recover variable information

(i.e., structures, pointers, arrays). The recovered intermediate language is suitable

for platform independent solution and human understanding but does not capture

the complete functionality of the input executable. High-level features such as the

abstract stack, and symbols are always missing in their intermediate representations.

Moreover, Slowinska et al. [53] state that VSA based approaches are less accurate

to recover data structures. It cannot handle some common programming cases (e.g.,

memcpy, alloca), which provides a wrong estimation of variables stride length. El-

Wazeer et al. [25] also shows that the TIE’s approach results in a long analysis time,

which makes it less practical for large executables. In addition, TIE can not handle

float type that is a design limitation of BAP.

ElWazeer et al. [25] proposed a more scalable static approach than TIE [41] to

identify structures from binaries. They implemented a modified version of VSA to

18

make their pointer analysis faster. However, they claim a good accurcy to detect

pointers, nested pointers and complex data structures, but they did not detail their

type inference work. Their work was more focused to binary rewrite than type infer-

ence, though they claim almost similar accuracy and conservativeness of TIE.

2.2.5 Argument recovery

Existing type inference approaches ([41], [25], [17]) do not discuss much about ar-

guments detection. TIE mentions that it only considers memory assesses above ebp

as arguments. This stack analysis is not adequate to find all the arguments, since

arguments are also passed through registers. ElWazeer et al. [25] propose a heuristic

algorithm on their lifted intermediate language to identify the register arguments.

Caballero et al. [18] propose another approach to identify function arguments from

executables using dynamic analysis. They collect a program execution trace and

identify arguments by recognizing memory access locations. Both works show better

accuracy but suffer from excessive false positives. Our function arguments recovery

algorithm does not assure to identify all the arguments, but shows better precision

than existing works.

2.3 Key ideas and assumptions

In this section, we first give an overview of REWARDS and TIE, as they are closely

related to BinType, and as we borrow several techniques from them and some other

past work. We also provide brief introduction to each technique, and our assumptions

for BinType.

19

2.3.1 Existing solutions

REWARDS. REWARDS follows a purely dynamic analysis approach to infer types.

It instruments a target binary using PIN to collect an execution trace, then infers

types based on the arguments and return types from well-known functions (e.g.,

standard library calls, system calls), and a few type revealing instructions. Whenever

a call to such functions (e.g., strcat) is detected inside a program, REWARDS labels

the memory locations related to the function’s arguments and return accordingly

(e.g., char*). Newly discovered types are propagated backward and forward to refine

the type of additional variables. This process is based on constraint generation and

resolution that happens during execution, as well as, post-execution. The goal is to

tag memory regions with semantically sound types (e.g., structure that contains IP

addresses) to guide the forensics analysis of memory dumps. We reuse the idea of

type sinks, type revealing instructions and propagation/resolution through constraint

generation. We also work directly on x86, however we do not have access to any

runtime information.

TIE. TIE proposes a combination of static and dynamic analysis approaches. It first

lifts the disassembled binary and execution trace to the BAP Intermediate Language

(BIL) using the Binary Analysis Platform (BAP [16]). BIL registers and memory

regions are assigned uniquely through a simple Single Static Assignment (SSA) algo-

rithm. TIE then applies a modified value-set analysis called Dynamic VSA (DVSA)

to detect variables. The type of these variables is further resolved through constraint

generation based on type sinks and type revealing instructions, similar to REWARDS.

TIE outputs several possible types to remain conservative. Finally, the precision is

calculated by measuring the distance between the actual type and the most precise

type that can be given to a variable. We follow their way of evaluating conservative-

ness and precision.

20

2.3.2 Key ideas

Type sinks. A type sink is a point in a program’s instructions, where the type of one

or more variables can be resolved directly. It is usually due to calls to functions that

are well-defined as they follow fixed specifications. System and standard libraries

functions are examples of such functions. Also, a middle size program written in

C/C++ can contain a range from 1,000 to 2,500 standard library functions [30], hence

such calls are a cheap and reliable source of types to start with. For example, the

strcat function contains two char* arguments, along with a char* return type. The

variables involved as calling parameters to strcat can be resolved as char* without

any ambiguity.

Type revealing instructions. An instruction that reveals meaningful information

to resolve a type will be considered as type-revealing. For example, REWARDS

lists the following x86 instructions used in byte-string operations as type-revealing:

movs/b/d/w (moving), stos/b/d/w (storing), lods/b/d/w (loading), cmps/b/d/w

(comparing), and scas/b/d/w (scanning). An instruction starting with f is related to

the floating point operation, e.g., fadd, fld, fbas, and fstp; REWARDS also uses

some of these operations. In addition, we use Streaming SIMD Extensions (SSE)

floating-point instructions (e.g., movss, addss and subss), and pointer related oper-

ations, i.e., indirect memory accesses (e.g., mov (%edx),%ebx or mov [mem],%eax),

which reveal pointer type information.

Type propagation. When the type of a variable is refined, it is propagated to other

identified variables to update the constraints on their type. Generally, this method is

used when a variable type is resolved. Its type is then recursively propagated back-

ward (as it influences the resolution of other variables that were previously related),

and forward (all future variables with constraints that depend on that variable).

Constraints generation and solving. A constraint generation derives possible

21

constraints based on a variable’s usage. More specifically, each instruction found to

affect that variable will result in a new constraint that depends on the nature of the

instruction. For example, for a signed division or multiplication, TIE adds a constraint

that limits the possible types to signed ones. For each instruction, constraints are

generated (if any), and a solver that contains all previous program contexts tries to

resolve types for any variable used by such instruction.

Value set analysis. Balakrishnan et al. [10] first propose the value set analysis

(VSA) method to identify variables from executables. The goal of VSA is to subdivide

the memory regions into variable-like entities, based on how memory is accessed.

For every memory location and register, it derives an over-estimation of the set of

addresses on which the variables span, and represent them with an upper and lower

bound, and a stride, i.e., s[lb, ub].

Type lattice. TIE introduces a type lattice that connects all supported types.

The upper and lower bound of this lattice corresponds respectively to no type (>),

and inconsistent type (⊥). It originally assigns the entire lattice as possible types

for a given variable, and later refines this range by upgrading the lower bound and

downgrading the upper bound. Finally, the conservativeness and distance from the

actual type is calculated. If the actual type falls between the inferred upper and

lower bounds, it is considered as a conservative type; and the difference from the

lower bound to actual type in source shows the distance. A lower distance indicates

higher accuracy.

2.3.3 Assumptions

For now, we only consider instructions for the x86 32-bit architecture. However, with

some effort, it is possible to upgrade it for the x86 64-bit architecture, i.e., additional

registers and instructions should be included, some adaptation is needed to support

22

the calling conventions and stack formats of x86-64. Unlike TIE, BinType currently

is architecture dependent. (From our experience, the use of IR to achieve platform

independence interferes with accuracy.) We support only C code compiled with gcc

and msvc compilers. We are agnostic to binary optimizations, but we require deobfus-

cated binaries. Deobfuscation is still an open problem, although some proposals are

promising (e.g., [58]). In a binary, we only consider user functions (and ignore other

functions such as compiler-generated ones). Finally, unused variables in source always

remain untyped after our type inference, and we do not consider it as a mis-detection.

23

Chapter 3

Overview and Example

This chapter provides a high-level view of BinType, composed of three basic steps:

assembly lifting, function prototype recovery and type inference, along with an ex-

ample. An illustration of the architecture of BinType is provided in Figure 4.

3.1 Overview

Step 1: Assembly lifting. BinType lifts assembly instructions from a binary pro-

gram by leveraging IDA Pro [32], a commercial disassembly toolkit. Apart from as-

sembly lifting, IDA Pro additionally provides: (1) function boundaries, (2) invocation

of library functions, identified using the Fast Library Identification and Recognition

For all instructions

IDA Pro
Parse

executables

Extract &
parse

assembly

Executables

Arguments recovery

Unique
register

assignment

Argument
analyzer

Type inference

Type
revealing

instruction

Assembly lifting

Sink info

Constraint
generator &

solver

Forward &
backward

propagation

Inferred
type

Inter
procedural

analysis

Solved type

Code
segment

Data
segment

Figure 4: An overview of BinType showing different components and their work flows

24

Technology (FLIRT [30]), and (3) known memory addresses and offsets (e.g., string

information in _rdata). Furthermore, IDA Pro identifies a set of variable-like entities,

apparently, based on stack analysis. We divide obtained assembly instructions into

a code segment (instructions from _text segment) and a data segment (instructions

from _data, _bss, _rodata). In the code segment, BinType manipulates instances of

registers incremented when their value is modified. For example, BinType instantiates

ecx to ecx1, ecx2, etc., whenever ecx is updated with a new value.

Step 2: Function arguments recovery. We use the code segment obtained from

Step 1 to recover function arguments. Identification of the exact number of arguments

for a function highly depends on the accurate detection of the calling conventions

and register arguments. We leverage Hex-Rays Decompiler [31] (later we refer it as

Hex-Rays), a widely used industrial tool for decompilation, to capture the calling

convention of each function. However, we do not use any information related to

the number of arguments it detects, nor any other type-related information (which

are quite unreliable). Based on the calling convention, BinType analyzes the stack

and registers to enumerate the correct number of arguments. For example, in the

stdcall calling convention, memory accesses with addresses above ebp (e.g., ebp+4 or

ebp+8) represent stack arguments. Respectively, an argument is counted as a register

argument, if it is used without initialization inside the function boundary.

Step 3: Type inference. The variables and arguments recovered in Step 2 are

passed to our type reconstruction algorithm, along with the code and data segments.

BinType first looks for standard library function calls inside the code segment to ex-

tract type information (treating such calls as sink points). A standard library call can

provide unambiguous type information, as the syntax and semantics of these func-

tions are well-defined and publicly known. For instance, registers used as arguments

of strcat are resolved as char*. We also identify instructions that reveal partial or

25

precise information of a variable’s type. For example, the unsigned shift left instruc-

tion shl indicates that the destination register has an unsigned type. This instruction

is commonly used to access array indices. We further generate type constraints for

variables depending on the nature of instructions. For example, in the mov src, dest

instruction, we constraint src and dest to have the same type.

Afterwards, BinType unifies types by propagating the inferred types backward and

forward to update the constraints on related variables. Finally, an inter-procedural

analysis is performed to refine types by treating all identified function prototypes as

a sink point.

3.2 Example

To illustrate how BinType works, we use a simple program compiled by gcc from the

source code shown in Listing 3.1. The function foo has two arguments and one local

variable. Listings 3.2 and 3.3 show the code and data segments respectively, from

the instructions disassembled by IDA Pro of function foo (a dotted line indicates

instructions having no effect on type recovery).

1 int foo (char* str , int id)

2 {

3 char buf [20];

4 if (id)

5 {

6 sprintf(buf , "%s rcv from id %d\n",id,str);

7 }

8

9 return 1;

10 }

Listing 3.1: Example C source code

26

1 foo proc near

2

3 var_2C = dword ptr -2Ch

4 s = byte ptr -20h

5 arg_0 = dword ptr 8

6 arg_4 = dword ptr 0Ch

7

8 push ebp

9 mov ebp , esp

10 sub esp , 48h

11 mov eax , [ebp+arg_0]

12 mov [ebp+var_2C], eax

13 ...

14 cmp [ebp+arg_4], 0

15 jz short loc_80484C3

16 mov eax_1 , offset format

17 mov edx , [ebp+arg_4]

18 mov [esp+0Ch], edx

19 mov edx_1 , [ebp+var_2C]

20 mov [esp+8], edx_1

21 mov [esp+4], eax_1

22 lea eax_2 , [ebp+s]

23 mov [esp], eax_2

24 call _sprintf

25

26 loc_80484C3:

27 mov eax_3 , 1

28 ...

29 retn

27

30 foo endp

Listing 3.2: BinType code segment parsed from IDA Pro assembly instructions

for the gcc-compiled source code given in Listing 3.1

1 _rodata segment dword public ’CONST’ use32

2 assume cs:_rodata

3 format db ’%s from id %d’,0Ah ,0

4 ...

5 _rodata ends

Listing 3.3: BinType data segment corresponding to Listing 3.2

1 signed int __cdecl foo(int a1 , int a2)

2 {

3 signed int result;

4 char s;

5

6 ...

7 if (a2)

8 sprintf (&s, "%s from id %d\n", a1 , a2);

9 result = 1;

10 ...

11 return result;

12 }

Listing 3.4: Output of Hex-Rays Decompiler for the compiled source

Function prototype recovery. BinType detects the cdecl calling convention for the

function foo from the output of Hex-Rays at Line 1 in Listing 3.4. Variables arg_0

and arg_4 in Lines 5-6 in Listing 3.2 are resolved as stack arguments according to

28

the cdecl convention. The code segment does not contain any uninitialized register,

which indicates there is zero register arguments. Since the register eax_3 is assigned

a value before foo returns, the return type is not void.

Type reconstruction. Lines 3-6 (Listing 3.2) show all variables detected by IDA

Pro. We attempt to identify the type information for these variables from the rest of

the instructions.

Our algorithm detects a call to the sprintf standard library function (a sink

point) with eax_2 and eax_1 as passing arguments at Line 24. Before the function

call, parameters are initialized in Lines 21-24. From sprintf, both registers are

resolved to char* and format string, respectively. Through a backward resolution,

variable s is resolved as char*, and offset format as format string (Line 16).

BinType extracts the formatted string value of the format parameter from the

_rodata section at Line 3 in Listing 3.3, and identifies %s and %d as format string

specifiers. From Lines 17-20, BinType detects that edx and edx_1 are initialized,

and passed as parameters for format. As %s and %d represent values of types char*

and int respectively, edx is resolved as int and edx_1 as char*. Through a backward

propagation of both registers, arg_4 is resolved as int, var_2C as char*, and arg_0

as char*. An integer value is copied in the return register eax_3 at Line 27, implying

that the return type is int.

In the end, BinType resolves all data types, including function arguments, local

variables and return. Table 1 gives a summary of all variables and their inferred

type, and the instructions involved in the resolution. We also show in Table 2 that

for the same example, TIE and REWARDS fail to detect half of variable types. The

obtained results for TIE and REWARDS are based on our analytical understanding

of their algorithms, since these tools are publicly unavailable.

29

Table 1: Inferred types from IDA Pro assembly instructions

Variables Inferred type Instruction line(s) Resolve point
var_2C int 17, 20-21 format string (%d)
s char* 25 standard library call
arg_0 int 11-12 unification
arg_4 char* 17-19 format string (%s)

Table 2: Inferred types by prior work (Hex-Rays, REWARDS and TIE) and BinType
for Listing 3.2

Variables Hex-Rays REWARDS TIE BinType
var_2C int 32-bit data reg32 int
s char char* char* char*
arg_0 int 32-bit data reg32 int
arg_4 int 32-bit data reg32 char*

30

Chapter 4

Design

In this chapter, we explain the detailed methodology and the type inference algorithm

behind BinType. We discuss our typing system, present mechanisms for function ar-

guments recovery and complex type segregation, detail how type sinks, type revealing

instructions and format strings are used in BinType.

4.1 BinType’s type inference methodology

4.1.1 BinType typing system

Figure 5 shows the type lattice used in BinType, which is designed for the 32-bit

x86 architecture. Table 3 shows how our type lattice is connected to C types in a

32-bit architecture. An unknown variable will be typed as reg32, reg16, and reg8,

respectively for a 4-byte, a 2-byte, and a single byte value; otherwise, it will be typed

as reg(n).

Compared to TIE [41], our lattice additionally includes floating-point types, and

adds an extra edge between complex types (reg(n)) and unknown types (>). A

pointer arithmetic or indirect memory access updates a reg32 type variable to reg(n).

31

reg16 reg8 reg1

float32 num32

uint32int32

num16

uint16int16

num8

uint8int8

reg(n)

reg32

Figure 5: BinType type lattice

Table 3: Mapping between C types and types in our lattice system

C types Types in our lattice
int
unsigned int

int32
uint32

short
unsigned short

int16
uint16

char
unsigned char

int8
uint8

* (pointer), [] (array), structure reg(n)
void ⊥

Additionally, a variable can also be typed as reg(n) directly from the unknown type

(>), if it contains multiple 4-byte values. We exclude code_t type from our type sys-

tem (considered in the TIE lattice to designate the destination of goto instructions).

4.1.2 Function argument recovery

Identifying the correct function prototype depends on detecting the complete and

accurate set of function arguments and return. If some arguments are not detected

accurately, then the resulting signature of the function misleads the subsequent reverse

engineering analysis. In the x86 architecture, arguments do not only pass through

32

the stack but also registers; however, register arguments identification remains less

explored by prior work. ElWazeer et al. [25] propose a brute force algorithm for

determining register arguments and return; if a register inside a function boundary is

used without being initialized, it is counted as a register argument. However, they do

not consider the calling conventions, and assume all registers as uninitialized at the

beginning of their analysis. We show in Section 5 that their method produces many

spurious arguments.

Knowing the calling convention reveals the registers and stack locations used to

pass the function parameters. We follow three commonly used calling convention rules

in C on x86: cdecl, stdcall, fastcall. In the cdecl and stdcall, memory accesses with the

address above ebp (e.g., ebp+4 or ebp+8) represent an argument. On the other hand,

the fastcall convention adds the following constraint: the first three arguments with

primitive types are passed in eax, ecx and edx. For all three conventions, floating

point values are passed as parameters in the stack, and results are passed in the

floating point stack; the register eax is used to return all other primitive data types.

We extract the calling convention for each function from the generated pseudo

C code by Hex-Rays. Based on the convention, we analyze the stack and register

arguments from the IDA Pro assembly. Memory accesses on top of the stack are

always counted as arguments (common rules for passing a parameter). To obtain

the register arguments, we only consider uninitialized registers that are relevant in

related conventions. For unknown calling conventions, we perform an uninitialized

register analysis on all registers for the first basic block. In our experiments, we no-

ticed that most passing register arguments are moved to different memory locations

at the beginning of a function start. We use this heuristic to reduce false positives.

For identifying the return type, we rely on the variable that performs the last write

into eax or the floating point stack.

33

1 foo2 proc near

2

3 var_10 = dword ptr -10h

4 var_C = dword ptr -0Ch

5 var_5 = byte ptr -5

6 arg_0 = word ptr 8

7 arg_4 = dword ptr 0Ch

8 arg_8 = dword ptr 10h

9 arg_C = qword ptr 14h

10

11 push ebp

12 mov ebp , esp

13 sub esp , 18h

14 push ebx

15 mov [ebp+var_5], dl

16 mov edx , ecx

17 ...

18 pop ebp

19 retn

20 foo2 endp

21 --

22 *Identified function prototype by

23 Hex -Rays: [arguments: 4], [return: yes]

24 BinType : [arguments: 6], [return: yes]

Listing 4.1: Function prototype identified by Hex-Rays and BinType for the given

assembly.

To demonstrate the relevance of this approach, we compare Hex-Rays with our

method to detect function arguments on a simple function foo2; see Listing 4.1. This

34

Table 4: Typing rules for constraint generation and solving (n ∈ 32, 16, 8). The
method SetType is used to update the type of src and dest. By /s, we denote any
signed operation, e.g., signed multiplication/division. | represents a logical OR.

Mnemonic type Constraint Solver

arithmetic op ∈{ +, -, *, /, %} τsrc = num_n | int_n | float
τdest = num_n | int_n | float

if τsrc = empty then
SetType(num_n,num_n)
else SetTypeDest(τsrc)

bitwise op ∈ { ^, &, «, »} τsrc = num_n | int_n
τdest = num_n | int_n

if τsrc = empty then
SetType(num_n,num_n)
else SetTypeDest(τsrc)

signed op ∈ { /s } τdest = int_n | uint_n
if op = /s then

SetTypeDest(int_n)
else SetTypeDest(uint_n)

assignment op ∈ { = } τdest = τsrc SetTypeDest(τsrc)

unary op ∈ { ++, - -, ¬} dest = int_n | uint_n
if dest ∈ array index then

SetTypeVar(uint_n)
else SetTypeVar(int_n)

typecast (dest, src) n = n ∗ 2 | n/2
if sizeof(dest) > sizeof(src) then

SetTypeDest(τsrc_n∗2)
else SetTypeDest(τsrc_n/2)

function takes six arguments, however, Hex-Rays can only identify four arguments

(two register arguments and two stack arguments). We consider the fastcall conven-

tion, which helps to detect two arguments (dl and ecx) as register arguments, and

four arguments (arg_0 to arg_C) from stack analysis.

4.1.3 Complex type segregation

Distinguishing complex variables is one of the most challenging part in reverse engi-

neering. Without proper address tracking, it is difficult to recover complete informa-

tion. We only differentiate complex types (structures, arrays, pointers) from primitive

types, a process we refer to as complex type segregation. For this purpose, we follow

VSA [9]: we track indirect memory accesses in [base + index × scale + disp], where

base and index are registers, and scale (1, 2, 4, or 8) and disp (displacement, e.g., any

32 bit value) are constants. We consider each memory region (the upper and lower

bounds) as a one-bit array with value all zeros. During the analysis, we perform the

35

address arithmetic and change a value from zero to one inside a memory boundary,

based on whether it is accessed or not. MEM {11,12,13,...1i,....0n−1,0n} implies that

the first i bytes of an n-byte memory block are accessed by the program. If we detect

a memory access to a variable that is not inside its known boundaries, we update

the variable length by adding the amount of size it accesses. For example, if the

address of a variable with four-byte size is moved into a register eax (e.g., mov eax,

[var]), and the next instruction tries to access a value from [eax + 4] (e.g., add ecx,

[eax+4]), we infer that the variable holds a pointer, and the subsequent instruction

merely accesses the next four bytes. In the end, we obtain the length of all variables

and their memory layouts. A variable with more than a four-byte length is counted

as a complex variable. The identified memory layouts can be used to detect more

specific information about memory regions.

4.1.4 Format string analysis

C provides a set of standard library functions for formatting strings. For example,

scanf and printf are used to read and write formatted data, and error, error_at_line

are applied for formatted error logs. A format specifier (beginning with %) is used

to generate this format string. An argument is passed to replace the respective

specifier with the argument value in the resulting string. The prototype of a format

specifier [54] is defined by %[flags][width][.precision][length]specifier. The types of

arguments inside the format string is identified from the format specifier characters

(e.g., %d implies signed integer).

We create a list of standard library functions taking format strings as an argument.

We identify a pattern (e.g., mov [esp], offset format; call printf) of represented format

string in a program binary, and then the type information from it. We iterate through

each character of the format string for a % (format specifier) that indicates the starting

36

point of formatted data. We then identify the corresponding specifier character, the

argument corresponding to the specifier, and finally, assign a type for the argument

based on the specifier character.

4.1.5 Constraint generation and solving

In our work, constraint generation and solving is mainly concerned with resolving

primitive type variables. Complex types are already identified through our complex

type segregation (see Section 4.1.3), type revealing instructions and sink points. We

apply the rules described in Table 4 for constraint generation and solving.

If a variable involved in a binary operation is identified as a pointer, that operation

is considered as a pointer arithmetic operation, and the destination variable must be

a pointer as well. Similarly, binary arithmetic instructions involve integer or float

point computations. Thus, each operand can be an integer, number or float type.

If the source operand does not have a type then the solver assigns the number type

(num_n) for both the source and destination variables. Otherwise, the destination

variable will be the same type as the source. Similarly, the use of unary operators

(increment and decrement) on an array index allow us to infer that the type of the

operands is (at least) unsigned. Assignment instructions indicate that the source and

destination have similar types.

4.1.6 Type sinks

BinType identifies the invocation of a standard library function call to determine

the type of a variable. BinType uses IDA FLIRT [30] to identify standard library

functions from program instructions. FLIRT extracts a pattern of each standard

library function and stores it in a signature database. A match with this signature

during the assembly analysis will be treated as a library function call. IDA Pro 6.8

37

contains 30MB of signatures for x86, which is almost 100 times larger than the type

sinks considered in TIE and REWARDS.

4.1.7 Type-revealing instructions

BinType considers all the type revealing instructions from REWADRS. In addition,

we consider instructions that provide partial information about a type, and take into

account the SIMD Extensions (SSE) floating-point instructions (e.g., addss, subss).

4.1.8 Signed and unsigned types

Most past proposals in type inference [41, 42, 53, 25, 17] do not consider jump in-

structions (e.g., jge, jnl), which appear to be a good source for signed type. Deng et

al. [22] first create a list of jump instructions to perform signed type analysis, which

is used for static integer overflow vulnerability detection in Windows binaries. We

reuse the jump instructions from Deng et al. in our work.

We divide these instructions into two sets: signed and unsigned type instructions.

If a variable or register is used as an argument of a memory allocation function, or an

index of an array, then it must be an unsigned type. Moreover, variables compared

by different x86 conditional jump instructions, e.g., ja, jae, jb, jbe, je, jne are typed

as unsigned, while variables in instructions jge, jnl, jng, jnge are typed as signed.

4.2 Type inference algorithm

Algorithm 1 outlines the steps in BinType’s type inference. Given a binary program,

our algorithm resolves all variable types including the arguments and return. The

inputs are the code and data segments, along with all identified variables.

38

1 Notation used (more in the description below):
2 Ii: ith instruction from asm_file;
3 trins: List of type revealing instructions;
4 sinkdb: List of sink points;
5 mi: Instruction mnemonic for ith instruction;
6 C: Constraints for mi;
7 Γ: List of constraint operators;
8 IDAV ar: List of variables from Hex-Rays;
9 V ar: List of all identified variables and their types;

10 V arop: Similar variable list for the operand op;
11 Input: Disassembled binary file asm_file
12 Output: Identified variables and types (V ar)

13 Function resolve_type(asm_file)
14 foreach Ii ∈ asm_file do
15 if Ii = mov(src, dest) then
16 update_dependency_list(src, dest);
17 end
18 else if mi ∈ trins then
19 τ = get_type_from_instruction(mi);
20 unify_type(op, τ , mi);
21 end
22 else if Ii ∈ sinkdb then
23 τ = get_sink_type_from_signature(mi);
24 unify_type(op, τ , sp);
25 end
26 else if mi ∈ Γ then
27 C = generate_constraint(mi);
28 τ = solve_constraint(C, Γ);
29 unify_type(op, τ , cs);
30 end
31 end
32 return V ar;
33 end
34
35 Function update_dependency_list(src, dest)
36 V ardest.append(src);
37 V arsrc.append(dest);
38 if src ∈ IDAV ar then
39 τ = get_type(src);
40 if (τ) then
41 unify_type(src, dest, τ , uf);
42 end
43 end
44 end
45
46 Function unify_type(op, τ , type_src)
47 foreach var ∈ V arop do
48 if type_src of var > type_src then
49 var ← τ ;
50 end
51 unify_type(var, τ , type_src);
52 end
53 end
54

ALGORITHM 1: BinType’s type inference algorithm

The resolve_type method. This is the main method of our type inference algo-

rithm. For each instruction Ii in an assembly file, the method checks whether Ii is:

(1) an assignment instruction (e.g., mov, lodsx, lea, stosx), (2) a type revealing

39

instruction, or (3) a type sink. Additionally, the method checks the possibility of

generating constraints from the instruction mnemonic. The details of these checks

are provided below.

1) Assignment instruction (Line 15). An assignment instruction implies that the

destination (dest) has a similar type dependency as the source (src). This constraint

is added in both variables’ dependency list by triggering the update_dependency_list

method with dest and src as the arguments.

2) Type revealing instruction (Line 18). If the instruction mnemonic is an entity

of type revealing instructions, then the get_type_from_instruction method is called

to extract the type from the instruction mnemonic mi. The calling method holds the

type information for the type revealing instructions, and retursn the corresponding

type of the received argument. The identified type (τ) is then propagated to all

variables that should have the same type by calling the unify_type method.

3) Sink point (Line 22). If a function call in the instruction Ii is a type sink, then

the prototype of that function is obtained from the get_sink_type_info_from_signature

method. This method contains all the standard library functions, along with proto-

types that are identified by IDA FLIRT for the target executables. The calling method

finds the received function name into the list, and returns the matching function pro-

totype. Variables that are used as arguments of the function call, will be typed

according to the function prototype. Finally, unification (the unify_type method) is

applied to propagate the type information to all the function contexts.

4) Constraint generation and solving (Line 26). If an instruction mnemonic (mi)

is found in the constraint generation list in Table 4, then the generate_constraint

method derives possible constraints (C) based on the way a variable is being used,

and calls the solve_constraint method to retrieve the type. The solve_constraint

method applies the solving rules (Γ) (at column three, in Table 4), using the current

40

execution context, and returns a suitable type (τ) for that constraint variable. A

solver does not guarantee that it will always return a type for every constraint, but if

the type is resolved, then the unification process (unify_type) is applied to propagate

the type information.

After completing the analysis for each instruction, a list of variables and their

types is returned by the resolve_type method.

The update_dependency_list method. This method receives the source (src)

and destination (dest) as arguments from the caller function, and adds them to each

other’s dependency list. A dependency list of a variable contains the variables and

registers that have a similar data structure as that variable. Here, the dependency

list of dest (V ardest) adds src as a relevant type variable, and vice-versa. If src is an

entity of the variable list (i.e., variables identified by IDA Pro), then type information

for that variable is requested through the get_type method. A valid type (τ) is then

passed through both src and dest dependency lists using the unify_type method.

The unify_type method. Whenever a type is resolved, this method is called to

propagate the type information. A back propagation is recursively applied to prop-

agate the identified type to all variables that should have the same type. Following

arguments are received by unify_type: operand name (op), type (τ), and type source

(type_source). type_source holds the value from where a type is resolved: (i) sink

point (sp), (ii) type revealing instruction (tri), (iii) constraint and solver (cs), and

(iv) unification (uf). We prioritized the source points as follows: sp > tri > cs

> uf . The type identified from a higher priority source is disseminated during the

back propagation. Thus, our approach helps to traverse deeper in the type lattice,

which results more accurate type. For example, a variable var is recognized as num32

through the constraint solver. Later, a sink point returns int32 for that variable. A

sink point always provides the exact type information, therefore we put it in the top

41

priority. According to the priority order, our method modifies the var type num32

to int32, which allows the var to go one step down in the lattice. The unify_type

method first extracts each variable (var) from the operand dependency lists (V arop);

then it replaces the old type with the new one, if the priority of the current type

source var is less than the inferred type source; and finally, it calls the update_type

method again using that var as an operand to solve its dependent variable list. This

procedure is continued until all variables from the list is updated.

Example. We illustrate step by step execution of our algorithm with a simple ex-

ample in Table 5. The first column of the table presents assembly instructions, where

Ii denotes ith instruction in an assembly file; the second column provides the variable

V ar with its dependency list as well as their type; third and last columns provide how

type information is inferred from different source points, and how a type is resolved

through backward propagation. Our algorithm finds a match with a mov instruction

mnemonic in I1 and I2, where the src operand is moved to a 32 bit register eax, and

then moved to the stack. For the mov instruction, the algorithm updates the vari-

able src’s dependency list V arsrc, by adding the destination register eax0; also src

is added in V areax0 ; in a similar way, V areax1 and V ardest are updated by dest and

eax1, and typed as reg32. The strcpy invocations in instruction I5 is a type sink that

implies st0 and st4 must be of type char∗. Every new type identification always ends

up with a backward resolution by calling the unify_type method. The third column

shows how the backward propagation works, and updates the type information of

a variable. The method takes the dependency list of V arst0 and V arst4 , and types

its variables eax1 and eax0 as char∗; next, it takes the dependency list of eax1 and

eax0 and resolves the type. Thus, all variables of V areax1 and V areax0 is resolved by

backward propagation, and variables src and dest are typed as char∗.

42

T a
bl
e
5:

R
un

ni
ng

ex
am

pl
e
fo
r
th
e
ty
pe

in
fe
re
nc
e
al
go
ri
th
m
.
A

ty
pe

w
it
h
fo
llo

w
in
g
sp

an
d
bp

in
di
ca
te
s
th
at

th
e
ty
pe

is
id
en
ti
fie
d
ei
th
er

fr
om

si
nk

po
in
t
or

th
ro
ug

h
ba

ck
w
ar
d
pr
op

ag
at
io
n

In
st
ru
ct
io
ns

V
ar
ia
bl
es

:
{S

im
ila

r
ty
pe

lis
t}

{t
yp

e}
B
ac
kw

ar
d
pr
op

ag
at
io
n

T
yp

e
re
so
lu
ti
on

po
in
t

1.
m

ov
ea

x
,
[e

bp
+

sr
c]

sr
c
:
{e
a
x
0
}
{r
eg
32

,c
h
a
r∗
:
bp
}

ea
x
0
:
{s
rc
}
{r
eg
32

,c
h
a
r∗
:
bp
}

(b
p:
τ e

a
x
0
)
:
τ s

r
c
=
ch
a
r∗

m
ov

in
st
ru
ct
io
n

2.
m

ov
[e

sp
+

4]
,
ea

x
ea
x
0
:
{s
rc
,s
t 4
}
{r
eg
32

,c
h
a
r∗
:
bp
}

st
4
:
{e
a
x
0
}
{r
eg
32

,c
h
a
r∗
:
sp
}

(b
p:
τ s

t 4
)
:
τ e

a
x
0
=
ch
a
r∗

m
ov

in
st
ru
ct
io
n

3.
le
a

ea
x,

[e
bp

+
de

st
]

d
es
t
:
{e
a
x
1
}
{r
eg
32

,c
h
a
r∗
:
bp
}

ea
x
1
:
{d
es
t}

{r
eg
32

,c
h
a
r∗
:
bp
}

(b
p:
τ e

a
x
1
)
:
τ d

e
s
t
=
ch
a
r∗

m
ov

in
st
ru
ct
io
n

4.
m

ov
[e

sp
],

ea
x

ea
x
1
:
{d
es
t,
st

0
}
{r
eg
32

,c
h
a
r∗
:
bp

}
st

0
:
{e
a
x
1
}
{r
eg
32

,c
h
a
r∗
:
sp
}

(b
p:
τ s

t 0
)
:
τ e

a
x
1
=
ch
a
r∗

m
ov

in
st
ru
ct
io
n

5.
ca

ll
st
rc
p
y

τ s
t 0
:
ch
a
r∗

τ s
t 4
:
ch
a
r∗

Si
nk

po
in
t:

ch
ar

*
st

rc
py

(c
ha

r
*d

es
t,

co
ns

t
ch

ar
*

sr
c)

43

4.2.1 Inter procedural type analysis

As a last step of the algorithm, we run an inter procedural analysis. We get the

type of all function arguments, local variables and the return for each function from

the previous step. We then use this information to refine the typing information one

more time. Variables that are still untyped has a high chance to be typed during this

inter procedural analysis. We create a function list using these identified function

prototypes. We generate a call graph using IDA Pro for the entire program and

perform a depth first search (DFS) from the root node (i.e., main). The edge between

two nodes implies a function call, and nodes are treated as a caller and callee. The

variables of the caller will be typed using the caller as a sink point (similar to a

standard library function call).

44

Chapter 5

Evaluation

5.1 Implementation and experiment settings

BinType is implemented on top of IDA Pro. We write 4.5K SLOC C# code for

parsing the assembly instructions, recovering the function prototypes and identifying

Figure 6: User interface of BinType

45

type information. The user interface of BinType is showed in Figure 6.

We take 148 binaries (704,658 instructions) from six commonly used C open

source projects: procps-3.2.6 [6] (with 19.1K SLOC), iputils-20020927 [2] (with 10.8K

SLOC), net-tools-1.60 [5] (with 16.8K SLOC), coreutils-5.93 [1] (with 117.5K SLOC),

sqlite [7] (with 119.7K SLOC) and miniz [4] (with 3.7K SLOC). We conduct the fol-

lowing experiment on a machine with a 3.10 GHz Core i7-3770S processor and 8GB

RAM running Windows 7 64-bit operating system.

For comparison, we need the actual variable types from the source code. Instead

of parsing the source (which may be unreliable due to function inlining), we first

compile all source programs in debug mode, and then use libdwarf [3], a C library, to

obtain DWARF information (with variable types) from ELF object files. Libdwarf is

an essential tool used in type inference ([41], [42]) for reading DWARF information

from application binary. We mainly use this tool to extract and organize the stack

variables. Some of these variables may be scattered in the source code, which can

be meticulously arranged with libdwarf. The output of libdwarf variables is used for

automated comparison with the output of BinType. While BinType resolves type

information for whole executables, we evaluate only the outcomes of the user-level

code (e.g., exclude compiler functions). Note that we do not use debug binaries as

input to BinType.

5.2 Experimental results

In this section, we show the accuracy of type inference and function arguments iden-

tification, and scalability of BinType.

Accuracy of BinType. We evaluate the accuracy of BinType by measuring the

differences between the types of variables declared in the program source code and

those derived from the executables by BinType.

46

ho
stn
am
e

us
ers

un
am
e

he
ad

ch
ro
ot co

py ar
p

pw
d

ne
tst
at

0

20

40

60

80

100

P
er
ce
nt
ag
e

Type inference w/ format string
Type inference w/o format string

Figure 7: Impact of format string in type inference

47

Co
reu
til
s

Pr
oc
ps

Ip
ut
ils

Ne
tto
ols

Sq
lit
e

M
ini
z

0

1

2

3

4

D
is
ta
nc
e
be

tw
ee
n
(0
-4
)

BinType
Hex-Rays

Figure 8: Distance of each variable type from the original type (lower distance indi-
cates better accuracy)

Co
reu
til
s

Pr
oc
ps

Ip
ut
ils

Ne
tto
ols

Sq
lit
e

M
ini
z

0

20

40

60

80

100

P
er
ce
nt
ag
e

BinType
Hex-Rays

Figure 9: Conservativeness of identified variable types by BinType and Hex-Rays

48

Table 6: Comparison between BinType and TIE’s static analysis (Table 2 in [41])

Conservativness (ideal=1) Distance (ideal=0)
Program TIE BinType TIE BinType
chroot 0.87 0.82 1.76 0.72
df 0.942 1.00 1.42 0.07
groups 0.93 1.00 1.52 0.00
hostid 0.97 1.00 1.63 0.00
users 0.97 1.00 1.51 0.27
Average 0.93 0.96 1.57 0.21

First, we compare our accuracy against Hex-Rays. For both BinType and Hex-

Rays, we assign all identified complex data structures to a single complex type. Our

aim is to see the efficiency of both methods to identify complex variables, not to

extract exact complex type, which is a challenging problem (and most current tools

report results with doubtful accuracy, see e.g., [53, 42]). If the identified complex vari-

able represents any complex type (e.g., array, pointer or structure) inside the source,

we consider it as a match. Finally, we calculate the conservativeness and accuracy

(distance from the exact type) of a variable using TIE’s metrics. Variables with a

smaller distance are more accurately typed (ideal distance is zero). Figures 9 and 8

illustrate the conservativeness and distance of variables type identified by BinType

and Hex-Rays. In both cases, BinType outperforms Hex-Rays. BinType is around

32% more conservative (93% vs. 61%), and offers closer distance (0.87 vs. 1.75) than

Hex-Rays.

Second, we compare our accuracy with TIE [41] using the similar metrics and

binaries (87 binaries from Coreutils) used in their evaluation. In both type lattices,

the maximum distance between levels is four. In our case, the upper bound of each

identified variable is assigned as reg32, reg16, reg8, or reg(n) based on their length.

All inferred types at the end of the analysis are counted as lower bounds. We measure

the distance by calculating the difference between the lower bound and actual type.

We also calculate the conservativeness by comparing the exact type position inside

49

the type boundary. Our results show that BinType is 95% conservative, which is

almost similar compared to TIE (the exact value is unavailable, the bar charts of TIE

presentation slide [40]). Since our structural type distance calculation method does

not follow the similar method in TIE, we only compare our results with TIE’s real

type average distance 1.42 (obtained from TIE slides, apparently better than what

is reported in the paper). Our average distance (1.13) is better than TIE, indicating

that BinType is a more precise type inference tool. Table 2 in TIE points to actual

conservativeness and distance values of five binaries. Our comparison with their

samples is given in Table 6. Note that, for TIE’s dynamic analysis, conservativeness

(1.0) and distance (1.15) metrics are better, but the code coverage is under 9%.

Format strings. We select nine widely used modules from our selected dataset,

and compute the effectiveness of format strings for type inference. Figure 7 presents

our accuracy results with and without the use of format strings; as apparent, format

strings improve accuracy by almost 9%.

Arguments recovery. To verify the strength of our proposed technique in Sec-

tion 4.1.2, we estimate the accuracy of identified function arguments. From our anal-

ysis, we find that BinType’s argument recovery algorithm can successfully identify all

stack arguments, but sometimes misses some register arguments (mostly due to the

presence of very few uninitialized registers outside the first basic block). We compare

our work against Hex-Rays, and get slightly better precision (3%) (see Figure 10).

We also measure the results against the function prototype recovery algorithm

proposed by ElWazeer et al. [25] and Caballero et al. [18]. ElWazeer et al. use a static

approach that can detect all stack and register arguments with 0.20 false positive per

function. A dynamic analysis technique is used by Caballero et al., which claims

the similar detection rate with a better false positive rate (0.15 false positive per

function). We provide better results than both algorithms in terms of precision, 94%

50

Co
reu
til
s

Pr
oc
ps

Ip
ut
ils

Ne
tto
ols

Sq
lit
e

M
ini
z

0

20

40

60

80

100

P
er
ce
nt
ag
e

BinType
Hex-Rays

Figure 10: Precision of identifying function arguments

(BinType) vs. 83% ([25]) and 86% ([18]), and false positive rate, which is 0.06% for

BinType.

Scalability. We measure the number of instructions for each project and the time

to infer the type information. Table 7 shows the average time for each module.

We can process about 25,000 instructions/second, compared to DIVINE [10]’s 10.8

instructions/second (averaged from Table 2 in the 2007 DIVINE paper; machine

Table 7: BinType scalability

Source base Assembly instrunctions Time (sec)
Coreutils 263337 12.30
Procps 15623 0.56
Iputils 51706 2.00
Nettools 19893 0.78
Sqlite 322716 13.90
Miniz 31383 1.25

51

configuration is unavailable). To the best of our knowledge, most prior work used

DIVINE, either directly or a modified version of DIVINE’s algorithm (i.e., VSA), for

identifying variable types. Note that, compared to prior work, our complex variable

analysis is primitive, which partly helps our scalability.

52

Chapter 6

Application of BinType

BinType can be applied to a number of applications. In this chapter, we demonstrate

how BinType provides unique benefits to improve the binary to source similarities.

We develop an application called CodeBinPlus by extending an existing proposal

CodeBin [50], which is used to find the binary to source function similarities. The

main challenge in identification of reused functions in a binary program is to find

out common features within a binary and source code. As extended features in

CodeBinPlus, we use the extracted function prototypes and string literals of BinType,

and modify the score matrix corresponding to features.

Function
Prototype
& string

Source
ACGS

Source
Processor

ACG
Indexer

Binary
ACG

Patterns

Source
Processor

ACG
Indexer

Matching
Result

Binary
File

Code
Base Graph

Database

BinType

PPPrPrococesesssoorr ACACGSGSSS IIInIndedexexerrPP
SSoouurrccee

PrPrococesesss
ee
oorr

SSoouurrcc
ACACGSGS

ee
SS II

AACCGG
InIndedexexerr

0 sq m

PrProoococesessosorrrr
PPaatttttteerrnnss

InIndedeeexexerr
SSoo

PrProo
oouurrccee
ococesessosorrrr

BiBinn
AACC
nanaryry
CCGG

AACC
InIndede

CCGG
eexexerr

0 sq m

Source Processor Binary Processor

Figure 11: Overall design of CodeBinPlus (adapted from CodeBin [50])

53

Table 8: CodeBinPlus test dataset

Projects Functions Lines of Code
Linux Kernel 236, 08313, 416, 043
Sqlite 1, 859 99, 674
Coreutils 2, 124 59, 673
Miniz 120 5, 260
Curl 64 9, 434
Zmap 360 11, 638
Unqlite 2, 682 84, 347
Tor 4, 241 179, 282
Git 5, 880 157, 858
Putty 2, 275 80, 882
Redis 2, 952 46, 407
Hashkill 2, 674 420, 719

6.1 CodeBinPlus

CodeBinPlus builds on top of CodeBin. Overall, our approach is designed around the

following procedure (see Figure 11).

Source processor. First, CodeBin parses and analyzes the source code of different

C projects, and transforms them into annotated call graphs (ACGs) by extracting

specific features and relationships, such as internal functions calls, number of function

arguments, complexity of control flow, and calls to standard library functions and

system APIs. CodeBinPlus extends this feature list by adding function prototypes

and string literals from source functions. Indexed function prototypes do not contain

the exact type information for arguments. Since BinType may output types that are

not defined in C (e.g., num32), we only use primitive vs. complex information. When

ACGs are created from source code, they are stored in a database accompanied by

specific indices to allow fast searching. All codebases will be stored in a single database

with unique labels, allowing for lookup operations over many different codebases.

Binary processor. For each target binary file, CodeBin disassembles and analyzes

the binary to extract the same features as source, creating binary ACG patterns.

54

CodeBin leverages Hex-Rays to lift its required features. We already discussed Hex-

Rays’ limitation to identify the correct number of arguments and function prototypes.

CodeBinPlus uses BinType to collect this information, as well as string literals. ACG

patterns extracted from binary functions are then converted into queries that can be

run against the source graph database.

Score matrix. CodeBinPlus assigns a score to each extracted ACG based on the

presence of distinctive features, such as library and API calls, the number of function

arguments, string literals and the total number of binary functions included in the

pattern. It takes the output of CodeBin, and scores it one more time with the newly

added features.

Finally, we evaluate CodeBinPlus using several open source projects; we present

the results of code reuse and no use detection through binary to source matching by

searching 261,314 functions from 12 different C projects (see in Table 8).

6.2 Evaluation

We use two executable binaries, which reuse all or portions of previously indexed

projects. These binaries are created by compiling (default settings) open source li-

braries. All tests are run on a Windows 7 x64 desktop machine powered by an Intel

Core i7-4790 CPU with a frequency of 3.6 GHz, utilizing 8GB of memory. We run

CodeBin and CodeBinPlus on our indexed database and compare the obtained results

(we received access to CodeBin’s source only, not their reported dataset).

Results collection and verification. We evaluate CodeBinPlus and CodeBin on

miniz and sqlite binaries that reuse parts of previously indexed source code. In the

results, a binary function may be correctly matched to a unique source candidate,

or may be mapped to several source candidates. We have included the percentage

55

of cases where the correct source candidate is uniquely identified (top 1), or listed

among the top 3 or 5 functions.

Reuse detection. Our evaluation results on CodeBinPlus and CodeBin show that

approximately 87% of miniz and 85% of sqlite reused functions are uniquely and

correctly matched to their source code, where CodeBin reports 69% and 71%, re-

spectively. CodeBinPlus can identify 95% correct source candidates in top 3. In

contrast, we found, CodeBin detects 84% correct source candidates in top 3. Fig-

ure 12 shows the effectiveness of BinType’s features to refine the candidate list. Our

features improve the accuracy of BinType around 20% to identify the unique result.

No reuse. We run one more test to verify the significance in a no reuse scenario. We

remove miniz source code from our indexed database, and run the same test again

with a binary containing miniz functions. CodeBinPlus and CodeBin still return some

matches in this case. CodeBinPlus recognized 14 functions, which match at least one

candidate from the indexed functions, in contrast to CodeBin’s 43 (ideal case is zero).

56

0 1 2 3 4 5

ge
t_
os
fha
nd
le

mz
_z
ip_

rea
de
r_
ex
tra
ct_

to_
me
m

mz
_w

rit
e_
le1
6

mz
_z
ip_

ar
ray
_e
ns
ur
e_
ca
pa
cit
y

mz
_z
ip_

rea
de
r_
ini
t

mz
_c
om
pr
ess

mz
_d
efl
ate
In
it

td
efl
_h
uff
ma
n_
en
for
ce_

ma
x_
co
de
_s
ize

mz
_i
nfl
ate
In
it

mz
_z
ip_

rea
de
r_
ge
t_
file
na
me

mz
_z
ip_

rea
de
r_
ge
t_
cd
h

mz
_z
ip_

rea
de
r_
file
na
me
_c
om
pa
re

mz
_z
ip_

rea
de
r_
so
rt_

cen
tra
l_
dir
_o
ffs
ets
_b
y_
file
na
me

td
efl
_g
et_

ad
ler
32

mz
_z
ip_

ar
ray
_r
ese
rv
e

mz
_d
efl
ate
Re
set

Correct candidate in top 5

CodeBinPlus
CodeBin

Figure 12: Efficiency of BinType features to converge the ranking results

57

Chapter 7

Conclusion

Reverse engineering binary programs, more specifically recovering variables and their

types have many application cases such as binary to source matching, identifying

function prototype, binary rewriting, function clone detection. Hence, any automatic

mechanism to recover variables along with their types from binary programs is con-

sidered significantly valuable.

In this work, we presented BinType, a type inference system on x86 assembly

instructions. Unlike the previous works such as [41], [42] which are not scalable and

take long analysis time in large binary, we provided a scalable solution on a large

dataset that was magnitude faster than the previous solutions. We improved related

techniques to infer types from x86 instructions and also introduced format string anal-

ysis to improve our precision. We also improved the accuracy of function arguments

recovery by introducing unique uninitialized registers identification technique. We

showed that our algorithm is more precise than other existing proposals. Moreover,

we applied our extracted features as an application in binary to source matching and

demonstrated a good accuracy to identify reused functions.

58

Bibliography

[1] Coreutils: Gnu core library. Source code. http://www.gnu.org/software/
coreutils/coreutils.html.

[2] Iputils: Linux networking library. Source code. https://github.com/iputils/
iputils.

[3] Libdwarf. GitHub project (Feb. 2005). http://reality.sgiweb.org/davea/
dwarf.html.

[4] Miniz: Zip archive. Source code. https://www.openhub.net/p/miniz.

[5] Net-tools: Linux networking tools. Source code. https://sourceforge.net/
projects/net-tools.

[6] Procps: Command line utilities. Source code. https://gitlab.com/procps-ng/
procps.

[7] Sqlite: Database utilities. README file. http://www.sqlite.org/src/doc/
trunk/README.md.

[8] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti. Control-flow integrity princi-
ples, implementations, and applications. ACM Transactions on Information and
System Security (TISSEC), 13(1):4, 2009.

[9] G. Balakrishnan and T. Reps. Analyzing memory accesses in x86 executables.
In Compiler Construction (CC’04), Barcelona, Spain, Mar. 2004.

[10] G. Balakrishnan and T. Reps. DIVINE: discovering variables IN executables.
In Verification, Model Checking, and Abstract Interpretation (VMCAI’07), Nice,
France, Jan. 2007.

[11] G. Balakrishnan and T. Reps. WYSINWYX: What you see is not what
you execute. ACM Transactions on Programming Languages and Systems
(TOPLAS’10), 32(6):23, Feb. 2010.

[12] R. Barua and M. Smithson. Binary rewriting without relocation information,
Aug. 13 2013. US Patent 8,510,723.

59

[13] F. Bellard. QEMU, a fast and portable dynamic translator. In USENIX Annual
Technical Conference, FREENIX Track, Anaheim, CA, Apr. 2005.

[14] M. Bourquin, A. King, and E. Robbins. Binslayer: accurate comparison of binary
executables. In Proceedings of the 2nd ACM SIGPLAN Program Protection and
Reverse Engineering Workshop, page 4. ACM, 2013.

[15] P. T. Breuer and J. P. Bowen. Decompilation: The enumeration of types
and grammars. ACM Transactions on Programming Languages and Systems
(TOPLAS), 16(5):1613–1647, 1994.

[16] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz. BAP: A binary analysis
platform. In Computer Aided Verification (CAV’11), Snowbird, UT, USA, July
2011.

[17] J. Caballero, G. Grieco, M. Marron, Z. Lin, and D. Urbina. ARTISTE: Auto-
matic generation of hybrid data structure signatures from binary code execu-
tions. Technical Report TR-IMDEA-SW-2012-001, IMDEA Software Institute,
Aug. 2012.

[18] J. Caballero, N. M. Johnson, S. McCamant, and D. Song. Binary code extraction
and interface identification for security applications. In Network and Distributed
System Security Symposium (NDSS’10), San Diego, California, USA, Feb. 2010.

[19] C. Cadar, D. Dunbar, and D. R. Engler. KLEE: unassisted and automatic
generation of high-coverage tests for complex systems programs. In Operating
Systems Design and Implementation (OSDI’08), San Diego, California, USA,
Dec. 2008.

[20] C. Cifuentes. Reverse compilation techniques. PhD thesis, Queensland University
of Technology, 1994.

[21] A. Cozzie, F. Stratton, H. Xue, and S. T. King. Digging for data structures. In
Operating Systems Design and Implementation (OSDI’08), San Diego, Califor-
nia, USA, Dec. 2008.

[22] Y. Deng, Y. Zhang, L. Cheng, and X. Sun. Static integer overflow vulner-
ability detection in windows binary. In International Workshop on Security
(IWSEC’13), Okinawa, Japan, Nov. 2013.

[23] E. Dolgova and A. Chernov. Automatic reconstruction of data types in the
decompilation problem. Programming and Computer Software, 35(2):105–119,
2009.

[24] T. Dullien, E. Carrera, S.-M. Eppler, and S. Porst. Automated attacker correla-
tion for malicious code. Technical report, DTIC Document, 2010.

60

[25] K. ElWazeer, K. Anand, A. Kotha, M. Smithson, and R. Barua. Scalable variable
and data type detection in a binary rewriter. In Programming Language Design
and Implementation (PLDI’13), Seattle, WA, USA, June 2013.

[26] M. Emmerik and T. Waddington. Using a decompiler for real-world source re-
covery. In Working Conference on Reverse Engineering (WCRE’04), Delft, The
Netherlands, Nov. 2004.

[27] M. R. Farhadi, B. C. Fung, P. Charland, and M. Debbabi. BinClone: Detecting
code clones in malware. In Software Security and Reliability (SERE’14), San
Francisco, California, USA, June 2014.

[28] I. Guilfanov. Simple type system for program reengineering. In Reverse Engi-
neering, 2001. Proceedings. Eighth Working Conference on, pages 357–361. IEEE,
2001.

[29] A. Hemel, K. T. Kalleberg, R. Vermaas, and E. Dolstra. Finding software license
violations through binary code clone detection. In Proceedings of the 8th Working
Conference on Mining Software Repositories, pages 63–72. ACM, 2011.

[30] Hex-Rays. Fast library identification and recognition technology (F.L.I.R.T.).
Online documentation (May 2015). https://www.hex-rays.com/products/
ida/tech/flirt/in_depth.shtml.

[31] Hex-Rays. Hex-Rays decompiler. https://www.hex-rays.com/products/
decompiler/.

[32] Hex-Rays. IDA Pro disassembler. https://www.hex-rays.com/products/ida/
index.shtml.

[33] R. J. Hookway and M. A. Herdeg. Digital fx! 32: Combining emulation and
binary translation. Digital Technical Journal, 9:3–12, 1997.

[34] E. R. Jacobson, N. Rosenblum, and B. P. Miller. Labeling library functions in
stripped binaries. In Proceedings of the 10th ACM SIGPLAN-SIGSOFT work-
shop on Program analysis for software tools, pages 1–8. ACM, 2011.

[35] W. Jin, S. Chaki, C. Cohen, A. Gurfinkel, J. Havrilla, C. Hines, and
P. Narasimhan. Binary function clustering using semantic hashes. In Machine
Learning and Applications (ICMLA), Boca Raton, FL, USA, Dec. 2012.

[36] W. M. Khoo, A. Mycroft, and R. Anderson. Rendezvous: a search engine for
binary code. In Proceedings of the 10th Working Conference on Mining Software
Repositories, San Francisco, CA, USA, May 2013.

[37] C. Kolbitsch, T. Holz, C. Kruegel, and E. Kirda. Inspector gadget: Automated
extraction of proprietary gadgets from malware binaries. In 2010 IEEE Sympo-
sium on Security and Privacy. IEEE, 2010.

61

[38] J. R. Larus and T. Ball. Rewriting executable files to measure program behavior.
Software: Practice and Experience, 24(2):197–218, 1994.

[39] F. Leder. RE-Google plugin documentation. Readme file (2009). https://www.
hex-rays.com/contests/2009/REGoogle/README.TXT.

[40] J. Lee, T. Avgerinos, and D. Brumley. TIE: Principled reverse engineering of
types in binary programs (slides). Conference slides. (Feb. 2011). https://www.
internetsociety.org/sites/default/files/lee2.pdf.

[41] J. Lee, T. Avgerinos, and D. Brumley. TIE: Principled reverse engineering of
types in binary programs. In Network and Distributed System Security Sympo-
sium (NDSS’11), San Diego, CA, USA, Feb. 2011.

[42] Z. Lin, X. Zhang, and D. Xu. Automatic reverse engineering of data structures
from binary execution. In Network and Distributed System Security Symposium
(NDSS’10), San Diego, CA, USA, Feb. 2010.

[43] T. Lindholm, F. Yellin, G. Bracha, and A. Buckley. The Java Virtual Machine
Specification: Java SE 8 Edition. Pearson Education, 2014.

[44] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.
Reddi, and K. Hazelwood. PIN: building customized program analysis tools with
dynamic instrumentation. In Programming Language Design and Implementation
(PLDI’05), Chicago, IL, June 2005.

[45] A. Mycroft. Type-based decompilation (or program reconstruction via type re-
construction). In European Symposium on Programming (ESoP’99), Amsterdam,
The Netherlands, Mar. 1999.

[46] A. Rahimian. BinSourcerer. GitHub project (Feb. 2005). https://github.com/
BinSigma/BinSourcerer.

[47] A. Rahimian, P. Charland, S. Preda, and M. Debbabi. RESource: a framework
for online matching of assembly with open source code. In Foundations and
Practice of Security (FPS’12), Montreal, QC, Canada, Oct. 2012.

[48] G. Ramalingam, J. Field, and F. Tip. Aggregate structure identification and
its application to program analysis. In Principles of Programming Languages
(PoPL’99), San Antonio, TX, USA, Jan. 1999.

[49] E. J. Schwartz, J. Lee, M. Woo, and D. Brumley. Native x86 decompilation using
semantics-preserving structural analysis and iterative control-flow structuring. In
USENIX Security Symposium, Washington, DC, USA, Aug. 2013.

[50] A. Shahkar. On matching binary to source code. Master’s thesis, Concordia Uni-
versity, Montreal, QC, Canada, 2016. http://spectrum.library.concordia.
ca/980919/.

62

[51] G. M. Silberman and K. Ebcioglu. An architectural framework for supporting
heterogeneous instruction-set architectures. Computer, 26(6):39–56, 1993.

[52] R. L. Sites, A. Chernoff, M. B. Kirk, M. P. Marks, and S. G. Robinson. Binary
translation. Communications of the ACM, 36(2):69–81, 1993.

[53] A. Slowinska, T. Stancescu, and H. Bos. Howard: A dynamic excavator for
reverse engineering data structures. In Network and Distributed System Security
Symposium (NDSS’11), San Diego, CA, USA, Feb. 2011.

[54] The Open Group. Base specifications issue 7. 2013 Edition. http://pubs.
opengroup.org/onlinepubs/9699919799/utilities/printf.html.

[55] TIOBE Software BV. Tiobe index. Online article. http://www.tiobe.com/
index.php/content/paperinfo/tpci/index.html.

[56] D. Urbina, Y. Gu, J. Caballero, and Z. Lin. Sigpath: A memory graph based ap-
proach for program data introspection and modification. In European Symposium
on Research in Computer Security. Springer, 2014.

[57] S. Wang, P. Wang, and D. Wu. Reassembleable disassembling. In USENIX
Security Symposium, Washington, DC, USA, Aug. 2015.

[58] B. Yadegari, B. Johannesmeyer, B. Whitely, and S. Debray. A generic approach
to automatic deobfuscation of executable code. In IEEE Symposium on Security
and Privacy, San Jose, CA, USA, May 2015.

[59] J. Zeng, Y. Fu, K. A. Miller, Z. Lin, X. Zhang, and D. Xu. Obfuscation resilient
binary code reuse through trace-oriented programming. In Proceedings of the
2013 ACM SIGSAC conference on Computer & communications security. ACM,
2013.

63

