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ABSTRACT

AppVeto: Securing Android Applications through Resource Access Veto

Tousif Osman

Modern mobile devices and mobile operating systems are equipped with high-

resolution motion and environmental sensors, camera, microphone, and other resources

to support better usability and latest features—e.g. augmented reality, personalized user

experience, activity tracking etc. Apps on the modern mobile platforms can access these

resources with, or without, an explicit user permission. Running multiple concurrent apps

is also commonly supported. Although the Android OS generally maintains strict separa-

tion between apps, an app can still get access to another app’s private information, such as

the user’s input or apps output, through numerous side-channels. This is mostly enabled

by having access to permissioned or permission-less (sometimes even unrelated) resources.

For example, keystrokes and swipe gestures from a victim app can be inferred indirectly

from the accelerometer or gyroscope output, allowing a zero-permission app to learn sen-

sitive inputs such as passwords from the victim’s app. Current mobile OSes has started

allowing an app to defend itself in such situations only in some exceptional cases—e.g.,

screenshot opt-out feature of Android allows an app to self-defense itself from malicious

apps trying to capture its information viewed on the screen.
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In this work, we propose a general mechanism for apps to self-defend themselves from

any unwanted implicit or explicit interference from other concurrently running apps. Our

AppVeto solution enables an app developer to easily configure an app’s requirements

for a safe environment; a foreground app can request the OS to disallow access—i.e., to

enable veto powers—to selected side-channel-prone resources to all other running apps

for a constraint duration (also throttled for a short duration for preventing DoS), e.g., no

access to the accelerometer during password input. In a sense, we enable a finer-grained

access control policy than the current runtime permission model. We implement AppVeto

on Android using the Xposed framework and PLT hooking techniques, without changing

Android APIs. Furthermore, we show that AppVeto imposes negligible overhead, while

being effective against several well-known side-channel attacks—implemented via both

Android Java and/or Native APIs.

We have prototyped AppVeto using runtime hooking techniques which allows AppVeto

to be used and tested out of the box on any Android OS with Xposed framework installed

on it. We also orchestrated our prototype to veto resource access from Android native

framework which is not achievable with conventional Android’s native binary hooking

techniques. We finally evaluated AppVeto against production apps and test apps. Our

performance evaluation also shows AppVeto’s overhead is practical and below tolerable

margin and our solution and design can be adopted in present mobile platforms.
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Chapter 1

Introduction

1.1 Overview

Modern smartphones are commonly equipped with various hardware sensors (e.g., micro-

phone, GPS, light sensor, and accelerometer) to interact with the physical world to improve

usability and provide various features—e.g., step counting, auto adjust screen brightness,

etc. Smartphones also have access to personal and security-sensitive user information such

as contact lists, photos, and passwords. Accessing these sensors/resources and user in-

formation by third-party apps is controlled by the operating system (OS), with explicit

user approval in some cases (either at the install-time of the app or during its runtime, see

e.g., [2, 21]).

Strict separation of app data is also enforced by the leading OSes. Current permission

models enable app developers and OSes to offload many security-critical decisions to users,

who usually can barely understand the privacy and security implications of such decisions.

1



Notorious user–consent based permission models of modern OSes have been studied in

detail, and unsurprisingly found to be inadequate in terms of protecting users’ privacy and

security [10, 48].

Recent access-control changes in Android and iOS are designed to provide more con-

trol over these resources; such changes include: background usage permission for location

in Android 10 [16], iOS 13 [3], and one-time permission for location, camera, and micro-

phone in Android 11 [17]. Even with these improvements, users still can allow an app

to always access these resources (especially for long-running and heavily used apps); i.e.,

until uninstalled, such apps can keep using the granted permissions.

On the other hand, resources that are considered to pose little or no security/privacy

risks, such as the accelerometer or the gyroscope, can be used by any app without the

user’s knowledge or consent. Many side-channel attacks have been demonstrated using

these so-called non-dangerous or normal resources [52, 57, 60], as well as resources that

require explicit user consent [5, 46, 53]. Besides compromising PINs and passwords, a

recent attack [5] shows that the seemingly benign accelerometer can also be used to eaves-

drop on the phone’s speaker. Current user-approval based permission models cannot tackle

these stealthy but highly-effective attacks. Even if these sensors were to be guarded by user

consent based permission model and the user is asked for permission while accessing these

resources, it would be infeasible for a typical user to understand the possibility of such

side-channel attacks.

On the positive side, recent OS versions provide some limited defences against these

side-channel attacks. As of Android 9.0, apps by default can no longer access sensors, such
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as the accelerometer and the gyroscope, the microphone, and the camera, while running in

the background [14] without launching a foreground service [12] visible to users as an icon.

However, if the user does not notice this icon, the user will remain unaware of the resources

accessed by the foreground service. The AudioPlaybackCapture API in Android 10 which

enables an app to capture audio from another app [58], also offers opt-out methods with

which an app can prevent other apps from accessing its audio (cf. screenshot blocking).

As another defence, Android grants access for the camera and microphone to only one

app at each point in time. However, this restriction does not prevent a malicious app from

exploiting these resources in a side-channel attack if the victim app does not require access

to these resources.

Several academic proposals [38, 43, 45, 50, 51, 55] rely on introducing noise, or re-

ducing the sampling rate of information that might be exploited in a side-channel attack.

However, it is non-trivial to determine the right volume of noise, or the appropriate sam-

pling rate to guarantee that a side-channel attack will fail while the sensor output remains

useful for legitimate apps in the background, e.g., a step counter. Other defences, such

as randomizing the layout of a keyboard to make it difficult for a malicious app to figure

out the key corresponding to the position where a key press has occurred [43, 53, 55, 65],

have poor usability, and defend only against a particular type of side-channel attacks—i.e.,

keystroke inference side-channel attacks. Blocking access to resources that could be ex-

ploited in a side-channel attack while the victim app is displaying a keyboard, or is asking

for a PIN/unlock pattern [4, 6, 38, 51, 53, 65], is also limited and can significantly hamper

user experience. Temporarily blocking other apps while the victim app is running [64] can
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severely limit the usefulness of legitimate background apps for long-running victim apps.

Introducing permissions that protect access to sensor resources [38, 45, 62] is unlikely to

work given the inadequacies of current explicit permission-granting approaches.

In this work, we propose AppVeto, a generic approach that augments the current

permission models and empowers apps against side-channel attacks on mobile platforms.

AppVeto promotes applications self-defence, assuming app developers are aware when

their app is handling security-critical information, and hence can communicate their veto

needs to the OS so that other concurrent apps are constrained from accessing selected

resources that may leak private information. In particular, AppVeto enables a foreground

app to override resource access rights of background apps at certain times, e.g., during

password input. Through an app’s meta-data such as the Android manifest file, it can

inform AppVeto about its veto requirements as long as the app remains as the foreground

app or the time limit permits.

In particular, we enable the following veto powers to block any concurrently running

apps from accessing: (i) resources that are well-known to be exploited for certain side-

channel attacks as defined in AppVeto, (ii) resources selected by the app developer that

may interfere with the app’s specific security needs, and (iii) resources that are being used

by the requesting app, i.e., allowing exclusive access rights.

We implemented a prototype for our framework on Android. In particular, we use the

Xposed framework [59] and PLT hooking techniques [7], so that our prototype can be eas-

ily distributed, and security enthusiasts and researchers can install and test it on major An-

droid distributions. Android allows access to resources from both its application and native
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frameworks (see Sec. 2). Compared to existing Android native hooking techniques, our de-

sign allows us to hook virtually any native framework APIs of Android; existing approaches

cannot hook several native APIs, including, e.g., OpenSL ES (see Sec. 3.2.3). This is a ma-

jor step forward compared to other Android security solutions (e.g., [30]). Resources that

we currently enable vetoing include: all motion and environmental sensors [18], camera,

and microphone—which have been exploited in real-world and proof-of-concept attacks,

as we found in our survey of such attacks (see Sec. 2.3.5). To control resource access

dynamically, we hook the Android application framework APIs and the native framework

APIs. We currently do not modify the Android source. However, these hooks can be easily

incorporated into the Android source for production distribution. Our code is available on

GitHub.1

1.2 Contributions

Our contributions can be summarized as follows:

1. We design and implement AppVeto, a new paradigm for mobile application self-

defence to enable finer-grained resource allocation compared to current models. Apps

can communicate their special security and privacy needs, if any, to the OS, which

will then be enforced by AppVeto in a fair manner. Both permissioned and permission-

less resources can be blocked, or exclusively accessed by a requesting app, while the

app is in the foreground.

1https://github.com/tousifosman/app-veto
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2. We empower app developers to control resource access by other simultaneously run-

ning apps without explicit user decisions, making our approach developer-centric

and user-agnostic. Developers can block all commonly exploited resources for side-

channel information leakage during, e.g., sensitive user input or output, or they can

selectively block a specific resource according to their needs. Enabling an app to

benefit from AppVeto requires very minor modifications—only updating its Android

manifest file, i.e., no source code needs to be modified. Similarly, other apps installed

on the system can remain unchanged.

3. We provide an open-source implementation of AppVeto, which can be easily dis-

tributed, deployed, tested and extended by the community, without replacing stock

Android distributions. Our prototype can handle both Android application frame-

work and the native framework.

4. We evaluate the performance and efficacy of AppVeto by testing AppVeto-enabled

apps against relevant known side-channel attacks. Based on our experimental results,

AppVeto can indeed effectively prevent such attacks originating from sensor devices,

camera and microphone; other resources can be easily incorporated. As AppVeto

runs all the time along with other OS components, we also measured its overhead on

the system itself and other apps. The measured CPU and memory overheads are low

(e.g., 0.64% CPU overhead on a Pixel 3) and should not deter real-world deployment.

5. We document a comprehensive exploration of available Android native framework
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hooking techniques, and propose a new mechanism that can virtually hook any cur-

rent native API libraries (including OpenSL ES). Our techniques can be used in other

privacy/security projects to effectively hook both the application and native frame-

works.

The work discussed in this dissertation has been peer-reviewed and published in the

following article:

1. Tousif Osman, Mohammad Mannan, Urs Hengartner, and Amr Youssef. 2019. Ap-

pVeto: Mobile Application Self-Defense through Resource Access Veto. In Proceed-

ings of the 35th Annual Computer Security Applications Conference (ACSAC ’19),

Dec 9-13, 2019, San Juan, Puerto Rico (Acceptance rate 60/266).

2. T. Osman, M. Mannan, U. Hengartner and A. Youssef. Securing Applications against

Side-Channel Attacks through Resource Access Veto. ACM Digital Threats: Re-

search and Practice (DTRAP), 2020.

1.3 Thesis Organization

The rest of the thesis is organized as follows. In Chapter 2, we first present an overview

of underlying layers of Android and Android’s native framework, literature review of side-

channel attacks and defenses, and finally several design options against side-channel. In

Chapter 3, we defined our threat model and presented the techniques we used to hook

Android resource APIs. In Chapter 4, we presented our detailed design of AppVeto, and

7



in Chapter 5, we present security and performance evaluation of AppVeto. Finally, in

Chapter 6, we present our concluding remarks and future work.
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Chapter 2

Background

Implementation of AppVeto for Android OS relies on some internal components of An-

droid. Many past work has also relied on different inner working of mobile devise to

perform and defend side-channel attacks. In this chapter, we present a few definitions that

we use throughout the thesis, and provide a brief overview of the Android architecture, re-

source end-points, and Android hooking techniques (see Sec. 2.2.1 for a detailed overview

of Android’s architecture). This chapter also highlights the literature related to this disser-

tation.

Definitions. A resource is an end-point where an app can get access to information that is

not provided by the app itself. An Android Activity is considered as a foreground activity

as long as it has focus and is visible on the device’s display. As soon as the activity loses

focus, leaves the screen, or the screen is turned off, the activity loses its state as a foreground

activity. We consider any app as a foreground app whenever any of its activities become

a foreground activity. In contrast, a background app is any app that has no foreground

9



activity on the device’s display.

2.1 Android Native Binaries

Android is built on top of a Linux kernel, and therefore it supports both static and shared

libraries [32], and uses the Executable and Linkable Format (ELF) for its libraries [15].

Android is supported on various CPU architectures such as ARM, ARM64, x86, and x86_-

64. A set of rules that specify how a binary executable exchanges information with services,

like the kernel or a library, at runtime is called an Application Binary Interface (ABI [32]).

Combinations of different CPU architectures and instruction sets are defined as different

ABIs. A build of Android primarily supports the ABI corresponding to the machine code

used in its own system image. Optionally, Android can support other ABIs supported by

the system image [15], e.g., ARM64 can execute binary code for the 32 bit ARM ABI.

Generally, third-party apps ship their native executable as shared libraries with the app

itself. When compiling native libraries, third-party apps generally compile the library for

different ABIs to support the apps on different CPU architectures. During the runtime, an

app needs to choose its native library that is supported by the underlying platform.

2.2 Android OS and Hooking Techniques

In this section, we briefly summarize the main components of the Android architecture,

outline Android native APIs, and describe two hooking techniques for the Android OS [23].
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2.2.1 Android OS Stack and Native Libraries.

Android is built on top of a custom Linux kernel, which is the lowest level foundation of

the platform; see Fig. 1—simplified from [23]. The rest of the platform takes advantage

of the kernel’s key functionalities, e.g., memory management, and security. Android has

adopted a Hardware Abstraction Layer (HAL [13]) to compartmentalize the lower-level

driver implementation from the higher-level system implementation. HAL operates on

top of the Linux kernel and interfaces the hardware devices, such as camera, mic, and

Bluetooth, with the upper level of the platform. This allows the development of the Android

OS independent of the hardware device specification. On the other hand, it delegates the

responsibility of device-specific interfacing to the device vendors. The component above

the HAL is the Android Runtime (ART), which instantiates multiple instances of a virtual

machine that can execute bytecodes designed for Android. Each app on Android runs inside

its own instance of the ART.

Hardware Abstraction Layer (HAL)

Native C/C++ Libraries Android Runtime

Android Framework

Apps

Linux Kernal

Camera, Browser

Content Provider,
Managers

Core Libraries, ART

Audio HAL, Camera HAL

Drivers, Power
Management

Media Framework,
OpenGL ES

Figure 1: Simplified platform architecture of Android, simplified from [23].

Several core Android functionalities must be directly executed at the native level. Thus,

many components of the Android platform are made available as native libraries, e.g.,

11



OpenGL ES Android uses the Java Native Interface (JNI [42]) to access these native li-

braries from the ART. Android also has a Native Development Kit (NDK [19]) that allows

third-party apps to develop native libraries using C/C++. In addition, Android has a sep-

arate set of APIs, called native APIs, to access some specific resources from the native

libraries; e.g., the functions defined in the sensor.h header file allow native libraries to

access Android’s sensors using the native framework without executing any bytecode [19].

The Android platform separates apps from the bottom three layers with the Application

Framework layer (refer to Fig. 1). This layer provides a set of Java APIs and allows the

apps to access various components of Android—e.g., builtin UI, camera, MIC, etc. Among

many critical tasks, this layer manages the app life-cycle and integrates Android’s default

user interface with apps.

2.2.2 Android PLT Hooking

Procedure Linkage Table (PLT) hooking is one of the oldest and most widely exploited

hooking techniques for many OSes. As Android uses ELF scheme for its shared libraries,

in this section of study, we will focus on hooking shared libraries of EFL scheme using

PLT hooking techniques. Dynamic shared libraries of the ELF scheme, first introduced

by Sun Microsystems in UNIX System V Release 4, can be viewed as a set of sections—

including .text (read-only program code), .data (initialized data), .bss (uninitialized

data), .got (global offset table), .plt (procedure linkage table), etc.2—interpreted by

the program loader [34]. The Global Offset Table (GOT) is created by the linker and has

2http://www.sco.com/developers/gabi/latest/ch4.sheader.html
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pointers to all global data addressed by the executable file. Furthermore, each shared library

has its own GOT [34]. At run time, the dynamic linker of the OS relocates and resolves

all the GOT entries by using the PLT [1]. Any executable that uses a shared library has

a PLT [34]. It performs the job of locating the symbol’s address for the objects mapped

in the memory. Fig. 2 shows the execution flow for a call to function foo() in a library

libBar.so.

Android supports lazy binding where it resolves a library call only when it needs it3.

When a program accesses an external function for the first time, the linker is called to

resolve the actual address. On wards, execution can directly jump to the external function

using the PLT. The .got section of the shared library file contains the offset address of its

external functions. At run time, this offset of the library from the base address points to the

relocation pointer that points to the beginning of the function’s instructions loaded in the

library’s memory block. Hence, if at run time the base address of an executable is known,

then its relocation pointers can be calculated and if altered, an arbitrary routine can be

executed. The pseudo-file /proc/<process id>/maps lists all the libraries loaded

by a process, their virtual memory addresses (due to ASLR), file path, etc. Although, a

process with root privilege can accesses this pseudo-file of any app but it cannot access any

these memory addresses as these address are not memory absolute address. A process itself

or the kernel level has the capability to access these memory address and anteater them. We

solve this problem by making all app hook themselves and performed PLT hooking.

3Android linker source: https://android.googlesource.com/platform/bionic/+/master /linker
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Program

...

call	foo()

...

PLT

...

...

GOT

...

(1)

(2)

libBar.so

...

foo()
Instructions
...

...

PLT

...

...

GOT

...

(3)

Text
(read only)

Data

Text
(read only)

Data

Figure 2: Execution flow for call to external function foo, adapted from [34].

2.2.3 Android Inline Hooking

Inline hooking relies on the idea of replacing instruction at the beginning of a function to

a jump instruction. When invoked, the function to be hooked (target function) then jumps

to the injected hooked function. Finally, execution can return back to the target function

after the execution of the hooked function. Inline hooking has fewer restrictions, and it

virtually allows to hook any function. However, it depends on the instruction set of the

phone’s architecture and requires very fine-tuned book keeping. For low level details of

inline hooking, the reader is referred to [9, 27].
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2.3 Android Resources

Android is composed of various components starting from local files, audio/video sources

to on-board sensors. We consider all these components as the resources under Android OS,

which an app can access on demand (cf. Android’s definition of resources [18]). Below we

discuss resources available in the Android mobile platform that can lead to side-channel

attacks.

2.3.1 Android Sensor Framework

Most Android phones come with various built-in sensors. These sensors generally interact

with the surrounding physical world, and do not involve any (explicit) personal information.

These sensors are categorized as motion sensors, environmental sensors, and position sen-

sors. Apps access these sensors using the sensor framework [18]. Fig. 3-a depicts a simpli-

fied workflow of sensor access by an app. Apps use the Android SDK to access the Android

sensor framework, and create an instance of a service called the sensor service [18]. Using

this service, apps need to register a callback, called SensorEventListener [20], to

receive sensor data. On request, the sensor service then registers the callback in the sensor

framework, which accesses the Hardware Abstraction Layer (HAL) to link an app with

the sensor. Whenever there is some new data available for the given registered sensor, the

callback method is invoked, and the the app is notified with the sensor data.

Android’s sensor HAL is the single client for accessing a sensor. The sensor frame-

work performs multiplexing to allow multiple apps to access a sensor concurrently. To
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link the hardware with the Android OS, hardware manufacturers need to provide the actual

implementation of HAL’s C header file sensors.h [24], the device driver, and other in-

termediate components. However, as the hardware specific components are implemented

by the hardware manufacturers, these components are device dependent. Hence, hook-

ing or altering these components at runtime or even at compile-time is impractical as the

modifications will be device and hardware specific.

Native Sensor API. Android also allows access to sensors using native APIs. The Android

NDK includes a header file (sensor.h) to access all the motion and environmental sen-

sors from native [19]. An Android app loads the native library libsensors.so [22] at

runtime, which has the native implementation of functions defined in sensor.h. Unlike

the Java API, where an app receives sensor data by registering a callback, when using na-

tive APIs, an app needs to call the ASensorEventQueue_getEvents function [19]

to retrieve the pending sensor events. The native API ASensorEventQueue_hasEv-

ents checks if the sensor queue has any pending events to process, and returns 1 when

there is a pending event or 0 otherwise. Fig. 3-b illustrates a simplified sensor access flow

through native APIs.

NDK libsensors.so Sensor HAL Sensor 
Hardware

Android 
Application

Access to sensors over native framework

SDK Application 
Framework Sensor HAL Sensor 

Hardware
Android 

Application

Access to sensors over application framework Device dependent componentsApp components

a

b

Figure 3: Simplified access to sensors; (a) access from application framework, (b) access
from native framework.
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2.3.2 Android Camera API

Like the sensor framework, Android uses a similar architecture for its camera API. This

API also has a HAL that creates an interface between the camera hardware and the An-

droid application framework. The components of this HAL, and the device drivers are also

implemented by the hardware manufacturers. However, in Android API level 21 (Android

5.0), a newer API—camera APIv2—was introduced, and the older Camera APIv1 was dep-

recated. Currently, both of these APIs are available in the latest released distribution of the

OS (Android 10). Furthermore, camera APIv1 is still used by many popular apps.

Unlike the sensor framework, multiple apps cannot use the camera hardware at the same

time. Apps also cannot directly access the camera. Android runs a native service called the

media server. A component of this service is called the camera service, which acts as an

interface to the camera hardware. Fig. 4-a shows a simplified workflow for camera access.

When an app uses camera APIv2 to access the camera, it first needs to create a session

with the camera service. After having a session, the app can make a request to the camera

service, to use the camera, and the service will capture the image for the app. In case of

APIv2, apps cannot directly get the captured image. Rather, when making a request, apps

must specify an Android Surface component, where the captured image will be placed.

This surface component can point to a UI or a file. Then the surface is passed to the native

camera service, which then writes the captured camera data on it. When an app wants to

create a preview for the camera, it needs to bind a UI component with the surface, and

when saving the file, the app needs to make a new request with a surface bound to a file.
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On the other hand, camera APIv1 has less control and flexibility over the camera. How-

ever, with APIv1, apps can get the captured data bytes. Apps also need to make requests to

the camera service when using APIv1, and register a callback to receive the captured data;

in addition, apps can provide a Surface for preview. Nevertheless, APIv1 and APIv2’s

implementations are independent and reside in their own packages.

Native Camera API. An app needs to include the headers specific to the camera API to

access the camera from native [19], and the functions defined in these headers are imple-

mented in the system library libcamera2ndk.so. Android loads this library in the

memory space of an app when it accesses the camera using native APIs [22]. The native

camera API follows a process similar to the Java camera APIv2, where an app first needs

to create a session (ACameraCaptureSession) by providing a target output (ANa-

tiveWindow) [19]. Next, one of the following two functions can be used to capture a

still image using the camera: ACameraCaptureSession_capture and ACamera-

CaptureSession_logicalCamera_capture. An app can also use one of the

ACameraCaptureSession_setRepeatingRequest or ACameraCaptureSe-

ssion_logicalCamera_setRepeatingRequest functions to capture repeating

images for camera preview, video call, etc. It is also possible to call ACameraCapture-

Session_stopRepeating function to stop any ongoing repeating capture of images.

Also, the ACameraCaptureSession_close function can be called by an app to close

a session.

As discussed in this section, Android has two Java APIs corresponding to two differ-

ent HALs to access its cameras. We hook the two Java APIs separately since there are
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many apps still using the legacy camera API. However, in the case of NDK, the deprecated

(legacy) camera HAL is not supported by the native camera API. The native camera API

is available as of Android 7.0. Perhaps to support older devices, many well-known apps,

e.g., WhatsApp, Skype, and Line, use the Java legacy camera API to access the camera,

although these apps use native APIs to access the microphone. Fig. 4-b depicts a simplified

camera access from the native API.

... libcamera2ndk.so Camera HAL Camera Hardware...

Native framework access

Device dependent components

Media Server

Legacy
Camera HAL

... Application 
Framework Camera HALs Camera 

Hardware... Media Server

Application framework access
App

components

Not accessible 
from the native framework

a

b

App
components

Device dependent components

Figure 4: Simplified access to camera: (a) access from application framework; (b) access
from native framework.

2.3.3 Android Audio API

Android offers the AudioRecord class to allow apps to access microphones [20]. This

class is one of the application interfaces to access the microphone. Similar to the cam-

era, the media server is also responsible for microphone access. Apps can read audio data

using the AudioRecord class. The app needs to start recording, and after that, the Au-

dioRecord class allows the app to get audio data in three formats: byte array, short
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array, and ByteBuffer [41], using three function calls. It is strictly recommended in

the Android developer’s documentation that after recording, apps must release the audio

resources. Otherwise, no other app will be able to access that audio resource.

Native Audio API. Fig. 5 shows an overview of microphone access from native. Android

has three sets of APIs, AAudio, OpenSL ES, and Oboe [11, 19], to allow access to the mi-

crophone from native. AAudio and OpenSL ES are independent native libraries that allow

an app to access the microphone from native independently. Whereas Oboe is a C++ wrap-

per library that uses the AAudio API when available, and otherwise, falls back to OpenSL

ES [11]. Hence, we focus on the AAudio and OpenSL ES library to intercept accesses to

the microphone from native. Note that past Android projects such as XPrivacyLua [36],

XPrivacy [35] (intended for privacy protection) were unable to hook native microphone

access.

NDK OpenSL ES ......

Native access to sensors

Device 
dependent 
component

...

Oboe

AAudio

Other 
components

App
components

Figure 5: Simplified access to microphone from native.

Android ships with an implementation of OpenSL ES [33] specific to Android. An-

droid apps need to include the OpenSLES.h header file to use this library (implemented
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in libOpenSLES.so). When an app uses the OpenSL ES API, this library is loaded in

the memory space of the app [22]. Function slCreateEngine is the entry point for

using this API. When an app calls this function it returns a structure of function pointers,

and when these pointers are invoked, they return more pointer structures. All these function

pointers are generated dynamically and an app needs to call a chain of function pointers

to use microphone from native (see also Appendix C for details). Because of dynamically

generated function pointers and the chain of calls to these pointers, which can occur any-

time in the application life cycle, traditional hooking techniques fail to intervene OpenSL

ES’s accesses to microphone. However, our design of hooks enables AppVeto to access

the dynamically generated pointers before they are accessed by the app to be hooked and

guarantee the interception of OpenSL ES (see also Sec. 3.2.3).

AAudio is a newer API for audio apps with a minimalist design and better support for

high-performance audio with low latency. An app needs to include the AAudio.h header

file to use this API (implemented in the library libaaudio.so [22]). This library is

loaded in the memory space of an app when it uses the AAudio API to access the micro-

phone from native. When using this library, an app needs to call the function AAudio-

Stream_requestStart to start recording, AAudioStream_requestStop to stop

recording, and AAudioStream_requestPause to pause recording. Intercepting the

calls to these functions can constrain the microphone access from native using the AAudio

library.
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2.3.4 Android Media Recorder

Android offers another application interface, the MediaRecorder class, to access both

the camera and microphone. This class is independent of other access methods and is

used for recording audio and video. The workflow of this class is very similar to Au-

dioRecord: apps can specify the camera and microphone source, and their recording needs

(audio, video). Also, apps must specify a file location and output format for the recording.

The MediaReorder next must be initialized to camera, microphone or both to allocate re-

sources. Afterwards, the MediaRecorder must be started and it will then interact with the

media server to start recording the specified media. Finally, the media server will process

the record instruction and save the recording in the specified file. It is also strictly recom-

mended that apps must release the resources after the recording is complete, or else these

resources cannot be used by other apps.

2.3.5 Android Hooking

Bytecode Hooks. When it comes to hooking Android, techniques for its bytecode hooking

are well explored. A prominent example is the Xposed framework [59], which extends the

/system/bin/app_process executable [63], enabling it to load a JAR file at startup

and, excluding few exceptions, hook any method of any class.4

Xposed provides a set of APIs with which apps can hook Android runtime method calls.

It allows modules to be developed that can be installed using Xposed management app.

Users need to install the Xposed framework on their phone to be able to use any Xposed

4https://forum.xda-developers.com/xposed/xposed-installer-versions-changelog-t2714053
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module. Xposed requires a rooted phone and as of Android 5.0 it needs to be installed from

the recovery mode of Android [29]. At the time of this writing, official versions of Xposed

are available for Android 4.0.3 to Android 8.1. (Unofficial versions are also available for

Android 9 and 10 [37].) Xposed modules are invoked when the system boots up. These

modules can register hooks for any Java methods of any app on the phone. Next, when

an app is executed on the Android Runtime (ART), the Xposed framework intervenes the

method call for the registered hooks. Xposed allows a module to entirely replace a method

with a new one, call a different method after the original method call, or call a different

method before invoking the hooked method. It currently can only hook Java method calls.

When a hooked method is invoked, it is executed within the same process as the original

method.

Native Hooks. There have been many attempts to hook Android native code (see, e.g., [30]),

but it remains a difficult challenge. These techniques are very limited compared to Android

bytecode hooking or machine code hooking on other platforms. Two well explored tech-

niques for hooking Android’s native code are PLT (Procedure Linkage Table) hooking and

inline hooking [39]. We choose PLT hooking in our work and use the xHook5 project as

the foundation of our PLT hooks. We also explored inline hooking techniques discussed in

Sec. 2.2.3.

PLT hooking allows us to figure out the runtime address of a function for a given shared

library (see Sec. 2.2.2 for details on PLT hooking). However, Address Space Layout Ran-

domization (ASLR) [1] in Android prevents an app from knowing other apps’ memory

5https://github.com/iqiyi/xHook
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space and prevents the app from accessing the memory address of a target function. We

solve this problem by making apps hook themselves. In particular, we use Xposed to make

an app’s bytecode invoke a native library of ours that then inserts hooks into the app’s native

code. Furthermore, in case of native hooking, if a program calls the function to be hooked

before being hooked, then the hook becomes ineffective. This is because the app can re-

ceive a reference pointer—e.g., if a program calls the slCreateEngine function of the

audio library and receives the structure of function pointers before the hook is placed, the

program can keep using this structure and the hook becomes ineffective. On the other hand,

if a program accesses the relocation pointer before the hook is placed, then it can have the

actual memory location of the target function, which also makes the hook inactive. We

define this as the time-of-hook problem, and solve it by placing the hooks in such a way

that the functions to be hooked will always be hooked before being called; see Sec. 3.

2.4 Related Work: Known Attacks and Solutions

In this section, we first review relevant attacks exploiting Android resources, which is also

necessary to understand our design choices (Sec. 2.5). We then discuss a few existing

solutions.
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2.4.1 Attacks Based on Resource Access

Recently, Ba et al. [5] introduced AccelEve, a state-of-the-art side-channel attack to eaves-

drop on a phone’s on-board speaker by using accelerometer. They show that the accelerom-

eter on most smart phone covers the fundamental band of human speech. They use deep

learning algorithms to reconstruct speech played on a phone’s speaker from data recorded

on accelerometer.

Shen et al. [49] analyzed the characteristics of Android’s accelerometer and magne-

tometer sensors, and designed a system that can infer a user’s touch input. They collected

32,400 keypresses from their studied participants on numeric and alphanumeric virtual

keyboards. Then they used this data to train a machine learning model using SVM, KNN,

Random Forest, and Neural Network. With this model, they could infer user input with an

accuracy up to 83.9%. Aviv et al. [4] showed that in addition to the input taps, the swap

gesture of Android pattern locks can be inferred from the accelerometer data. They used

logistic regression, and combined it with Hidden Markov Models [31] to train their system.

Spreitzer [56] exploited a less obvious resource, the ambient light sensor of an Android

smartphone, to infer a user’s PIN. The author first observed that a minor change in the

orientation of the phone results in a notable change in the data captured by the ambient

light sensor. Next, this leakage in the sensor data was exploited to gain a significant success

rate when guessing the user PIN. Logistic regression, discriminant analysis, and KNN were

used to train data, and an accuracy of 65% was achieved with only five guesses.

Simon and Anderson [53] demonstrated a system named PIN Skimmer, using the video

camera and microphone of a smartphone, to predict PINs from software keyboards. They
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observed movements from a video to detect the part of the screen that has been used while

typing the PIN. They also recorded sound from the touch pad using a microphone, and com-

bined this audio and video data to train their system. An accuracy of 30% was achieved

with two guesses (50% accuracy for five guesses). Raguram et al. [46] also exploited the

video camera, but from a different perspective. They found that it is possible to recon-

struct the text typed on a virtual keyboard just by observing the reflection of the phone’s

screen (e.g., reflection on the victim’s sunglasses). They demonstrated that even with a low-

cost camera, this side-channel attack can be launched. They used image processing and a

Bayesian framework for their attack. An accuracy of 92% was achieved for retrieving text

from a victim’s sunglasses. Hasan et al. [28] exploited the magnetic sensor to establish

a hidden communication channel with other devices and exchange information without a

user’s consent.

2.4.2 Defences

Song et al. [55] proposed two defenses against motion-based keystroke inference attacks.

They found that reducing the accuracy of the motion sensors can significantly reduce the

accuracy of these attacks. They also observed that the majority of these attacks rely on the

fixed layout of the virtual keyboard, and therefore, randomizing the layout can successfully

prevent these attacks. However, the input time on such a randomized keyboard can increase

by three times compared to a regular keyboard.

Shrestha et al. [50] introduced Slogger to defend against sensor-based keystroke infer-

ence attacks, which is similar to the solution proposed by Song et al. [55]. In contrast to
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reduced accuracy, Slogger injects personalized random noise to sensor data. Slogger also

avoids customizing the OS source. It uses an app to take sample inputs from the user when

launched and calculates some threshold values. It then injects random noise in between the

range of pre-calculated thresholds in the accelerometer and gyroscope sensor data readings.

Demetriou et al. [8] presented a new security system called SEACAT, which extends the

current security module of Android, SEAndroid [54]. They demonstrated several flaws of

the existing permission model, and showed how an attacker can exploit these flaws to gain

access to personal data. As a solution, they extended the Android OS and proposed a new

policy management that can permanently bind external resources (i.e., smart accessories)

with a specific app and can provide mutually exclusive access to those resources from the

bounded app only.

Xu et al. [60] demonstrated several flaws in the implementation of the Android Blue-

tooth security mechanism, by showing that Bluetooth peripherals have the capability to

change their device profile with the help of a malicious app running on the device. Then a

malicious app can allow a Bluetooth peripheral to communicate with the Android OS with-

out any user consent. They introduced a new policy management system in the Android

OS as a solution.

SemaDroid [61] has been proposed as a privacy-aware sensor management framework.

SemaDroid relies on users to monitor sensor usage, and manually control sensor access.

Furthermore, SemaDroid is implemented by hooking the Android source code, as opposed

to hooking the runtime system. SemaDroid essentially allows advanced users to put re-

strictions on resource misuse. On the other hand, AppVeto introduces a general purpose
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resource access policy by delegating the responsibility of decision making from users to

app developers. Note that manual access management for privacy-concerning resources

is available in the latest Android distribution. SemaDroid also allows users to manually

define conditions, e.g., location, and time, on which defined constraints on resource access

should be enforced. It can return mock data (user defined results), add noise to data, reduce

the accuracy of data, or keep the sensor data unaltered for different resource access.

FlaskDroid [6] has been proposed as a mandatory access control architecture for An-

droid. It can prevent sensors from being accessed while the phone is in a user-defined

security-sensitive state, such as when the keyboard/PIN pad is displayed. However, key-

board input is not always sensitive. AppVeto lets an app developer decide when to block

resource access.

App Guardian [64] temporarily blocks suspicious apps while a protected app is run-

ning. Suspicious apps are detected based on certain activities, e.g., a recording activity or

frequent CPU usage. Blocking an app is rather heavy-handed. AppVeto selectively pre-

vents resource access, and parts of a background app unrelated to the vetoed resources can

continue to function properly.

PINPOINT [47] provides virtualized per-app sensor services to allow returning per-

turbed or no sensor information to certain apps. PINPOINT relies on the user to set up

virtualized sensor services, which fails to protect users who are unaware of the possibility

of side-channel attacks. AppVeto instead relies on app developers, who have the knowledge

of sensitive components of their app, to protect the users.

AuDroid [44] detects and resolves unsafe information flows involving a phone’s speaker
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or microphone. It prevents two different processes from accessing the speaker and micro-

phone at the same time to prevent, e.g., an app with microphone access from learning the

output of another app that is using the speaker (e.g., what is being played by a music player

app). AppVeto is a more generic approach to control resources, and also allows the estab-

lishment of this type of exclusive access policies. For example, the developer of an app that

outputs potentially sensitive information over the speaker can veto apps that want to access

the microphone at the same time.

2.5 Design Options

Past work gives several design choices that AppVeto could adopt. One possible approach

to defend against inference attacks is to rely on detection and then removal of malicious

apps (cf. traditional antivirus programs) [40]. However, this approach may fail against new

variants of old malware and novel attacks.

Alternatively, concurrent apps can be temporarily suspended from running while the

user is entering sensitive information into the to-be-protected app [64], and while the app

is outputting sensitive information. However, this may affect the functionality of benign

apps that legitimately run in the background (e.g., a music player). In addition, it is a

heavy-weight approach that blocks even activities of concurrent apps that are not related to

accessing resources, like a stopwatch app counting time.

We can also make static information exploited in inference attacks dynamic and in-

accessible to apps. For example, randomize the keyboard layout to defend against input
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inference attacks [55]. However, with this approach, usability suffers, e.g., the time to

enter information increases [55].

Additionally, we can perturb dynamic information exploited in inference attacks before

delivering it to apps, e.g., reduce the sampling rate or add noise to a sensor [50], blur the

video or audio stream delivered to an app, or introduce fake tap sounds [51]. However,

finding the right amount of perturbance is non-trivial. Benign apps that legitimately run in

the background may also infer wrong results (e.g., wrong step count) from the perturbed

information, which in turn may confuse the user.

Finally, we can block dynamic information exploited in inference attacks from being

delivered to apps [6]. Blocking access is arguably better than perturbing information since

well-designed apps should be able to deal with lack of information. For example, Android

delivers information from sensors via callback functions so apps should be able to deal

with non-triggered callback functions. The drawback of this approach is that it may affect

the functionality of benign apps that legitimately run in the background and access blocked

information. We choose the last approach for our solution to limit the negative impact

on apps; we also allow blocking only for a short configurable duration to avoid denial-of-

service. Note that the to-be protected app suffers no usability or performance penalties.

In terms of when to trigger blocking of resources, one approach can be relying on the

OS to infer potentially vulnerable situations—e.g., when the keyboard or a password box

is prompted [6], or sensitive information such as a credit card number is displayed. When

the keyboard is used for a while such as writing a long email, other apps may suffer. It is

also difficult to distinguish between sensitive and non-sensitive information being output
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or input (from the OS perspective). One may also involve the user for explicit blocking

requests, e.g., before entering a credit card number or accessing her banking app; this will

entail both negative security and usability impacts. Instead, we choose to block when de-

velopers ask for it, assuming that developers of security-sensitive apps (like banking apps)

should be familiar with their security requirements—at least more familiar than average

users.
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Chapter 3

Threat Model and Hooking Resource

APIs

In this section, we discuss how we identify Android resources and how we hook APIs to

restrict access to these resources.

3.1 Threat Model, Goals, and Assumptions

We currently implement AppVeto through the Xposed framework and PLT hooking. We

assume Xposed modules are trusted and they have system level privilege. Ideally, we would

want AppVeto to be incorporated in the OS source, enforced from within the OS itself, and

thus need to trust only the OS.

Our AppVeto prototype can handle any app accessing vulnerable resources from both

the application framework and the native framework. However, AppVeto currently does
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not handle apps that disable the flag android:extractNativeLibs.6 When this flag

is disabled, an app keeps uncompressed shared libraries in the app’s APK files and loads

these libraries from the APK files directly (see Sec 5.3). This can be effectively addressed,

e.g., by modifying the Android source.

AppVeto treats all apps equally, and limits abuse by respecting veto powers of fore-

ground apps alone (i.e., apps that are being used actively), restricting the period of denying

access or exclusive access, and notifying users if the defined period is crossed. AppVeto-

enabled apps distrust all other concurrent apps, and we expect developers to understand

their apps’ security and privacy requirements, and correctly specify their veto needs within

the Android manifest file.

AppVeto enables a developer the following capabilities: (i) specify any or all sensors,

camera and microphone (as well as other resources) for exclusive access or denying access

to other apps; and (ii) specify certain classes of known side-channel attacks that an app

needs protection from. AppVeto can be extended to cover any resource, when a new side-

channel attack exploiting a new resource is discovered. With these new capabilities, we set

the following goals for AppVeto:

1. Input inference protection: prevent malicious apps from inferring sensitive informa-

tion that a user enters into an AppVeto-protected app while running in the foreground—

e.g. keystroke inference.

6https://developer.android.com/guide/topics/manifest/application-element#extractNativeLibs; this flag is
enabled by default in older versions of the Gradle open-source build system (before 3.6.0).
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2. Output inference protection: prevent malicious apps from inferring sensitive infor-

mation output by an AppVeto-protected app while running in the foreground—e.g.

eavesdropping speakers.

3.2 Hooking Resource APIs

First, we traverse the Android Open Source Project (AOSP) to understand the workflow of

the resources of our interest, for both Android 5.0 (released in 2014) and 9.0 (2018). We

rely on Java Reflections and hooks in the runtime to learn the object structures in the ART.

We then construct our method hooks and implement them in our framework. Developing

these hooks in a backward-compatible manner is non-trivial as some data fields and system

level method declarations are no longer the same in Android 9.0 compared to Android

5.0, even though the released APIs in the Application Framework remained unchanged.

Additional effort may be needed to make AppVeto fully compatible with other Android

versions.

We next investigate the native APIs mentioned in Sec. 2 in Android source to identify

places we need to hook, how to handle the data, and how to put seamless restrictions

on resources without breaking any app. First, we decompile various apps having native

binaries using Android supported bytecode decompilers.7 We then reverse engineering the

corresponding native libraries to better understand the ecosystem.8

As Android prevents an app from accessing another app’s memory space, a benign app

7We use ApkStudio (https://github.com/vaibhavpandeyvpz/apkstudio) and Bytecode Viewer (https://
github.com/Konloch/bytecode-viewer).

8We use Ghidra (https://ghidra-sre.org/) and Radare2 (https://github.com/radareorg/radare2).
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thus cannot perform PLT hooking on other apps–i.e., a single controller app cannot per-

form PLT hooking on other apps. Regardless, an app can access its own memory space at

runtime. Hence, an app can perform PLT hooking on itself. Furthermore, an app’s code is

executed starting from its bytecode, and an app-specific native library must be loaded from

the bytecode first. Later on, these native libraries can load other native libraries. There-

fore, we implement our native hooks as a shared library and use the Xposed framework to

load this library in all apps’ memory. The idea of hooking native from bytecode has been

explored before [27], but ensuring hooks on all native libraries of an app and hooking the

relevant APIs, specially the native audio API, has not been achieved before.

Android allows an app to access the pseudo-file /proc/self/maps, which has the

list of all loaded libraries of the current process, their file location, their starting mem-

ory addresses, etc. The starting address of a library is its base address. As discussed in

Sec. 2.3.5, the relocation pointer of the target function is the sum of the base address and

the offset of the function defined in the .got section. Our hook makes an app traverse

through its list of the loaded libraries, get the location of the target library, find the offset

address in the shared library, calculate the relocation address of the function to be hooked,

and finally hook the function. One caveat here is that an app can load native libraries at

any arbitrary time of its execution. So we trigger the hooks in such a way that all the target

native APIs would always get hooked after the library is loaded and before being called

from the app.
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3.2.1 Sensor Hooks

Allows access to motion, environmental, and position (excluding GPS) sensors through its

sensor framework. Furthermore, these sensors can be accessed from the Android’s appli-

cation framework and native framework independently. Below, we discuss the techniques

we used to hook these sensors.

3.2.1.1 Application Framework Sensor Hooks

As discussed in Sec. 2, the sensor service keeps track of the registered sensor listeners.

This service acts as the primary interface to all sensors, and SensorEventListener is

called for all sensor callbacks. However, this common callback method does not distinguish

the individual callbacks from each sensor. From the AOSP, we found a system level class

called SystemSensorManager [25] with an inner class called SensorEventQueue,

which queues the SensorEventListeners calls and passes them to the native imple-

mentation. This class has a method called dispatchSensorEvent, which is invoked

by the native code whenever there is some new data available for any sensor. This method

receives an integer value called handle. The SystemSensorManager class has a data

field called mHandleToSensor, which is a HashMap with handle as key and a Sen-

sor [20] object as value. Using this map, SensorEventQueue can distinguish between

callbacks of different sensors. Hence, we hook dispatchSensorEvent, and replace it

with our method.
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3.2.1.2 Native Framework Sensor Hooks

Android also allows to access on-board motion and environmental sensors using the NDK.

Android apps continuously need to check the sensor event queue for new sensor data to

access sensors from native—refer to Sec. 2.3.1. An app needs to call the function ASen-

sorEventQueue_hasEvents to check avabality of new data and call the function

ASensorEventQueue_getEvents to get the data from the event queue.

To provide fine-grained control over resource access, we must intercept each individual

sensor, and differentiate calls to ASensorEventQueue_getEvents for each sensor

separately. One of the arguments passed while an app calls this function is the structure

ASensorEvent. Unlike the Java API, this structure has a member type that corresponds

to the sensor type. Hence, we change the relocation pointer of this function to a new func-

tion located in our framework’s loaded library. The new hook function receives all the

parameters of the original call and checks if access to the corresponding sensor is allowed.

If there is no constraint on the sensor access, then we call the original ASensorEven-

tQueue_getEvents and let it alter the arguments passed to hooked function; otherwise,

we leave the arguments as it is and return the constant PERMISSION_DENIED [26]. We

also hook the function ASensorEventQueue_hasEvents, and return 0 when there

exists some constraint (otherwise we call the original function). Fig. 6 shows the flow

diagram of hooks for native sensor APIs.
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Figure 6: Hook flow of native sensor APIs.

3.2.2 Camera Hooks

As discussed in Sec. 2, Android has two HALs to access the camera. Android supports

multiple cameras and they can be accessed from the application framework and the native

framework. Below, we discuss our hooking techniques on Android camera.

3.2.2.1 Application Framework Camera APIv2 Hooks

For the camera, the callback method of CaptureRequest [20] does not have the data,

and preventing it from being invoked does not stop the media server from taking a picture.

However, to access the camera using camera APIv2, an app must make a capture request.

Cancelling this request prevents apps from accessing the camera. Apps must call Cap-

tureRequest using the CameraCaptureSession [20] class of camera APIv2. This

class has the following methods to make a capture request: 1. capture, 2. capture-

Burst, 3. captureBurstRequests, 4. captureSingleRequest, 5. setRe-

peatingRequest, 6. setRepeatingBurst, 7. setRepeatingBurstRequest,

and 8. setSingleRepeatingRequest.

We hook all these methods and replace them with our own code. Four of these capture
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methods are used to make capture requests to make the camera take pictures repeatedly. A

common use case for these methods is to display the camera view before capturing an im-

age; they also enable a background app to repeatedly capture images without making a new

capture request. Therefore, our framework needs to stop these repeating requests when a

foreground app defines a constraint over camera access. CameraCaptureSession of-

fers the abortCaptures method to abort any ongoing capture requests. We thus hook

the constructor of the CameraCaptureSessionImpl (system level implementation of

the abstract CameraCaptureSession class), and whenever a new object of this class

is initialized, we store it in a HashSet for each app. We iterate through all the active ses-

sions for all apps, and invoke the abortCaptures method to terminate existing capture

requests when necessary.

3.2.2.2 Application Framework Camera APIv1 Hooks

With camera APIv1, Android apps capture images by calling the takePicture method

of the Camera [20] class. Similar to APIv2, intercepting this method call and prevent-

ing it from being called can prevent an app from taking pictures. The Camera class has

setPreviewDisplay and setPreviewTexture methods to display a preview, the

startPreview method to start the preview, and the stopPreview to stop the camera

preview.

Preview of this API can also be used to create videos or take still pictures [20]. Hence,

we need to stop the preview for background apps, when a foreground app vetoes camera

access. The Camera class has a method called open to create an instance of this class.
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We hook this method and create a HashSet of Camera instances for each app. Like APIv2,

when a foreground app vetoes camera access, our framework invokes the stopPreview

method for all Camera instances. When the veto on camera access is released, we restart

the preview (via startPreview).

3.2.2.3 Native Framework Camera Hooks

Intercepting the functions calls referred in Sec. 2.3.2 (under “Native Camera API”) can

impose constraints on the camera access from native. Hence, we hook the four functions

to control the capture requests from native. We hook these functions similar to the native

sensor API hooks (see Sec. 2.3.5). When the current foreground activity imposes con-

straints on the camera, we return the error code ACAMERA_ERROR_PERMISSION_DE-

NIED, and leave the arguments unchanged; otherwise, we call the original request function.

In the case of a repeating request, we abort it by calling the ACameraCaptureSes-

sion_stopRepeating function. We also hook the ACameraCaptureSession_-

stopRepeating function to know when an app requests to stop the repeating capture of

a session and the ACameraCaptureSession_close function to know when a session

is closed. This information is required to manage the active sessions (see Sec. 4.5).

3.2.3 Audio Hooks

Android allows to access the microphone from both the application framework and the

native framework. AppVeto can handle microphone access for both as discussed below.
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3.2.3.1 Application Framework Audio Hooks

We hook the AudioRecord [20] class to allow constraints on microphone access. With

this class, apps need to invoke one of the overloaded readmethods corresponding to audio

data in a specified format (see Sec. 2.3.3). Unlike the case for the camera, AudioRecord

has no continuous capture request. Hence, intercepting the read method is sufficient to

prevent microphone access using AudioRecord, and therefore we hook all overloaded

methods for read. Apps must call the startRecording method to make the micro-

phone start recording. We also hook this method so that apps are prevented from making

the microphone from capturing audio when the foreground app vetoes such requests.

3.2.3.2 Native Framework Audio Hooks

Android offers three sets of default APIs to access the microphone from native (see

Sec. 2.3.3). The OpenSL ES is the legacy API for accessing the microphone from native.

A chain of function calls from the returned structure of the function slCreateEngine

gives access to the microphone. We reverse-engineered the libOpenSLES.so library

and our investigation shows that the library of our test OS (Android 8.0 for Google Pixel 3)

does not have any named functions (symbols) in the library corresponding to these point-

ers. Moreover, a library named libwilhelm.so is required by the libOpenSLES.so

library and this library has classes that are likely to be called behind the scenes, e.g., an Au-

dioRecord class with start and stop member methods. Hence, the functions pointed

to by the function pointers cannot be hooked as these functions are not exported to the

app’s native libraries. Also, the symbols corresponding to these functions in the symbol
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table of the native libraries are not known and can be device dependent, e.g., functions can

have random symbols on each device. Hence, we can only hook the slCreateEngine

function using the PLT hooking technique. However, if we can alter the result of this func-

tion call, this can sufficiently overcome the problem of hooking chained calls. However,

the result is returned as a read-only memory block and if altered, even after changing the

memory permission, the program breaks and stops execution.

We thus copy the memory block to a separate location, alter the result and return the

altered result as read-only memory. As discussed in the Sec. 2.3.3, the result of slCre-

ateEngine is a structure. We alter the result by assigning pointers to our hook functions

to the members Realize, GetInterface, and Destroy of the structure. As a result,

whenever an app calls these member function pointers, our hook functions get executed. In

the hooked functions, we call the original function and similarly change its returned value.

We continue this process until we reach the structure SLRecordItf where we hook the

SetRecordState and GetRecordState functions. In this scenario, whenever an

app calls any of these functions in the chain to access the microphone, our framework’s

hooked function gets executed first and allows our framework to control access to the mi-

crophone. Fig. 7 demonstrates our hooked call chain.

This approach still does not solve the timing of hook problem (see Sec. 2.3.5). Con-

ventionally, the function slCreateEngine is called once and the returned structure is

reused. Hence, if an app gets the returned structure before our hook, it may not call the

slCreateEngine function after the hook and keep on using the unhooked structure. In

contrast to the previous hooks, e.g. ASensorEventQueue_getEvents, even if the

42



app calls the function to be hooked before the hook, the hooked function is guaranteed to

be called after hooking the function. We solve this issue with our hook implementation,

see Sec. 4.3 for details.

Hooking the AAudio API is straightforward. As discussed in Sec. 2.3.3, when ac-

cessing the microphone from native using this API, the app needs to call the mentioned

AAudioStream_requestStart function. We hook this functions, and when ac-

cess is constrained, we return the constant value AAUDIO_ERROR_NO_SERVICE; oth-

erwise, we call the original function. Similar to the native camera API, we also hook

the AAudioStream_requestStop and AAudioStream_requestPause func-

tions for managing the memory; see Section 4.5. As the Oboe API is a wrapper around

the OpenSL ES and AAudio API, hooking these two API puts the same constraints on the

Oboe API.

3.2.4 MediaRecorder Hooks

The MediaRecorder [20] class allows apps to record audio and video. When using

this interface, apps must invoke its start method to start recording, which will start the

media recording and save the data in the specified file path. MediaRecorder provides

the pause and resume methods to pause and resume recording accordingly. Similar to

the camera hooks, we hook the constructor of this class and maintain a HashMap of Me-

diaRecorder instances for all running apps. If an app wants to use this class to record

audio or video, the app must set an audio or video source accordingly. However, Medi-

aRecorder provides no method to output if a video source is set. Thus, we hook the

43



setCamera method (deprecated in API level 21) to know if the instance of the Medi-

aRecorder records video, and store this information in the HashMap. When the foreground

app puts constraints on camera or microphone access, we invoke the pause method of the

instances of MediaRecorder that access audio/video resources. When the veto is re-

leased, our framework invokes the resume method to re-enable resource access for other

apps.
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Figure 7: Hook flow of OpenSL ES.
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Chapter 4

AppVeto: Design, Components, and

Implementation

In this section, we present the details of AppVeto design and our prototype implementation.

4.1 Design Overview

AppVeto enables a resource access policy that allows an app in the foreground to have

privilege over resource access. When the foreground activity leaves the screen and becomes

a background activity, the app’s veto powers are removed. App developers can select an

activity or a group of activities, and define what resource access should be prevented for

background apps when the selected activity or activity group comes to the foreground.

Developers can also simply specify what known side-channels should be prevented when

the selected activity is in the foreground. Developers specify these constraints through

45



Android application meta-data [18], i.e., the AndroidManifest.xml file. A constraint

on a resource can be introduced by using any of the keys shown in Table 3 (Appendix

A) as meta-data name and fully-qualified target activity class names concatenated with

the pipeline character (“|”) as the meta-data value. We have provided a code-snippet in

Listing 1 (Appendix B). When an app is loaded, AppVeto checks the defined meta-data

and constructs the veto needs to be applied on resource access, when the app is in the

foreground.

AppVeto enforces resource access policies for both native APIs and Java APIs. We

implement AppVeto as an Xposed module, which allows our code to be easily integrated

with the Android runtime (ART). However, Xposed is unable to hook the native Android

binaries, which we address by incorporating PLT hooking techniques. Fig. 8 shows an

overview of AppVeto. Below we detail the resource access and system calls that we hook

to implement AppVeto. We use a Nexus 4 phone with Android 5.0 for our primary devel-

opment and testing. We also use a Pixel 3 phone with Android 9.0 for evaluation (with

EdXposed [37]).

Extendability is a major design goal for AppVeto, so that constraints on new resources

can easily be incorporated as a new module to the framework without changing its existing

components. In addition to restricting a specific resource, we also allow easy grouping

of resources that are often exploited for a specific side-channel (e.g., several sensors and

microphone can be used to infer password inputs). We add a few groups, but new groups

can be easily defined. The components of AppVeto include a bytecode part to handle

resource access from the application framework and a native counter part residing in a
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shared library to handle resource access from the native framework. These two counterparts

communicate over JNI. Below, we detail the major components of AppVeto.

4.2 Meta-data Manager

The meta-data manager is responsible for defining meta-keys for different resources, and

retrieving the declared meta-data from apps installed on the system. Table 3 (Appendix A)

lists the meta instructions we have defined in the current prototype. The meta-data manager

is also responsible for mapping meta-keys with their associated resource access. Adding a

new key is as simple as adding a new enum field and a string identifier in the meta-data

manager. It also allows defining group meta keys that will prevent resource access for group

of resources when specified in the Android manifest file. Defining a new group meta-key
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is also as simple as defining a new enum field, a string identifier, and previously defined

meta-keys associated with certain resources.

4.3 Hook Manager

This is the entry point for our framework into the runtime of the Android OS. It allows in-

tercepting Android function calls at run time, and augments the behavior of the OS without

modifying the OS source directly. We must know which app is in the foreground and what

is the current foreground activity. Every app window displayed on the screen is a subclass

of the Activity class. All children of Activity inherit a method named onResume,

which is called by the OS every time that activity appears on the screen and gains focus [18].

Also, whenever an activity leaves the screen or loses focus, the onPausemethod inherited

from the Activity class is called [18]. Hence, the hook manager intercepts these two

methods and injects our code before the original call. Whenever an app window changes,

our injected methods are called, and AppVeto becomes aware of the current foreground app

and its focused activity.

We must also intercept the resource access by all the apps to enforce vetoes. We create

separate modules in the hook manager for hooking resource components, containing the

methods that are to be injected in the hooked methods. The hook manager intercepts dis-

patchSensorEvent (see Sec. 3.2.1) for capturing the sensor callbacks. Whenever there

is a call for this method from sensors, our injected methods are executed first. The injected

methods check if the current foreground app has any veto on the corresponding sensor
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callback; if not, the injected methods invoke the original hooked methods. However, if a

constraint is present on sensor access, then only the injected methods are executed.

For camera APIv2, we first hook all the capture request methods (see also Sec. 3.2.2).

Similar to the sensors, an injected method checks for access restrictions; if there is no

veto, the original hooked method is called, otherwise the CameraAccessException

with parameter CAMERA_DISABLED is returned. The hook manager module receives a

callback when the foreground activity changes. On that callback, if the responsible module

finds that the current foreground activity has a veto on camera access, it will invoke the

abortCapture method. We follow a similar approach for camera APIv1. We prevent

calls to takePicture, and throw an Exception when camera access is disallowed.

Furthermore, on a foreground activity change notification, the module responsible for the

camera hooks will call the stopPreview and startPreview methods.

The hook manager uses a separate module for hooking the read methods in Au-

dioRecord (see Sec. 3.2.3). When access is vetoed, the audio data is replaced with the

null value, and the error code ERROR_INVALID_OPERATION is returned; similarly,

calls to the startRecording method are also prevented and an IllegalStateEx-

ception is thrown.

We also have a module for MediaRecorder that hooks the relevant methods (see

Sec. 3.2.4). We hook the start method, and when the foreground app vetoes the camera

or microphone access, the injected method prevents the original method from being called.

We also prevent background apps from recording audio/video using the MediaRecorder

API.
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Native Hook Manager. We add hooks in the bytecode to initiate the PLT hooking. Adding

a hook on the onStart and onPause callback of activities can intercept all but the

OpenSL ES library. Because, if an app calls the slCreateEngine function some-

time after starting the app but before putting the app in the background—e.g., the li-

bOpenSLES.so library is loaded when tapping on the call button of a VOIP app for

the first time after starting the app—then our hooks become ineffective. For the example

scenario, when the app starts, the library has not been loaded yet so the hook is ineffec-

tive, and when the app goes to the background, the function has already been called once

and so again the hook fails. As discussed in Sec. 2.3.5, an app’s execution starts from its

bytecode, and then the app can load native libraries from bytecode using the Java meth-

ods System.loadLibrary or System.load. However, these two methods cannot

be hooked by the Xposed framework. We found that these methods internally call the

Runtime.loadLibrary and Runtime.load methods, respectively, while loading a

library. Hence, we hook these two methods and as soon as a native library is loaded from

bytecode, our framework is notified and if our target functions exist in that library, we hook

them.

However, a loaded native library can load other native libraries from the native frame-

work using the function dlopen. Libraries loaded from the native framework will escape

our bytecode hooks. Regardless, there must be at least one native library loaded from byte-

code which then can load other libraries from the native framework. As just discussed,

AppVeto can hook native libraries loaded from bytecode. So, we hook the dlopen func-

tion of all libraries loaded from the bytecode. Later on, when these libraries try to load
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other libraries from the native framework, our hooked method is called. Next, our hooked

method calls the original dlopen and load the library but before giving the control back to

the app, AppVeto hooks the dlopen and other target functions of the newly loaded library.

This approach works on older Android OS (before 8.0).

On the Linker Namespace9 mechanism on Android 8.0 prevents dlopen from load-

ing libraries from arbitrary locations. The hooked dlopen function is defined in a library

located in AppVeto’s package directory. When this hooked dlopen tries to open a li-

brary located in other apps’ package directory, the namespaces conflict, and the library

fails to load. In Android 8.0 and above, a new function android_dlopen_ext10 has

been introduced that allows specifying the namespace while loading a library. However,

there is no publicly accessible function to create a custom namespace. We found another

function named android_create_namespace11 can be accessed in the runtime to

create a namespace that allows the hooked dlopen function to load a library located from

our chosen locations. On Android 8.0 and above, we hook the android_dlopen_-

ext function as well, as it also allows an app to load a library from the native framework.

For both dlopen and to android_create_namespace, we call the original an-

droid_create_namespace function with a custom namespace to load a library, and

hook the loaded library before giving control to the app.

9https://source.android.com/devices/architecture/vndk/linker-namespace
10https://developer.android.com/ndk/reference/structandroid/dlextinfo
11https://android.googlesource.com/platform/art/+/refs/heads/master/libnativeloader/include/nativeloader/

dlext_namespaces.h#86
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4.4 Control Service

Whenever the hook manager hooks a method, the injected method is not called immedi-

ately. Rather, the injected methods are called from the process of the hooked app (i.e., not

from the hook manager process). As a result, with our injected methods, it is possible to

know when an app is in the foreground, which activity of the app is in the foreground,

and when the app is trying to access some specific resources only from the process of that

activity. However, other apps in the background cannot get this information or the cur-

rent restrictions being applied on resource access. Therefore, we develop a control service

for all apps to communicate and stay informed about their present status. This service

also decides what policy to apply for the current foreground activity, and makes the pol-

icy available for all other apps running on the system. Hence, this service requires Inter

Process Communication (IPC) between processes. The Android Bound Service leverages

the Binder API and uses the Android Interface Definition Language (AIDL) to provide

IPC over application sandboxes. We create a two-way communication channel between

the control service and an app, using two AIDL definitions: one for all apps to communi-

cate with the control service to receive/provide necessary information, and the other AIDL

for communicating with previously bounded apps and to notify them when the foreground

activity changes.

Native Control Service. When apps access resources from the native framework, our

native hooks intercepts these accesses. IPC and JNI calls are expensive, and hence we min-

imize these calls, and develop a native counterpart for Control Service. For the native API,
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sensor data is not delivered with a callback but an app explicitly checks for the availability

of sensor data. In case of the application framework, we can prevent the sensor callback

from occurring whereas for the native framework, the apps keep on checking for data. So

to minimize the IPC and a sensor’s access latency, the native counterpart of Control Ser-

vice keeps a copy of the resource access policies, especially for sensors, in the native and

bytecode separately. This reduces IPC calls and JNI calls.

4.5 Control Service Client

Our framework also offers a client component that allows the injected methods to com-

municate with the control service. This client also receives a notification from the control

service when the foreground app changes. The client then delegates this notification to the

hook manager (Sec. 4.3). The client enables communication between the sandboxed An-

droid apps and the control service. The client module is passed into the injected methods

and it becomes a part of the hooked apps when accessed by the injected methods. Injected

methods then use this client to communicate with the control service to inform it about

the app’s status. Also, the injected methods use this client to query about the policy to be

applied on resource access.

Native Service Client. The control server client has a native counterpart to handle the

native hooks. A notification sent by the control service is received by the bytecode of the

client. The client then makes the access constraints available to the native counterpart.

Hence, the native only checks its copy of the access policies when the app is trying to
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access some resources.

In the case of the camera and microphone, resources can be accessed continuously (cf.

audio and video recording) without continuous API calls. Hence, repeating or continuous

resource access needs to be stopped or paused when access is restricted by the foreground

activity. To achieve this, we keep a reference to all ACameraCaptureSession for the

native camera API, AAudioStream for native AAudio API, and all results of slCre-

ateEngine for the OpenSL ES library. Whenever access to any of these resources is

constrained, we call the stop/pause function on the corresponding reference for all apps.

As soon as the constraint is lifted, we call the start/resume function. Furthermore, if an

app destroys SLObjectItf for the OpenSL ES library, we release the memory it allocated.

For camera APIv2 and AAudio, we remove the reference when an app itself calls the event

release function to release the resource. These steps help prevent memory leaks.
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Chapter 5

Evaluation

We tested the developed framework using both real-world and some of our experimental

apps. We also measured the performance overhead of AppVeto on Google Nexus 4 (Quad–

core 1.5 GHz, 2GB RAM) and Google Pixel 3 (Octa–core 4x2.5 GHz, 4GB RAM) devices.

5.1 Side-channel Evaluation

To perform our side-channel experiments, we developed a few test apps that use AppVeto

to defend themselves, and some apps that use the application framework and the native

framework separately to access resources from the background. Our test results show that

the AppVeto framework successfully prevents background apps from accessing the sensor

data when the protected app becomes a foreground app. Figure 9 shows the accelerometer

data received by a test background app using the application framework. As indicated by

the flat region in the figure, no sensor data is received by the background app when the
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protected app becomes a foreground app, showing that the background apps are indeed

denied access to the data required for sensors-based side-channel attacks. We repeated the

same experiment (Fig. 10) but with a test app accessing the accelerometer with the native

framework. The result was similar; no sensor data was received by the background app

when the protected app became the foreground app.

We tested several popular apps, including Pedometer,12 Facebook Messenger, What-

sApp, Line, Viber, and Skype, from the Android Play Store that access different resources,

and evaluated the effectiveness of AppVeto on these apps. We prevented the accelerom-

eter while running the Pedometer app in the background. However, the app still counted

steps properly, and reverse engineering of the app shows that it uses Android’s built-in

step counter.13 As we do not prevent the OS from accessing the sensor data, the OS can

successfully provide the step counting service. The built-in step counter is a part of An-

droid’s sensor framework and hence AppVeto allows constraints on the step counter as

well. Although no known side-channel using the step counter exists yet, for validation of

AppVeto, we block the step counter using appveto_sensor_step_counter (refer

to Appendix A) meta declaration and prevent step counting. In this scenario, the OS still

gets accelerometer data but we prevent the Pedometer from receiving step counts from the

OS.

We tested AppVeto on popular video and audio calling apps to evaluate the micro-

phone and camera interception. We reverse–engineered WhatsApp and found that it uses

the legacy Camera API (see Sec. 2.3.2) from bytecode to access the camera and OpenSL

1210M+ installs, see: https://play.google.com/store/apps/details?id=cc.pacer.androidapp
13https://developer.android.com/reference/android/hardware/Sensor#TYPE_STEP_COUNTER
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ES (see Sec. 2.3.3) to access the microphone while making VOIP calls. When we veto

the camera or microphone access, the video or audio of the call pauses, and when the veto

is released the audio or video is resumed accordingly. Our experiments with Facebook

Messenger show that it also uses the legacy Camera API and Audio Record API from byte-

code to access the camera and microphone. Similar to WhatsApp, Facebook Messenger’s

video pauses in presence of a camera veto and the call resumes when the veto is removed.

Even though Facebook Messenger does not use the native framework to access the camera

or microphone, hooking its native libraries stops it from executing. Our further investiga-

tion shows that Facebook Messenger has mechanisms to detect PLT hooks; see Sec. 5.3

for further discussion. Reverse engineering of Skype, Viber, Line shows these apps use the

legacy Camera API to access the camera and OpenSL ES to access the microphone. Similar

to Facebook Messenger, they can detect the PLT hook and stop from executing (although

in the presence of our hook Skype and Viber cannot access the microphone). In case of

Line, it accesses native libraries directly from APK, which is not in our threat model (see

Sec. 3.1 and Sec. 5.3). We also used different recording apps, including Audio Recorder

by Sony, for testing the microphone veto. We counted from one to ten, and the numbers

uttered during the microphone veto were missing in the recording.
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Figure 9: An example illustrating a background app denied from accessing the accelerom-
eter by the foreground app.
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Figure 10: An example illustrating a background app denied from accessing the accelerom-
eter by the foreground app.
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5.2 Performance Evaluation

We measured AppVeto’s overhead on CPU, memory usage, and latency on sensor data

access, using Pixel 3 and Nexus 4 phones; see Tables 1 and 2 for a summary of our results.

Interception for the camera and microphone is performed when the requests to access these

resources are made. On the other hand, interception for sensors is done in the sensor

data retrieval callbacks. Hence, the performance of sensor data access is more affected by

AppVeto. Therefore, in our experimental setup, we first rebooted our test devices and ran

a test app that retrieves accelerometer and gyroscope sensor data. Next, we measured the

overall CPU usage of both test devices during an interval of 1 second for 60 seconds and

took the average of these 60 samples. The experiment is repeated for 10 times with and

without the AppVeto framework. We observe a CPU overhead of 0.64% for Pixel 3 and

5.57% for Nexus 4. It should be noted that a significant portion of the observed processing

cost is due to the Xposed framework and runtime hooking. When integrated with an OS

distribution, this overhead is expected to be much less.

% CPU usage
Memory

usage (GB)

Application
framework

sensor-access
latency (ms)

Native
framework

sensor-access
latency (ms)

AppVeto ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓

Average 14.63 15.27 1.90 1.96 10.0 10.1 9.977 9.985
Std. dev. 0.51 0.75 0.69 0.67 1.95 1.22 0.75 0.67
Overhead 0.64% 0.06 GB 0.1 ms 0.008 ms

Table 1: Performance overhead for Pixel 3.

We also monitored the memory usage during a 30 second interval, took 20 samples,
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% CPU usage
Memory

usage (GB)

Application
framework

sensor-access
latency (ms)

Native
framework

sensor-access
latency (ms)

AppVeto ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓

Average 8.07 13.64 1.743 1.746 10.0 10.3 10.0 10.071
Std. dev. 1.32 1.44 0.027 0.014 1.72 0.82 1.35 0.58
Overhead 5.57% 0.3 GB 0.3 ms 0.071 ms

Table 2: Performance overhead for Nexus 4.

and calculated the additional memory usage. The latency presented in Tables 1 and 2 was

calculated by measuring the accelerometer access latency, which was done by using a test

app that retrieves accelerometer data from the application framework and native framework

and measures the time difference between each data retrieval point. The latency values for

both Nexus 4 and Pixel 3 are small (see Tables 1 and 2).

5.3 Limitations

One of the limitations of AppVeto is when native libraries are directly loaded from APK

files. Android allows the flag android:extractNativeLibs in its manifest file,

which is enabled by default (until the recent release of Gradle 3.6.0). When disabled, in-

stead of extracting native, shared libraries from APK files, an app keeps uncompressed

shared libraries in its APK files and at run time loads the libraries directly from the APK

files. This reduces the installed app size but significantly increases the APK file size. We

currently do not handle native libraries accessed directly from APK files. This can be easily
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addressed if AppVeto is integrated with the OS. Although not widely seen, during our side-

channel evaluation (Sec. 5.1), we noticed that the microphone access in Line14 resulted

in unexpected outputs. Line could access the microphone even after preventing access

from both the application and native frameworks. After decompilation, we confirmed that

Line uses the native shared libraries to access the microphone but disables the flag an-

droid:extractNativeLibs and accesses these libraries directly from the APK at

run time.

We also noticed that a few apps (e.g., Skype, Viber) stopped their execution after hook-

ing their native libraries. We found that these apps use some detection techniques, e.g,

hashing/signing a library’s memory block after loading the library into the memory, which

allow these apps to detect our runtime native hooks and stop execution. Hence, we can

ensure to block any apps from accessing any restricted resource but an app can detect and

stop executing entirely.

Also, AppVeto may be abused by malicious apps to deny legitimate apps access to An-

droid resources, which might make them malfunction–e.g., fitness apps might miss count

steps. We limit the possibility of a DoS attack to only when an app is in the foreground.

To further mitigate this threat, we set a timeout on an app’s veto powers (configurable by

the OS/AppVeto distributors). Our study shows that in most cases resource access veto

is required mostly on login or authentication forms where users stay for a short amount

of time. Also, developers should use AppVeto only on activities that handle critical in-

formation that may be subjected to side-channel attacks. We are also experimenting with

14https://play.google.com/store/apps/details?id=jp.naver.line.android
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a negative reinforcement strategy, which will make apps pay some price, e.g., warning

messages, notification warnings, and process throttling, to limit DoS possibility.

We have designed AppVeto such that it has minimal impact on other apps. Regardless,

legitimate apps can malfunction, specially if the apps do not check a resource’s availability

before using it. We also broadcast a resource’s availability state, which legitimate apps can

receive to handle interruptions. We observed that the Facebook messenger app drops the

call after receiving no input from the microphone for a while; apparently, this app drops

the call if it receives zero bytes from the microphone for a defined amount of time.

We rely on developers to understand the security needs of their apps to benefit from

AppVeto. However, many Android developers may have little grasp on security. On the

other hand, many apps may not require the additional security through AppVeto. Also,

configuring an app for AppVeto is similar to current permission settings in the Android

manifest file, which we believe will help developers to easily incorporate veto powers in

their apps.

Mobile OS vendors may also consider enhancing protections against side-channel at-

tacks; cf. recent changes to sensor access in Android 9.0 [14]. If password input prompts

are reliably detected, the OS itself can apply a veto on accessing side-channel-prone re-

sources for all background apps, even if the foreground app requests no such restrictions.

62



Chapter 6

Conclusion and Future Work

We presented AppVeto, a generic OS-level framework to enable finer-grained control on

mobile device resources. Compared to existing runtime and install-time models, such en-

hanced access restrictions allow us to design a comprehensive defense against several side-

channel attacks that exploit both permissioned (e.g., microphone) and permission-less (e.g.,

accelerometer) resources. This brings developers to the forefront of securing their apps

against these stealthy but highly effective attacks, without burdening users with additional

security-critical decisions. Our current implementation addresses both application frame-

work and native code based resource abuses. However, we left out a few other resources

such as Bluetooth. We also leave out hooking of native libraries directly accessed from

APKs. With more engineering efforts, more resources and hooking of these libraries can

be added to our prototype. We also documented Android’s native hooking techniques and

presented a technique to hook major Android APIs. We are making AppVeto available to

app developers and security-enthusiasts, who can test and extend AppVeto as it is based
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on the Xposed framework and PLT hooking, i.e., no custom OS image is needed. We be-

lieve that the AppVeto approach is a step towards a more effective permission model for

mobile operating systems. Our native code hooking techniques may also help understand

other apps with native binaries, and implement stricter privacy protection frameworks—

e.g., [30, 39].

For the next phase of AppVeto, a field study can be performed to measure the effec-

tiveness of AppVeto outside of the lab environment. Further study can be done to figure

out newer side-channel attacks and preventing which resources and how long can prevent

these attacks. Also, a measurement study can be conducted to derive statistics on malicious

apps that actually perform these side-channel attacks in the whiled. Although, there exist

many studies for side-channel attacks and defences for Android’s application framework

but the domain is relatively unexplored for Android’s native framework. Further investigat-

ing can be done to have a better understanding of these side-channels for Android’s native

framework.
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Appendix A

AppVeto Keywords

Table 3 lists the meta keys supported by our system. These keys are used to define con-

straints on resource access. The key appveto_sensor_all blocks all sensors from

the Android Sensor Framework, appveto_inference_keystroke blocks all re-

sources that have been exploited for past keystroke inference side-channel attacks, and

appveto_rogue_communication blocks the microphone and magnetic sensor, ex-

ploited by past work for rogue communication [28, 44].
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Type Meta Key Constraint

G
ro

up appveto_sensor_all All Sensors
appveto_inference_keystroke Keystroke Inference
appveto_rogue_communication Rogue Communication Channel

In
di

vi
du

al
appveto_sensor_magnetic_field Magnetic Sensor Access
appveto_sensor_accelerometer Accelerometer Sensor Access
appveto_sensor_significant_motion Significant Motion Access
appveto_sensor_gyroscope Gyroscope Access
appveto_sensor_light Light Sensor Access
appveto_sensor_proximity Proximity Sensor Access
appveto_sensor_gravity Gravity Sensor Access
appveto_sensor_pressure Pressure Sensor Access
appveto_sensor_temperature Temperature Sensor Access
appveto_sensor_humidity Humidity Sensor Access
appveto_sensor_step_detector Step Detector Access
appveto_sensor_step_counter Step Counter Access
appveto_sensor_heart_rate Heart Rate Sensor Access
appveto_camera Camera Access
appveto_mic Microphone Access

Table 3: Configurable constraints/veto powers.
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Appendix B

Code snippet to add a veto

Listing 1 depicts a code-snippet that shows how to add metadata in the AndroidMani-

fest.xml file to veto keystroke inference on LoginActivity and RegisterActiv-

ity.
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Listing 1 Code-snippet to add a constraint in AndroidManifest.xml.

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

...>

<application ...>

...

<meta-data

android:name="appveto_inference_keystroke"

android:value="com.example.LoginActivity

|com.example.RegisterActivity"/>

...

<activity android:name=".LoginActivity" ...>

...

</activity>

<activity android:name=".RegisterActivity" ...>

...

</activity>

...

</application>

</manifest>
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Appendix C

Android OpenSL ES

OpenSL ES is an audio library for embedded devices [33]. Android’s implementation of

the library follows the standard specification and an app can use this library by including

the OpenSLES.h header. As discussed in Sec. 2.3.3, the implementation of this library is

located in the libOpenSLES.so shared library file and the slCreateEngine func-

tion is the entry point for this library. Calling this function returns a structure of function

pointers (SLObjectItf). These pointers are uninitialized at first; the function pointed

to by the Realize pointer in the structure has to be called first which initializes the rest

of the pointers with the address of corresponding functions at run time. Calls to these

function pointers also return a structure of function pointers that need to be initialized on

run time. An app needs to call a specific chain of function pointers to access MIC from

the native framework using the OpenSL ES library. At the end of this call chain, an app

gets a reference to a structure (SLRecordItf) that has pointers to two functions: Se-

tRecordState and GetRecordSate. Calling these function pointers allows an app
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to start/stop recording or get current state of recording. Fig. 11 shows the call chain of

function pointers that an app needs to call in order to record using OpenSL ES.

OpenSLES.h

...

slCreateEngine()

...

SLObjectItf

...

Realize()

GetInterface()

Destroy()

...

Call	1

Call	2

SLEngineItf

...

CreateAudioRecorder()

...
Call	3

SLRecordItf

...

SetRecordState()

GetRecordState()

...

SLObjectItf

...

Realize()

GetInterface()

...

Call	4

Call	5

Call	6

Call	to	start/stop	
recording

Call	to	get	
record	state

Chained Call

Independent Call

Figure 11: Call chain of OpenSL ES function pointers to access the microphone from the
native framework.
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