
BYPASS: RECONSIDERING THE USABILITY OF

PASSWORD MANAGERS

TINA SAFAIE

A THESIS

IN

THE DEPARTMENT OF

CONCORDIA INSTITUTE FOR INFORMATION SYSTEMS ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF MASTER OF APPLIED SCIENCE

IN INFORMATION SYSTEMS SECURITY

CONCORDIA UNIVERSITY

MONTRÉAL, QUÉBEC, CANADA

APRIL 2021

© TINA SAFAIE, 2021

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Tina Safaie

Entitled: ByPass: Reconsidering the Usability of
Password Managers

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science
in Information Systems Security

complies with the regulations of this University and meets the accepted standards with

respect to originality and quality.

Signed by the final examining committee:

Dr. Walter Lucia Chair

Dr. Mohammad Mannan Supervisor

Dr. Amr Youssef Supervisor

Dr. Elizabeth Stobert Supervisor

Dr. Jermey Clark Examiner

Dr. Walter Lucia Examiner

Approved Dr. Mohammad Mannan, Graduate Program Director

Chair of Department or Graduate Program Director

April 2021

Dr. Mourad Debbabi, Acting Dean

Gina Cody School of Engineering and Computer Science

ABSTRACT

ByPass: Reconsidering the Usability of

Password Managers

Tina Safaie

Since passwords are an unavoidable mechanism for authenticating to online services, ex-

perts often recommend using a password manager for better password security. However,

adoption of password managers is low due to poor usability, the difficulty of migrating ac-

counts to a manager, and users’ sense that a manager will not add value. In this work, we

present ByPass, a novel password manager that is placed between the user and the web-

site for secure and direct communication between the manager and websites. This direct

communication allows ByPass to minimize the users’ actions needed to complete various

password management tasks, including account registration, logins, and password changes.

ByPass is designed to minimize errors and improve usability. Our goal is to create a space

where security could be the users’ primary task, and allow them to focus cleanly and consis-

tently on account management tasks. The constancy of the ByPass interface is intended to

allow users a greater sense of control over their passwords and accounts. By using the API

to move account interactions into this space, we hope to create an interface where users

iii

knew where to address security concerns, and access the controls to address those con-

cerns. Current password managers hint at this functionality (and include innovative tools,

such as security audits) but their placement outside the authentication interaction hampers

the functionality they are able to support.

We conducted a usability evaluation of ByPass and found that this approach shows

promising usability, and can help users to better manage their accounts in a secure manner.

We also conducted a security analysis of ByPass and showed the security improvements

that can be achieved with the support of APIs for password managers. Our study shows that

many known security vulnerabilities can be eradicated from the foundation of password

managers, and significant usability can be gained with the inclusion of APIs support for

password managers.

iv

Acknowledgments

I would like to express my sincere thanks to my supervisors, Dr. Mohammad Mannan,

Amr Youssef, and Elizabeth Stobert, for their continued support and guidance. It is my

honour and pleasure to have the opportunity to work under their supervision. This work

could not have been possible without their guidance, bright insights, and comments. I have

learnt a lot from them and would like to express my gratitude for their patience, motivation,

enthusiasm and immense knowledge.

I would like to thank my lab-mates from Madiba Security Research Group, especially

Tousif, to share their experience and be by my side through this journey.

Last but not least, I want to thank my family for their endless love, support, and en-

couragement. I am incredibly lucky to have them in my life. I owe a special thanks to my

supportive friends Mohammadreza and Ali. I am so grateful for their continues support and

kindness.

I also dedicate this thesis to my mother, father, and my lovely sister. You are the reason

I accomplish this today.

v

Contents

List of Figures ix

List of Tables x

1 Introduction 1

1.1 Overview . 1

1.2 Thesis Statement . 4

1.3 Contributions . 5

1.4 Thesis Organization . 6

2 Background and Related Work 8

2.1 Security of Password Managers . 10

2.2 Usability of Password Managers . 12

2.3 Proposals for New Password Managers . 14

3 ByPass: Design and Implementation 15

3.1 Design Overview and Goals . 15

3.2 ByPass Features . 19

vi

3.3 Implementation Details . 30

4 Security and Attack Mitigation 35

4.1 Password Manager Security Evaluation 35

4.2 ByPass Database Security . 39

4.3 Attacks Mitigation . 40

5 Usability Evaluation 42

5.1 Cognitive Walkthrough . 42

5.2 User Study . 44

5.3 Results . 51

5.3.1 Time . 51

5.3.2 Errors . 54

5.3.3 Usability Perceptions . 58

5.3.4 Qualitative Observations . 60

6 Discussion & Recommendations 63

6.1 An Abstraction Layer for Accounts . 64

6.2 Control vs. Automation . 65

6.3 Testing a Password Manager . 67

6.4 Offline vs. Online Password Storage . 68

7 Conclusion 69

Bibliography 72

vii

A UDS Framework 85

A.1 Usability . 87

A.2 Deployability . 89

A.3 Security . 89

B User Study Script 92

C Information and Consent Form 95

D User Study Tasks Description 100

E Pre and Post-test Questionnaires 102

F Recruitment Poster 109

G Ethics Certificate 111

viii

List of Figures

1 Current password managers architecture vs ByPass architecture 17

2 User flow diagram of ByPass. 20

3 ByPass registration page . 21

4 Login or create an account page . 22

5 Account creation on a third-party website through ByPass 23

6 ByPass edit account page . 25

7 ByPass password generator function . 26

8 Sharing an account page . 27

9 List of the shared accounts . 29

10 ByPass API interaction between server side, user browser, and fictional

website. 30

11 Boxplots showing the distributions of task completion time in seconds. . . . 52

12 Bar plot showing occurred errors by type 56

13 Responses to Likert scale questions asking about participants’ interest in

ByPass features. 59

ix

List of Tables

1 The API calls that ByPass needs make to support features 33

2 Participants demographics . 49

3 Participants password-related habit . 50

4 Descriptive statistics for task completion time in seconds. 51

5 Total number of errors committed by usability study task. 55

6 Evaluation of ByPass using UDS Framework 87

x

Chapter 1

Introduction

1.1 Overview

Password-based online services are ubiquitous, despite many known security and usability

limitations of passwords [13, 31]. Password managers can alleviate some of these draw-

backs by removing the need for people to memorize a large number of strong passwords,

helping users cope with different password policies, creating unique passwords and provid-

ing protection features against some attacks (e.g., phishing). However, current adoption of

password managers is low, and even among password manager users, many still do not use

them effectively [51].

Previous studies of password managers [3, 5] show that usability issues can contribute

to low adoption. Some other works [4, 52] attempted to improve the adoption of password

managers, and some [17, 23] described many issues such as those caused by underesti-

mating the risk of insecure behaviors and the user’s mistaken or incomplete mental model

1

from the password manager. While several studies [8, 44] have investigated different ways

to improve the usability of password managers, the basic wallet structure of the password

manager has remained the same. In all of them, a password manager is regarded as client-

side software that helps users store and fill passwords on a targeted website without the

website recognizing whether it is the user who is filling the password field or a software

program.

Considering the previous studies in addition to security and usability issues according to

the current design of password management systems, in this work, we investigate how the

design of password managers can be re-thought to facilitate adoption and minimize usabil-

ity problems. In particular, we propose integrating websites with the password manager by

utilizing an API as a novel method for completing account management functions through

software. Through this method, we not only increase the security and mitigate some known

attacks against them [14] but we also improve usability by minimizing the tasks given to the

user. The idea of integrating websites with the password manager can also address adop-

tion problems that hinder people from using password managers to improve their accounts’

security.

Our idea is not to create yet another password manager. We want this new design,

to act as a vehicle for investigating more fundamental questions about account manage-

ment. Password managers, while seeming to be one of the most accessible solutions to

the password problem, have not been widely adopted. This suggests that a new approach

to password management is needed: users need to be empowered with tools to effectively

access and manage the security of their accounts by relieving them of tasks more easily

2

completed by a computer.

In this work, to examine our idea by designing and developing ByPass, a new pass-

word manager that sits between the user and the website, reducing friction resulting from

usability problems. In ByPass the idea is to ask numerous websites to provide their ac-

count management functions’ APIs. ByPass uses an API for direct communication be-

tween the website and password manager, which allows the password manager to not only

directly send credentials to the website, but also to query the website for information such

as the password policy. In addition, this communication channel allows the introduction

of innovative features, such as automated password changes, and account creation/deletion

through the password manager. The primary goal of ByPass is to provide a more usable

password management system that encourages users to behave securely. ByPass integrates

nudges for secure behaviour, and is designed to make tasks such as account migration and

password changes as simple as possible. As such, we design ByPass to have a user-friendly

interface in order to work better for most people from different walks of life and encourage

them to use our proposed password manager for completing account management func-

tions.

In this work, we focused on ByPass’s impact on end users. We evaluated the usability

of our prototype implementation of ByPass by conducting a study with 20 participants. We

found that participants were able to quickly and easily add new accounts to ByPass, migrate

existing accounts into the manager, and change their passwords. Users were generally pos-

itive about the features in ByPass, but expressed concerns about the ways in which ByPass

3

moves the locus of control—the degree of peoples’ believe on control of some outcome—

proposed by Rotter [56]. It is worth noting that we evaluated account creation, account

migration, password change, and account deletion of ByPass through the user study. After

analyzing the results, we decided to provide a server-side for ByPass in order to address

the mobility issue and support the password sharing feature. ByPass code is available on

GitHub.1

1.2 Thesis Statement

Our research aims to create a secure and user-friendly environment that allows users to

manage their online accounts by using a password manager. The development of a usable

but secure system is the primary goal of this research. The following research questions

are investigated as part of this goal:

Question 1. What are the key usability and security flaws in password managers? Could

these flaws be caused by using password managers as a separate tool independent of the

web service providers?

Question 2. Can introducing APIs and binding the password managers and web services

together improve the password manager’s adoption rate and encourage the users to use

password managers more efficiently?

Question 3. Does allowing password managers to perform the third-party account manage-

ment tasks improve usability? How about security?

1https://github.com/TinaSafaie/ByPass

4

1.3 Contributions

Our contributions can be summarized as follows:

1. We propose and develop ByPass, a password manager considering usability and user

experience along with security enhancement. Even with strong evidence in favour of

password managers and proven security advantages of using them, password man-

agers are not accepted by the majority of the users as they suffer greatly in terms of

usability. We investigate existing password managers to identify key usability and

security flaws and developed, ByPass, yet not another password manager that solves

these issues.

2. We propose the inclusion of APIs and direct end-to-end communication between the

password managers and websites as a core component in the realm of password man-

agers. Many of the usability and security flaws of password managers are introduced

because of using them as a separate software for managing passwords and inclusion

of API makes the password managers a native component of the authentication pro-

cess, streamline password managers to cut through resistance due to usability, and

solves many security flows from the foundation level of a password manager.

3. We design a password manager supporting both online and offline password storage

considering users’ privacy and security. Considering users’ trust in a trusted third

party, portability to share passwords across multiple devices, and reliable availability,

we design ByPass to be configurable to support both storing passwords online and

offline depending on users’ needs and use cases.

5

4. We conduct a cognitive walkthrough to identify usability improvements in ByPass

from the feedback of expert users and domain experts. Our experiments shade in-

sightful sights on common early design mistakes that appears while designing a pass-

word manager.

5. We conduct a thorough user study with 20 participants to investigate the gap between

user experience and design expectation. Through our study we verify the improve-

ment in user experience in ByPass and also identify critical design refinement from

users’ feedback.

6. We investigate major security flaws in modern password managers and performed a

security evaluation of ByPass and other password managers. Our experiment shows

ByPass is resilient to many of these security vulnerabilities from the root of its foun-

dation.

ByPass design, security, and all the features in the offline mode like account creation,

account migration, password change, and account deletion as well as the user study has

been discussed and published in [69].

1.4 Thesis Organization

The rest of the thesis is organized as follows. In Chapter 2, we present an overview of

password managers and a literature review of three different aspects of them; security,

usability, and the new proposals. Afterwards, in Chapter 3, we introduce our detailed

6

design of ByPass and its features. Next in Chapter 4, we discuss the security of password

managers in addition to the security of ByPass and the attack mitigation. In the following

chapter, we evaluate ByPass and present our results in different categories. Finally, in

Chapters 6 and 7, we present our discussion, recommendations and conclusion.

7

Chapter 2

Background and Related Work

A significant amount of work has been done for the progression of password managers,

yet to this day, password managers are not seeing any light at the end of the tunnel. We

investigated existing password managers, their usability aspects, security issues, and new

proposals. In this chapter, we present the background associated with password managers

and the related work literature. We categorize the related works into three different parts

and discuss each of these parts below.

Password managers are client-side software tools primarily designed to help users with

password-based authentication protected by a primary password. Almost all managers are

designed based on a wallet model, where the central function is to manage a list of pass-

words, protected by a primary password. The security and usability of password managers

have been studied extensively. Modern password managers range in sophistication from

browser-based managers that save and fill users’ passwords, to more complex standalone

8

programs (e.g., 1Password1, and Lastpass2) covering various features such as customizable

password generation, security audits, family password sharing, and travel mode which we

are going to explain more below.

Generating secure, random passwords can be counted as one of the password man-

ager’s primary functions. In some password generators, the user can customize the gener-

ated password by choosing the password’s length, the combination of characters, numbers,

uppercase and lowercase letters so that the generated password is more recognizable for

them.

Auto-filling is a feature that is offered by almost all the password managers. It means

the password manager fills the credential boxes as soon as the page is loaded. Auto-

submitting is another feature in which the password manager not only auto-fills the cre-

dentials but also, submits them.

Password sharing can be an essential feature while you are in a family or business set-

ting when more than one person needs access to the same account. By offering this feature,

password managers are reducing the security risks associated with sending passwords over

messages or emails.

There are plenty of works on password managers covering different aspects of them.

We summarized prior related works into three categorizes: Security of password managers,

usability of password managers, and new proposals on development of password managers.

1https://www.1password.com/
2https://www.lastpass.com/

9

https://www.1password.com/
https://www.lastpass.com/

2.1 Security of Password Managers

By saving all passwords in one place, password managers create a central point of fail-

ure in a user’s security ecosystem. Although various proposals have been made for pass-

word managers that mitigate this problem [25, 55, 62, 66], the majority of commercially-

available password managers are vulnerable in this way. The prevalence of such attacks is

unclear, but it is compounded by the likelihood that users will choose insecure and easily-

guessed primary passwords [71].

Recently, Carr and Shahandashti [14] revisited various known attacks on password

managers, and analyzed whether password managers are still vulnerable to those attacks.

They also identified four new vulnerabilities: phishing attacks, clipboard vulnerability, PIN

brute force vulnerability (for applications), and brute force via an extension (evaluated

against five popular commercial password managers). Their results showed that all of the

tested password managers were vulnerable to at least one of the attacks they considered.

Oesch and Ruoti [50] provided the first evaluation that examined the full password

manager cycle covering; password generation, storage, and auto-fill. Their results demon-

strate that although password managers have improved since a couple of years ago, some

of them are still saving unencrypted metadata or vulnerable to clickjacking attacks. They

recommend that researchers evaluate password managers’ progress in eliminating current

password managers’ common vulnerabilities and improving usability.

Silver et al. [60] studied auto-fill password policies among different types of password

managers. Although the auto-fill function can increase the usability of password managers,

10

poor implementation of this function can lead to exposure of users’ credentials. They also

described the sweep attack, which requires the attacker to have control over the user’s WiFi

(e.g., in a public hotspot run/controlled by the attacker); the attacker can extract the user’s

credentials by injecting malicious JavaScript to the website without the user noticing.

Li et al. [38] analyzed five third-party web-based password managers, revealing four

security vulnerabilities—including classical web application vulnerabilities such as Cross

Site Scripting (XSS) and Cross Site Request Forgery (CSRF). They also analyzed autho-

rization and user interface vulnerabilities, and proposed guidelines to mitigate these identi-

fied issues. In addition to the Li et al. [38] work, Stock et al. [70] investigated XSS attacks

on password managers too. Although their work focused on built-in browser password

managers only, they highlighted the risk of password auto-filling feature, which is not only

in the built-in browser password managers. They also suggested an approach to protect

auto-saved passwords from the XSS attacks. In their solution, passwords should be filled

in a placeholder and replaced right before submitting them into the login form.

Gray et al. [28] proposed a technique to determine the risk that local password managers

can cause. To test it, they analyzed three password managers and the results revealed that

unencrypted password data could be discovered in temporary files even after closing the

application.

Gasti et al. [24] analyzed different database formats that password managers use to

store data. Through designing two security models of active and passive attackers, they

identified the risks that arise when the attacker has physical access to the device.

Karlsson [33] detected a weakness in the auto-fill function and URL parsing code of

11

the LastPass browser extension. The vulnerability was in treating the wrong part of the

URL as a domain. Thus, an attacker could deceive the extension into providing the user’s

credentials for any saved websites by modifying a URL.

Zhao et al. [76] performed a security analysis on two cloud-based password managers;

LastPass [36] and RoboForm [54]. They focused on three types of attacks: brute force,

local decryption, and request monitoring attacks, and their results indicate several vul-

nerabilities that an insider/outsider attacker can induce in the two considered password

managers.

2.2 Usability of Password Managers

Chiasson et al. [17] conducted an early usability evaluation of two types of password man-

ager, and found that users’ poor mental models of password managers caused them to make

dangerous errors. Karole, Saxena and Christin [34] compared a third-party password man-

ager to a phone-based manager and a USB manager. They found that users preferred the

control implicit in having passwords stored on a local device.

There are a variety of factors leading to the low adoption of password managers. Au-

rigemma et al. [5] found that insufficient time for installation, lack of immediacy, and

users’ feeling that using a password manager needs an additional effort that they don’t

want to spend contributed to password manager non-adoption. Maclean and Ophoff [43]

found that trust, habit, and performance expectancy are the three factors that lead to the use

of password managers. Pearman et al. [51] interviewed 30 participants, including people

12

who choose not to use a password manager, about their password manager use (and non-

use). They found that factors such as lack of awareness and poor understanding of how

password managers work prevent people from adopting password managers. They found

that that users could be divided into two categories: people for whom convenience is a

priority, and people for whom security is a priority.

Seiler-Hwang et al. [58] analyzed the usability of smartphone password managers and

suggested security, user interaction, and integration with external applications as three key

areas for improvement. They mentioned that only knowing about the password manager’s

existence is not enough to motivate an individual to use it. Users need to be encouraged to

install and try password managers. Alkaldi and Renaud [3] identified three phases to user

adoption of password managers: searching, trialling, and deciding. They later explored

how self-determination theory can be used to encourage users to adopt password managers,

and found that recommender tools can cause users to at least search for and try password

managers [4].

Lyastani et al. [42] studied whether using a password manager can influence password

strength and re-use. They used a browser extension to collect data on different pass-

word entry methods. Participants who used technical support for password creation had

stronger passwords. They concluded that password generators improve security, but are

under-adopted, highlighting the need to rethink password manager workflows.

13

2.3 Proposals for New Password Managers

A number of studies have designed new tools to address existing problems with password

management. McCarney et al. [44] created Tapas, a dual possession, theft-resistant pass-

word manager in which an adversary needs to gain access to both devices in order to read

the saved credentials. In their design, both devices – a mobile phone and a desktop com-

puter – must be available in order to use the password manager, and the user does not need

to have any primary password. Barbosa et al. [8] designed UniPass, a password manager

for visually impaired users. UniPass allowed users with visual impairment to access their

accounts and passwords more effectively and to use public computers. Although not posi-

tioned directly as a password manager, Ruoti and Seamons [57] propose a system in which

passwords are stored in the operating system, and verified (using zero-knowledge proofs)

by an independent password checking service. The system minimizes the interaction be-

tween users and passwords, as well as the attack surface for passwords.

Stobert et al. [67] designed Versipass, a password manager that generates passwords

using visual cues by showing an image to the user. They used the graphical password

to generate new passwords in order to address the memorability issues and improve the

password manager’s usability.

14

Chapter 3

ByPass: Design and Implementation

ByPass is designed to address usability problems that prevent users from adopting password

managers while maintaining good security properties. In this section, we discuss the design

of ByPass, features supported and introduced by it, and our prototype implementation.

3.1 Design Overview and Goals

ByPass is designed to reduce friction in password managers resulting from usability prob-

lems. Our insight is that many of the usability problems with password managers result

from the password manager functioning as an intermediary between the user and the reg-

ular login page. Copy/paste errors, wrong fields are filled by the auto form fillers, leakage

of passwords from the clipboard while copy pasting passwords, all result from placing the

password manager as an external resource, accessible only by the user and not the website.

Traditional password managers offer little conceptual advantage beyond a list of written

15

passwords, and in doing so, they miss an opportunity to genuinely address the usability

problems with passwords and add value beyond other password storage mechanisms.

Chiasson et al. [18] offered four separated guidelines on the design of user interfaces.

The design of functional interfaces is a matter of security because in security management

systems, usability problems can lead to vulnerabilities in security. The authors proposed

design areas can be summed up as: usable security, ecological interface design, social

navigation, and persuasive technology. We followed their usable security strategy, which

primarily indicate that the user should be aware of the security tasks they have to perform,

be able to identify whether or not they have accomplished a particular task, avoid making

dangerous errors, continue to use and communicate with the system, say whether the task

has been accomplished and finally be able to define the current system status.

Below we explain how our design of ByPass follows and covers Chiasson et al. [18]

proposed usable security strategies:

1. The user needs to be aware of the security tasks she has to perform: According to

the Chiasson et al. [18] guidelines, selecting a secure primary password is the very first and

vital task. We express the significance of the primary password by placing a message on top

of the primary password field on the ByPass registration page. We use zxcvbn [73], which

is a password strength estimator used in known sites such as Google and Dropbox [22], to

guide the users to select a strong primary password. We measure the strength of the entered

password and give a feedback to the user in order to help her pick a strong password. To

make sure that the user is aware of the importance of primary password and chooses a

secure one, we put a restriction on the selected password, so the user can only create an

16

account if she chooses a strong password according to the zxcvbn measurement.

2. The user should be able to perform the task successfully: We put a wizard on the

very first page of ByPass to help the user understands the steps she will be completing

afterwards, before going through them.

3. The user should be comfortable with the interface to keep working: By hovering

the mouse on various buttons and fields, ByPass gives more details to make them more

understandable. We also used numerous icons to make our password management system

more user friendly and understandable.

4. The users should be prevented from making dangerous errors: We put an extra step

of confirmation for functions such as account deletion. This additional move was to ensure

the user is aware of what she is about to do.

5. The user should be able to tell if the task has been completed: A pop-up message

shows up after each task completion to inform her that the task has been completed.

Figure 1: Current password managers architecture vs ByPass architecture

As shown in Figure 1, ByPass communicates directly with websites, thus avoiding

17

errors resulting from user manipulation of passwords and forms. It provides an API for

websites to use so that it can pass credentials directly to these websites. This allows users

to skip the manual login procedure when using ByPass, improving usability and avoiding

errors. Our goal is to design a mechanism to reduce the number of clicks and actions

required to complete account/login management tasks.

ByPass is designed to nudge users toward choosing secure options. For example, pass-

word generation features in password managers remain mostly unused [42, 51, 68]. ByPass

creates secure randomly-generated passwords by default, and only allows users to select

their own passwords by clicking through multiple steps. These generated passwords are

secure and unique, and because users usually do not need to interact with these passwords

directly, they are encouraged to take advantage of this functionality.

The usability advantages of ByPass are only realized if the website chooses to imple-

ment the ByPass API. This is a strong requirement, and we did not want to create a tool

that was only usable with affiliated websites. Thus, we designed ByPass to extend the

functionality of password managers without taking anything away. ByPass can be used as

a repository for copying and pasting passwords in the same way that existing managers

can, but adds functionality for websites that implement the needed APIs. Note that when

we discuss usability and security of ByPass, we focus on the new design, not this backward-

compatibility feature which shares the usual drawbacks of traditional password managers.

Moving the password manager to sit between the user and the website also creates an

opportunity to consider other functions that password managers typically exclude, includ-

ing account creation on third-party websites, account deletion, and automated password

18

changes. The security of ByPass is discussed in Chapter 4, but user authentication to the

manager is handled exactly as it is by traditional password managers, i.e., with a username

and primary password.

3.2 ByPass Features

The key features of ByPass include third-party website account creation, account migra-

tion, direct account logins, password changes, account deletion, and password sharing;

more features can also be easily accommodated. Figure 2 shows a flow diagram of user

interactions when setting ByPass up for a new account.

For the account creation, the user needs to enter a valid email address as well as a strong

primary password.

To assess the strength of the user’s chosen primary password and to help them improve

it, we have integrated a password strength meter in this primary password selection field.

Figure 3 shows how the password strength meter function gives real-time feedback on each

of the entered characters in the password field. There is the confirm primary password page

followed by the account registration page to make sure the user remembers their chosen

password on the previous page.

Adding Accounts. ByPass provides two options for users when adding new accounts: to

register a new account, or to enroll an existing one; both these tasks are abstracted into the

same function: “Adding an account”. We used a wizard to guide users through the process

of choosing what kind of accounts they are adding to ByPass, and to ensure that they enter

19

Figure 2: User flow diagram of ByPass.

the correct information (see Figure 4).

Because ByPass communicates directly with websites, all user interactions with ac-

counts can be moved to ByPass, including account registration. When users want to create

an account on a new website, they enter the website’s name in ByPass, and ByPass queries

the website for the registration fields they want. Users fill these fields, and ByPass automat-

ically populates the password field with a random password conforming to the password

policy (also sent by the website). Users can view and regenerate the random password, but

must go through an additional confirmation to do so.

20

Figure 3: ByPass registration page

To add an existing account, after searching for the website name in ByPass, users simply

enter their username and password, similar to standard password managers. If the user

enters the name of a website that does not have the ByPass API installed, the password

manager will act like a regular password manager, and store credentials for the user to

manually enter.

ByPass displays a wizard page to show the user an overview of the following steps.

The first thing is to enter the intended website’s address. The website’s address should

be entered accurately for the websites having more than one login page on different sub-

domains.

In the second step, as shown in the the user flow diagram depicted in Figure 2, the

user should choose either to login to the website or create a new account. If the user

already have an account on that website and they are only willing to migrate their account

to ByPass, they should choose the login option. But if they want to create a new account

21

Figure 4: Login or create an account page

on the website, the create account option should be selected.

How the next page is going to look depends on which function and which website did

the user choose in the previous pages. Meaning that, if the user enters the address of a

website—e.g., amazon.ca—and chooses account creation, the next page will display all the

required credentials for creating an account on that specific website. This page is dynamic,

and each time by considering the website’s name and create or login option, shows a page

containing required credentials of that specific website for completing a function. Refer to

the account creation function for the online store as an example in Figure 5.

Password Generation Policies. Having a good password policy is strongly recommended.

Nowadays, most service providers have their own password policies—e.g., minimum eight

characters, uppercase and lower case letters, use of special characters, etc.—for accepting

passwords. Hence, these services may not straightforwardly accept randomly generated

22

Figure 5: Account creation on a third-party website through ByPass

passwords. We have designed ByPass to accommodate the service provider-specific pass-

word policies. We allow the service providers to provide APIs to let ByPass know about

their password policies, and based on that ByPass generates passwords that will satisfy

those policies. As a result of using these APIs, in the account creation page, we automat-

ically fill the password fields considering that website’s password policies. Yet, the user

is still able to change the password by using the generate password button or change the

length of the password.

For the account migration, the user should select the login option (shown in Figure 4).

After entering the username and the password, they can choose either to log in, which they

will be taken on the home page of the website, or only to save the credentials and go back

to the ByPass home page.

23

Account Login. After adding an account to ByPass, the user can log into the website by

opening ByPass to the account page, and clicking on the “Go” button. ByPass sends the

user’s credentials to the website via secure API calls, and opens the site’s main page in a

browser, this is to avoid any direct interaction with login pages, e.g., navigating to intended

URLs, and typing usernames and passwords.

Periodic Auto Password Change. Password changes are frequently avoided by users due

to serious usability drawbacks [32, 68]. While password expiration policies are no longer

recommended by NIST [48], they are frequently mandated by organizations. Password

changes are particularly onerous to users of password managers, who typically must open

the manager to copy the old password, navigate to the password change menu, generate a

new password in the manager, ensure it is saved in the password manager account entry, and

copied into the website. Because passwords are generally masked to avoid shoulder surfing

attacks, it can be difficult to know which string is copied into which field, inviting errors. In

ByPass, the direct communication between manager and website elides all of these steps,

and makes password changes into a one step process for the user. On the edit account page,

users can view their password, change it with the (re)generate password function, and set a

timer for automatic password changes (see Figure 6).

Account Deletion. Although not typically considered as part of password management, an-

other opportunity afforded by the ByPass architecture is to easily delete website accounts

from the password manager. Account deletion is frequently made difficult by website de-

signers [29], but privacy rights (such as the right to be forgotten [6]) indicate that account

deletion should be an available straightforward process. In ByPass, account deletion is

24

Figure 6: ByPass edit account page

accessed through the “Edit account” page, and includes a two-step confirmation process.

Password Generator. In the initial phase of ByPass, we focused on keeping the users

away from manually typing in passwords. However, our experiments, interaction with the

users, and the user study results showed us that users lacked the confidence of not having

control over the generated passwords. Hence, we included a password generator that allows

the users to see, put conditions, and gives the option to agree with the password that is

generated. Therefore, in ByPass, we do not take anything away from what the existing

password managers have and decide to add this feature (Figure 7).

Our password generator allows the user to configure and generate customized pass-

words by allowing to choose the length of the password or add uppercase/lowercase letters,

numbers, or symbols while generating passwords.

Saving Method. ByPass allows the user to select a data storage system. The saving option

25

Figure 7: ByPass password generator function

can be either online (on the cloud) or offline on the user’s device. We store all the data in

the cloud by default unless the user decides otherwise. We remove all their data from the

cloud as soon as they decide to have a local database.

Account Sharing. Account sharing is a new feature in password managers that can be

divided into two categories; (1) accounts that the user has shared with someone and (2)

accounts that are shared with a user.

ByPass allows two users to share their accounts with each other for a specific period of

time. Both users can have access and manage their shared accounts, only by visiting the

“List of shared accounts” page.

Let’s assume that Bob has an account on the Amazon.ca website and decides to share

his account with Alice for only 12 days. To do so, the only thing he should do is to go the

account sharing page (See Figure 8) on ByPass, choose the name of account he wants to

26

Figure 8: Sharing an account page

share, enter Alice’s email address with which she has created her ByPass account, and in

the end choose the duration of sharing (Here is 12 days).

As soon as Bob shares his account, Alice will receive an email from ByPass telling her

a new account has been shared with her and she can see it in the “List of shared accounts”

page. As shown in Figure 9, Alice can see which accounts has been shared with her, from

whom, and for how long. By clicking on the “Go” button, Alice would be redirected to the

home page of the Amazon.ca website. The “Days to expire” on the figure shows Alice how

long she has access to Bob’s account and if she chooses, she can stop using his account

by clicking on the “Stop” button. In addition, ByPass also allows Bob to stop shearing his

account with Alice any time before the expire date.

In terms of technical details, when Bob chooses the account he is willing to share

(here we assume it’s the Amazon website) and enters Alice’s email address, the extension

communicates with the ByPass server and sends Bob’s username (the one that he created

27

the ByPass account with), Alice’s username, the account’s ID, and the sharing duration.

It is worth noting that each account that the user adds to ByPass has a unique ID in the

database table. When the ByPass server receives the request, it checks if the username and

account ID are correct. If yes, it saves the record and gives Alice an email informing her

that an account has been shared with her.

When Alice decides to log in to Bob’s account, the extension first sends a request con-

taining her username, Bob’s username, and the account’s ID (same as above) with a login

request to the ByPass server. After checking if Alice has the right to access Bob’s account

or not, the server sends an API to Amazon containing Bob’s credentials and a flag (called

“shared”), which is set to true. For better security, we set this “shared” flag in the API to

let the website know that this user is not the account holder and should not be able to com-

plete the account management functions. Some actions, like changing the password/email

address, should not be modified by anyone rather than the account holder.

Upon receiving the share request from ByPass, the website first checks the validity of

credentials and then saves the state (that the account is shared). Afterwards, it generates a

token which is valid only once and sends it back to the ByPass’s server. The server sends

the token to the extension, and finally, Alice logs in to Bob’s account while the account

setting feature is disabled for her.

Furthermore, Bob can revoke sharing his account with Alice whenever he decides. On

the other hand, when Alice wants to get access to a shared account, ByPass confirms with

the server-side that her access permission has not expired and she has a valid access. As

soon as Bob clicks on the stop sharing button, sharing value of the Bob’s account with

28

Figure 9: List of the shared accounts

Alice will be set to false. Thus, Alice will be prevented from accessing to Bob’s account

if she tries, because when the server receives a request from Alice, the server will check

if the account sharing value for Bob’s account is true or not. In the case where Bob has

revoked sharing his account, the server will return an error to Alice. Although if Alice is

already logged in to the website and Bob decides to revoke sharing at that time, the website

wouldn’t kick Alice out of the page.

If the user chooses to have an offline database, the password sharing feature will be

disabled as for providing this feature, a trusted server is required.

Auto-Lock. This feature allows the users to choose a period to auto-lock the password

manager in a case inactivity. This feature providers protection against scenarios where the

user leaves their computer unattended and the password manager unlocked. The user is

given the following options to choose from: 30 minutes, 1 hour, 1 day or never.

29

Figure 10: ByPass API interaction between server side, user browser, and fictional website.

3.3 Implementation Details

The ByPass implementation has two components: the password manager itself which is

implemented as a Chrome browser extension and the server-side. We also developed two

fictional websites to test and evaluate ByPass. In what follows, we provide more details

on each of these components. Figure 10 shows the ByPass API interaction between the

ByPass’s server, browser extension, and the fictional website’s back-end.

Extension. Chrome extensions [26] are pluggable programs for chrome browser built on

top of the web technologies such as HTML, CSS, and JS. For navigation and data manip-

ulation in them, we use JavaScript (JS). Each browser has certain storage methods such as

cookie, local storage, session storage, web SQL, and IndexedDB which can be used for dif-

ferent purposes. We use IndexedDB [35] to store data, which is available for all the modern

web browsers, including Chrome 4+ and Firefox 10+ [61]. This has the potential to save a

large amount of data, so we can provide high-performance application search using API.

Web framework can provide us with the ability to automate some overhead related to

30

typical web development activities, such as accessing databases and managing sessions.

However, as we want our password manager to be a stand-alone chrome extension without

needing any desktop application, instead of using a web framework, we used pure JS,

jQuery, and HTML to take care of the above mentioned features.

We use three main files: Manifest.json, HTML, CSS, and JS files. In Manifest.json,

we add all the configuration and permissions of the chrome extension that needed to be

satisfied by the browser.

Server-side. To bring mobility to ByPass, we developed the server-side to allow all data

to be synchronized. The server is hosted on the Microsoft Azure cloud service, and we

used .Net Core, a Microsoft-developed open-source platform, to make this project more

accessible to research community and open-source development.

The core component of the server is the database which is secured by Azure defender

and is responsible for vulnerability assessment and advance threat protection. We use trans-

parent data encryption (TDE) which designs a secure system and encrypts the assets in

addition to building a firewall around the database server. ByPass server consists of a con-

troller which is developed by Microsoft ASP .Net core.cors (2.2.0) and in

order to connect the controller to the database through the queries, we use Microsoft

Entity Framework core (3.1.8).

The other framework is a JSON framework called Newtonsoft.json(12.0.3)

capable of serialize and deserializing any .NET objects as well as sending and receiving

JSON APIs between the server-side controller and the extension.

31

We decided to create a .NET core server-side that gives ByPass the ability to be dock-

erized [12] in case if any company decides to have an independent password manager, as

ByPass is open source and companies can develop their own version of ByPass on their

servers. The other benefits of using the .NET core are that it is open-source, and capable of

running on any operating system.

API Handling. We use a REST API for communicating with website back-end as it im-

proves the performance, has a simple interface, allows independent modification of the

components, and requires low bandwidth [21]. API calls are made via HTTPS using JSON.

ByPass enables various account management functions, and currently implements API calls

for creating an account, logging into an account, sharing an account, editing, and deleting

an account. Our prototype API is written in C# using the .NET framework and Sys-

tem.Web.Http library. The way we call those APIs is by creating an instance of XML-

HttpRequest() and then opening a POST request between the extension and the web-

site to send data using the exact URL for the given website’s API. To have an asynchronous

communication, we set a value to true, which indicates the asynchronous request. We cre-

ate an asynchronous XMLHttpRequest (XHR) and let the browser continue working

normally while the request is being handled [46].

For Request.SetRequestHeader in the XMLHttpRequest instance, we set

some variables such as: content-type, authorization, and access-control-allow-origin val-

ues. These values might differ according to each website’s configuration. In our case, we

set content type for the webmail service provider to JSON and the online store to x-www-

form-urlencoded. HTTP Authorization request header is a credential given from the

32

server to a user agent for the authentication. After that, in a request.send we send the user’s

credentials as well as our intended function value, which is a pre-agreed value between the

server and the user agent. Now, the server can authenticate the user, verify and execute the

request.

Table 1 lists the API endpoints that ByPass needs from websites to support its various

features. Below we explain more about each of the API calls.

Table 1: The API calls that ByPass needs make to support features

Name API Endpoint HTTP Method
Login /Login POST
Account Registration /Register POST
Change Password /ChangePassword POST
Account Deletion /DeleteAccount DELETE
Account Sharing * /SharedAccount POST
(*) = This API call is only available on the online mode of ByPass

Login. This API includes the username and password of the user’s account, which

ByPass sends to the intended website.

Account Registration. We make this API call while creating a new account on a third-

party website through ByPass. This API includes all the required information for creating

a new account on a specific website.

Change Password. Changing the password of an existing third-party account is possi-

ble through ByPass when a website provides the ChangePassword API endpoint. Password

change API contains the user’s old password, the new password and username.

Delete Account. The websites supporting account deletion function can provide By-

Pass the DelecteAccount API endpoint to allow ByPass to delete accounts.

Shared Account. This API call can be made only by the ByPass server-side, not the

33

extension. SharedAccount API is the same as the login API call with the "shared" flag set

to True.

Fictional Websites. We created two fictional websites as prototypes to communicate with

ByPass and to handle user requests and communicate with the back-end database. One of

these sites resembles an online store website (such as Amazon.ca) and the other one resem-

bles an email service provider (Webmail). We refer to them as the e-commerce website and

the webmail, respectively. We chose these two types of websites as most people interact

with them more than the other websites.

In these websites, we used JSON Web Tokens [30] for authentication purposes. JWT [30]

is a standard for authentication mechanism with a standard signature algorithm. The token

contain three parts: header, body, and cryptographic signature. The header consists of a

token and signing algorithm, the body contains the claim, which is the value that we want

to secure, and the cryptographic signature is formed using the header and body. All of our

data transmissions use the Transport Layer Security (TLS) protocol and they were set up

through CloudFlare Keyless SSL [19, 65].

It should be noted that the implementation details described here are specific to our pro-

totype, but ByPass is designed to work with a wide variety of setups. The API is packaged

as a library that can be included by web developers, and the manager is database-agnostic.

34

Chapter 4

Security and Attack Mitigation

All the password managers encompass security-critical information, hence they need to use

strong cartographic protocols and standards. ByPass is composed of different components–

e.g., user-facing Chrome extension, the server-side, and API endpoints. Thus, we put our

focus on security all of those components.

In this section, we discuss the security of ByPass in terms of its databases (both on-

line and offline), compare it to some other commercial password managers, and discuss

measures ingrained within ByPass to mitigate this vulnerability.

4.1 Password Manager Security Evaluation

Many tools, studies, and reports have exposed vulnerabilities of password managers. We

selected some of the well-known attacks on password managers and performed those on the

latest versions of the password managers available during our experiment. Our experiments

35

show that many of these vulnerabilities (including ones that were exposed more than 5

years ago) still exist on password managers’ latest versions. Some of the vulnerabilities

exist because of the basic design principle of current password managers. Hence, they

cannot be fixed with a quick patch or software updates. On the other hand, the inclusion of

APIs in our design makes ByPass inherently resilient to these attacks. In this section, we

are going to delineate the details and results of these experiments.

In terms of security concerns of password managers, the study by Li et al. [38] and

Silver et al. [60] has a significant impact on the security community. We followed their

methodology, and picked some of the commonly disclosed vulnerabilities in password

managers by reviewing the literature and testing some password managers against them.

The results indicate that auto-fill and auto-submit features have been the researcher’s inter-

est for a long time. Below we explain each of the attacks that are mostly from Li et al. [38]

and Silver et al. [60] works.

User Interface Vulnerability. This vulnerability was mentioned by Li et al. [38] for

the web-based password managers. When the password manager itself is vulnerable to

the phishing attack, it can reveal all the user’s passwords. We used the LogMeOnce [41]

password manager to test the user interface vulnerability. We assume that the attacker has

control over the website, and that the user has stored their credentials on the password

manager.

When the user visits that website’s login page, the password manager pops up an iFrame

for authentication to auto-fill the credentials. There is a button in an iFrame to redirect them

to the password manager’s login page. At this point, the attacker runs a script to delete the

36

actual iFrame and instead create a fake iFrame that looks precisely the same as the real

one. Then the user clicks on the button and goes to the fake password manager’s login page

controlled by the attacker, and enters their username and primary password. Throughout

this attack, an adversary can get the user’s primary password and access all the stored

passwords. This attack is applicable for all password managers vulnerable to phishing

attacks and the one using an iFrame.

Interface Vulnerability attack is ineffective against ByPass. As ByPass uses APIs to

authenticate users and when users try to login to some site they directly log in from ByPass

without going into any other site, the option of embedding an iFrame is not available for an

attacker. Hence, ByPass is resilient against interface vulnerability attack.

VaultBreaker. VaultBreaker [63] is a tool designed for attacking password managers

using three attacking techniques: Proxying, Memory Parsing, and Clipboard Event Hook-

ing. At the time of testing, VaultBreaker could only penetrate 1Password [1], BitWar-

den [10], and DashLane [20]. We could only use this tool’s clipboard event hooking func-

tion as the two other functions did not seem to be functional. We tried this against all three

password managers mentioned above. 1Password and Bitwarden were not vulnerable to

the attack anymore, but in the case of Dashlane, we could get the username and primary

password as they were copied to the clipboard.

ByPass authenticates users by using APIs, so the users never need to copy their pass-

words in the clipboard; hence the clipboard watcher of VaultBreaker fails to steal passwords

from the clipboard. Furthermore, ByPass is not vulnerable to memory parsing and uses se-

cure encryption (which makes ByPass resilient to exposing in-memory passwords) making

37

ByPass resilient to VaultBreaker.

Sweep Attacks. This attack was developed by Silver et al. [60] with a focus on the auto-

fill and auto-submit features of the password managers. They introduced three different

types of this attack; iFrame sweep attack, Window sweep attack, and Redirect sweep attack,

assuming that the attacker has control over the Wi-Fi.

We launched the iFrame sweep attack against Limitlesslane [39] password manager.

In this attack, the user is trying to connect to a public Wi-Fi controlled by an adversary.

In order to connect, there is a terms and conditions web page to which the user should

agree. While there is only the terms and conditions visible on that page, multiple invisible

iFrames point to the various website’s login pages. We chose Limitlesslane [39] password

manager as it supports auto-submission too. Here, we first saved a website’s credentials on

the password manager. Then we put an invisible iFrame on the hotspot web page. As soon

as the terms and conditions page was loaded, the password manager filled the credentials in

the hidden iFrame and submitted it. As a result, an adversary could get access to the user’s

account. It is worth mentioning that supporting the auto-fill feature would be enough to

launch this attack since the attacker can write a script to submit the credentials. Filling the

credentials in an iFrame is a dangerous function that should not be supported by password

managers anymore.

ByPass is resilient to User Sweep Attacks. ByPass never auto-fills the inputs or auto-

submits the login page. It uses APIs and communicates directly with the service providers

to authenticate the users and forwards the users directly to the landing page. Hence, these

types of attacks become ineffective against ByPass.

38

4.2 ByPass Database Security

In this section, we discuss the security of ByPass database, both in the online and offline

mode, and then explain some attacks that can be mitigated through our design.

Security of the Offline Database. As a result of using an offline database, it can be sub-

ject to offline attacks (e.g., via guessing the primary password). We designed two security

components for securing our offline database. The first component of our design is to au-

thenticate the primary password and generate the encryption key. We use 256-bit Advanced

Encryption Standard (AES) which is a symmetric block cipher encryption and encrypt our

password database offline. The key of AES-256 is derived via PBKDF2 [75] from a user-

chosen primary password, a random salt, and 100,000 iterations. We choose the salt from

the user’s mouse movement using onmousemove event handler [64] while initializing By-

Pass. We store the SHA256 value of this key, along with the salt, in the encrypted database.

The key is recreated from the user-supplied primary password and the user is authenticated

by matching the hash of the re-generated key with the stored value. Existing measures (see

e.g., [15, 16, 59]) can be adopted to enhance resistance against offline attacks.

The second component of our design is to secure the credentials for different sites

stored in the offline database. After stabilizing a session, ByPass can access the 256-bit

encryption key which is derived from the user’s primary password. When storing any

credentials for any website, ByPass encrypts the information using the encryption key and

stores the encrypted data. Whenever ByPass needs to access any of the credentials, it

gets the encrypted data of that website and decrypts the data as long as the user’s session is

39

active. As soon as the user’s session terminates, ByPass can no longer access the encryption

key as session termination is equal to missing the primary password. Meaning that the

decryption key is not available anymore.

Security of the Online Database. By default, our current ByPass implementation stores

account information both locally (offline) and on the server (online) unless the user decides

to use only the offline database. In that case, ByPass server deletes all the user’s accounts

and disables some features like account sharing and cross-device supporting. In terms of

security, we use Microsoft Azure defender [45] to secure our online database. In addition

to the Azure defender [45], we encrypt the password field of the database with AES-256

using PBKDF2 [75] from the user’s primary password (same as what we mentioned for the

offline database).

4.3 Attacks Mitigation

In terms of reducing attacks, since we perform all the communications between the pass-

word manager and websites through TLS, remote network attacks, and SSL stripping at-

tacks are mitigated; a remote attacker cannot intercept and/or modify our communications.

Since ByPass communicates directly with web servers (instead of filling forms on

client-facing pages), encouraging users to use ByPass for completing account manage-

ment functions can mitigate HTTP(S) auto-fill vulnerabilities and sub-domain equivalence

attacks [11, 14]. HTTP(S) vulnerabilities happen when the password manager fills the cre-

dentials on an HTTP version of the website while the credentials were saved on the HTTPS

40

version, and in this way the password manager makes an opportunity for the attacker to

extract the user’s credentials from non-HTTPS pages of the website. Avoiding auto-fill

also helps us avoid the sweep attacks [60], where credentials are filled to invisible fields in

a malicious webpage, and exfiltrated using JavaScript.

Copy to clipboard is a feature that most password managers utilize if they cannot auto-

fill the credentials. If the password manager doesn’t support enough protection for the

credentials that were copied to the clipboard, it will lead to clipboard vulnerabilities, e.g.,

exposing passwords to other sites/processes; see e.g., [14]. In ByPass, passwords and other

information are communicated directly to the website, and no password copying/pasting

is used for login or other account-related tasks, which avoids leaking passwords from the

paste buffer.

User interface-based password brute-force attacks are another vulnerability that affect

extension-based password managers [14] if attackers gain access to the password manager

user interface. To reduce this vulnerability, we add a delay based on the specific num-

ber of wrong primary passwords entered by the user (similar to some leading commercial

password managers).

41

Chapter 5

Usability Evaluation

ByPass is designed to address usability issues that prevent end-users from adopting and us-

ing password managers. We conducted two usability evaluations of ByPass: an inspection-

based evaluation of an early prototype, and a lab-based user study of the higher fidelity

prototype. It is worth mentioning that at the time of the user study, ByPass was at the first

version, which did not have a server-side. By analyzing the user study results, we decided

to add a server-side to make ByPass online, address the syncing problem, and support the

password sharing feature.

5.1 Cognitive Walkthrough

After creating the first prototype implementation of ByPass, we wanted feedback on the

usability of the manager. At that point, the prototype included the main functions (adding

42

accounts, logging in, and a version of password changing), but was not sufficiently func-

tional for a user study. We chose to conduct a cognitive walkthrough [72] because of its

focus on learnability and because it allowed us to include the perspective of novice users.

We conducted a pluralistic walkthrough with five evaluators, including the project team

leads, the developer, and two volunteers playing the part of a novice ByPass user. One

of these volunteers had longtime experience using a password manager, and the other had

no password manager experience. We walked through the process of creating a new user

account on ByPass, migrating an existing account, registering for a new third-party account,

changing a password, and logging into a website.

In general, our novice participants found interacting with the prototype confusing, and

were unsure what steps to first take, and what information to enter where. This led us to

redesign much of the user interface, and include stronger markers of flow between steps,

e.g., the account-adding wizard and more prominent navigation buttons.

Another issue that arose in the walkthrough was that the inexperienced participant

seemed to have few mental models for common password tasks, and in particular, had

no language for describing them. The abstraction taking place in the password manager

was confusing to them, and they had multiple problems entering the right (fictitious) cre-

dentials, or choosing the correct menu option.

One of our central questions was whether the features in ByPass made sense to users –

would using ByPass seem jarring, given that it departs from the usual interaction with web-

sites? We expected the volunteer with previous password manager experience to question

how ByPass worked, but they did not comment until prompted by us. When queried, they

43

spoke to the intuitiveness of the feature set, and said that they did not question how those

features were working because they just worked.

5.2 User Study

The second phase of our usability evaluation was to conduct an in-lab user study to evaluate

the usability of the ByPass prototype with unbiased users. Following the cognitive walk-

through, the ByPass prototype was completely redeveloped into a higher fidelity prototype

(described in Section 3.3).

In evaluating ByPass, one difficulty we encountered was creating a realistic testing sce-

nario. Ecological validity, or the realism of the study situation, is of the utmost importance

in security studies. Tasks that seem easy or manageable as primary tasks (such as remem-

bering a password) are not always manageable when happening in the context of another

more important task. Simulating this for a password manager is difficult – the gold stan-

dard evaluation would seem to be a field study where participants use the manager for their

own accounts. We would want to collect instrumented data from such an evaluation, and

privacy could be a significant concern (not only for data collection, but potentially biasing

participants’ behaviour). For ByPass, a study of this type carried the additional challenge

of needing websites to be implemented with the API, further restricting our ability to have

users test the manager with their own accounts.

The goal of our user study was to gain insight into how easily users learned to use By-

Pass, their reactions to the functions, and assess how using an API can help the user to deal

44

with password-protected websites. We did not include a control condition in this evalu-

ation, because we did not feel that existing managers provided a meaningful comparison

to the novel features offered in ByPass. Our goal was to evaluate the usability of ByPass

(including the problems that arose). We chose an in-lab study so that we could observe

participants’ interactions with ByPass, and ask follow-up questions about their experience.

Each study session lasted between 30 minutes and one hour, and was divided into three

parts. Participants first completed a pre-test questionnaire (see Appendix E) asking about

existing password habits and demographics. After that, we provided them with a short

introduction to password managers and a brief overview of ByPass (see Appendix B). They

were asked to complete six tasks (see Appendix D) using ByPass, and then to complete the

post-test questionnaire (see Appendix E). Participants were paid 15 CAD. The study was

approved by the Concordia and Carleton institutions ethics board (see Appendix G).

It is worth mentioning that we conducted the user study offline and in-person so that we

could primarily focus on how ByPass works and figure out the improvements that ByPass

can offer in the second phase. However, from the user’s feedback, we further enhanced

ByPass by adding online support and account sharing features on the following phases of

development. These two features address findings from our user study. We gave the par-

ticipants six tasks to complete in the way that each task was responsible for covering a

specific feature of ByPass. At the end of the study, we tested ByPass account creation,

adding a third-party website’s account to ByPass, account creation through ByPass, pass-

word change, and account deletion functions of ByPass.

We provided the participants a task description sheet that can be found in Appendix D,

45

including a short description of each task. As some tasks like creating a new account

needed credentials like an email address, password, etc., we provided the required creden-

tials unique for each participant into the task description sheet. We also reminded partic-

ipants not to use their own passwords during the study. In below, we give an overview of

each task.

Task 1: ByPass account registration. The very first interaction of the user and a password

manager is the account registration. Creating an account on ByPass requires an email

address and a primary password. Thus, to complete this task, we gave each participant a

unique email address, and for the primary password, we asked them to choose something

on their own but not their personal ones.

Task 2: E-commerce website account creation. We asked participants to create an ac-

count on the e-commerce website with the credentials given to them. By identifying this

task, we did not attempt to test ByPass itself, but we aimed to show participants that the

websites we use are genuine and functional.

Task 3: Account migration and log in. Task 3 was to add the newly created e-commerce

website’s account to ByPass and then log in. This task can be counted as the first primary

function for all password managers. Users should be able to add their existing credentials

for a specific website to the password manager. Without considering the API’s capabilities,

most of the password managers can fill the username and password fields for the user.

In some cases, there is an automatic auto-fill feature in the password managers that fills

the credentials’ fields as soon as the login page loads. In some other cases, the password

manager can not only fill the fields but also automatically hit the login button (auto-submit).

46

The user can see the login page in this case, but there is no need for additional interaction.

However, in ByPass, we have the benefit of using API in the way that, after adding the

credentials of a specific website to ByPass for the first time, by clicking on one button, the

user will be taken to the home page of that website without even seeing the login page.

Task 4: Webmail service account creation through ByPass. For this task, we asked

participants to use ByPass in order to create an account on the webmail website with the

provided credentials. For us, asking the user to create a third-party account using a pass-

word manager instead of searching in the browser is critical, as this feature is new, and it

might look strange to the user. Providing a wizard page and adding some hints in different

pages of ByPass aimed to help user understand this feature better. We added this task to

examine how participants would go through this new feature and how they would like it.

Task 5: Password change. This task was to change the e-commerce website’s password

using ByPass. Changing passwords is another important function for password managers,

as they are identified as a tool to help the user choose a secure, random, and unguessable

password. Our goal was to make sure that this feature works well in ByPass, and that par-

ticipants feel confident to use. Most of the password managers assist users by providing a

password generator function. But the user cannot change the password of a website through

the password manager because it does not have a direct communication with the intended

website to do it on behalf of the user. Only in Dashlane [20] there is a feature called pass-

word changer which allows the user to automatically change their password through the

passwords section in the manager. The way that Dashlane works is that it provides cer-

tain number of websites, and password auto-change feature works only for those websites.

47

LastPass [36] had that feature earlier, too, but it seems they no longer support it. In ByPass,

for the websites that we have direct communication with them through the API, the user

can easily change their password by only one click.

Task 6: Account deletion. The last task was to delete the e-commerce website account

using ByPass. This, also, is a new feature we can provide with API support. Finding a

way to delete an account has always been difficult; with this feature, the user can delete her

account as quickly as possible.

We designed the study to emulate a plausible first-time experience with ByPass. To

improve the ecological validity of the study, we created two fictional websites (discussed

in Chapter 3) to implement the API and be used for study tasks. These websites were

open-source versions of a webmail platform and an e-commerce website, and we gave

participants a handout to use in the study with the website URLs and credentials to use in

the study. We reminded participants never to use their own passwords in the study.

Participants. We recruited 20 participants (12 female) by posting posters around (our uni-

versity campus). Participants ranged in age from 18 to 46 with a median age of 24. 18

participants were students, and 2 university employees. 15 participants (75%) reported

having previous experience with a password manager, though only three participants re-

ported that a password manager was their primary means of saving a password. Table 2

demonstrates more details on the participants demographics.

Throughout the pre-test questionnaire (see Appendix E) we got some information on

the participant’s password security attitude and habit, their experience in using a password

manager, and their password saving’s method. Table 3 indicates the results of the pre-test

48

Table 2: Participants demographics

Number of Participants
20

Gender
Male 8
Female 12
Age group
18 - 20 6
20 - 30 10
30 - 40 3
40 - 50 1
Fields of study
Computer 7
Mechanical Engineering 3
Civil Engineering 3
Physics 1
Arts 2
Math 2
Social Science 1
Finance 1
Education level
Graduate 7
Undergraduate 5
College 2
High School 6
Computer Skill
Novice 6
Neutral 12
Expert 2

questionnaire.

49

Table 3: Participants password-related habit

Password-related habit Number of participants
Number of password protected accounts
0 to 10 8
11 to 50 8
51 to 100 1
More than 100 3
Prior password manager use experience
Yes 15
No 5
Password security concern
Not concerned at all 1
Neutral 5
Very concerned 14
Password change interval
Monthly 0
Every 6 months 2
Once a year 1
I only change my password if I have to 17
Password saving method
Re-use the same password 9
Write passwords down on a paper 4
Write passwords on the file on computer 9
I use a password manager 3
The browser saves passwords for me 7
Remember in my head 9

50

Table 4: Descriptive statistics for task completion time in seconds.

Tasks Mean SD Median Minimum Maximum Range
New ByPass account 150.0 125.5 112.5 53.0 578.0 525.0
New web account 188.1 95.4 166.0 73.0 535.0 462.0
Account migration 60.8 25.3 50.5 33.0 128.0 95.0
Login via ByPass 4.4 0.8 4.2 3.2 6.7 3.5
New account via ByPass 161.4 104.5 120.5 52.0 502.0 450.0
Password change 73.1 65.8 43.5 14.0 218.0 204.0
Account deletion 19.6 13.1 13.0 7.0 50.0 43.0

5.3 Results

We structured our usability evaluation around the ISO 9241 definition of usability [9],

and evaluated ByPass using three measures: efficiency, effectiveness, and satisfaction. We

recorded task completion times, success rates, and errors via instrumented data collection in

the prototype, and measured satisfaction using Likert scale questions on the post-test ques-

tionnaire. We evaluated efficiency using the time spent on each task. For effectiveness, we

assessed the number and types of errors that occurred during the study, and for satisfaction,

we considered findings from the Likert scale questions. We also recorded observations

related to task completion, participants’ comments, problems, and recommendations.

5.3.1 Time

Table 4 shows descriptive statistics for the duration of each study task, and Figure 11 shows

the distributions of completion time for all tasks. Times were recorded in the manager logs

from the appearance of the first screen to successful completion of the task, and include the

time participants spent making errors.

Although there were outliers, the median completion times were less than three minutes

51

for all tasks. Keeping in mind that all participants were completely new to ByPass and

were completing all tasks for the very first time, these results are encouraging. Variance

was relatively low for most tasks, particularly account migration and login, which we think

could form the majority of the users’ tasks when setting up the manager for the first time.

Figure 11: Boxplots showing the distributions of task completion time in seconds.

ByPass account registration involves the user entering their email address, and choos-

ing a primary password. To enhance the ecological validity of the evaluation, we included

this task in the study and used a strength meter to encourage participants to choose a strong

primary password. As mentioned above, participants were warned not to use their real

passwords. Ten participants had trouble picking a suitable primary password, and the me-

dian completion time was 113 seconds. As the ByPass registration process is no different

than regular account creation, participants were not asked to recall this password during the

study.

The second task had users register directly on one of our external websites, so that they

would have an existing account to add to ByPass in a later step. This step also gave us a

52

baseline for the length of time needed to register on a “regular” website. This task had the

highest median completion time at 166 seconds, and a few participants took much longer

to complete it. It is also possible that network latency had an effect on the times for this

task, but in any case, the studies were conducted in only two locations, so we would not

expect significant differences in latency.

Later in the study, participants added that account to ByPass, and this process was con-

siderably faster; the median time to add an account (through ByPass) was just 51 seconds.

Following migration, participants were instructed to log into that account through ByPass

and participants had no trouble doing this very quickly, in a median of just 4 seconds.

The process of creating a new website account via ByPass was new to all users, and the

median completion time was 121 seconds. There was a large interquartile spread, and a few

participants struggled considerably with this task, but we expect that times might decrease

as users grew more familiar with the manager. In any case, an average of two minutes to

register on a new website seems to be an acceptable time. According to our logs, 95% of

the participants used the password automatically generated by ByPass, which means that

our nudges were successful in encouraging users to use a secure password while keeping

convenience.

Participants were asked to change the password on one of their accounts on ByPass, and

the median completion time was 44 seconds. 75% of the participants used the password

generation function to change their password and choose a new one. The variance for

this task was very low, and participants generally did not encounter any problems. One

thing that may have inflated times was that participants clicked on the re-generate password

53

button an average of 4.7 times. It was unclear exactly why participants were doing this, but

for some, they seemed to want to demonstrate to themselves that the password was actually

changing. Others were looking for a password that appealed to them.

The password change page also included a periodic password auto-change feature, al-

lowing the user to pick a period of 30, 60, and 90 days, so the password manager will

automatically change the password as the period ends. We did not include this feature in a

task, but most participants expressed interest in this feature, and discussed it in relation to

the annoyance of regular password changes. Time spent on these conversations may have

also artificially increased the time spent on the password change tasks.

The final study task was to delete an account. At this point, participants were relatively

familiar with ByPass, and the median completion time for this task was only 13 seconds.

5.3.2 Errors

We were particularly interested in the kinds of errors that participants made while using

ByPass, as dangerous errors in computer security can be difficult to undo and can open the

user to serious vulnerabilities [74]. Most participants did not make any errors: the median

number of errors per participant was zero, and the maximum was four. We examined errors

on two dimensions: the type of error committed, and the incidence of those errors.

Errors were logged by the ByPass software, and then grouped thematically for this anal-

ysis. Some errors may have been excluded during this process; e.g., repeated regeneration

of a password was not counted as an error, though it is not the intended behaviour.

Table 5 shows the total number of errors by task. By far the most error-prone task was

54

Table 5: Total number of errors committed by usability study task.

Task Number of errors
ByPass account registration 34
Third-party website account creation 4
Third-party website account creation via ByPass 2
Account migration 1
Password change 0
Account deletion 0
Login to third-party website via ByPass 0

the ByPass account registration, incurring a total of 34 errors.

The majority of these errors were password mismatches (i.e., the confirmed password

not matching the created one), difficulties in choosing a sufficiently strong primary pass-

word, and filling in all fields appropriately. The irony that this task had the most errors is

not lost on us: we included this step in the evaluation only for the purposes of realism, but

we cannot ignore the fact that authenticating to the password manager itself was the most

problematic part of the process. The next most error-prone task was the account creation on

a third-party website, where participants had a few problems with password mismatches.

Encouragingly, there were few errors in the tasks that actually involved using ByPass.

Below is a description of each error type, with the total number of times it occurred in

parentheses: Figure 12 provides a bar plot of the number of errors for each type.

Password Mismatch on the Registration Page (21). This error was unique to the ByPass

registration page, and it occurred when the entered primary password and the confirm pri-

mary password were not matched. This error was replicated 21 times in the study with a

median of 1 time per participant. The maximum number of errors made by one individual

was 3.

55

Figure 12: Bar plot showing occurred errors by type

We told participants not to use their own passwords, and on the other hand, as for the

primary password they were asked to choose the strongest password they could, difficulty

of remembering the newly chosen password can be one of reasons causing this error.

Wrong Password (11). We did not expect participants to perform anything other than

the tasks described in the study, but some participants took steps to confirm whether or

not the tasks they completed in ByPass were really accomplished on the websites. In

doing so, these participants made some incorrect password errors when logging into the

56

websites managed through ByPass. The magnitude of this error was evaluated from both

e-commerce website and webmail activity records.

There were a total of eleven incorrect password entries. Participants particularly wanted

to check the password change task by visiting the website and testing the new and old pass-

words. Since they used the auto-password generation function for changing the password,

they sometimes entered their previous password mistakenly, leading to this error.

All Fields Required (10). Although this validation was included on all the pages contain-

ing different fields, all of these errors happened on the ByPass registration page, and these

errors were caused by our design of the login page. Our extension’s window range was

not wide enough to accommodate all the fields on the registration page when the user was

typing into the primary password field. As the user typed, the password strength meter

gave more feedback and expanded in size, shifting the password confirmation box below

the page break. Although we included a hint encouraging users to scroll down, several

participants missed it.

Choose a Strong Password (4). For study realism, we included a password strength meter

(based on zxcvbn [73]) on the ByPass account creation page, and required participants to

choose a primary password with a “strong” rating. Four users attempted to use a password

that did not fill this requirement, and these problems stemmed from not paying attention to

the instruction reminding them to pick a strong password, from a lack of understanding of

what forms a good password, and from ignoring the feedback from the password strength

meter.

57

Incorrect primary Password (3). Following creation of their primary password, partici-

pants were asked to use it to log into ByPass. Three participants made mistakes in entering

their password during login.

Bad Request (1). This error category encompasses several different errors: when ByPass

sends packets containing user information to websites, it waits for an HTTP response status

of 200 (OK) as an approval. Incorrect email addresses, incorrect passwords, and request

timeouts belong to this type of error. In our study, this happened only once when a partici-

pant mistyped an email address.

Unsupported Website (1). Features like creating an account, changing passwords, or

deleting an account, can be done only for websites for which we have their API. This

error occurs if the user tries to do any of these functions on an unsupported website. One

participant had a typo while they were entering the name of the webmail service for the

account creation function on ByPass, and because we did not support that name, this error

appeared.

5.3.3 Usability Perceptions

In our case, user perception [27] is classified as the mechanism by which individuals se-

lect, manage, and recall their sensory impressions in order to perceive the environment of

the password manager. These impressions are affected by the suitable and necessary de-

sign of the usability properties. As it can be observed from the findings when a password

manager is well designed, user perception leads to improved incentive for using it which

increases the probability of user satisfaction and helping them to have a better experience

58

Figure 13: Responses to Likert scale questions asking about participants’ interest in ByPass
features.

on managing their passwords.

We were interested in how our participants perceived the usability and security of By-

Pass. We asked participants for their responses to 12 Likert-scale questions, asking about

the ease of use, perceived security, and desire to use ByPass in future. Participants were

asked to rate their agreement on a 7 point scale where 7 was most positive. Figure 13 shows

the distribution of responses for selected questions.

Participants were universally positive about the ease of use of the password change pro-

cess (med = 7) and website login processes (med = 7) in ByPass. They were also positive

about the ease of creating new accounts through ByPass (med = 7) and adding existing

accounts (med = 7), as well as the ease of deleting accounts (med = 7). Participants also

found it easy to migrate a third-party account to ByPass (med = 7).

The median agreement score for the perceived security of ByPass was 6, indicating

general satisfaction with the security of ByPass, though participants expressed more frus-

tration with the process of choosing a primary password (med = 5). In the discussion,

59

some participants mentioned that they would trust ByPass more if it were a software ap-

plication from a well-recognized organization like Google. A few of the more technical

participants commented that they liked the fact that there is no server-side component to

the manager.

Participants were most negative about features that related to user control, see Fig-

ure 13. They were not positive about the concept of not knowing the actual password

(med = 4.5), and displayed mixed responses about the password generation and auto-

change features. 31% of the participants wanted to use their own password, instead of

relying on a password generator to create one for them.

The likeliness of using the auto-password change function seemed to be less wanted.

Since they were not asked to use this function during the study, lack of awareness about

this feature as well as not having a clear perception could be the explanations for these low

ratings.

5.3.4 Qualitative Observations

We documented feedback and difficulties encountered by participants during the qualitative

analysis. Below we are going to show some of the participant’s expressions on ByPass.

For the password auto-change function, P1 said: “As the password for the website

is generated by the password manager, I feel it’s secure, and there is no need to change

it each month,” but on the other hand P2, and P8 liked this feature: “I liked the idea

of password auto-change function” and “I liked that ByPass can change my password

automatically but giving me a notification before changing the password would be nice.”

60

These comments helped us to conclude, users, in general, are comfortable with the idea

of automatic password generation. Still, at the same time, they need some control over

those generated passwords. Comments similar to these helped us to design our password

generator considering usability.

We received quite good feedback on the third-party account creation function through

ByPass. P6 had an experience on using LastPass and he mentioned: “I always had a prob-

lem with copying the password from the password manager and pasting it into the website;”

P10 after creating the account expressed: “That was easy and very convenient that I didn’t

have to redo the login process.” Three out of the 20 participants decided to verify whether

by ByPass they could create a webmail account. They expressed their feelings after testing

as P7 mentioned: “I liked that ByPass automatically opened the home page of the Webmail

website for me;” P11: “It’s a good idea and hope that it really becomes successful;” P16:

“ByPass is really different from other password managers and it makes everything much

easier;” P20: “I liked this feature because it’s easy and fast.” The account deletion func-

tion had positive comments overall. P4: “I like the delete function because it’s always hard

to find the delete button in the websites.”, P9: “I’m a big fan of your delete account func-

tion”, P10: “It was straightforward to delete an account and ByPass is really easy to use

as it has lots of colors and icons that helped me find the way”. We had also not so positive

comments as well; P1 told us: “It feels quite bad since ByPass does not show the official

website’s page”, P6 mentioned: “I think some functions like syncing and saving notes are

missing in ByPass.”, and P8 added: “For account deletion I would like to be more steps to

prevent me from unintentional clicks”.Responses on the account management features of

61

ByPass allowed us to validate the usability improvements that ByPass offers.

Participants gave us some comments on the design as P7 said: “Because of the icons

you used it was clear for me how to find my way;” and according to the wizard page

P13 mentioned: “I liked that you put a page for showing the following the steps, I could

complete the tasks without even reading the task description!” Our very last question in

the post-test questionnaire was “How would you rate ByPass?” Both the rating score and

qualitative analysis show that most of the participants liked ByPass although it has some

downsides too.

To conclude, ByPass re-architects the password manager to adjust the locus of control

for the user. The user is given more control over some aspects of their password manage-

ment tasks (password changes, account deletion), but less control over passwords them-

selves. In ByPass, passwords are generated randomly by default, and obscured to the user.

62

Chapter 6

Discussion & Recommendations

Although widely recommended as a simple step that users can take towards improving

their password security, few users adopt password managers. Adoption problems and the

extra work of using a manager are thought to be part of the reason that users do not turn

to these tools [3, 4]. In this paper, we designed and evaluated ByPass, a password man-

ager that rethinks the users’ interactions with the password manager, thereby encouraging

adoption and encouraging users to make use of security features. ByPass uses an API

for secure communication between the password manager and websites, freeing the user

from creating and avoiding errors resulting from copying and pasting. ByPass is built to

extend traditional password manager features and supports new functionality such as auto-

mated password changes and account deletion. ByPass nudges users toward using secure

randomly generated passwords.

The downside of the ByPass approach to password management is that it requires buy-

in from websites, who must implement the API. We hope that the promise of increased

63

security compliance from users might motivate websites to include the ByPass API, and

that in turn, this might encourage users to adopt ByPass over other password managers.

We acknowledge the uphill nature of this process, while leaving it somewhat out of scope

for this work; we think it is worthwhile to investigate how an architecture such as that

of ByPass impacts users even without knowing how uptake might look. We specifically

designed ByPass to also be backwards compatible with websites that do not implement the

API, and designed the API so that it can be included as a library by website developers. In

future work, we plan to further study the feasibility of ByPass’s implementation, as well

as the implications for web developers, and how they can be supported in implementing

ByPass.

We conducted two early evaluations of ByPass’s usability, and found that users were

able to understand and use the features in ByPass. Most participants did not encounter

major problems, though there is undoubtedly still room for improvement in the ByPass

user interface. The results of this study will be used to improve the prototype develop-

ment. However, through the process of designing, implementing and evaluating ByPass,

we made a number of observations that affect the design of not only ByPass, but password

management tools in general.

6.1 An Abstraction Layer for Accounts

ByPass adds a layer of abstraction between the user and the website, where all account-

management related interactions take place within the password manager. Adding this

64

abstraction layer brings up various design questions: Where should the password manager

sit in the physical space of the web browser? How to instrument the browser extension

to “correctly” interrupt interactions with websites? How to train users to go to the pass-

word manager first for account management-related tasks? What kind of language should

be used to correctly convey password tasks when they are de-situated from their website

contexts? Our evaluation suggests that while most participants were able to interpret what

was happening, some had great problems.

Our goal was to create a space where security could be the users’ primary task, and

allow them to focus cleanly and consistently on account management tasks. The constancy

of the ByPass interface is intended to allow users a greater sense of control over their

passwords and accounts. By using the API to move account interactions into this space,

we hoped to create an interface where users knew where to address security concerns,

and access the controls to address those concerns. Current password managers hint at this

functionality (and include innovative tools, such as security audits) but their placement

outside the authentication interaction hampers the functionality they are able to support.

6.2 Control vs. Automation

ByPass re-architects the password manager to adjust the locus of control for the user. The

user is given more control over some aspects of their password management tasks (pass-

word changes, account deletion), but less control over passwords themselves. In ByPass,

passwords are generated randomly by default, and obscured to the user.

65

Our contention in ByPass is that the user does not need to know their passwords. With

the addition of the API, this is functionally true, but it does not seem to fulfill users’ sense

of security self-efficacy [53]. In our study, users expressed unhappiness about not knowing

their passwords, both in comments and in the post-test questionnaire. We also observed

them engaging in “epistemic actions” [40] – actions that serve only to understand a situa-

tion rather than to advance a goal, such as repeatedly regenerating passwords, or double-

checking on the website that a password had actually changed. Some of these reactions

may be due to unfamiliarity, but they echo the findings of previous studies where users

have expressed both a desire for control [4, 51] and a corresponding sense of responsibility

for security [51].

Automating security is often tricky. Solutions such as TLS certificates automate nearly

all of the security interaction, turning to the user only when a certificate is not validated, but

demonstrate failures when users are unprepared to cope with these situations. Conversely,

passwords leave nearly all of the control in the hands of the users, expecting them to exert

individual responsibility for all aspects of the password management task. ByPass attempts

to find a middle ground for users, removing tasks that needlessly involve users (e.g., reading

the password policy, choosing a password that conforms to it). In designing ByPass, we

became aware of the myriad corner cases in which the user might need to exert control, and

we attempted to leave accessible controls for situations such as assigned passwords, and

other unusual contexts.

66

6.3 Testing a Password Manager

In evaluating ByPass, one difficulty we encountered was creating a realistic testing sce-

nario. Ecological validity, or the realism of the study situation, as is of the utmost im-

portance in security studies. Tasks that seem easy or manageable as primary tasks (such

as remembering a password) are not always manageable when happening in the context

of another more important task. Simulating this for a password manager is difficult – the

gold standard evaluation would seem to be a field study where participants use the man-

ager for their own accounts. We would want to collect instrumented data from such an

evaluation, and privacy could be a significant concern (not only for data collection, but

potentially biasing participants’ behaviour). For ByPass, a study of this type carried the ad-

ditional challenge of needing websites to be implemented with the API, further restricting

our ability to have users test the manager with their own accounts.

Demand characteristics are the other reason for making ecological validity more chal-

lenging. As proposed by Nichols et al. [47], it is likely that participants respond in ways

they feel the researcher needed or intended them to instead of acting spontaneously. In

ByPass, although we made the best effort to reduce the demand, but as we were paying the

participants and the researcher was explaining the tasks to them as well as observing them

during the study, there would be a chance that their responses may have been affected.

67

6.4 Offline vs. Online Password Storage

In our prototype of ByPass, we allow both offline and online password storage and let the

user decides which option meets their needs. The inclusion of online password storage

allows portability and gain access to password sharing feature. However, this option intro-

duces a trusted third party requirement, and in an ideal security design perspective, a third

party cannot be trusted. Furthermore, a trusted third party can be an obstacle in the user’s

and service providers’ trust in ByPass. On the other hand, having the password in an offline

database removes the trusted third party from the design, but ByPass severally suffers from

portability and cross-device support. Furthermore, many requirements for the use cases of

a modern password manager cannot be satisfied with offline password storage. Hence, in

our current prototype, we offer both online and offline password storage.

68

Chapter 7

Conclusion

No work so far has focused on using APIs within the password manager development.

Our key contribution is developing a password manager with new capabilities resulting

from different API calls from the websites. Although this approach requires buy-in from

websites, it results in increased password manager usability resulting from fewer actions re-

quired by the user. Assuming the integration of password-based online services, in ByPass,

we shift the focus to comprehensive account management instead of current approaches to

password management, primarily limited to create/save/fill passwords. We address critical

security limitations of current password managers, and at the same time, improve ease of

use and control over numerous accounts that a typical user needs to manage.

The usability of password managers is a key issue, since there is no benefit in devel-

oping a secure password manager when users cannot make use of it. In this thesis, we

designed and implemented ByPass, a password management software offering new fea-

tures to users by reducing the number of required actions for specific task completion. The

69

key idea of our proposed password manager is that API-enabled secure communication be-

tween the password manager and websites allows various password management tasks to

be streamlined for the end user. ByPass is not only a password manager but can also be

referred to as an account management system as it supports third-party account creation,

password change,password sharing, and account deletion directly through the password

manager.

We constructed a prototype implementation of ByPass and evaluated it in a user study

with 20 participants. The results show that the participants found ByPass easy to use, and

our concept is effective both in terms of usability and security. ByPass successfully nudged

participants towards using automatically generated passwords, and most of the participants

were able to learn how to use ByPass efficiently, while making few errors.

In future work, we plan to integrate the findings of this usability evaluation into the

ByPass user interface, integrate new features to support users, and further test ByPass in

more ecologically valid scenarios. We also plan to address elements of password manager

design that were left out of scope in this early prototype. One such fragment of our current

design is password storage. We plan to further investigate and improve our design to have

online password storage without the need for a trusted third party with the inclusion of a

decentralized architecture.

ByPass raises important questions about where security controls should be placed for

end-users. Users desire control, but this may be at odds with good usability. The abstrac-

tion of password tasks in password manager creates an extra management step for users,

and managers must be carefully designed so that users are supported in understanding this

70

abstraction. However, we think that redesigning the password manager could be key to

seeing its wide adoption.

71

Bibliography

[1] 1Password. Password Manager for Families, Businesses, Teams, 2021. URL https:

//www.1password.com/.

[2] 1Password. If You Forgot Your Master Password or You Can’t Unlock 1Password,

2021. URL https://support.1password.com/forgot-master-password/.

[3] Nora Alkaldi and Karen Renaud. Why Do People Adopt, or Reject, Smartphone

Password Managers? In International Symposium on Human Aspects of Information

Security & Assurance, Darmstadt, Germany, 2016.

[4] Nora Alkaldi, Karen Renaud, and Lewis Mackenzie. Encouraging Password Manager

Adoption by Meeting Adopter Self-Determination Needs. In Proceedings of the 52nd

Hawaii International Conference on System Sciences, Maui, Hawaii, USA, 2019.

[5] Salvatore Aurigemma, Thomas Mattson, and Lori Leonard. So Much Promise, so

Little Use: What is Stopping Home End-Users from Using Password Manager Appli-

cations? 50th Hawaii International Conference on System Sciences, 2017.

72

https://www.1password.com/
https://www.1password.com/
https://support.1password.com/forgot-master-password/

[6] Jef Ausloos. The ‘Right to be Forgotten’ – Worth remembering? Computer Law &

Security Review, 28(2):143–152, 2012.

[7] Avira Operations GmbH & Co. Avira Password Manager - Secure and Easy, 2021.

URL https://www.avira.com/en/password-manager/.

[8] Natã M Barbosa, Jordan Hayes, and Yang Wang. UniPass: Design and Evaluation of

a Smart Device-Based Password Manager for Visually Impaired Users. In Proceed-

ings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous

Computing, pages 49–60, Heidelberg, Germany, 2016.

[9] Nigel Bevan, James Carter, and Susan Harker. ISO 9241-11 revised: What Have

We Learnt About Usability Since 1998? In International Conference on Human-

Computer Interaction, pages 143–151, 2015.

[10] Bitwarden Inc. Bitwarden Open Source Password Manager, 2021. URL https:

//bitwarden.com/.

[11] M Blanchou and P Youn. Password Managers: Exposing Passwords Everywhere.

Whitepaper, iSEC partners, 2013.

[12] Carl Boettiger. An Introduction to Docker for Reproducible Research. SIGOPS Oper.

Syst. Rev., pages 71–79, 2015.

[13] Joseph Bonneau, Cormac Herley, Paul C Van Oorschot, and Frank Stajano. The Quest

73

https://www.avira.com/en/password-manager/
https://bitwarden.com/
https://bitwarden.com/

to Replace Passwords: A Framework for Comparative Evaluation of Web Authenti-

cation Schemes. In IEEE Symposium on Security and Privacy, pages 553–567, San

Francisco, CA, USA, 2012.

[14] Michael Carr and Siamak F. Shahandashti. Revisiting Security Vulnerabilities in

Commercial Password Managers. In IFIP International Conference on ICT Systems

Security and Privacy Protection, pages 265–279, Maribor, Slovenia, 2020.

[15] R. Chatterjee, J. Bonneau, A. Juels, and T. Ristenpart. Cracking-Resistant Password

Vaults using Natural Language Encoders. In IEEE Symposium on Security and Pri-

vacy, pages 481–498, San Jose, CA, USA, 2015.

[16] Haibo Cheng, Zhixiong Zheng, Wenting Li, Ping Wang, and Chao-Hsien Chu. Proba-

bility Model Transforming Encoders Against Encoding Attacks. In 28th USENIX Se-

curity Symposium (USENIX Security 19), pages 1573–1590, Santa Clara, CA, USA,

2019.

[17] Sonia Chiasson, Paul C van Oorschot, and Robert Biddle. A Usability Study and

Critique of Two Password Managers. In 15th USENIX Security Symposium (USENIX

Security 06), pages 1–16, Vancouver, BC, Canada, 2006.

[18] Sonia Chiasson, PC van Oorschot, and Robert Biddle. Even Experts Deserve Usable

Security: Design Guidelines for Security Management Systems. In SOUPS Workshop

on Usable IT Security Management (USM), pages 1–4, Pittsburgh, PA, USA, 2007.

74

[19] CoudFlare Inc. The Web Performance & Security Company, 2021. URL https://www.

cloudflare.com/en-ca/.

[20] Dashlane Inc. Password Manager App for Home, Mobile, Business, 2021. URL

https://www.dashlane.com/.

[21] Fernando Doglio. Pro REST API Development with Node.js. Apress, 2015.

[22] Dropbox. Dropbox is the World’s First Smart Workspace, 2021. URL https://www.

dropbox.com/.

[23] Michael Fagan and Mohammad Maifi Hasan Khan. Why Do They Do What They

Do?: A Study of What Motivates Users to (Not) Follow Computer Security Advice.

In Twelfth Symposium on Usable Privacy and Security (SOUPS 2016), pages 59–

75, Denver, CO, USA, 2016. URL https://www.usenix.org/conference/soups2016/

technical-sessions/presentation/fagan.

[24] Paolo Gasti and Kasper B. Rasmussen. On the Security of Password Manager

Database Formats. In Proceedings of the 13th International Conference on Infor-

mation Security and Cryptology, pages 233–251, Berlin, Heidelberg, 2012. Springer-

Verlag.

[25] Maximilian Golla, Benedict Beuscher, and Markus Dürmuth. On the Security of

Cracking-Resistant Password Vaults. In Proceedings of the 2016 ACM SIGSAC Con-

ference on Computer and Communications Security, pages 1230–1241, Vienna, Aus-

tria, 2016. Association for Computing Machinery.

75

https://www.cloudflare.com/en-ca/
https://www.cloudflare.com/en-ca/
https://www.dashlane.com/
https://www.dropbox.com/
https://www.dropbox.com/
https://www.usenix.org/conference/soups2016/technical-sessions/presentation/fagan
https://www.usenix.org/conference/soups2016/technical-sessions/presentation/fagan

[26] Google Developers. Google Chrome Extension, 2021. URL https://developer.chrome.

com/docs/extensions/.

[27] Douglas J Gould, Mark A Terrell, and Jo Fleming. A Usability Study of Users’ Per-

ceptions Toward a Multimedia Computer-Assisted Learning Tool for Neuroanatomy.

4(1):175–183, 2008.

[28] Joshua Gray, Virginia NL Franqueira, and Yijun Yu. Forensically-sound analysis of

security risks of using local password managers. In 2016 IEEE 24th International

Requirements Engineering Conference Workshops (REW), pages 114–121, Beijing,

China, 2016.

[29] Hana Habib, Sarah Pearman, Jiamin Wang, Yixin Zou, Alessandro Acquisti, Lor-

rie Faith Cranor, Norman Sadeh, and Florian Schaub. “It’s a Scavenger Hunt”: Us-

ability of websites’ opt-out and data deletion choices. In Proceedings of the 2020

CHI Conference on Human Factors in Computing Systems, pages 1–12, New York,

NY, USA, 2020. Association for Computing Machinery.

[30] Muhamad Haekal and Eliyani. Token-Based Authentication using JSON Web Token

on SIKASIR RESTful Web Service. In International Conference on Informatics and

Computing (ICIC), pages 175–179, Mataram, Indonesia, 2016.

[31] Cormac Herley and Paul Van Oorschot. A Research Agenda Acknowledging the

Persistence of Passwords. IEEE Security & Privacy, 10(1):28–36, 2012.

76

https://developer.chrome.com/docs/extensions/
https://developer.chrome.com/docs/extensions/

[32] Philip G Inglesant and M. Angela Sasse. The True Cost of Unusable Password Poli-

cies: Password Use in the Wild. In Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems, pages 383–392, New York, NY, USA, 2010.

[33] Mathias Karlsson. How I made LastPass Give Me All Your Passwords,

2016. URL https://labs.detectify.com/2016/07/27/how-i-made-lastpass-give-me-all-

your-passwords/.

[34] Ambarish Karole, Nitesh Saxena, and Nicolas Christin. A Comparative Usability

Evaluation of Traditional Password Managers. In International Conference on Infor-

mation Security and Cryptology, Seoul, Korea, 2010. Springer-Verlag.

[35] Stefan Kimak and Jeremy Ellman. HTML5 IndexedDB Encryption: Prevention

Against Potential Attacks. International Journal of Intelligent Computing Research,

6:621–630, 2015.

[36] Lastpass. The Last Password You Have to Remember, 2021. URL https://www.

lastpass.com/.

[37] Lastpass. Recover Your Lost Master Password for LastPass, 2021. URL

https://support.logmeininc.com/lastpass/help/recover-your-lost-master-password-

lp020010.

[38] Zhiwei Li, Warren He, Devdatta Akhawe, and Dawn Song. The Emperor’s New

Password Manager: Security Analysis of Web-Based Password Managers. In 23rd

77

https://labs.detectify.com/2016/07/27/how-i-made-lastpass-give-me-all-your-passwords/
https://labs.detectify.com/2016/07/27/how-i-made-lastpass-give-me-all-your-passwords/
https://www.lastpass.com/
https://www.lastpass.com/
https://support.logmeininc.com/lastpass/help/recover-your-lost-master-password-lp020010
https://support.logmeininc.com/lastpass/help/recover-your-lost-master-password-lp020010

USENIX Security Symposium (USENIX Security 14), pages 465–479, San Diego, CA

, USA, 2014.

[39] Limitlesslane. Online Password Manager - Auto Login - Auto Save, 2021. URL

https://limitlesslane.com/.

[40] Zhicheng Liu, Nancy Nersessian, and John Stasko. Distributed Cognition as a Theo-

retical Framework for Information Visualization. IEEE Transactions on Visualization

and Computer Graphics, 14(6):1173–1180, 2008.

[41] LogMeOnce. PassswordLess & Smarter Identity Management, 2021. URL https:

//www.logmeonce.com/.

[42] Sanam Ghorbani Lyastani, Michael Schilling, Sascha Fahl, Michael Backes, and Sven

Bugiel. Better Managed than Memorized? Studying the Impact of Managers on Pass-

word Strength and Reuse. In 27th USENIX Security Symposium (USENIX Security

18), pages 203–220, Baltimore, MD, USA, 2018.

[43] Raymond Maclean and Jacques Ophoff. Determining Key Factors that Lead to the

Adoption of Password Managers. In 2018 International Conference on Intelligent and

Innovative Computing Applications (ICONIC), pages 1–7, Mon Tresor, Mauritius,

2018.

[44] Daniel McCarney, David Barrera, Jeremy Clark, Sonia Chiasson, and Paul C

78

https://limitlesslane.com/
https://www.logmeonce.com/
https://www.logmeonce.com/

Van Oorschot. Tapas: Design, Implementation, and Usability Evaluation of a Pass-

word Manager. In Proceedings of the 28th Annual Computer Security Applications

Conference, pages 89–98, Orlando, FL, USA, 2012.

[45] Microsoft Azure. Azure Defender, 2021. URL https://azure.microsoft.com/en-ca/

services/azure-defender/.

[46] Mozilla and Individual Contributors. MDN Web Docs: Synchronous and Asyn-

chronous Requests, 2021. URL https://developer.mozilla.org/en-US/docs/Web/API/

XMLHttpRequest/Synchronous_and_Asynchronous_Requests.

[47] Austin Lee Nichols and Jon K Maner. The good-subject effect: Investigating partic-

ipant demand characteristics. The Journal of general psychology, 135(2):151–166,

2008.

[48] NIST. NIST Special Publication 800-63B, Digital Identity Guidelines, SP-800-63B

Section 5.1.1.2. 2017.

[49] Norton Life Lock Inc. Norton Password Manager, 2021. URL https://my.norton.com/

extspa/passwordmanager/.

[50] Sean Oesch and Scott Ruoti. That Was Then, This Is Now: A Security Evaluation of

Password Generation, Storage, and Autofill in Browser-Based Password Managers.

In USENIX Security Symposium, Anaheim, CA, USA, 2020.

[51] Sarah Pearman, Shikun Aerin Zhang, Lujo Bauer, Nicolas Christin, and Lorrie Faith

79

https://azure.microsoft.com/en-ca/services/azure-defender/
https://azure.microsoft.com/en-ca/services/azure-defender/
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest/Synchronous_and_Asynchronous_Requests
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest/Synchronous_and_Asynchronous_Requests
https://my.norton.com/extspa/passwordmanager/
https://my.norton.com/extspa/passwordmanager/

Cranor. Why People (don’t) Use Password Managers Effectively. In Fifteenth Sym-

posium On Usable Privacy and Security (SOUPS 2019), pages 319–338, Santa Clara,

CA, USA, 2019.

[52] Hirak Ray, Flynn Wolf, and Ravi Kuber. Why Older Adults (Don’t) Use Password

Managers. In 30th USENIX Security Symposium (USENIX Security 21), Vancouver,

BC, Canada, 2021.

[53] Hyeun-Suk Rhee, Cheongtag Kim, and Young U Ryu. Self-efficacy in Information

Security: Its Influence on End Users’ Information Security Practice Behavior. Com-

puters & security, 28(8):816–826, 2009.

[54] RoboForm. RoboForm Password Manager: Say Goodbye to Writing Down Pass-

words, 2021. URL https://www.roboform.com/.

[55] Blake Ross, Collin Jackson, Nick Miyake, Dan Boneh, and John C Mitchell. Stronger

Password Authentication Using Browser Extensions. In 14th USENIX Security Sym-

posium (USENIX Security 05), Baltimore, MD, USA, 2005.

[56] J. B. Rotter. Generalized Expectancies for Internal Versus External Control of Rein-

forcement. Psychological monographs, 80(1):1–28, 1966.

[57] Scott Ruoti and Kent Seamons. End-to-End Passwords. In NSPW, New Hampshire,

USA, 2017.

[58] Sunyoung Seiler-Hwang, Patricia Arias-Cabarcos, Andrés Marín, Florina Almenares,

Daniel Díaz-Sánchez, and Christian Becker. “I Don’t See Why I Would Ever Want to

80

https://www.roboform.com/

Use It” Analyzing the Usability of Popular Smartphone Password Managers. In Pro-

ceedings of the 2019 ACM SIGSAC Conference on Computer and Communications

Security, pages 1937–1953, London, United Kingdom, 2019.

[59] M. Shirvanian, S. Jareckiy, H. Krawczykz, and N. Saxena. SPHINX: A Password

Store that Perfectly Hides Passwords from Itself. In International Conference on

Distributed Computing Systems (ICDCS’17), pages 1094–1104, Atlanta, GA, USA,

2017.

[60] David Silver, Suman Jana, Dan Boneh, Eric Chen, and Collin Jackson. Password

Managers: Attacks and Defenses. In 23rd USENIX Security Symposium (USENIX

Security 14), pages 449–464, San Diego, CA, USA, 2014.

[61] Azzam Sleit and Ala’a Al-Shaikh. Evaluating IndexedDB Performance on Web

Browsers. In 8th International Conference on Information Technology (ICIT), pages

488–494, Jordan, 2017.

[62] Trevor Smith, Scott Ruoti, and Kent Seamons. Augmenting Centralized Password

Management with Application-Specific Passwords. In Thirteenth Symposium on Us-

able Privacy and Security (SOUPS 2017), Santa Clara, CA, USA, 2017.

[63] DO SON. VaultBreaker: Attacks Against Common Password Managers, 2019. URL

https://securityonline.info/vaultbreaker/.

[64] Emily Stark, Michael Hamburg, and Dan Boneh. Symmetric Cryptography in

81

https://securityonline.info/vaultbreaker/

Javascript. In 2009 Annual Computer Security Applications Conference, pages 373–

381, Honolulu, HI, USA, 2009.

[65] Douglas Stebila and Nick Sullivan. An Analysis of TLS Handshake Proxying. In

Proceedings of the 2015 IEEE Trustcom, pages 279–286, Helsinki, Finland, 2015.

[66] Elizabeth Stobert and Robert Biddle. A Password Manager that Doesn’t Remember

Passwords. In Proceedings of the 2014 New Security Paradigms Workshop, pages

39–52, New York, NY, USA, 2014.

[67] Elizabeth Stobert and Robert Biddle. A Password Manager that Doesn’t Remember

Passwords. In Proceedings of the 2014 New Security Paradigms Workshop, pages

39–52, Victoria, BC, Canada, 2014.

[68] Elizabeth Stobert and Robert Biddle. The Password Life Cycle. ACM Transactions

on Privacy and Security (TOPS), 21(3):1–32, 2018.

[69] Elizabeth Stobert, Tina Safaie, Heather Molyneaux, Mohammad Mannan, and Amr

Youssef. ByPass: Reconsidering the Usability of Password Managers. In Interna-

tional Conference on Security and Privacy in Communication Systems, pages 446–

466, Washington, DC, USA, 2020.

[70] Ben Stock and Martin Johns. Protecting users against XSS-based password manager

abuse. In Proceedings of the 9th ACM symposium on Information, computer and

communications security, New York, NY, USA, 2014. Association for Computing

Machinery.

82

[71] Ding Wang, Zijian Zhang, Ping Wang, Jeff Yan, and Xinyi Huang. Targeted Online

Password Guessing: An Underestimated Threat. In Proceedings of the 2016 ACM

SIGSAC Conference on Computer and Communications Security, pages 1242–1254,

New York, NY, USA, 2016. Association for Computing Machinery.

[72] Cathleen Wharton, Janice Bradford, Robin Jeffries, and Marita Franzke. Applying

Cognitive Walkthroughs to More Complex User Interfaces: Experiences, Issues, and

Recommendations. In Proceedings of the SIGCHI conference on Human factors in

computing systems, pages 381–388, 1992.

[73] Daniel Lowe Wheeler. zxcvbn: Low-Budget Password Strength Estimation. In 25th

USENIX Security Symposium (USENIX Security 16), pages 157–173, Vancouver, BC,

Canada, 2016.

[74] Alma Whitten and J Doug Tygar. Why Johnny Can’t Encrypt: A Usability Evaluation

of PGP 5.0. In 8th USENIX Security Symposium (USENIX Security 99), Washington,

DC, 1999.

[75] Frances F Yao and Yiqun Lisa Yin. Design and Analysis of Password-Based Key

Derivation Functions. pages 3292–3297, 2005.

[76] Rui Zhao, Chuan Yue, and Kun Sun. A Security Analysis of Two Commercial

Browser and Cloud Based Password Managers. In 2013 International Conference

on Social Computing, pages 448–453, Alexandria, VA, USA, 2013.

83

Appendices

84

Appendix A

UDS Framework

We evaluate ByPass using the Usability-Deployability-Security (UDS) framework of Bon-

neau et al. [13] which is a framework for evaluating user authentication schemes. They pro-

posed 25 different properties. We updated four of the properties to make a more detailed

comparison between ByPass and other password managers. Towards choosing the pass-

word managers, we picked five of the most popular password manager extensions based

on the Chrome web store’s number of downloads (LastPass [36], Norton Password man-

ager [49], Avira [7], Dashlane [20], and 1PasswordX [1]) as well as iCloud Keychain,

Google Password Manager, and Firefox Lockwise.

Below, we explain some of the criteria which are more related to ByPass from the

Bonneau et al. [13] UDS framework in addition to introducing four new criteria that were

not listed in the original framework and we added them to make a better comparison of

ByPass.

U1 – Effortless-Account-Management: The password manager supports third-party

85

website’s account managing, which means that the users can manage their account like

changing password through the password manager.

U2 – Ease-of-Account-Sharing: The password manager offers sharing an account’s

credentials so that the users can securely share their credentials for a specific account using

the password manager.

U7 – Easy-Recovery-from-Loss: An individual can easily gain access over the account

if he forgets the primary password. Recovery becomes convenient, for example by utilizing

backups or secondary recovery schemes.

D1 – Offering-only-Offline-Database: The password manager offers the offline database

for the users who are not comfortable using applications with third-party servers.

D3 – Server-Compatible: It is not required for the service provider to alter the existing

setup to communicate with the password manager.

D5 – Mature: In addition to research, a password manager should be implemented and

deployed in a large-scale environment for authentication purposes in order to achieve a full

circle for this criteria.

S8 – Resilient-to-Sweep-Attack: The password manager resists the type of attacks

caused by the auto-fill and auto-submission features. This attack was mentioned by Sil-

ver et al. [60] while there is an active man-in-the-middle network attacker who is able to

extract passwords from the password manager.

S12 – Unlinkable: This is a criterion that involves privacy where two conspiring web-

sites cannot determine if the same user is authenticating to each of them (disregarding IP

address and the username).

86

Table 6: Evaluation of ByPass using UDS Framework

Password Managers U
1:

E
ffo

rt
le

ss
-A

cc
ou

nt
-M

an
ag

em
en

t

U
2:

E
as

e-
of

-A
cc

ou
nt

-S
ha

ri
ng

U
3:

M
em

or
yw

is
e-

E
ffo

rt
le

ss

U
4:

E
as

y-
to

-le
ar

n

U
5:

E
ffi

ci
en

t-
to

-U
se

U
6:

In
fr

eq
ue

nt
-E

rr
or

s

U
7:

E
as

y-
R

ec
ov

er
y-

fr
om

-L
os

s

D
1:

O
ff

er
in

g-
on

ly
-O

ffl
in

e-
D

at
ab

as
e

D
2:

N
eg

lig
ib

le
-C

os
t-

pe
r-

U
se

r

D
3:

Se
rv

er
-C

om
pa

tib
le

D
4:

B
ro

w
se

r-
C

om
pa

tib
le

D
5:

M
at

ur
e

D
6:

N
on

-P
ro

pr
ie

ta
ry

S1
:R

es
ili

en
t-

to
-P

hy
si

ca
l-O

bs
er

va
tio

n

S2
:R

es
ili

en
t-

to
-T

ar
ge

te
d-

Im
pe

rs
on

at
io

n

S3
:R

es
ili

en
t-

to
-T

hr
ot

tle
d-

G
ue

ss
in

g

S4
:R

es
ili

en
t-

to
-U

nt
hr

ot
tle

d-
G

ue
ss

in
g

S5
:R

es
ili

en
t-

to
-I

nt
er

na
l-O

bs
er

va
tio

n

S6
:R

es
ili

en
t-

to
-L

ea
ks

-f
ro

m
-O

th
er

-v
er

ifi
er

s

S7
:R

es
ili

en
t-

to
-P

hi
sh

in
g

S8
:R

es
ili

en
t-

to
-S

w
ee

p-
A

tt
ac

k

S1
0:

N
o-

Tr
us

te
d-

T
hi

rd
-P

ar
ty

S1
1:

R
eq

ui
ri

ng
-E

xp
lic

it-
C

on
se

nt

S1
2:

U
nl

in
ka

bl
e

ByPass (Online) ○ ○ è ○ ○ ○ ○ ○ è ○ ○ ○ ○ è ○ ○
ByPass (Offline) ○ è ○ ○ ○ ○ ○ ○ ○ è ○ ○ ○ ○ ○ ○ ○
LastPass è è ○ è ○ è è ○ ○ ○ è è ○ ○
Norton Password Manager è è è ○ ○ ○ ○ ○ è è ○ ○
Avira è ○ ○ è ○ ○ ○ è è ○ ○
Dashlane è è è ○ è è ○ ○ ○ è è ○ ○
1Password X è è è è ○ è è ○ ○ ○ è è ○ ○
Firefox Lockwise è ○ è ○ è ○ ○ ○ ○ ○ è è è ○ ○
iCloud Keychain è ○ è ○ ○ ○ ○ ○ ○ è è ○ ○
Google Password Manager (Android) è ○ è ○ ○ ○ ○ ○ ○ è è ○ ○

○= Offers the benefit; è= Almost offers the benefit; += Does not offer the benefit
U = Usability; D = Deployability; S = Security

As Table 6 illustrates, ByPass fully addresses 14 out of 24 criteria. In what follows,

we are going to explain more on the result of the evaluation we did on the aforementioned

password managers among the 24 criteria.

A.1 Usability

By taking advantage of APIs, ByPass addresses effortless account management. Via the

password manager, the user can log in to their account and easily complete account man-

agement functions such as changing the password, deleting the account, or even creating a

new account.

Account sharing is another criterion that improves the password manager’s usability

as well as security, in the way that the user doesn’t need to copy the plain password and

give it to another person by text or email. Among all password managers only ByPass

87

supports account sharing feature. As LastPass [36], Dashlane [20], and 1PasswordX [1]

allow sharing passwords only hence they get half-circle.

For memory-wise effortless criteria, all the password managers listed here earn a half

circle as the user needs to recall at least one thing, which is the primary password.

Measuring how convenient is to learn about the functionality of a password manager

is a qualitative thing. Nevertheless, the approach we wanted to calculate the ease of use

was to count the number of clicks and the time to perform a given task, such as registering

an account and testing if the password manager provides the user with any tips while at-

tempting to complete a task. We used this method for evaluating the use efficiency criteria

too.

We didn’t face any problem in terms of errors while we were trying to log in with the

aforementioned password managers, and it isn’t hard for a user to use them, thus all of

them receive full circle for the Infrequent-Errors criteria.

In Easy-Recovery-from-Loss criteria, the user should be able to regain the ability to

authenticate if they forgot their credentials. In ByPass, Norton Password Manager [49],

and Avira [7], if the user forgets the primary password, they wouldn’t be able to get ac-

cess to their account again, so that they receive no circle. LastPass [36], Dashlane [20],

1PasswordX [1], and Firefox Lockwise receive half-circle as they provide some ways to

recover the account in the case of forgetting the primary password. Using the family or

team account in 1PasswordX [2] or setting an SMS account recovery in LastPass [37] en-

ables them to receive half circle but not full circle since there is still a chance that the user

has never set up these recovery approaches. The iCloud Keychain and Google Password

88

Manager provide various user friendly ways–e.g., using two devices, SMS, email, etc.–for

the account recovery and therefore they are achieving full circles.

A.2 Deployability

ByPass is the only password manager that provides the support for fully Offline-Database in

terms of deployability. It is also non-proprietary as it is open source like Firefox Lockwise.

However, it is the only password manager which is not Server-Compatible as it requires

slight changes in the website’s servers for providing the APIs. ByPass is also not as mature

as the other password managers; hence, it receives half circle for this criteria. ByPass,

Norton Password Manager [49], Firefox Lockwise, iCloud Keychain, and Google Password

Manager are fully free of charge, while the other managers have free trial version with

reduced functionality and the user needs to pay for the full version.

A.3 Security

For such security criteria like Resilient-to-Physical observation, Throttled and Unthrottled

guessing, and Resilient-to-Internal-Observation, password managers cannot achieve any

circle according to the nature of them in relying on a password-based authentication system.

All the password managers we have evaluated achieve full circle for the Unlinkable cri-

teria in reference to study of Bonneau et al. [13]. As for ByPass, randomly generated pass-

words are unlikable and when we disregard the IP address, similar to previous work [13],

ByPass is unlikable as well even though it uses APIs for authentication.

89

Among all the password managers, ByPass is the only one that receives full circle for

Resilient-to-Phishing and Resilient-to-Sweep-Attack [60] criterias. The reason is in using

an API for skipping the landing page as ByPass serves the user on the home page of the

website thus two goals will be achieved. One is all the APIs are through the TLS connec-

tion and an adversary would not be able to intercept it, and the second goal is preventing

an attacker from modifying the landing page of the website. As we mentioned earlier, an

attacker with the power of controlling the network can be able to inject some malicious

scripts and different invisible login forms on the website’s page so that the password man-

agers with the auto-fill or auto-submit features would automatically fill in the credentials

boxes [60].

Although ByPass online mode has a trusted third-party server, it allows the user to

choose to deploy their own server. Therefore, it will achieve a half circle for No-Trusted-

Third-Party criteria. Firefox Lockwise is also an open-source password manager that gives

the user the ability to deploy their own version hence gets half-circle same as ByPass. On

the other hand, the ByPass offline mode requires no trusted third-party hence ByPass offline

mode achieves full circle.

The iCloud Keychain and Google Password Manager have almost the same behaviour-

e.g. both come free with their software suite, come built-in with their browsers and devices,

ability to recover from loss, etc. In contrast, Firefox Lockwise being also a browser first

password manager has some distinct differences from these two. As a starter, it is not

proprietary like the other two. Although it is open-source, in terms of deployability, it is

very similar to iCloud Keychain and Google Password Manager.

90

In conclusion, ByPass acts better in terms of security compared to the other eight pass-

word managers. Although ByPass is not so mature and server compatible, it still can com-

pete with popular password managers and encourages users to have a better and more

secure experience using a manager.

91

Appendix B

User Study Script

- Greeting participants

- Providing the consent form: Providing the consent form: This is the consent form,

please read it carefully. As it is mentioned in the form.

- *While they are reading the consent form*: This study will take around 1 hour and

you will be given 15$ for your participation. During this time, we first give you a pre-test

questionnaire which I’m going to explain more later, then you are asked to complete 6 tasks

related to our password manager prototype (ByPass) and as the last step, you will be given

a post-test questionnaire that mainly asks about your experience working with ByPass.

- Starting the tasks: We developed a password manager called "ByPass" and by present-

ing this user study we want to evaluate our prototype, not you! So, if you face any errors

during the experiment don’t feel bad, it’s not your fault. It’s a problem on our side. Please

note that all the needed credentials to complete the tasks are provided for you and please

do not use any of your own credentials because we can see them.

92

First, I start by giving a short description on what a password manager really is! Password

manager is a software application that is used to store and manage passwords that the user

has for different online accounts, e.g., Gmail, Facebook, Amazon, etc. Password managers

can generate unique passwords for you and store them in a secure format.

Password managers may also include a “password generator”. This is a software tool that

creates random or customized passwords for the user.

ByPass is a password manager that automatically generates passwords for the user. You

can use ByPass to create accounts and log in directly to websites. ByPass communicates

securely with websites so that you can avoid the login page.

We are testing our password manager on two websites. As you can see on your browser.

One of them is called Amazon and the other one is web mail. These websites are operated

by us, and for the purposes of this study, you can pretend they are real service providers

that you have account on them. As you may know creating an account on each website

requires different information such as your name, email address, phone number and etc.

So, do our websites – but we will provide you.

By considering my description, please go through the tasks that are given to you.

Assume that you just downloaded and installed ByPass on your Chrome browser. First of

all, you need to create an account for yourself on ByPass to get started. Please go through

the task description paper and complete task 1.

As you just travelled to Canada, you want to create an account on Amazon.ca to start

purchasing stuff for your new home. Follow the steps on description paper and create an

account on our Amazon website.

93

Then you want to see how your newly installed password manager works. To do so, you

start by adding your Amazon account credentials to ByPass and try to login again to Ama-

zon but this time through ByPass.

Perfect, now you are sure that the password manager is perfectly working and you can trust

it!

Recently your manager asked you to create an email address on webmail. You think this

can be a good time to use your password manager functionality, so you start by creating an

account on webmail through ByPass.

After some days your feel that the chosen password for your amazon is not secure enough

so you decide to change your password through ByPass. You want to make sure to choose

the strongest possible password this time.

You are recently feeling some suspicious activities on your Amazon account and you de-

cide to delete your account from Amazon and to do so, you get help from ByPass because

you find it really hard to figure out where “delete my account” button is in the Amazon

website!

- Well done! You have completed all the tasks!

- Post-test questionnaire: Now I’m going to give you the post-test questionnaire which is

the main part of this study. We want to know how did you feel while you were working

with our password manager. Please be honest in your responses, which are anonymous.

- End of the experiment Feel free to ask any question!

94

Appendix C

Information and Consent Form

95

96

97

98

99

Appendix D

User Study Tasks Description

100

Tasks Description

1. Create an account on ByPass

Username: ben@gmail.com
Password: “choose something on your own but not your personal password”

2. Go to our Amazon website tab which is already open on your browser and create an

account with provided credentials:

First name: Ben
Last name: Saleh
Date of Birth: 1990/Feb/02
Email: ben@yahoo.com
Password: Rainbow123!

3. Go to ByPass and add your Amazon account (the one that you just created) and then

login.

Enter “Amazon” for website address

4. Use ByPass to create an account on webmail.

Enter “Webmail” for website address
Email address: ben@webmail.com

5. Change your webmail accounts’ password through the ByPass.

6. Delete your Amazon account through ByPass.

Appendix E

Pre and Post-test Questionnaires

102

Appendix F

Recruitment Poster

109

Appendix G

Ethics Certificate

111

