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Abstract

An Analysis of Upgradeability, Oracles, and Stablecoins in the Ethereum
Blockchain

Mehdi Salehi

The Ethereum blockchain is a widely adopted global alternative to cloud computing

platforms, currently used primarily for financial services. Given the large number of funds

held by smart contracts and decentralized applications on top of Ethereum, there are pro-

found security implications for both users and enterprise developers.

Over time, developers have brought more complex logic to Ethereum. For example,

contracts often require access to valid, real-world data. In most cases, the system’s func-

tionality and security are strongly dependent on the correctness and safeness of the data

pushed to the blockchain. One topic of this thesis is an oracle system—infrastructure added

to the blockchain to respond to this need. As contract code becomes more complex, it is

increasingly likely that the code has bugs or vulnerabilities. Given smart contracts are im-

mutable and tamper-proof, it seems impossible to upgrade a contract should a fix or patch

be needed. Another topic of this thesis examines contract deployment patterns that en-

able and handle the upgradeability of smart contracts in Ethereum. Finally, the thesis also

considers an application of oracle technology: payments made in stable currencies such as

USD and not blockchain native currencies such as ETH, which are volatile in price. This

thesis explains each topic in detail, evaluating the security risks of each, and examining any

consequences for user trust and the degree of decentralization.
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Chapter 1

Introduction

This chapter introduces several research questions to be answered in this thesis and moti-

vates their importance.

1.1 Motivation

Ethereum’s native currency, ETH, is the second-largest cryptocurrency in the world in terms

of total market capitalization at the time of writing this thesis. Bitcoin (BTC) is in first

place but Bitcoin’s protocol makes it difficult to deploy smart contracts as it only supports

a limited scripting language. Thus, Ethereum is the most widely used blockchain that

enables the deployment of verbose smart contracts with wide functionality.

Smart contracts are pieces of code that run on blockchains such as Ethereum and elimi-

nate the need of use of a trusted third party to run the logic. As Ethereum has its own native

currency, users and smart contracts can make payments automatically including paying

for the computation (gas fees). Many projects are developing Decentralized Applications

(Dapps) on Web3, which rely on smart contracts instead of traditional web applications

(Web2) which rely on trusted, intermediary companies. Also blockchains are immutable,

which means that the transactions are irreversible under reasonable assumptions due to the
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nature of blockchain technology.

Smart contracts can have control over large amounts of cryptocurrencies in their cus-

tody or in the custody of another smart contract. We have seen that vulnerabilities in code

bases of smart contracts result in significant financial loss in DeFi and Ethereum and just

in 2021, 1.3 billions of dollars are lost reported by Certik [36].

The technical and economical differences between Web2 apps and Web3 Dapps re-

quires developers to adjust their mental model. This applies to the wave of new developers

who have changed their careers to develop smart contracts on Ethereum in recent years, as

well as professional experienced Web3 developers. The Ethereum blockchain may seem

similar to a cloud service to some developers using it for the first time. But, there are nu-

ances like immutable smart contracts that cannot be changed, and no access to real-world

data or internet APIs that are off-chain. In this thesis, we try to shed light on some of the

differences of Web3.

1.2 Thesis Statement

The primary aim of this dissertation is to shed light on specific problems Web3 develop-

ers face in Dapp development, including oracle systems, systems upgrades, and dealing

with stablecoins. Over the course of time, developers tried to port more and more Web2

functionalities into Web3, but it almost always requires new risks or trusted third parties.

Some of these risks and trust points are explored in this dissertation by answering questions

below:

1. Question 1: What methods exist for upgrading code on a blockchain that is supposed

to be immutable, and which method is best when a new feature or a bug fix is needed?

2. Question 2: What methods exist for granting smart contracts access to real-world

data and APIs?
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3. Question 3: If a Dapp needs payment in a currency like USD, and not the native

currency of the blockchain which is volatile, what methods exist for providing this

and what are the risks?

1.3 Outline and Contributions

The rest of this dissertation is organized as follows. In Chapter 3, we summarize and

evaluate six patterns, developed on Ethereum to enable upgradeability of smart contracts.

Modern smart contracts use software tricks to enable upgradeability, raising the research

questions of how upgradeability is achieved and who is authorized to make changes. We

develop a measurement framework for finding how many upgradeable contracts are on

Ethereum that use certain prominent upgrade patters. We also measure how they implement

access control over their upgradeability: about 50% are are controlled by a single Externally

Owned Address (EOA), and about 13% are controlled by multi-signature wallets in which

a limited number of persons can change the whole logic of the contract which is a risk to

the Ethereum ecosystem.

In Chapter 4 we describe that one fundamental limitation of blockchain-based smart

contracts: contracts execute in a closed environment and only have access to data and

functionality that is already on the blockchain, or that is fed into the blockchain. Any

interactions with the real world need to be mediated by a bridge service, which is called an

oracle. As decentralized applications mature, oracles are playing an increasingly prominent

role. With their evolution comes more attacks, necessitating greater attention to their trust

model. We dissect the design alternatives for oracles, showcase attacks, and discuss attack

mitigation strategies.

In Chapter 5 we shed light on a number of Ethereum projects for stablecoins and syn-

thetic assets use the same core mechanism for fixing the price of an asset. In this chapter,

we distil this shared approach into a primitive we call red-black coins. We use a model to
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demonstrate the primitive’s financial characteristics and to reason about how it should be

priced. Real world projects do not use the red-black coin primitive in isolation but lay on

other mechanisms and features to provide fungibility and to reduce exposure to price drops.

One mechanism is called liquidation, however liquidation is hard to analyze as it relies on

human behavior and could produce unintended economic consequences. Therefore we ad-

ditionally develop a design landscape for extending the red-black coin primitives and put

forward a research agenda for alternatives to liquidation.

In Chapter 6 we provide some concluding remarks and future research directions.
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Chapter 2

Background

This chapter covers background information about Ethereum, details about the Ethereum

Virtual Machine (EVM), an explanation of contract creation in Ethereum, and demonstrates

how users interact with the network and contracts. We also provide a brief exploration of

some current decentralized applications (Dapps) widely used today on Ethereum.

2.1 Ethereum Background

The Ethereum Virtual Machine (EVM) is a state machine that is globally accessible to

anyone with an internet connection and applies state changes according to hardcoded rules

agreed upon and used by network nodes in a decentralized network. Ethereum is often

described as “world computer” because anybody from anywhere can have access to it and

use it to execute their computations.

Ethereum represents the second generation of blockchain technology, following Bit-

coin. Bitcoin introduced the idea of a blockchain, which uses a novel consensus mech-

anism for maintaining shared state on an open network that anyone can join or leave at

anytime. The Bitcoin project has maintained a tight focus on providing payments (in its
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native currency BTC) and only very limited user-defined contracts based on a simple script-

ing language (which is called “Bitcoin Scripting Language”). For instance, Bitcoin scripts

cannot handle loops. By contrast, Ethereum’s EVM allows users to define general purpose

code (called smart contracts) that Ethereum will execute for them. The EVM is a quasi-

Turing-complete state machine. It is “quasi” because computation in Ethereum is paid

for by the user (in its native currency ether or ETH) and thus computation is bounded the

amount they are willing to pay. Computation and storage operations are priced in a custom

unit called gas, and users auction off how much ETH they are willing to pay per unit of gas

to have their transactions executed.

Users of Ethereum prepare transactions using client software (which is called a “wal-

let”) and send them to the Ethereum network, which consists of nodes (called “miners”)

that process and finalize transactions. The simplest transaction will transfer ETH from one

account to another account. A transaction can also ask for a smart contract to be deployed

by providing its code (or instructions on how to fetch the code). Once a contract is de-

ployed, it is given its own address. Contracts specify a set of functions that can be called,

and users can also use a transaction to invoke the function of a specific contract at a spe-

cific address. Every transaction type requires a gas fee and so users cannot use Ethereum

without first owning some amount of ETH.

For more details about the technology that underlies Ethereum (e.g., consensus mecha-

nism, networking details, cryptographic details, etc.), we refer the reader to Antonopoulos

and Wood [7].

2.2 Smart Contracts

Ethereum smart contracts are usually written in a high-level programming language and

compiled into low-level EVM bytecodes using a compiler (e.g., Solc). The most popular

high-level language is Solidity which is object oriented and similar to Java in syntax. Vyper
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also has significant use and resembles Python. An EVM bytecode is a binary string that is

stored by the blockchain and is interpretable by the EVM.

There are two types of Ethereum accounts: an Externally Owned Account (EOA) and

a Contract Account. Every Ethereum transaction is sent by an account. An EOA is an

account that is controlled by a private key and maintains a balance of ETH. Any external

actor can generate a random private key and the hash of the corresponding public key will

serve as the EOA’s address, at which it can receive ETH. Transactions sent from the EOA

are signed using the private key with the ECDSA signature algorithm over the SECP-256k1

elliptic curve curve, as specified in the Ethereum yellow paper [150].

EOA acounts can create new transactions, sign them with the private key related to the

account and sent them to Ethereum network to be confirmed and recorded on the Ethereum

blockchain. This transaction can:

1. Send ETH to another EOA.

2. Create a new Contract Account by deploying bytecode.

3. Call a Contract Account to execute a function.

Each transaction type is explained below.

2.2.1 Sending ETH between EOAs

An EOA can send ETH to another EOA account by specifying the amount and the address

of the destination. Note that the receiving EOA does not need to authorize the transaction

and, in fact, cannot block the transaction even if it wanted to. Each transaction also contains

a counter (called a nonce) which must be greater than the last confirmed transaction from

the EOA or it will be rejected by the Ethereum network. This is to prevent replay attacks.
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2.2.2 Creating a new Contract Account.

Creating a new Contract Account is a bit tricky. While a contract account can be created

by another contract (described later), consider for now how an EOA will deploy a new

contract. It should send a transaction containing bytecode (called the initialization code)

that tells the EVM what the contract’s bytecode is (called the runtime code), or how to

construct it. The destination address of the transaction is set to null to signal to the EVM it

is a contract deployment.

The EVM will generate an address for the new contract account using the following

specification:

Address = keccak256(rlp.encode(SenderAddress, nonce))[12 :] (1)

In this equation, keccak256 is the sha3 hash used in Ethereum blockchain; RLP (Recursive

Length Prefix) encoding is used in Ethereum to encode arbitrary nested arrays of binary

data, such as transactions data; and the result is truncated to the last 20 bytes of the hash

output (discarding the first 12 bytes). The nonce ensures that if the same EOA generates

the same contract multiple times, each contract will be given a unique address.

Every contract account maintains four fields: A nonce which is similar to the nonce field

in EOA accounts which keeps track of number of transactions created by that account; Ether

balance which indicates amount of ETH the account holds; Contract Code which keeps

the bytecode of the account which is executed each time a transaction calls the account;

Contract Storage which is a Merkle Patricia Tree data structure that maintains the data

related to the contract account. Detailed explanation of the contract storage can be found

in Section 2.3.2.

In addition, contract accounts also can create a new contract account using two dif-

ferent EVM opcodes: CREATE and CREATE2. The whole process of contract creation
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is similar for these two opcodes, but the main difference is how EVM calculates the ad-

dress for the contract account. For the CREATE opcode, the calculation formula is the

same as Formula 1 used for contract creation from an EOA. Developers can predict what

address will be assigned to a contract to some extent, but because the nonce changes over

time, if they need to know its address ahead of deployment, they must control the nonce

to ensure it is at the right value at deployment time. To address this, CREATE2 was in-

troduced to provide predictable addresses. The EVM uses a completely different formula

to calculate the address: the sender’s address and the contract creation bytecode (a.k.a.,

initCode). Because the formula does not contain a nonce or other unpredictable vari-

ables, the newly generated address can be known in advance of creating the contract (this

is useful for “counterfactual programming” which is too complex to describe here).

The formula for contract address calculations using CREATE2 is:

Address = keccak256(0xff + senderAddress+ salt+ keccak256(init− code))[12 :]

(2)

Based on the Formula 2, if the same sender address tries to deploy the same initializa-

tion code, the address will be the same. But the EVM does not permit the re-deployment

of a contract if there is still a contract account at that address. There is a way to delete the

previous contract account and then re-deploy the contract on the same address. If the con-

tract contains a SELFDESTRUCT opcode, by calling it, the whole contract account along

with its four field will be wiped out and so there is a chance to re-deploy the contract. This

whole process (and how it can be abused) is explained in detail in Chapter 3.
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2.2.3 Calling a Contract Account to execute a function

The last transaction type an EOA can send is to make a function call to a contract. If the

recipient (destination) of the transaction is a contract account, the EVM will start executing

the contract code automatically. To explain it more thoroughly, we split the process into

two steps describe below:

Transaction creation by EOA. Consider a function setNumber(unit n) defined

by contract A, which takes the parameter as an unsigned integer and stores it in a state vari-

able in the contract’s storage. If Alice decides to set the number to 3, her wallet software

will send a transaction from her EOA to contract A’s address. The transaction has a field

called calldata where Alice’s wallet software will specify the function and the param-

eter value(s) (3). To specify the function to be called, it will compute the function selector

using its name and a list of its parameter types (delimitated with a comma if there is more

than one). For example:

FunctionSelector = Bytes4(keccak256(setNumber(uint))) = 0x234a4ac2 (3)

The transaction is signed by the EOA and sent to the Ethereum network.

Execution Process. The next step is to describe how the EVM interprets and executes

the transaction sent by Alice. The EVM checks the recipient of the transaction and because

it is the address of contract A, it will start executing the bytecode of contract A. The EVM

first extracts the first four bytes of the calldata of the transaction, in case the transaction

calls a contract. Then it checks if the function selectors in the bytecode matches with

the first four bytes of the calldata. If a function selector is found, it means that the

user called that specific function of the contract (in our case, the setNumber function

10



of contract A). If the EVM cannot find any function selector that matches the first four

bytes of calldata, then a function called the fallback function will be called. The

fallback function is a function optionally defined by the developer to be executed when

the EVM cannot find a function selector equal to the first four bytes of calldata. It is

also called if the calldata is empty, which happens when ETH is sent to the contract

without a function call. Developers who do not anticipate how fallback functions can be

used and abused may create vulnerabilities to an attack called re-entrancy.

For each function in the bytecode, the EVM will first extract the inputs related to the

function from calldata and then execute the logic of that function with the provided param-

eters. It should be mentioned that a contract can also call a function of another contract.

This type of call is called an Internal Call. In literature, it is also called a message instead

of a transaction, and will be discussed more in Section 2.3.3.

2.3 Other Ethereum Details

There are other technical explanations that a reader should know about Ethereum before

reading the main contributions of this thesis.

2.3.1 Run-time Bytecode vs. Contract Creation Code

In Ethereum the code that is sent to create contract (a.k.a Contract Creation Code), may

be different with the code that is stored in the blockchain for that contract account (a.k.a

Run-time bytecode). Run-time bytecode is the bytecode which is saved in the blockchain

as the code of that specific contract account and each time the contract is called, this code

will be executed by EVM. But, Contract Creation code is the input data of the transaction

by which a user or a contract tries to deploy a new contract. The Contract Creation code

has a field, named init code, which is responsible to: 1) make changes to the state of the

11



contract (initializing the storage variables using a constructor), 2) put the run-time bytecode

to the memory 3) put the length of the run-time bytecode in the memory 4) put the offset

in the memory where the run-time bytecode is saved in the stack 5) execute the Return

opcode to push EVM to deploy the contract.1

So, the run-time bytecode could be completely different from the contract creation code.

It will be discussed in the detail in Chapter 3 in Section 3.3.5.

2.3.2 Storage Layout in EVM

In Ethereum each contract account holds state in its own permanent storage. EVM uses

an uncommon storage structure to store the storage state based on the variable types. It

uses 32-bytes to 32-bytes key-value mapping to store the data which are zero initialized.

Except dynamic arrays and mappings, the other variable types are stored in this structure

contiguously one after another starting from slot 0.

Mappings and dynamic arrays cannot be saved contiguously, because their size is un-

predictable. So for dynamic arrays if the storage location after applying the rules ends up

at slot P, the size of the array will be saved in this slot and the elements of the array will be

saved contiguously starting from slot keccak256(p).

For mapping instead of dynamic array, zero will be saved in slot P. Also element of the

mapping with key equal to K is stored in slot keccak256(h(K), p) where h is keccak256 of

the key value padded to 32 bytes [150].

The storage variables are accessible on-chain if there is a getter function inside the

contract that gives the variable amount. Marking a variable as public is also give the op-

portunity to read the data on-chain because Solidity compiler creates a getter function for

all public variables.

To read the data off-chain, one needs to have access to an Ethereum node which is
1https://leftasexercise.com/2021/09/05/a-deep-dive-into-solidity-

contract-creation-and-the-init-code/
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discussed in Section 2.3.4.

2.3.3 Transaction vs. Message

We discussed Ethereum transactions in detail in the previous sections. A message is very

similar to a transaction but it is produced by another contract instead of an EOA. Mes-

sages are the way that contracts calling each others’ functions. A message is produces

when a contract uses a CALL, DELEGATECALL or STATICCALL opcodes. So, a func-

tion from another contract will be executed. The main difference between CALL and

DELEGATECALL opcodes is that by CALLing another contract the storage layout of the

the destination contract will be changed. But, DELEGATECALLing another contract, keeps

the contract context. It means that the storage layout of the caller contract will be changed

instead of the destintion contract. It is analogues to copy pasting that specific function in

the caller contract and running its logic inside the caller contract. There are risks regard-

ing DELEGATECALL opcode and the fact that it keeps context such as function selector

clashes and storage layout clashes which will be discussed in more details in Chapter 3,

Section 3.3.7.

Also it worths mentioning that STATICCALL act completely similar to CALL opcode,

except it will be reverted if the message tries to change the state during the call. 2

2.3.4 Off-chain Access to the Blockchain Data

To have access to the data stored in Ethereum blockchain, one should have access to an

“Ethereum Node”. Ethereum node refer to running a piece of software called Ethereum

client, which implemented the rules and specifications defined by Ethereum yellow pa-

per [150] to join and sync with Ethereum network and to keep Ethereum network and data

2https://ethdocs.org/en/latest/contracts-and-transactions/account-
types-gas-and-transactions.html
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secure and safe. 3

There exists various implementations for Ethereum client in different languages (e.g.,

Go, Rust, JavaScript,etc.). “Geth” is the most widely used Ethereum client written in Go.

There are three different types of Ethereum nodes: Light node, Fast-sync and Archive full

node.

Light node stores the headers of the blocks and can have a limited verification such as

state root verification. This type of clients are useful for devices that cannot store huge data.

Fast-sync Full node stores all blockchain data, and can participate in new block generation.

Also all past states can be derived from the full node but it takes time to grab the past data.

Archival Full node not only stores all blockchain data, but also index them as well so that

historical states can be accessed quickly on demand. In this thesis we call Archival Full

node a full node.

An Ethereum full node has a JSON-RPC API that gives the user chance to use the

methods implemented by the client and read the Ethereum data off-chain. Some of the

methods that are used in this paper is listed below:

• trace_block: Returns the transaction traces of all transactions in a specific block.

• eth_getStorageAt: Returns the value stored in a specific slot of a determined address.

• eth_getCode: Returns the bytecode stored for the specific account address. If the

address is EOA, it will return 0x0.

2.4 Ethereum Use-cases

In the previous section we mostly discussed the infrastructure of Ethereum and give the

details about how Ethereum works under the hood and also how users can work with it. This

section is mostly talk about the use-cases and nuances regarding them in Ethereum. Before
3https://ethereum.org/en/developers/docs/nodes-and-clients/
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explaining the use-cases one by one, we should shed light into one of the main obstacles

that blockchain systems such as Ethereum has for developing different applications.

The Oracle Problem. Smart contracts cannot access external resources (e.g., a website

or an online database) to fetch data that resides outside of the blockchain (e.g., a price quote

of an asset). External data needs to be relayed to smart contracts with an oracle. An oracle

is a bridge or gateway that connects the off-chain real world knowledge and the on-chain

blockchain network. The ‘oracle problem’ [26] describes the limitation with which the

types of applications that can execute solely within a fully decentralized, adversarial envi-

ronment like Ethereum. Generally speaking, a public blockchain environment is chosen to

avoid dependencies on a single (or a small set) of trusted parties. One of the first oracle

implementations used a smart contract in the form of a database (i.e., mapping4) and was

updated by a trusted entity known as the owner. More modern oracle updating methods

use consensus protocol with multiple data feeds or polling techniques based on the “wis-

dom of the crowd”. The data reported by an oracle will always introduce a time lag from

the data source and more complex polling methods generally imply longer latency.

Trusted Third Parties. A natural question for smart contract developers to ask is: if

you trust the oracle, why not just have it compute everything? There are a few answers

to this question: (1) there may be benefits to minimizing the trust (i.e., to just providing

data instead of full execution), (2) there are widely trusted organizations and institutes—

convincing one to operate an oracle service is a much lower technical ask than convincing

one to operate a complete platform, and (3) if a data source becomes untrustworthy, it may

require less effort to switch oracles than to redeploy the system.

To mitigate the problem stated above, different solutions are developed to answer the

oracle problem and provide data for the applications in Ethereum that needs the real-world

4A Solidity mapping is simply a key-value database stored on a smart contract.

15



data. We will discuss the problem and solution in detail in Chapter 4.

There are myriad of applications developed on top of Ethereum blockchain. Some of

them uses the solutions describe in Chapter 4, using one of them to address the oracle

problem and bring real-world data on-chain. In later part of this section, we will explain

the most favorable use-cases and applications on Ethereum.

2.4.1 Stablecoins/Synthetic Assets

A “synthetic asset” is an asset that tracks the price of another asset without holding the

obligations of that asset. For instance, a synthetic asset of Apple share tracks the price of

Apple share that does not receive dividends and not have any other obligations regarding

the Apple share. This can be done by having the price of the asset provided by an oracle

which is discussed above and some other ad-hoc mechanisms to stabilize the price of the

asset that will be explained in Chapter 5. An example Dapp that is providing synthetic

assets is Synthetix5.

The asset can also be a currency (e.g., USD) and in this case, it will be a stablecoin.

A stablecoin is an asset that supposed to be peg to a currency such as USD. There are a

myriad of stablecoin platform in Ethereum such as Dai which we will discuss in Chapter 5

2.4.2 Decentralized Exchange (DeX)

Decentralized Exchanges (DeX) are platforms that helps users to exchange their assets

without need of an intermediary. Two main types of Decentralized Exchanges are Auto-

mated Market Maker (AMM) and orderbook-based exchanges.

In AMMs a party named Liquidity Provider (LP), creates pools for pairs of assets (could

be more than two assets in a pool like Balancer protocol), and put liquidity on the pool.

Users can exchange their assets in the pool. The smart contract will calculate the amount

5https://synthetix.io

16

https://synthetix.io


a user receive for a trade, using a mathematic formula based on the amount of liquidity

in the pool and the amount user wants to exchange. Because the calculations and market

making is done by smart contract automatically, this type of DeX is called Automated

Market Maker. Uniswap6 is the most famous AMM running on Ethereum blockchain.

In traditional finance, majority of exchanges are orderbook-based. In orderbook-based

exchanges, a user put her order to sell specific amount of asset A for specific amount of

asset B. On the other hand, another user puts an order in reverse, to sell asset B for specific

amount of asset A. The exchange will sort the orders of both sides and match the orders.

This process is computational costly because of need of sorting and match making and not

rational to be implemented on Ethereum mainnet because computations is expensive. But,

there are platforms such as Loopring,7 that implemented the whole process of order taking

and match making off-chain, using a layer two solution named StarkEx,8 and put the results

on-chain.

2.4.3 Lending

In lending platforms, users can lend and borrow crypto assets. There are pools of assets

in these platforms that a user can lend those assets by depositing into the pools and can

borrow against them. The borrowers are obliged to pay fees which is directly be paid to the

lenders. Compound9 and Aave10 are two most favorable lending Dapps on Ethereum at the

time of writing the paper.

6https://uniswap.org
7https://loopring.org
8https://starkware.co/starkex/
9https://compound.finance

10https://aave.com
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2.4.4 Ethereum Name Service (ENS)

Ethereum Name Service (ENS)11 is one of the most favorite Dapps in Ethereum that is not

for financial purposes. ENS is a decentralized naming system that maps a human-readable

names to Ethereum addresses. ENS recently adds support for crypto addresses other than

Ethereum. Also users can launch their own websites using their ENS.

2.4.5 Derivatives

Derivatives are financial contracts that is based on value of another underlying asset or a

basket of assets which include options, swaps, and future contracts. dYdX12 is a decen-

tralized trading platform that traders can go long or short up to 25x on specific assets like

ETH, BTC, Link, etc. Having 25x leverage position means that the user have exposure of

25x on the price changes means that if the user longs 25x, and if the price increase by 1%,

the user gains 25%. If the user takes 25x short position and the price falls 1% then the user

gains 25%.

Options are another type of derivatives in which the user has the right to buy13 or sell14

a specific amount of an asset, for a specific price.15 Options has a expiration date: in

American options style, one can exercise the contract before expiration date whenever they

want but in European style the user can just exercise on the expiration date. Opyn16 and

Hegic17 protocols are two options platform in Ethereum.

11https://ens.domains
12https://dydx.exchange
13Call option
14Put option
15strike price
16https://www.opyn.co
17https://www.hegic.co

18

https://ens.domains
https://dydx.exchange
https://www.opyn.co
https://www.hegic.co


2.4.6 Yield Farming

Protocols like Compound give their native tokens to the active users. For instance, in

Compound lenders and borrowers receive Comp token.18 The aggregated fees collected by

users in a year counted as Annual Percentage Yield (APY) which is completely related to

the price of native token. There are different platforms that do almost the same logic, but

with different APRs at the moment. This brings the idea to develop Dapps that calculate

the best APR and use different strategies to maximize the APR of the user. Yearn19 is one

of the leading Dapps that build different strategies to farm most benefit yields for the users.

There are other yield farming Dapps such as Harvest finance20 or Pickle finance.21

2.4.7 Privacy Tools

Ethereum blockchain do not ensure the anonymity and privacy on the main layer because

of transparency. There are different solutions developed to bring privacy to the Ethereum

transactions. One of the most favorite solutions is Tornado Cash.22 Tornado cash uses Zero-

knowledge snarks to mix Ethers deposited into the contract and break the link between the

deposited address and the withdrawn one. Another Dapp that uses Zero-knowledge to

enable private transactions on Ethereum is Aztec protocol.23

2.4.8 Liquidation

Liquidation is not a type of Dapp but because bunch of applications and use-cases de-

scribed above have this process in common we put a section for it. It will be discussed in

detail in Chapter 5. Liquidation is used in stablecoins, synthetic assets, lending platforms,

18Native token of Compound
19https://yearn.finance
20https://harvest.finance
21https://www.pickle.finance
22https://tornado.cash
23https://aztec.network
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and derivatives. Liquidation happens when the value of the debt of a user exceeds a pre-

specified portion of collateral provided by the user. So it means the user’s collateral cannot

back the debt in this situation. In traditional finance, the liquidation mostly managed by the

broker or service provider. However, in DeFi, because of elimination of the intermediaries,

the protocol incentivize the external actors, named Keepers, to liquidate the position and

top up the collateral or close buy the position.
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Chapter 3

Upgradeability of Smart Contracts on

Ethereum

This chapter is adapted from work supervised by Jeremy Clark and Mohammad Mannan,

and is accepted for publication at the 2022 Workshop on Trusted Smart Contracts (WTSC)

co-located with Financial Cryptography and Data Security (FC).

3.1 Introductory Remarks

The key promise of a smart contract running on Ethereum is that its code will execute ex-

actly as it is written, and the code that is written can never be changed. While Ethereum

cannot maintain this promise unconditionally, its assumptions (e.g, cryptographic primi-

tives are secure and well-intentioned participants outweigh malicious ones) provide a real-

istic level of assurance.

The immutability of a smart contract’s code is related to trust. If Alice can validate

the code of a contract, she can trust her money to it and not be surprised by its behavior.

Unfortunately, disguising malicious behavior in innocuous-looking code is possible (“rug

pulls”), and many blockchain users have been victims. On the other hand, if the smart
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contract is long-standing with lots of attention, and security assessments from third-party

professional auditors, the immutability of the code can add confidence.

The flip-side of immutability is that it prevents software updates. Consider the case

where a security vulnerability in the code of a smart contract is discovered. Less urgently,

some software projects may want to roll out new features, which is also blocked by im-

mutability. There is an intense debate about whether this is a positive or negative, with

many claiming that “upgradeability is a bug.”1 We do not take a position on this debate.

We note that upgradeability is happening and we seek to study what is already being done

and what is possible.

Is there a way to deploy upgradeable smart contracts if all smart contracts are (prac-

tically speaking) immutable? Consider a two simple ideas. The first is to deploy the up-

graded smart contract at a new address. One main drawback to this is that all software and

websites need to update their addresses. A second simple idea is to use a proxy contract

(call it P) that stores the address of the “real” contract (call it A). Users consider the sys-

tem to deployed at P (and might not even be aware it is proxy). When a function is called

on P, it is forwarded to A. When an upgrade is deployed to a new address (call it B), the

address in P is changed from A to B. This solution also has drawbacks. For example, if

the proxy contract hardcodes the list of functions that might be called on A, new functions

cannot be added to B. Another issue is that the data (contract state) is stored in A. For most

applications, a snapshot of A’s state will need to be copied to B without creating race con-

ditions. Mitigating these issues leads to more elaborate solutions like splitting up a contract

logic and state, utilizing Ethereum-specific tricks (fallback functions to capture unexpected

function names), and trying to reduce the gas costs of indirection between contracts.

1“Upgradeability Is a Bug”, Steve Marx, Medium, Feb 2019.
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3.2 Contributions and Related Work

The state of smart contract upgradeability methods in Ethereum is mainly discussed in non-

academic, technical blog posts [110, 105]. In Section 3.3, we systemize the different types

using these resources, and provide a novel evaluation framework for comparing them.

Fröwis and Böhme [63] conducted a measurement study on the use-cases of the CREATE2

opcode in Ethereum blockchain, which one of them is the Metamorphosis upgradeability

pattern discussed in Section 3.3.5. They also find, in a passing footnote, some delegate-call

based contracts by assuming compliance with the standards: EIP-897, EIP-1167, EIP-1822,

and EIP-1967. In this chapter, we contribute a more general pattern-based measurement

that is not specific to a standard or a commonly-used implementation. We also are the

first, to our knowledge, to study who is authorized for upgrading an upgradeable contracts,

shedding light on the risks of different admin types.

Recent papers have provided security tools for developers that compose with upgrade-

ability patterns based on DELEGATECALL [125, 113]. Numerous measurement studies

have used Ethereum blockchain data but concern aspects other than upgradeability [114,

30, 123, 144, 117, 72]. Chen et al. [29] survey use-cases of the SELFDESTRUCT opcode,

but they do not cover how it is used in Metamorphosis 3.3.5.

3.3 Classification of Upgrade Patterns

Updating vs. upgrading. Software maintenance is part of software’s lifecycle, and the

process of changing the product after delivery. Often a distinction is drawn between soft-

ware updates and software upgrades. An update modifies isolated portions of the software

to fix bugs and vulnerabilities. An upgrade is generally a larger overhaul of the software

with significant changes to features and capabilities. We only use the term upgrade and
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Figure 1: Classification of upgradeability patterns.

distinguish between retail (parameters and isolated code) and wholesale (entire applica-

tion) changes to a smart contract. While upgrades to a smart contract’s user interface (UI)

can significantly change a user experience and expose new features, UIs are governed by

traditional software maintenance. This chapter only considers the on-chain smart contract

component, which is significantly more challenging to upgrade as it is on-chain and im-

mutable under reasonable circumstances.

A variety of upgradeability patterns have been proposed for smart contracts. Most

leverage Ethereum-specific operations and memory layouts and are not applicable to other

blockchain systems.

3.3.1 Parameter Configuration

We first categorize upgradeability patterns into two main classes: retail changes and whole-

sale changes. A pattern for retail change does not enable the replacement of the entire

contract. Rather, a component of the contract is pre-determined (before the contract is

deployed on Ethereum) to allow future upgrades, and the code is adjusted to allow these

changes.

The simplest upgrade pattern is to allow a system parameter, that is stored in a state

variable, to be changed. This requires a setter function to overwrite (or otherwise adjust)
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the variable, and access control over who can invoke the function. For example, in de-

centralized finance (DeFi), many services have parameters that control fees, interest rates,

liquidation levels, etc. Adjustments to these parameters can initiate large changes in how

the service is used (its ‘tokenomics’). A DeFi provider can retain control over these pa-

rameters, democratize control to a set of token holders (e.g., stability fees in the stablecoin

project MakerDao), or lock the parameters from anyone’s control. In Section 3.6, we dive

deeper into the question who can upgrade a contract.

3.3.2 Functional Component Change

While a parameter change allows an authorized user to overwrite memory, a functional

component change addresses modifications to the code of a function (and thus, the logic of

the contract). In the EVM, code cannot be modified once written and so new code must be

deployed to a new contract, but can be arranged to be called from the original contract.

One way to allow upgradable functions is deploying a helper contract that contains

the code for the functions to be upgradeable. Users are given the address of the primary

contract, and the address of this secondary contract is stored as a variable in the primary

contract. Whenever this function is invoked at the primary contract, the primary contract

is pre-programmed to forward the function call, using the opcode Call, to the address it

has stored for the secondary contract. To modify the logic of the function, a new secondary

contract is deployed at a new address, and an authorized set of individuals can then use a

parameter change in the primary contract to update the address of the secondary contract.

The DeFi lending platform Compound2 uses this pattern for their interest rate models.3

which are tailored specifically for each asset. The model for one asset can be changed

without impacting the rest of the contract [110]

2https://compound.finance
3https://github.com/compound-finance/compound-protocol/blob/v2.3/

contracts/InterestRateModel.sol

25

https://compound.finance
https://github.com/compound-finance/compound-protocol/blob/v2.3/contracts/InterestRateModel.sol
https://github.com/compound-finance/compound-protocol/blob/v2.3/contracts/InterestRateModel.sol


Upgradeable functional components need to be pre-determined before deploying the

primary contract. Once the primary contract is deployed, it is not possible to add upgrade-

ability to existing functions. It also cannot be directly used to add new functions to a

contract. Finally, this pattern is most straightforward when the primary contract only uses

the return value from the function to modify its own state. Thus, the function is either ‘pure’

(relies only on the parameters to determine the output) or ‘view’ (can read state from itself

or other contracts, but cannot write state). If the function modifies the state of the primary

contract, the primary contract must either expose its state variables to the secondary con-

tract (by implementing setter functions), or it can run the function using Delgatecall

if the secondary contract has no state of its own.

This upgrade pattern suggests a way forward for wholesale changes to the entire con-

tract: create a generic “proxy” contract that forwards all functions to a secondary contract.

To work seamlessly, this requires some further engineering (Sections 3.3.6 and 3.3.7).

3.3.3 Consensus Override

The two previous patterns enable portions of a smart contract to be modified. The remain-

ing patterns strive to allow an entire contract to be modified or, more simply, replaced. The

first wholesale pattern is not a tenable solution to upgradeability as it as only been used

rarely under extraordinary circumstances, but we include it for completeness.

Immutability is enforced by the consensus of the blockchain network. If participating

nodes (e.g., miners) agreed to suspend immutability, they can in theory allow changes to a

contract’s logic and/or state. If agreement is not unanimous, the blockchain can be forked

into two systems—one with the change and one without. In 2016, a significant security

breach of a decentralized application called “the DAO” caused the Ethereum Foundation to

propose overriding the immutability of this particular smart contract to reverse the impacts

of attack. In the unusual circumstances of this case, it was possible to propose and deploy
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the fix before the stolen ETH could be extracted from the contract and circulated. Nodes

with a philosophical objection to overriding immutability continued operating, without de-

ploying the fix, under the name Ethereum Classic.

3.3.4 Contract Migration

The simplest wholesale upgrade pattern is to deploy a new version of the contract at a new

address, and then inform users to use the new version—called a “social upgrade.” One

example is Uniswap4, which is on version 3 at the time of writing. Versions 1 and 2 are

still operable at their original addresses.

Contract migration does not require developers to instrument their contracts with any

new logic to support upgradeability, as in many of the remaining patterns, which can ease

auditability and gas costs for using the contract. However for most applications, there will

be a need to transfer the data stored in the old contract to the new one. This is generally done

in one of two ways. The first is to collect the state of the old contract off-chain and load it

into the new contract (e.g., via its constructor). If the old contract was instrumented with an

ability to pause it, this can eliminate race-conditions that could otherwise be problematic

during the data migration phase. The second method, specific to certain applications like

tracking a user’s balance of tokens, is to have the user initiate (and pay the gas) for a transfer

of their balance to the new contract.

3.3.5 CREATE2-based Metamorphosis

Is it possible to do contract migration, but deploy the new contract to the same address as

the original contract, effectively overwriting it? If so, developers can dispense with the need

for a social upgrade (but would still need to accomplish data migration). At first glance,

this should not be possible on Ethereum, however a set of opcodes can be “abused” to

4https://uniswap.org
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allow it: specifically, the controversial5 SELFDESTRUCT opcode and the 2019-deployed

CREATE2.

Consider a contract, called Factory, that has the bytecode of another contract, A, that

Factory wants to deploy at A’s own address. CREATE2, which supplements the original

opcode CREATE, provides the ability for Factory to do this and know in advance what

address will be assigned to contract A, invariant to when and how many other contracts

that Factory might deploy. The address is a structured hash of A’s “initialization” bytecode,

parameters passed to this code, the factory contract’s address, and a salt value chosen by the

factory contract.6 Most often, A’s initialization bytecode contains a copy of A’s actual code

(“runtime” bytecode) to be stored on the EVM, and the initialization code is prepended

with a simple routine to copy the runtime code from the transaction data (calldata) into

memory and return. Importantly, however, the initialization bytecode might not contain

A’s runtime bytecode at all, as long as it is able to fetch a copy of it from some location on

the blockchain and load it into memory. In order for CREATE2 to complete, the address

must be empty, which means either (1) no contract has ever been deployed there, or (2) a

contract was deployed but invoked SELFDESTRUCT.

Assume the developer wants to deploy contract A using metamorphosis and later update

it to contract B.7 The developer first deploys a factory contract with a function that accepts

A’s (runtime) bytecode as a parameter (which includes the ability to self destruct). The fac-

tory then deploys A at an arbitrary address and stores the address in a variable called code-

Location. The factory then deploys a simple ‘transient’ contract using CREATE2 at address

T. This contract performs a callback to the factory contract, asks for factory.codeLocation,

and copies the code it finds there into its own storage for its runtime bytecode and returns.

As a consequence, A’s bytecode is now deployed at address T.

5“Expectations for backwards-incompatible changes / removal of features that may come soon.” V. Bu-
terin, Reddit r/ethereum, Mar 2021.

6Specifically: addr← H(0xff‖factoryAddr‖salt‖H(initBytecode‖initBytecodeParams))
7“The Promise and the Peril of Metamorphic Contracts.” 0age, Medium, Feb 2019.

28

https://www.reddit.com/r/ethereum/comments/lx32kv/expectations_for_backwardsincompatible_changes/
https://www.reddit.com/r/ethereum/comments/lx32kv/expectations_for_backwardsincompatible_changes/
https://medium.com/@0age/the-promise-and-the-peril-of-metamorphic-contracts-9eb8b8413c5e


To upgrade to contract B, the developer calls SELFDESTRUCT on A. Mechanically, the

consequences of SELFDESTRUCT on the EVM are only realized at the end of the transac-

tion. In a followup transaction, the developer calls the factory with contract B’s bytecode.

The factory executes the same way placing a pointer to B in factory.codeLocation. Im-

portantly, it generates the same address T when it invokes CREATE2 since the ‘transient’

contract is identical to what it was the first time—this contract does not contain contract A

or B’s runtime code, it just contains abstract instructions on how to load code. The result is

contract B’s runtime bytecode being deployed at address T where contract A was.

As it is concerning that a contract’s code could completely change, we note that meta-

morphic upgrades can be ruled out for any contract where either: it was not created with

CREATE2, it does not implement SELFDESTRUCT, and/or its constructor is not able to

dynamically modify its runtime bytecode.

3.3.6 CALL-based Data Separation

To avoid migrating the stored data from an old contract to an upgraded contract, a contract

could instead store all of its data in an external “storage” contract. In this pattern, calls are

made to a “logic” contract which implements the function (or reverts if the function is not

defined). Whenever the logic contract needs to read or write data, it will call the storage

contract using setter/getter (aka accessor/mutator) functions. An upgrade consists of (1)

deploying a new logic contract, (2) pausing the storage contract, (3) granting the new logic

contract access to the storage contract, (4) revoking access from the old contract, and (5)

unpausing the storage contract.

An important consideration is that the layout of the storage contract cannot be changed

after deployment (e.g., we cannot add a new state variable). This can be side-stepped to

some extent by implementing a mapping (key-value pair) for each primitive data type. For

example, a new uint state variable can be a new entry in the mapping for uints. This is
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called the Eternal Storage pattern (ERC930). It however requires that every data type be

known in advance, and is challenging to use with complex types (e.g., structs and mappings

themselves).

A variant of this pattern can introduce a third kind of contract, called a proxy contract,

to address the social upgrade problem. In this variant, users permanently use the address of

the proxy contract and always make function calls to it. The proxy contract stores a pointer

(that can be updated) to the most current logic contract, and asks the logic contract to run the

function using CALL. Unlike the functional component pattern (Section 3.3.2), the proxy

will catch and forward any function (including new functions deployed in updated logic

contracts) using its fallback function. With or without proxies, this pattern is very powerful,

but instrumenting a contract to use it requires deep-seated changes to the contract code. As

our measurements will show, it has fallen out of favour for the cleaner DELEGATECALL-

based pattern (Section 3.3.7) that addresses the same issues with simpler instrumentation.

3.3.7 DELEGATECALL-based Data Separation

This pattern is a variant on the idea of chaining each function call through a sequence of

three contracts: proxy, logic, and storage. The first modification is reversing the sequence

of the logic and storage contracts: a function call is handled by the proxy which forwards

it to the storage contract (instead of the logic contract). The storage contract then forwards

it to the logic contract using DELEGATECALL which fetches the code of the function from

the logic contract but (unlike CALL) runs it in the context of the contract making the call—

i.e., the storage contract. When upgrading, a new logic contract is deployed, the proxy

still points to the same storage contract, and the storage contract points to the new logic

contract. Since the proxy and storage contracts interact directly and are both permanent, the

functionality of both can be combined into a single contract. It is common for developers

to call this the ‘proxy contract,’ despite it being a combination of a proxy and a storage
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contract.

This pattern is generally cleaner than using the previous CALL-based pattern because

the logic contract does not need any instrumentation added to it. It is an exact copy of what

the contract would look like if the upgrade pattern was not being used at all. However this

does not mean the pattern in a turn-key solution. Each new logic contract needs to be pro-

grammed to respect the existing memory layout of the storage contract, which has evolved

over the use of all the previous logic contracts. The logic contract also needs to be aware

of any functions implemented by the storage contract itself—if the same function exists

in both the storage contract and the logic contract (called a function clash), the storage

function will take precedence.

The main issue with function clashes is that the proxy contract needs, at the very least,

to provide an admin (or set of authorized parties) the ability to change the address of the

logic contract it delegates to. This can be addressed in four main ways:

1. Developers are diligent that no function signature in the logic contract is equal to the

signature of the upgrade function in the proxy contract (note that signatures incor-

porate a truncated hash of the function name, along with the parameters types, so

collisions are possible).

2. As found in the universal upgradeable proxy standard (UUPS) (EIP-1822): imple-

ment the upgrade function in the logic contract, which will run in the context of the

proxy contract. Its exact function signature must be hardcoded into the proxy con-

tract. Every logic contract update must include it or further updates are impossible.

3. As found in the beacon proxy pattern (EIP-1967): deploy another contract, called

the beacon contract, to hold the address of the logic contract and implement the

setter function for it. The proxy contract will get the logic contract address from the

beacon every time it does a DELEGATECALL. The admin calls the beacon contract
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to upgrade the logic contract, while normal users call the proxy contract to use the

DApp.

4. As found in the transparent proxy pattern (EIP-1538): inspect who is calling the

proxy contract (using msg.sender())—if it is the admin, the proxy contract catches

the function call and if it is anyone else, it is passed to the proxy’s fallback function

for delegation to the logic contract.

A drawback of the entire DELEGATECALL-based pattern is that logic contracts need to

be aware of the storage layout of the proxy contract. In a stand-alone contract, the compiler

(e.g., Solidity) will allocate state variables to storage locations, and using DELEGATECALL

does not change that, however new logic contracts need to allocate the same variables in

the same order as the old contract, even if the variables are not used anymore. This can be

made easier with object-oriented patterns: each new logic contract extends the old contract

(inheritance-based storage). Other options include mappings for each variable type (eternal

storage) or hashing into unique memory slots (unstructured storage). The Diamond Storage

pattern (EIP-2535) breaks the logic contract into smaller clusters of one or a few functions

that can be updated independently, and each can request one or more storage slots in a

storage space managed by the proxy contract itself.

3.4 Evaluation Framework

In this section, we compare and evaluate different methods discussed in previous section

and explain the consequences regarding each method to the users and developers of Dapps.

Table 1 summarizes the pros and cons of each upgradeability pattern, omitting consensus

override as it is only used in emergencies. The detail of criteria and properties that are used

to assess each method, and also take-aways from the evaluation are described in further

sections.
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Method Can replace entire
logic

No need to migrate state from old contract

User endpoint address unchanged

No need to instru
ment source

No need to deploy a new
contract to upgrade

No indirection between contracts

No downtim
e to upgrade

No function selector clashes

No storage clashes

Parameter Configuration • • • • • • • •
Component Change • • ◦ ◦ • • •
Contract Migration • • • • • •
Create2 metamorphosis • • • • • •
Call-based • • • • •
DelegateCall-based • • • ◦ •

Table 1: An evaluation of upgradeability patterns. • indicates the upgrade method is
awarded the benefit in the corresponding column. ◦ partially awards the benefit. Empty
cells shows that the method does not satisfy the property.

3.4.1 Properties

There are some characteristics that can help the designer to decide which method should

be used on the system and add upgradeability to the Dapp. In this part we pencil out these

criteria and evaluate different methods based on these criteria. In this part we describe and

specify what it means that each row of our table receives a full dot (•), partial dot (◦), or

nothing.

Can replace entire logic

An upgradeability method in which the admin is able to replace the entire logic of the

system earns a full dot (•) otherwise it receives nothing.

No need to migrate state from old contract

In some patterns, there is no need to collect data from the old version and push it to the new

contract which receive a full dot (•). On the other hand, patterns which required to migrate
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data from old version receive nothing.

User endpoint address not changed

In some upgradeability methods, after the upgrade process, users must call a new contract

address to use the Dapp. It is equivalent to having 2 different Dapps at the end of the

upgrade. Alice uses Dapp X which uses one of the upgradeability patterns at address A

before the upgrade. After upgrade, she may be unaware that upgrade happened and use the

previous address (receive full mark (•)) or she may need to use address B instead which

receive nothing.

No need to instrument source

Upgradeability patterns in which the developers do not need to change any part of the

original code to add the upgrade method receives nothing. The methods in which the

developers do not need to change the whole code but should add a proxy contract or change

just one component of the system receive half dot (◦) and patterns in which the developers

should change the whole code to add upgradeability receive full mark (•).

No need to deploy a new contract

In some upgradeability patterns, the admin needs to deploy a new smart contract in the

process of upgrade which receives nothing. Upgradeability methods which do not need to

deploy a new contract for the process of upgrade receive a full dot (•).

No indirection between contracts

Indirection happens if the first external message need be forwarded from a contract to

another using one of the CALL, STATICCALL, or DELEGATECALL opcodes. Upgrade-

ability methods that do not need any indirections receive a full dot (•). An upgradeability
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pattern that contains indirections which adds an extra gas because of adding one or more

layers of indirection awarded nothing. An upgradeability method in which not all but just

a portion of the incoming transactions need indirection receive half dot (◦).

No downtime to upgrade

Patterns which have a downtime of the Dapp in the upgrade event receive full dot (•)

otherwise it receives nothing.

Function Selector Clashes

Upgradeability methods in which the developer should take care of function selector risks

due to the using of DELEGATECALL opcode receive full dot (•), otherwise receive nothing.

Storage Clashes

Upgradeability methods in which the developer should take care of storage clashes risks in

two contracts due to the using of DELEGATECALL opcode receive full dot (•).

3.4.2 Take-Aways

In this section we discuss about the consequence of each upgrade methods regarding the

criteria we mentioned in the previous part for users and developers that want to use the

upgradeability pattern or uses a Dapp that uses one of the mentioned patterns.

3.4.3 Speed of an Upgrade

Upgrade events of a Dapp consists of two different processes. First a way to come to an

agreement for changing the system, and then a way to implement and execute the change.

The First part depends on the reason behind the upgrade. If the upgrade is to patch a

bug, then the process to come into agreement is very fast but if the goal behind upgrade
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is to add new functionality or change a logic, it usually starts with a proposal and after

some discussions, if the agent that responsible for the decision agree with the proposal, the

execution part will be started. We won’t discuss the first process because it depends on

the type of agent discuss in 3.6. After coming into agreement about the change, the speed

that the admin can implement and execute the upgrade depends on three criteria discussed

above: No need to deploy a new contract to upgrade, No need to migrate state from old

contract, and having a downtime in the upgrade process.

Parameter change method is the fastest way to execute the upgrade because there is no

need to deploy a new contract, and no need to migrate state and no downtime in the system.

Component change method change is not as fast as parameter change method but faster than

other types because the admin needs to deploy a specific smart contract which is a small

component of the system and also update an address variable inside the main contract that

points to that specific component and change it to the address of the new version of that

component. But there is no need to migrate data and there is no downtime needed for this

upgrade method.

Migration method has a slow upgrade process. The reason is that the admin needs to

deploy a new contract and also the admin or users should transfer the data from old version

to the newer version. In most migration processes the developer team deploy a Migrator

contract and users should use this Migrator contract to withdraw their funds/data from the

previous version and move it to the newer version. But, there is no downtime in the Dapp

and no need to change a state variable.

Call-based and DelegateCall-based are very similar to each other in the speed of up-

grade. These two are not as quick as Retail changes because the developer needs to im-

plement and deploy the whole logic contract to the blockchain and then change the pointer

addresses inside the storage/proxy contract to the newer version. On the other hand these

two approaches are faster than Migration because as mentioned before, there is no need to
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migrate data. There is no downtime in these methods.

Metamorphic method is the slowest way to upgrade a system which uses this method

because similar to the migration plan there is a need to deploy a contract and migrate the

state to the newer version but there is a difference between these two. In metamorphic

method, the admin first should Self-Destruct the previous version in a single transaction

and after that transaction send a contract creation transaction to deploy the newer version.

Because self-destruct happened at the end of the transaction, the process of upgrade hap-

pens on two different transactions which is a downtime to the system. This downtime could

be a gap between order of the two transaction in a single block or could be gap between

blocks that these two transactions included into blockchain.

3.4.4 Cost of Upgrade

One of the main differences between upgradeability approaches is how much does the

upgrade process costs for the admins and users. The cost of upgrade mostly depends on

two criteria explained above: 1) no need to deploy a new contract, 2) no need to migrate a

the state to newer version.

Parameter change method is the cheapest method in the upgrade event because there

is no need to deploy a new contract or migrate data. Component change is in the middle,

because there is a need to deploy a new contract (however it is cheaper comparing to meth-

ods in which we should deploy the whole logic), but there is no need for data migration.

Migration plan is very expensive in the upgrade event because we need to deploy a new

contract and migrate the data from the old version which is very expensive. Call-based

and DelegateCall-based are very similar to each other in the cost of upgrade which is more

expensive than component change, but cheaper than migration. In both the admin must

deploy the a contract containing the whole logic, but there is no need to migrate the whole
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data. Metamorphic method is the most expensive method we have because we need to de-

ploy a new contract, migrate data to the newer version and also we need to self-destruct the

previous version before the upgrade event which adds cost to the upgrade process.

3.4.5 Gas Overhead for Users

Sometimes in upgradeability patterns, we have a tradeoff between adding a feature to the

pattern to improve it and increasing the cost (gas needed for the transactions) for users that

want to interact with our Dapp.

In patterns that needs indirection, such as Call-based, Delegatecall-based, and Compo-

nent change pattern an extra cost will be added to the users, because for all or some of the

transactions to the Dapp, our system needs to forward the calls to another contract using

Call or Delegatecall opcode to the users. Also in Delegatecall-based pattern to mitigate the

function selector clashes or storage clashes, we need to add some other checks to our code

which also increases the cost of interacting with the Dapp. Also there are some other ideas

that addresses some limitations of one type of upgradeability pattern, but increases the cost

for users. For instance, in Call-based approach one of the problems is that after upgrade

users should use a new address for using the Dapp but adding a Registry contract can help

to mitigate this. Using Registry contract, all other contracts should ask the registry to find

out the latest version of the contract and then calls to the newer version which adds a gas

cost to the users.

3.4.6 Useability

Upgradeability patterns differ in term of Useability and it depends on three criteria ex-

plained above; User endpoint address unchanged, No need to migrate state from old con-

tract and Downtime in upgrade events.

Patterns in which the endpoint address is changing after upgrade event, Migration and
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Call-based is not user friendly because each time that the upgrade happens, the user must

use the newer address. So there is need to make awareness about this address change which

is a hard action and need to socially interact with the all users and make them aware of the

change. We have two main type of users in the Dapp ecosystem, normal user or another

smart contract (Dapp) that uses our system. Regular users which uses the official interface

(website) of the project may do not sense any changes, but users that work with the smart

contract directly or via their own interface (e.g, Centralized Exchanges), or other Dapps that

uses the smart contract must have a way to upgrade the address they uses to use the newer

version and if they did not implement a way to upgrade this address then their Dapp will

face problems. So these patterns are make problems for composability of the ecosystem.

In most of Migration plan upgrade events, users are responsible for the migration of

their data using a migrator contract (for instance, the user must withdraw the fund and use

a migrator contract to push the data into the newer version) which add costs to the user and

it is not user friendly. This is one reason that make the migration plans very hard because

some users are not doing the process of migration and stay on the previous version which

is like having a fork for the Dapp in side of the Dapp team (e.g, Uniswap V2 and V3). In

Metamorphic pattern as mentioned before there is a downtime during the upgrade. So users

cannot work with the Dapp on that exact time which is not user friendly.

3.4.7 Dealing with two New Versions of a Dapp

In Migration and Call-based pattern we will come up with two different Dapps after each

upgrade event. So, a decision must be made for the previous version. One possible choice

could be shutting down the old version. It can be done by self-destructing the old version,

or by having a pausing mechanism to stop the older version functionality. In migration

plan it is not regular to stop the previous version because in most migration plans, users

are responsible to move their funds and data from the previous version to the new one and
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we cannot force them to do that, so we cannot stop the smart contract. The other option

could be having a mechanism that after the upgrade, all calls to the previous version just be

forwarded to the newer version which add costs and have some limitations like we cannot

call the new functions defined in the newer version using the old version. This option is

doable in Call based patterns. The other problem of this option is that if we upgrade a

system more than one time then the calls to the first version should be redirected through

lots of contracts to reach to the newer version. Also it adds complexity because developers

must maintain more than one contract [105].

3.4.8 System Complexity

Using upgradeability patterns will add to complexity of our system but the degree of com-

plexity varies and depends on the pattern. Parameter Change method does not change the

system in general but just adding a mechanism to change pre-specified variables in the

system. The most important issue about this pattern is that the developer team must limit

the boundary of these parameter for the security of the system. For instance in Maker-

Dao platform,8 Stability fee is changeable but if this variable be changed to 100% then the

whole system will be halted, so it should be limited. Component Change pattern is very

similar to the parameter change, but a whole component could be changed and finding the

safe boundary of changes and limiting this boundary is a bit harder. Migration plans for

upgradeability does not change any complexity to the system because we do not need to

change any part of system to add this type of upgradeability to it. The only important issue

regarding this pattern is that we must be sure that there is a way to collect data from the

old version like having getter functions for reading data and also having a withdraw func-

tion for users to collect data and funds from previous version and push or deposit it to the

newer version. Using Call-based patterns adds higher degree of complexity to the system

8https://makerdao.com/
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compared to previous patterns. As discussed before, in this pattern we must be sure that the

storage and logic contract is divided and there is not any storage variable inside the logic

contract. This is one of the main security issues that found in the Dapps using this pattern

regarding Trail of Bits company reports [105]. To add a way in storage contract to define

new variables, developers uses the eternal Storage pattern for their storage contract which is

very hard to apply for complex data structures in Ethereum such as mappings or structures.

This is another source of complexity using Call-based pattern. Delegate-call pattern adds

complexity to the code because of using Delegate-call opcode in its logic. As mentioned

above because of using this opcode, the developer should take care of storage clashes and

also function selector clashes. Other than these two there are some other limitations and

risks of using this patterns. For instance, we cannot have a Constructor function on the

logic contract, because constructor functions is used to initialize specific variables at de-

ployment time and if we have a constructor inside the logic, then storage of implementation

contract will be changed and not storage of proxy contract. To mitigate this problem we can

add a regular function named Initialize function inside the implementation and make sure

that this function can be called once to act just like a constructor function. Metamorphic

pattern is proposed recently and not well-tested yet. There are some risks to this pattern as

well. We should be sure that we have a mechanism to self-destruct the contract. Otherwise

we cannot redeploy a new version and so our contract won’t be upgradeable. The other im-

portant issue related to Metamorphic pattern is that the developer must know that each time

they want to upgrade the system the whole storage will be wiped out and need to re-initiate

the whole state after re-deployment.

3.5 Finding Upgradeable Contracts

We now design a series of measurement studies to shed light on the prevalence of the

various upgrade patterns. We exclude retail changes from our measurements, because
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variable changes and external function calls are too commonplace to distinguish. We

focus on wholesale patterns, and devote the most effort to finding contracts using the

DELEGATECALL-based data separation pattern (Section 3.3.7) as these are the most widely

used and there are various sub-types (UUPS, beacon, etc.). The other types of wholesale

patterns are:

• Consensus override: Only 1 occurrence to date (the DAO attack [46]).

• Contract migration: Not detectable in code; relies on social communication of the

new address.

• CREATE2-based metamorphosis. Already measured by Frowis and Bohme [63] in

a broader study of all uses of CREATE2. They found 41 contracts between March

2019 and July 2021 that upgraded using this pattern.

• CALL-based data separation. We conducted a quick study of 93K contracts with

disclosed source code [108]. We identified the Eternal Storage pattern using regular

expressions and found 140 instances, the newest having been deployed over 3.5 years

old. We conclude this pattern is too uncommon today to pursue a deeper bytecode-

based on-chain measurement.

3.5.1 Methodology

Finding proxies. While not every use of a proxy contract is for upgradeability (e.g., min-

imal proxies [100], DELEGATECALL forwarders [21], etc.), all DELEGATECALL-based

upgradeability variants have the functionality of a proxy. We therefore start by measuring

the number of contracts with a proxy component, and then filter out the Forwarders which

do not enable upgradeability. To identify proxies, we examine every DELEGATECALL

action and see if it was proceeded by a call with an identical function selector to the con-

tract making the DELEGATECALL action, which indicates the contract does not implement
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Figure 2: Flowchart for distinguishing upgradeable contracts (green) from forwarders, and
for determining the upgradeability pattern type.

this function and instead caught it in its fallback function, and is now forwarding it to an-

other contract at, what we will call, the target address. We used an Ethereum full archival

node9 and replayed each transaction in a block to obtain Parity VM transaction traces.

DELEGATECALL is one callType of an action within a trace. Specifically, if the data

of two consecutive actions of a transaction are equal and a DELEGATECALL is in the sec-

ond action, it shows that the transaction passes the fallback function (if any other function

in the contract is called, other than fallback, then the first four bytes of the data will be

changed). The DELEGATECALL indicates the fallback transferred the whole data to the

target address without altering it, which means the contract implements a proxy.

Distinguishing forwarders and upgradeability patterns. In an upgradeable contract,

the target address for the DELEGATECALL must be modifiable. If it is fixed, we tag it as

a forwarder. We define five common patterns for determining the target address cannot be

changed:

1. The target address is hardcoded in the contract.

2. The target address is saved in a constant variable type.

9https://archivenode.io/
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3. The target address is saved in an immutable variable type and the deployer sets it in

a constructor function.

4. The target address is defined as an unchangeable storage variable.

5. The proxy contract grabs the target address by calling another contract but there is

no way the callee contract can change this address.

In the first three situations, the target address will be appeared in the runtime bytecode

of the contract. For every proxy-based DELEGATECALL, we obtain the target address

from the transaction’s to address, and we obtain the caller’s bytecode by invoking

eth_getCode on the full node. If we find the target address in the bytecode, we mark it

as a forwarder.

In the fourth case, we find where the target address is stored by the contract by decom-

piling the contract, with Panoramix,10 locating the line of code in the fallback function that

makes the DELEGATECALL, and marking the storage slot for the target address. We parse

the code and check if an assignment to that slot happens in any function in the contract.

The process is explained in Section 3.5.2 in detail. If any assignment is found, we should

be sure that the other variable assigned to the target address variable comes from the input

of that function. If these conditions are satisfied, there is a function inside the contract that

can change the target address and we mark the proxy as an upgradeable proxy contract.

Recall in the Universal Upgradeable Proxy Standard (UUPS) pattern, the logic contract

implements a function to update the target address that is run in the proxy contract’s context

using DELEGATECALL. This is a sub-case of the fourth case, where we check the logic

contract instead of the proxy contract. If we determine the logic contract can assign values

to the logic contract in any function, we tag it as UUPS.

In the fifth case, we rewind the transaction trace from the proxy-based DELEGATECALL

and look for the target address being returned to the proxy contract in another action. If
10https://github.com/palkeo/panoramix
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we find it being returned by a contract, we apply the methodology from the fourth case

to this contract. If the target address is modifiable, we mark it as using the Beacon proxy

upgradeability pattern. All contracts that remain after performing all of the checks above

are marked as forwarders.

3.5.2 Assignment Checker Module

The whole measurement process is depicted on figure 3. We need a module to check

whether the admin can change target address on the proxy contract,using a function in the

proxy contract, implementation contract or beacon contract. For this purpose the module

must get the Bytecode of the proxy,implementation or beacon address as input and find the

variable name and also its storage slot of the target address. Then checks to find out is

there any function inside the contract that gives the admin the ability to change the target

address.

We use bytecode decompiler named Panoramix decompiler11 to decompile the byte-

code into well-formatted python language codes. The decompiled code gives us all storage

variables of the related contract and the storage slots of those variables in a function named

Storage. On the other hand, the decompiled code will tell us if a function is Payable or not.

Among these Payable functions the one that does not have name or its name is fallback is

the fallback function of the contract. So we will try to find the line of code that Delegate

Call happened on it and collect these lines. Now that we have storage variable names and

storage slots of these variables and also the line of code inside fallback that have the dele-

gatecall, we will check to find the target address variables. We are doing that by checking if

one of the storage variables inside Storage function is used in the line of code that contains

delegate call. We will add them to an array of implementation addresses.

There is two other steps here. First finding other variable names with the same storage

11https://github.com/palkeo/panoramix
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Figure 3: Upgradeability Proxy Finder

slots as the implementation addresses we found from the first step by checking the Storage

function and also finding another variables that being assigned to those implementation

variables in some other part of the code. We will add these two type of variables to the

implementation addresses as well.

Now that we have a list for implementation addresses, we will search through the code
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Figure 4: Assignment Checker Module

to find if any assignment happened to one of them. If yes we will pick the variables that is

assigned to target variable and then check if this assignment happened in a specific function

and to one of the inputs of that function. In this case this function will be the upgrade

function because the caller of this function can upgrade the target address by calling this

function with desired input.

To summarize what we did, we find all possible variables in the code that can change

the target address inside the contract and check if there is any function inside them that can

assign new address to the target address variable.

The whole process is depicted on figure 4.
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Proxy Contracts (Total) 1,427,215
Proxy Contracts (Filtered) 13,088
Regular Upgradeable Contracts 7,470
UUPS 403
Beacon 352

Table 2: Results of each DELEGATECALL-based upgrade pattern for the time-period Sep-
05-2020 to Jul-20-2021 (2,064,595 blocks).

3.5.3 Results

Our measurements cover block number 10800000 to 12864595, which corresponds to

the time-period Sep-05-2020 to Jul-20-2021, and are reported in Table 2. While

we found 1.4M unique proxy contracts, many of these share a common implementation

contract and are part of the same larger upgradable system. As one example, the NFT

marketplace OpenSea12 gives each user a unique proxy contract. After clustering contracts,

we find 13K unique systems.

For the 8,225 upgradeable systems (regular, UUPS and beacon), we randomly sampled

150 contracts and manually verified they were upgradeable proxy contracts. We also sam-

pled 150 contracts from the forwarders to verify they are not upgradeable, however we did

find 2 false-negatives. Our model did not catch these contracts because a failure happened

when decompiling them and our assignment checker detector in turn failed. Note that for

UUPS contracts, the implementation contracts are much larger and harder to analyze than

the proxy contract itself.

3.6 Finding the Admin

If a contract is upgradeable, someone must be permissioned to conduct upgrades. We call

this agent the admin of the contract. In the simplest case, the admin is a single Ethereum

account controlled by a private signing key, called an externally owned account (EOA). A

12https://opensea.io
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breach of this key could lead to malicious updates, as in the case of the lending and yield

farming DeFi service Bent Finance [58]. Bent Finance deployed a Transparent Upgrade-

able Proxy with an EOA admin that was breached (unconfirmed if via an external hack or

insider attack). The EOA pushed an updated logic contract13 which moved tokens valued

at $12M USD into the attacker’s account14 and then upgraded the logic contract to a clean

version to cover-up the attack. Based on The State of DeFi Security 2021 [36] report by

Certik,15 “centralization risk” is the most common attack vector for hacks of DeFi projects.

Control over upgradeability typically falls into one of three categories:

1. Externally owned Address (EOA): One private key controls upgrades. It is highly

centralized and one malicious admin or compromised private key could be catas-

trophic. It is also the fastest way to respond to incidents. An EOA may also pledge

to delegate their actions to an off-chain consensus taken on any platform, such as

verified users on Discord or Snapshot, however with no guarantee they will abide by

it. In our measurements, we cannot distinguish this subtype as these are off-chain,

social arrangements.

2. Multi-Signature Wallet: Admin privileges are assigned to a multi-signature wallet,

requiring transactions signed by at leastm of a pre-specified n EOAs. This distributes

trust, and tolerates some corruption of EOAs or loss of keys. There is no guarantee

different EOAs are operated by different entities and may be security theatre put on

by a single controlling entity.

3. On-Chain Governance Voting: A system issues a governance token and circulates it

amongst its stakeholders. Updates are decided through a decentralized voting scheme

where the weight of the vote from an EOA (or contract address) is proportionate to

13https://etherscan.io/address/0xb45d6c0897721bb6ffa9451c2c80f99b24b573b9
140xd23cfffa066f81c7640e3f0dc8bb2958f7686d1f
15certik.com
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how many tokens it owns. This system is potentially highly decentralized, but the

degree depends on the distribution of tokens (e.g., if a single entity controls a majority

of tokens, it is effectively centralized). Voting introduces friction: (1) a time delay

to every decision—some critical functionality might bypass the vote and use quicker

mechanisms (e.g., global shutdown in MakerDAO), and (2) on-chain network fees

for each vote cast.

3.6.1 Methodology

We conduct our measurement on the 7,470 regular upgradeable contracts from Section 3.5.

The process can be divided into two main parts: finding the admin account’s address and

finding the admin type (EOA, multi-sig, or decentralized governance).

Finding the admin account’s address. EIP-1967 suggests specific arbitrary slots for

upgradeable proxy contracts to store the admin address.16 We first check this specific

storage slot using eth_getStorageAt on the full node. If it is non-zero, we mark what

is stored as the admin address. For non-EIP-1967 proxies, we use a process that is very

similar to how we found the storage slot of the target address in Section 3.5. We first find

the function in which the admin can change the target address (upgrade function). This

function is critical and should only be called by the admin. We extract the access control

check and mark the address authorized to run this function as the admin address.

Finding the admin type. Having the admin address, we can check if the account is an

EOA by invoking eth_getCode on the address from the full node: if it is empty, it

is an EOA. Otherwise, it is a contract address. The most common multisig contract is

Gnosis Safe.17 We automatically mark the admin type as multi-sig if we detect Gnosis

16Storage slot 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103
17https://gnosis-safe.io/
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safe. We then switch the manual inspection to find other multi-signature wallets (e.g.,

MultiSignatureWalletWithDailyLimit, etc.) and add them to the data set.

In some cases, the admin address is itself a proxy contract—a pattern known as an

Admin Proxy. This adds another layer of indirection. We are reusing our methodology

for identifying proxy contracts to exact the real admin account, and the proceed as above.

Further details of the methodology and implementation are provided below:

EIP-1967.

As mentioned above EIP-196718 suggested specific arbitrary slots for upgradeable proxy

contracts to store implementation contract’s address and Admin address19.

In first step we use eth_getStorageAt method of an Ethereum full archival node to search

the EIP-1967 specified storage slot for admins on our 7,470 proxy contracts. If the result

of this method is non-zero it means that the proxy uses EIP-1967 standard because the

specified storage slot is an arbitrary slot and one can store variable in this slot just by

defining this slot which means that they used EIP-1967.

So, for non zero results, we capture the address which is the address of admin of the

proxy. Now we try to find the type of these admin addresses. Having the address of the

admin we use eth_getCode method to check the code of the admin account. If the code is

empty, it means that this account is not a smart contract so it is an EOA. we find 900 EOA

admins that their proxy uses EIP-1967 standard.

The remained admin addresses are contract because their account keeps code. This

contract can be multi signature smart contract wallets. The most widely used multi signa-

ture wallet is Gnosis Safe20 wallets. We automatically checked if the code of the admin

address is the Gnosis wallet multi signature patterns. After picking Gnosis safe wallets

18https://eips.ethereum.org/EIPS/eip-1967
19Storage slot 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103 for admin
20https://gnosis-safe.io/
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we manually checked %10 of the remained addresses to find if they used other patterns

for their multi signature wallet and we found some other patterns (e.g. MultiSignature-

WalletWithDailyLimit, etc.). After Finding all these types we checked the admin codes to

see whether they are multi signature wallets. We find 255 admin accounts that uses multi

signature wallets as their admin.

There is another class of admin contracts named Admin Proxy contracts. These admin

proxy contracts are another layer of re-direction between the real admin and the Dapp’s

proxy contract. The admin proxy contracts are proxy contracts that redirect the messages

from the real admin into the Dapp’s proxy. The only person who can use admin proxy

is the admin (a.k.a owner) of the admin proxy. So we first filter the admin proxy con-

tracts using the codes we get from the previous part and then try to find the owner of the

admin proxy contracts. The owner of admin proxy contract (the real admin) also can be

EOA, Multi-sig or governance contract. Finding the owner of the admin proxy contract,

we used eth_getCode method to check the code of these account and find out if they are

EOAs or Multi-signatures or governance schemes. Doing this we find 1202 EOA admin

accounts and 567 multi signature admins. We marked the remained proxy admin addresses

as Governance/Not Known admin types and we have 462 of them. There were also non

admin proxy contracts which use EIP-1967 but they were not EOA or Multi signatures. We

marked them as Governance/Not Known admin types and we have 53 of them.

Non EIP-1967.

For proxy contracts which not use EIP-1967, the problem is we don’t know where the

admin address is saved in the proxy contract’s storage (what is the storage slot of the admin

address). It can be saved in a storage slot of the contract or be hardcoded in the smart

contract.21

21There are some other possible ways to store the admin address for instance saving it in another contract
and each time make an external call to get the address but to our knowledge this pattern is not widely used as
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So there are two ways that the admin address is saved in the proxy contract. It can be

saved as a storage variables or it can be hardcoded as a fixed address.

In storage variable case, the first question is in which storage slot the admin address is

stored. So, the first step is to find the storage slot of the admin address variable. Also for

the fixed address we should find the fixed address of the admin directly.

To find the slot of the storage variable in which admin address is saved, we first find

the function in which the proxy can be upgraded. For finding the upgrade function we

exactly do what we did in 3.5 part. We first find the storage variable in which we saved the

implementation address and then we find a function in which the implementation address

can be changed using the inputs of that specific function.

The upgrade function of a proxy contract is a critical function and the only account

that can call this function should be the admin of the proxy contract. So, there should be

an access control check inside the upgrade function to check whether transaction sender

is equal to the admin address or not. So, after finding the upgrade function we search for

conditionals that checks the caller of the transaction and by doing that we can find the

admin address or the storage variable in which the admin address is stored.

If the admin address is stored in a storage variable, then we should find the storage slot

of that specific storage variable. For finding the storage slot we do what we did in 3.5 part

by using def storage function of the decompiler and check the storage slot of the storage

variable we found, and the admin address is saved on it. Now we have the storage slot

of the admin address and we should start doing all the things we did for EIP-1967 in the

previous part. In the EIP-1967 the storage slot for admin address was pre-specified and

we do not need to find the slot but in this case we use the above methodology to find the

slot but the further steps are the same as EIP-1967. So, by using the eth_getCode method

for admin address inside the storage slot we find above, we can check wether the admin is

a standard
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EIP-1967 Non-EIP-1967

Type
Regular
Admins

Admin
Proxy

Regular
Admins

Admin
Proxy

Arbitrary
Slots

Fixed
Address

EOA 900 1202 1313 92 2 49
Multisig 255 567 104 16 10 36
Governance/Other 53 462 160

Table 3: Results of each admin type in upgradeable contracts for the time-period Sep-05-
2020 to Jul-20-2021 (2,064,595 blocks).

EOA, Multi-sig, Governance, Proxy admin or not known. In this part we find 1313 EOA

addresses and 104 multi-sig admins. Also by checking proxy admins we find 92 EOA

addresses and 16 Multi signatures that uses proxy admin as a level of indirection.

In another case the admin address may be stored directly in a specific arbitrary storage

slots. In this type the compiler will specify the address using the sha3 hash notation. In this

case same as above we find the conditional check on the transaction sender and then find

the storage slot in that line and hash of that pre-specified string. By finding this arbitrary

storage slot and doing the same processes we did in the previous part we find 2 EOA

addresses and 10 Multi-sig addresses.

The only case that is left is proxy contracts, in which the address of the admin is hard-

coded inside them. It very straight forward. We find the upgrade function and the access

control check on the caller of the transaction and then pick the fixed admin address and

do the same processes mentioned above to find the admin types. There are 49 EOAs, 36

multi-signature admins and 160 governance and not known admin addresses.

3.6.2 Results

To sum up, of 7470 proxies, 3558 are controlled by an EOA address, 988 are controlled by

a known multi-signature wallet, and 2924 addresses are remaining. Table 3 breaks down

each sub-category for these. Of the latter 2924 addresses, these are either decentralized
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governance or another unknown type. After manual inspection, we note some of the un-

known contracts use undefined or new patterns for implementing multi-sig contracts; our

model has false negatives in detecting multi-signatures. The results demonstrate significant

centralization risk in upgradeability: 48% of systems could be upgraded with the breach of

a single signing key, and an additional 13% by potentially a small number of signing keys.

3.7 Attacking Universal Upgradeable Proxy Standard (UUPS)

Contracts

In this section, we described one of the use-cases of the dataset provided in section 3.5. In

Section 3.4.8, we discussed that one of the main challenges to the DELEGATECALL-based

data separation pattern (Section 3.3.7) is that the constructor inside the implementation

contract cannot initialize the proxy itself. So instead, there should be a regular function in-

side the implementation contract named Initialize function that can be called just once after

deployment by the proxy contract and has the same functionality as the constructor func-

tion. Therefore, the contract creator must call the initialize function quickly after deploying

the proxy contract. The Initialize function does not have any access control because it is

considered to be called once, and this function is responsible for defining the owner. So,

before calling this function, the owner’s address is not set, and there is no way to have an

access control check for the sender. This is why there should be a check to ensure that this

function can just be called once at deployment and not after. The proxy contract deployer

will define and initialize the address of the contract owner via the initialize function. So if

the deployer forgets to initialize the contract, any external address can call initialize func-

tion and change the owner of the contract to her desired address, and take control of the

contract.

The Initialize function can also be called from the implementation contract itself
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(instead of calling the function by proxy contract). This call will alter the storage of the

implementation contract and not the proxy contract. Suppose the deployer forgets to call the

Initialize function directly from the implementation contract. Any malicious address

can call this function from the implementation contract and change the owner inside the

implementation contract, and take control of this contract. This malicious actor can change

the storage of the implementation contract by calling functions inside it. However, it is

not a risk to the system because the proxy contract is responsible for keeping the data in

this system and not implementing it. There should be a risk to the system if this malicious

actor can change the logic of the implementation contract or self-destruct it. Changing the

logic of the implementation contract is not doable in typical cases because implementation

contracts are not supposed to be upgradeable. However, there are ways to self-destruct the

implementation contract.

There are two main ways to self-destruct a contract: 1)if the implementation contract

has SELFDESTRUCT inside its logic and by calling it. 2)Having a DELEGATECALL or

CALLCODE to another contract that has SELFDESTRUCT logic inside [63].

So, we should check if the implementation contract uses SELFDESTRUCT or has

DELEGATECALL or CALLCODE to an address that a malicious party can control. If there

is a way, the malicious party can self-destruct the implementation contract, and all calls to

the proxy will fail. It is a Denial of Service (DoS) attack on the Dapp. If the Dapp has an

upgrade function inside its proxy contract, then the admin of the proxy contract can upgrade

into a new version of the implementation contract. This attack was explained in December

2020 by Trail of Bits team when they audited the code of Aave, a lending project [106].

Nevertheless, what if the upgrade function is inside the implementation contract and

not the proxy contract. As mentioned in Section 3.3.7, in UUPS upgradeable contracts, the

upgrade function resides in the implementation contract. So there is no way to upgrade
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the system by the proxy contract. Therefore, if an attacker takes control of the implemen-

tation contract by calling the initialize function directly from the implementation contract

and then self-destruct it, there is no way to upgrade it. Consequently, the proxy will be

locked forever. All UUPS contracts that used the Openzepplin UUPS library, whose im-

plementation contact is not initialized, are susceptible to this attack. Because there is a

function in the implementation contract of this library named upgradeToAndCall, in which

the owner can change a target address and then delegate call into the newly changed target

address. This attack vector was found in September 2021 and announced by OpenZep-

plin team [109, 111]. There is an easy way to mitigate this attack by calling the initialize

function directly from the implementation contract.

We try to check all UUPS contracts that we find in Section 3.5 that if any of them can

be exploited in this way. We check all of them manually, and the method of checking them

is described below:

1. Check if the implementation contract is not initialized

2. Find initialize function inside the implementation contract

3. check if anybody can call this initialize function directly from the implementation

contract and change the owner of the contract

• Filter those that have a modifier that blocks direct calls to the implementation

contract (there is a modifier that just let transactions that come from the proxy

contract and blocks direct calls to the implementation contract itself)

4. Check if there is a way inside the implementation to self-destruct

5. Check if there is a function in the implementation contract which has a delegate call

to a target address

6. Check if the target address is changeable by a malicious actor
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After reviewing the list above, we found 15 contracts in our data set that were ex-

ploitable until September 9, 2021. The openzeppelin team patched them by initializing the

contract. An attacker could deploy a new malicious contract that executes self-destruct on

any calls to it. Then take control of the implementation contract by calling the initialize

function them. Afterward, the attacker finds the function inside the implementation con-

tract with a delegate call inside it and finds the target address. There should be a function

inside the implementation contract to change the address to the malicious contract that the

attacker deployed recently. The attacker calls the function to execute a delegate call into

the malicious contract and then self-destruct the implementation contract.

We find 61 UUPS contracts that are not initialized, and anybody can take control of

these implementation contracts. However, because these contracts do not use delegate calls

or self-destruct, they are not exploitable by this type of attack.

3.8 Concluding Remarks

In this chapter, we find that DELEGATECALL-based data separation is the most prominent

upgrade pattern in Ethereum in recent years. Our evaluation framework gives some hint

as to why this is the case. It avoids the need for a social upgrade, as in contract migra-

tion or the CALL-based pattern (without a proxy). CREATE2-based metamorphosis was

recently made possible (with the introduction of CREATE2) and its use might grow over

time, however it shares one major drawback with contract migration: the need to migrate

the whole state from the old contract for each update, even if the update is makes minor

changes to the logic of the contract. Metamorphic contracts also run the risk of Ethereum

removing the SELFDESTRUCT opcode they rely on. A drawback of CALL-based patterns

is the heavy instrumentation each new contract needs before it can be deployed, whereas

in a DELEGATECALL-based (along with migration and CREATE2-based) upgrade pattern,

developers can simply deploy the new logic contract exactly as it is written. Putting these
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reasons together, DELEGATECALL-based pattern is an attractive option on balance.

The main take-away from studying upgradeability on Ethereum is that immutability, as

a core property of blockchain, is oversold. Immutability has already been criticized for be-

ing dependent on consensus—both technical and social [145]—however the widespread

use of upgradeability patterns further degrades immutability. Finally, as we show, the

prominence of contracts that can be upgraded with a single private key (i.e., externally

owned account) calls into question how decentralized our DApps (decentralized applica-

tions) really are. If the upgrade process is corrupted through a key theft or by a rogue

insider, the whole logic of the contract can be changed to the attacker’s benefit.

One recent application of our research was finding all contracts that implement the

UUPS upgrade pattern, which become important when a vulnerability was discovered in

one of the best-known libraries for implementing UUPS. We describe how we can find

potentially vulnerable contracts in Section 3.7. While others had found some contracts by

looking for specific artifacts left by the UUPS library, we improved the state of the art by

looking for the generic pattern of UUPS.

A final discussion point concerns Layer 2 (L2) solutions, such as optimistic rollups and

zk-rollups [95]. For the readers that are already familiar with them, their central component

is a bridge contract that let computations be performed off of Ethereum (layer 1) and have

just the outputs validated on Ethereum. If the bridge contracts is upgradeable, the rules

for accepting L2 state are also upgradeable which means every L2 contract is de facto

upgradeable even it does not implement an upgrade pattern. We saw Ethereum override the

consensus of the network to revert the DAO hack, which was a rare and contentious event.

If a similar attack happened on a L2, reverting would be much simpler and not require a

hard fork: the L2 could simply update the bridge contract. For this reason, the consensus

override upgrade pattern may be less rare in the future.
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Chapter 4

Oracles: From the Ground Truth to

Market Manipulation

This chapter is adapted from work co-authored by Shayan Eskandari1 and Catherine Gu,

and supervised by Jeremy Clark. It was published at the 2021 ACM Conference on Ad-

vances in Financial Technologies (AFT) [55]. It appeared as a ‘systemization of knowledge

(SoK)’ paper which ‘are not surveys of prior academic work but rather organization of re-

sults presented informally by the open-source community or used in operational projects.’

4.1 Introduction

With billions of dollars at stake, decentralized networks are prone to attacks. It is essential

that the smart contracts, which govern how systems are run on these networks, are executed

correctly. Public blockchains, like Ethereum, ensure the correct execution of smart contract

code by taking the consensus of a large, open network of nodes operating the Ethereum

software. For consensus to form, many nodes need to make decisions based on the exact

same input data. Hypothetically, if a decision requires nodes to fetch data or use a service

1Shayan Eskandari and Mehdi Salehi are considered equal first authors
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provider outside of the blockchain, there can be no guarantee that every node in a global

network has the same access and view of this external source. For this reason, blockchains

only execute on internal sources: data and code provided in a current transaction, or past

data and code already stored on the blockchain.

Many potential decentralized applications seem very natural until the designer hits the

‘oracle problem’ and realizes an interface to the external world is required. An oracle is a

solution to this problem. It is a service that feeds off-chain data into on-chain storage. The

trust model of oracles vary—some data comes with cryptographic certification while other

data is assumed to be true based on trusting the oracle, or a set of oracles. Oracle-supplied

data cannot easily be changed or removed once finalized on-chain, allowing disputes over

data accuracy to be based on a public record. Leveraging this immutability is one approach

to incentivizing oracles to post truthful information.

We aim to construct in this chapter a systematization of knowledge (SoK) of imple-

mentation choices for oracles, facilitated by breaking down the operation of an oracle into

a set of modules. For each module, we explore potential system vulnerabilities and discuss

attack vectors. We also aim to categorize all the significant oracle proposals of different

projects within a taxonomy we propose. The goal of this SoK is to help the reader better

understand the system design for oracles across different use cases and implementations.

4.2 Preliminaries

Ethereum [150] is a prominent public blockchain with the largest developer headcount.

While oracles are applicable to any blockchain, we will adopt Ethereum as a concrete ex-

ample of a blockchain for the purposes of explaining each concept in this chapter. Ethereum

is inspired by Bitcoin but adds a verbose language for programming smart contracts that
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execute on the Ethereum Virtual Machine (EVM). All transactions and execu-

tions are verified by a decentralized network of nodes. Solidity is the main high-level pro-

gramming language used by developers for developing smart contracts and decentralized

applications (DApps). Smart contracts are small code bases that live on a blockchain. In

short, smart contracts can be seen as blackbox applications that get inputs from a user and

follow the code flow to the output, which can update the state of the contract and trigger

monetary transactions.

Methodology. We found papers and other resources by examining the proceedings of top

ranked security, cryptography, and blockchain venues; attending blockchain-focused com-

munity events; and leveraging our expertise and experience. Our inputs include academic

papers, industry whitepapers, blog and social media posts, and talks at industry conferences

on blockchain technology, Ethereum, and decentralized finance (DeFi).

Oracle Use-Cases. Oracles have been proposed for a wide variety of applications. Based

on our reading, most of the use-cases fall into one of the main categories below.

• Stablecoins [33, 97, 115, 67, 93] and synthetic assets [127] require the exchange

rate between the asset they are price-targeting and the price of an on-chain source of

collateral.

• Derivatives [53, 12, 135] and prediction markets [31, 116] require external prices

or event outcomes to settle on-chain contracts.

• Provenance systems [126, 139] require tracking information of real world assets like

gold, diamonds, mechanical parts, and shipments.

• Identity [79, 94] and other on-chain reputation systems require knowledge of gov-

ernmental records to establish identities.
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• Randomness [25] can only be produced deterministically on a blockchain. In order

to use any non-deterministic random number, an external oracle is needed to feed the

randomness into the smart contract. Lotteries [118] and games [57] are examples.

Additionally, cryptographic tools like verifiable random functions (VRF) [96, 64]

and verifiable delay functions (VDFs) [20, 16] can mitigate, respectively, any pre-

dictability or manipulability in the randomness.

• Decentralized exchanges can use prices from an external oracles to set parameters.

On-chain market makers [76] uses such prices to minimize the deviation from the

external market prices and tailor the pricing function. Additionally, some use oracles

to provide sufficient liquidity near the mid-market price for more efficient automated

market making [48, 152, 122].

• Dynamic non-fungible tokens (NFTs) [15] are crypto-collectables that can be minted,

burned, or updated based on external data. For example, sports trading cards which

depends on the real-time performance of a player.

4.3 Related Work

Given this chapter is a systemization of knowledge (SoK), we will review work on oracles

themselves throughout the chapter. In this section, we only discuss other works with a

similar goal of providing an overview of different approaches to oracle design, operation,

and security. Al-Breiki et al. [4] present a trust-based categorization of oracle systems,

as well as the type of interaction that the on-chain component of the oracle has with the

off-chain components. Liu and Szalachowski [89] focus on oracles in the decentralized

finance (DeFi) ecosystem, presenting technical architectures and a measurement study on

deviations between external market prices and on-chain data from commonly used price or-

acles. Lo et al. [90] propose a framework for assessing the reliability of oracles and ranked
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them based on the failure probability rate. Angeris and Chitra [6] analyze the logic behind

Automated Market Maker (AMM) projects (e.g., Uniswap [1] and Balancer [9]) and dis-

cuss how these projects could be used as price feeder oracles for other systems. Williams

and Peterson [148] map oracle systems into two groups—requesters and reporters— and

perform a game theoretical analysis of three defined scenarios between requesters and re-

porters.

By contrast, in our work, we inspect 17 different oracle systems2 and breakdown their

design decisions and mechanism implementations (listed in Table 6). We also discuss the-

oretical and possible attacks on the different building blocks of the oracle systems. Com-

paratively, we look at a broader types of oracles, including price oracles, binary outcome

oracles, and oracle systems, for any type of data such as weather condition information.

4.4 Modular Work Flow

For our main contribution, we deconstruct how an oracle operates into several modules that

generally operate sequentially (but in some solutions, certain steps are skipped) and then

we study each module one-by-one. An overview of the work flow is as follows:

4.4.1 Ground Truth: The goal of the oracle system is to relay the ground truth (i.e., the

real true data) to the requester of the data.

4.4.2 Data Sources: Data Sources are entities that store or measure a representation of the

ground truth. There are a diverse set of data sources: databases, hardware sensors,

humans, other smart contracts, etc.

4.4.3 Data Feeders: Data feeders report off-chain data sources to an on-chain oracle

system. In order to incentivize truthful data reporting, an oracle system can introduce

a mechanism to select data feeders from a collection of available data providers. The
2To our knowledge, a much larger set than other research on oracle systems.
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incentive mechanism can be collateral-based, such as staking, or reputation-based to

find a reliable set of data feeders for each round of selection.

4.4.4 Selection of Data Feeders: The process of determining which data feeders should

be used in an oracle system can be categorized into two main types: centralized and

decentralized selection.

4.4.5 Aggregation: When data is submitted by multiple data feeders, the final representa-

tion of the data is an aggregation of each data feeder’s input. The aggregation method

can be random selection or algorithmic rule-based, such as using weighted average

(the mean) or majority opinion. The design of the aggregation method is one of the

most important aspects of an oracle system, as intentional manipulation or uninten-

tional errors during the aggregation process can result in untruthful data reporting by

the oracle system.

4.4.6 Dispute Phase: Some oracle designs allow for a dispute phase as a countermeasure

to oracle manipulation. The dispute phase might correct submitted data or punish

untruthful data feeders. The dispute phase might also introduce further latency.

The steps above are visualized in Figure 5. Next we dive deeper into the modular

workflow by trying to further define each module. As appropriate, we also discuss feasible

attacks on the modules and possible mitigation measures.

4.4.1 Ground Truth

While not a module itself, ground truth is the initial input to an oracle system. Oracle de-

signers cannot solve basic philosophical questions like what is truth? However it has to

be understood (i) what the data actually represents and (ii) if it is reliable. Data is some-

times sensitive to small details. Consider a volatility statistic for a financial asset: basics

like which volatility measure is being used over what precise time period are obvious, but
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Figure 5: A visualization of our oracle workflow as described in the text.

smaller things like the tick size of the market generating the prices could be relevant [59].

When data is aggregated from multiple sources, minor differences in what is being repre-

sented (called semantic heterogeneity) can lead to deviations between values [92, 151, 69].

While oracle systems will attempt to solve the issue of malicious participants who mis-

report the ground truth, it does not address the fundamental question of whether the ground
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truth itself is reliable. Some philosophers argue truth is observed, and observations re-

quire a ‘web of beliefs’ that is subject to error (for its consequences in security, see [75]).

Reliability is judged by the assumptions made about the data source, described next.

4.4.2 Data Sources

Data Sources are defined here as passive entities that store and measure the representation

of the ground truth. Common types of data sources include databases, sensors,

humans, smart contracts, or a combination of them. Depending on how data

sources gather and retrieve the ground truth, different attack types arrise. Using a hy-

brid of data sources (if possible) could reduce the reliability on a single point of input. We

describe each common type and their security considerations.

Humans.

A human may provide the requested data, either by direct observation or by indirectly

relaying data from another data source. Humans are prone to errors which is the main

risk of this data source. Human errors include how the data is retrieved, how the data

collector interprets the truth, and if data is relayed from a reliable source. Researchers

have categorized human errors into the following three types (from least to most probable):

very simple tasks, routine tasks, and complicated non-routine tasks [90]. An example for

each category is, respectably, reading Bitcoin’s exchange rate from an unverified source,

inputting the data into the system, and configuring the oracle system.

Humans may also act maliciously and deliberately report wrong data when they per-

ceive it will benefit them. As we will see in further modules, a robust oracle system will

use incentives and disputes to promote truthful statements.
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Sensors.

Sensors are electronic devices that collect raw data from the outside world and make it

available to other devices. The data source may use more than one sensor to obtain the de-

sired data. One example from traditional finance is the weather derivative, first introduced

by the Chicago Mercantile Exchange (CME) [99]. These instruments use weather data

provided by trusted institutions, such as the National Climate Data Center,3 which collects

weather data through a network of sensors.

Provenance is a highly cited application of blockchain, where products are tagged and

traced through out the supply chain, including transportation, for management and/or certi-

fication [139, 98, 153]. The tags could be visual (barcodes) or electronic (RFID). A host of

attacks on RFID have been proposed outside of blockchain oracles [5]. Blockchain tech-

nology does not solve some important trust issues: ensuring the proper tag is affixed to the

proper product, each product has one tag, each tag is affixed to only one product, and tags

cannot be transferred between products. This is called the stapling problem [126].

Sensors can produce noisy data or malfunction. The hardware of a sensor can also

be modified when remote or physical access is unauthenticated (or weakly authenticated

as many sensors are constrained devices). Probably the highest profile sensor attack (out-

side of blockchain) is Stuxnet [86]—malware that manipulated the vibration sensors, the

valve control sensors, and the rotor speed sensors of Iran’s nuclear centrifuges, causing the

system to quietly fail [85].

Databases and application programming interfaces (APIs).

The most common mechanism used by software to fetch data is to use an API to obtain the

data directly from a centralized database. A database is a set of tables that collect system

events, while the API is an interface with the database. For example, a financial exchange

3https://www.ncdc.noaa.gov/
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keeps track of information in a database about every trade that has been executed. A data

source that needs the daily traded volume of an asset could use the appropriate API of the

exchange’s database to extract the data from the related table in the database.

An active attacker can attack the system from two points. Modifying the data at rest in

the database, or modifying the data in transit before and after the API call.

Smart Contracts.

Smart contract could be used as a data source similar to a database. Decentralized finance

(DeFi) applications on Ethereum include decentralized exchange services like Uniswap [1],

or other oracles that operate on-chain. For instance API3 oracle [10] uses other on-chain

oracles, called dAPIs, as their data source. These oracles are whitelisted through voting by

API3 token holders.

Automated Market Makers (AMMs) [146] are an on-chain alternative to centralized

exchanges. Liquidity providers collateralize the contract with an equally valued volume of

two types of cryptoassets. A mathematical rule governs how many assets of the one type are

needed to purchase assets of the other. A well-known example of such mathematical rule is

the Constant Function Market Makers (CFMM) to calculate the exchange rates of tokens

in a single trade [132]. The idea behind AMM was first raised by Hanson’s logarithmic

market scoring rule (LMSR) for prediction markets [70]. A class of DeFi projects (e.g.,

Uniswap [1, 2] and Balancer [9]) uses CFMM to automate their market-making process.

One of the utilizations of AMM is the ability to measure the price of an asset in a fully

decentralized way, which addresses the pricing oracle problem [6].

One potential attack vector to the auto price discovery mechanism in an AMM is to

manipulate prices provided by an algorithm, since the algorithmic rules used by an AMM

is written in the smart contract and therefore how prices are quoted by the AMM can be
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calculated in advance. One real case example on bZx is described in Section 4.5.3. In addi-

tion to market manipulation, smart contract vulnerabilities [8, 28] could possibly be used

to influence the data coming from the Oracle, which we will discuss more in section 4.5.3.

4.4.3 Data Feeders

Data feeders are entities who gather and report the data from a data source (Section 4.4.2)

to the oracle system. A common configuration consists of an external feeder which draws

from off-chain data sources and deposit the data to an on-chain module. In case the data

source is already on the blockchain, the data feeder step can be skipped.

It is not common to assume data feeders are fully honest, however a variety of threat

models exist. Generally, this module will not attempt to determine if the data has been fal-

sified (the later sections data selection (Section 4.4.4), data aggregation (Section 4.4.5) and

dispute phase (Section 4.4.6) modules will deal with this issue); rather it will consist of tun-

nelling the data through the feeder with some useful security provisions. We discuss most

important security provisions to achieve data integrity, confidentiality, and non-repudiation

on any specific data.

Source Authentication.

Data integrity can be enhanced by authenticating the source of the data and ensuring mes-

sage integrity is preserved. It is sufficient to have the source sign the data, assuming the

source’s true signature verification (i.e., public) key is known to the recipient of the data.

This is most appropriate for sources like humans and sensors (although sensors may use a

lightweight cryptographic alternative to expensive digital signatures [129]).

Databases, websites, and APIs typically support many cryptographic protocols, includ-

ing the popular HTTPS (HTTP over SSL/TLS) which adds server authentication and mes-

sage integrity to HTTP data [34]. However HTTPS alone is typically not sufficient, as the
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message integrity it provides can only be verified by a client that connects to the server

and engages in an interactive handshake protocol. This client cannot, for example, pro-

duce a transcript of what occurred and show it to a third party (e.g., a smart contract on

Ethereum) as proof that the message was not modified. To turn HTTPS data into signed

data (or something similar), a trusted third party can vouch that the data is as received. TLS

notary [140] and DECO [155] offer solutions that attest for the authenticity of HTTPS data.

Town Crier [154] uses Trusted Execution Environments (TEE) like Intel SGX [40] to push

the trust assumption onto TEE technology and, ultimately, the chip manufacturer.

Confidentiality.

For many smart contracts that rely on oracles, the final data is made transparent (e.g., prices,

weather, event outcomes). In a few cases, oracles feed data that is private (e.g., identities,

supply chain information) and the contract enforces an access structure of which entities

under which circumstances can access it [94].

Confidentiality might also be temporary. Given the fact that information submitted

to the mempool is public, there is a natural risk on the oracle system that a data feeder

uses another data feeder’s information to self-report to the system. This form of collusion

between data feeders is called mirroring attack [50] in computer security literature. The

data feeders are willing to freeload another data feeder’s response to minimize their cost

of data provision. They will also be confident that their data will not be an outlier and be

penalized. To mitigate the risk of mirroring attacks, the oracle designer should consider

mechanisms that ensure the confidentiality of the data sent by the data feeders. A popular

technique to achieve confidentiality is to use a commitment scheme [17]. In a commitment

scheme, each data feeder should send a commitment of the plain data as an encrypted

message to the receiver. Later, the sender can reveal the original plain data and verify its

authenticity using the commitment.
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Category Example No Trusted Third
Party

Low latency

Resili
ent to Sybil Attacks

Resili
ent to Targetted DoS Attacks

Incentives are Endogenous

Centralized Maker V1 Oracle • •
Voting Maker V2 Oracle • •
Staking Chainlink, ASTRAEA • • ◦ • •

Table 4: Evaluation Framework on selection of data feeders. For details see Section 4.4.4

Non-Repudiation.

A non-repudiation mechanism assures that a party cannot deny the sender’s proposal af-

ter being submitted to the system. Oracle systems might rely on cryptographic signature

schemes to eliminate the risk of in-transit corruption and to create irrefutable evidence of

the data being provided by a source, for use in the dispute phase (Section 4.4.6) as needed.

4.4.4 Selection of Data Feeders

In order to ensure correct data is fed into the system, the design must select legitimate data

feeders and weed out less qualified and malicious participants. In a non-adversarial envi-

ronment, the design might aggregate all the incoming data without any selection, skipping

this step.

The earliest designs for oracle systems, such as Oraclizeit [11] and PriceGeth [53], were

designed using just one single data feeder; however, to improve data quality and the degree

of decentralization, more complex oracle systems such as ChainLink [50] involves select-

ing qualified data feeders to aggregate an output that is expected to be more representative

of the ground truth.

This process can be categorized into two main types: centralized and decentralized se-

lection, with decentralized selection having multiple approaches through voting and stak-

ing. Centralized selection and decentralized selection through voting, create an allowlist of
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legitimate data feeders, in contrast to selecting based on the algorithmic criteria in decen-

tralized selection through staking.

Centralized (Allowlist) Selection.

A centralized selection is a permissioned approach where a centralized entity selects a num-

ber of data feeders directly without the involvement of other participants in the network.

A centralized selection is analogous to having an allowlist for authorized data feeds (e.g.,

Maker Oracle V1 [93]). Compared to a decentralized approach, centralized selection is fast

and direct. However the trust footprint on the central entity is large: it must solely select

legitimate data feeders and also have high availability to update the allowlist as needed.

Decentralized (Allowlist) Selection through Voting.

By decentralizing the selection process, the goal is to distribute the trust from a single entity

to a collective decentralized governance. Voting distributes trust and provides a degree of

robustness against entities failing to participate, however it adds latency and introduces the

threat that an actor can accumulate voting rights to sway the vote [91], or even to do distrust

and destroy the system (e.g., Goldfinger attack [83]).

For instance, in Maker V2 oracle [93], the selection of the data feeders is done through

a decentralized governance process [67]. MKR4 token holders vote on the number of au-

thorized data feeders and who these data feeders can be [35].

Note that sometimes voting processes can provide the illusion of decentralization while

not being much different than a centralized process in practice. To illustrate, consider a

project with a governance token, in which most tokens are held by a few individuals where

the project leaders advocate for their preferences and there is no established venue for

dissenting opinions. If voters only inform themselves from one source of information, that

4MakerDAO Governance Token
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source becomes a de facto centralized decision maker.

Decentralized Selection through Staking.

Like voting, staking attempts to utilize a token to align the incentives of the participants

with the current functioning of the system. Mechanically, it works different: data feeders

post collateral against the data they provide. In the dispute phase 4.4.6, any malicious

data feeders will be punished by losing a portion or all of their collateral (called slashing).

Even without slashing, the collateral amount acts as a barrier to entry for participants and

rate-limits participant.

The stake can be both in token value and reputation of the data feeder. As an example,

in Chainlink [50] protocol has a reputation contract that keeps track of the accuracy of data

reporting of different feeders. The ExplicitStaking module in Chainlink 2.0 defines

the number of Link tokens each oracle node must stake to become a data feeder, while the

service agreement of the Chainlink oracle defines the circumstances in which a node’s stake

will be slashed [107]. Put together, the incentives for selected data feeders to act honestly

are avoiding reputational loss, avoiding loss of stake and penalty fees, and maintaining

good standing for future income. In terms of selection, the data selection module forms a

leaderboard, based on collateral and reputation, to select the highest ranked data feeders

from all available feeders.

Another approach, introduced by ASTRAEA [3], uses a combination of game the-

ory and collateralization between different actors in the system (Voters and Certifiers) to

achieve equilibrium on what the final data should be.

A staking-based selection module avoids a central trusted third party, but it can add

latency for adding/remove data feeds and other adjustments. It is also open to sybil attacks

by design, while working to ensure these attacks have a significant cost for the adversary.

One challenge for designing a staking mechanism is setting a high enough punishment
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(slashing) mechanism to thwart malicious actions. Projects like UMA [141], another smart

contract oracle design, dynamically adjust staked collateral needed for each round to ensure

that Cost of Corruption (CoC) is higher than the projected Profit from Corruption (PfC).

Profit from Corruption is defined by the data requester, in which UMA contracts require

higher collateral to finalize the data from the data feeders. It is also important that partici-

pants are incentivized to file correct disputes—ones that will ultimately lead to identifying

misbehaviour. If disputes are filed on-chain, the disputer will have to pay gas costs that

need to be ultimately reimbursed by the resolution process.

Decentralized selection is done by the holders of some scarce token, typically a gover-

nance token specific to the oracle service. The simplest decentralized mechanism to hold

a vote amongst token holders, who are indirectly incentivized (we call this an exogenous

incentive) cast informed votes since they hold a token tied to the success of the system (e.g.,

TruthCoin [136]). In a staking system, token holders are directly incentivized (a endoge-

nous incentive) to vote ‘correctly’ (this remains to be defined but assume for now it means

they vote in a way that will not be disputed) by posting some amount of their tokens as a

fidelity bond. Stakers stand to be rewarded with new tokens and/or penalized (collateral

slashed) depending on the performance of the data feeders they vote for.

Additionally a protocol could introduce a random selection within the data feeders to

decrease the chance of sybil attacks. As an example Band Protocol [119], choses a random

validator from top 100 staked participants for their oracle system.

Another approach used by Tellor oracle [137] is a simple Proof of Work (PoW) algo-

rithm for each round of data. The first 5 miners to submit their desired data alongside the

solution to the mining puzzle are selected as the data feeders of the round. The selection

is based on the hash power of each data feeder and randomness nature of proof of work

consensus.
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Evaluation Framework on the selection of data feeders

To compare designs for data feeder selection, we provide an evaluation framework. The

definition of each evaluation criteria (i.e., column of the table) follows, specifying what it

means to receive a full dot (•), partial dot (◦) or to not receive a dot.

No Trusted Third Party. A selection process that is distributed or decentralized among

several equally-powerful entities earns a full dot (•). A process that relies on a single entity

for critical functions is not awarded a dot.

The voting and staking processes are decentralized amongst multiple token holders (•).

As the name implies, the centralized process uses a trusted third party (no dot).

Low Latency. A selection process that can move from proposal to finality within a

single transaction is awarded a full dot (•). A process that requires multiple rounds of

communication or communication among several entities is not awarded a dot.

The centralized process can make selection decisions unilaterally (•). The voting pro-

cess involves a round of communication with all of the participants (no dot). The staking

process draws feeders unilaterally from an established leaderboard (•).

Resilient to Sybil Attacks. A selection process that only allows unique feeders to par-

ticipate is awarded a full dot (•). The evaluation does not consider what specific method

is used to determine entities are unique but assumes it works reasonably well (not strictly

infallible). A process that is open to multiple fake feeders controlled by the same adver-

sary is awarded a partial dot (◦) if each additional feeder created by the adversary has a

material financial cost. If there is no material cost to creating additional fake feeders, the

process receives no dot.

The centralized process manages an allowlist based on real world reputations. We

assume this reasonably prevents sybils (•). The staking process admits sybils but deters

them by requiring staked tokens for each, which is costly (◦). The voting process does not

deter sybils from entering the election but relies instead on the voting process to not select
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them (no dot).

Resilient to Targeted Denial of Service Attacks. A selection process that only halts when

multiple entities to go offline or fail is awarded a full dot (•). If critical functionalities

cannot be performed with the failure of a single entity, but the basic selection process can

proceed, it is awarded a partial dot (◦). If the process can be fully halted by the failure of

a single entity, it is awarded no dot.

The voting and staking processes can proceed until enough honest participants fail that a

dishonest majority remains (•). By contrast, a failure with the central entity in a centralized

process can prevent critical functionalities, like updating the allowlist (◦).

Incentives are Endogenous. Every selection process should have the ability to remove

untruthful feeders. Some selection processes might go beyond this and incentivize feeders to

provide truthful information. Processes are awarded a full dot (•) if the awards/punishments

can be realized by the selection process itself. If the selection process relies only on external

incentives (e.g., damage to reputation), it is awarded no dot. The evaluation does not con-

sider how information is determined to be truthful or not. Endogenous means the design is

simpler but does not imply it is more secure (cf. [61]).

The staking process requires feeders to post collateral that can be taken (i.e., slashed)

for malicious behavior (•). Centralized and voting processes do not use internal incentives

(no dot).

4.4.5 Aggregation of Data Feeds

Aggregation is the process of synthesizing the selected data feeds into one single output.

The quality of the output depends on the data feed selection (see Section 4.4.4) and the

aggregation process used. To highlight the importance of designing an aggregation method

correctly, consider the case of Synthetix, a trading platform [135] that used the average

(or mean) of two data feeders as their aggregation method. An attacker leveraged this to
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manipulate one of the two feeders by inflating the real price by 1000x. Mean aggregation is

highly sensitive to outlier data and the attack resulted in Synthetix’s loss of several million

dollars [134].

Statistical Measures.

The three core statistics for aggregation are mean, median and mode. Many oracle systems

use the median as the aggregated output, by selecting the middle entry of a list of ordinal

data inputs. Unlike the mean, the median is not skewed by outliers, although it assumes

the inputs have an appropriate statistical distribution where the median is a representative

statistic for the underlying ground-truth value. For example, if we believe data from the

feeders is normally distributed with possible outliers, the median is appropriate. However

if we believe it is bi-modally distributed, then discretizing and computing the mode (most

common value) of the data is more appropriate. The mode is useful for non-numeric data

(and nominal numbers). An approximation to the mode is picking a data input at random,

however access to randomness from a smart contract is a well-documented challenge [27,

20, 25]. Oracle projects like Chainlink do not prescribe a fixed aggregation method and let

the data requesters select one.

To improve the quality of simple statistics such as the median and the mode, weights

can be applied in the calculation. For instance, to mitigate manipulation of price data,

one can choose to use time-weighted average price (TWAP) [142], or liquidity volume, or

both [2]. Typically, the liquidity and trading volume of a market correlates with the quality

of the price data. To illustrate, Uniswap V2 uses TWAP over several blocks (e.g., mean

price in the last 10 blocks) to reduce the possibility of market manipulation in a single

block (e.g., via flash loans [120]). In Uniswap V3, TWAP is optimized for more detailed

queries including the liquidity volume and allowing users to compute the geometric mean

TWAP [2].
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Stale Data.

Some use cases require frequent updates to data, such as weather data and asset prices.

Stale data can be seen as valid data and pass the selection criteria, but it will reduce the

aggregated data quality. Projects like Chainlink rank feeders based on historic timeliness.

A naive approach ignores this issue and always uses the last submitted data of a data feeder

even if the data feeder has not updated its price for some specific period. This approach is

problematic if the underlying data is expected to change frequently. An example occurred

on Black Thursday 2020 [147] to MakerDao when Maker’s data feeders could not update

their feeds because of very high network congestion. After a significant delay in time,

feeds were updated. The price had shifted by a large amount and the reported data jumped,

leading to sudden, massive liquidations that were not adequately auctioned off.

4.4.6 Dispute Phase

The dispute phase is used to safeguard the quality of the final output and give the stake-

holders a chance to mitigate inclusion of wrong data. Dispute resolution can be an inde-

pendent module after the aggregation phase or it can be implemented at any other oracle

module (e.g., at the end of every aggregation 4.4.5 or data feeder selection 4.4.4). Most or-

acle systems do dispute resolution internally, but market specialization has produced firms

that provide outsourced dispute resolution as service (e.g., Kleros [87]). To systemize the

landscape, we first distinguish between systems that aim to detect (and remove) bad data

providers and systems that vet the data itself. We then iterate how data is determined to be

valid or invalid for the purposes of a dispute. Finally, we illustrate the consequences of a

successful dispute: what happens to the disputed data and what happens to its provider.
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Provider-level and Data-level Vetting

Dispute resolution can be provider-oriented or data-oriented. Under a provider-oriented

regime, the focus is on selecting honest data providers and using disputes to remove data

providers from serving as oracles in the future. In the optimistic case that providers are

honest, oracle data is available immediately, however if an honest provider is corrupted,

it will have a window of opportunity to provide malicious data before being excluded.

One illustration of a provider-oriented system is operating a centralized allowlist of data

providers (e.g., MakerDAO v2) where providers can be removed. Chainlink [50] strives to

decentralize this functionality, where a reputation-based leaderboard replaces the allowlist.

In a data-oriented regime, the focus is vetting the data itself. This can result in a slower

system as oracle data is staged for a dispute period before it is finalized, however it can also

correct false data (not merely remove the corrupted data feeder from future submissions).

One illustration of a data-oriented system is Tellor [137, 39], where data is staged for 24

hours before finalization. If it is disputed, a period of up to 7 days is implemented to

resolve the dispute. It is also possible that a system allows the resolution itself to be further

disputed with one or more additional rounds. In Augur [116] for instance, the dispute step

may happen in one round (takes maximum 1 day) or may contain other rounds of disputes

that can last more than 7 days.

Determining the Truth

In the optimistic case, an oracle system will feed and finalize truthful data, while disputes

enable recourse for incorrect data. However disputes also introduce the possibility of two

types of errors. Dispute resolution in oracle systems focus on false positives. Incentivizing

the discovery of false positives is present in some staking-based systems, however false

negatives are not otherwise dealt with. In order to resolve a false positive, correct data

must be used as a reference but, of course, if correct data is available as a reference, then it
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No Disputes Disputed
Data is correct Correct False Positive
Data is incorrect False Negative Correct

Table 5: Errors in Dispute Process

could replace the entire oracle system. That leaves two reasons for why an oracle system

might still exist: (a) the reference for correct data is too expensive to consult on a regular

basis, or (b) there is no reference for correct data and it must be approximated.

If feeders are placed on an allowlist by a trusted party, disputes could be filed with

the trusted party and manually verified. As far as we know, this is the only example of

(a), although (a) is the basis for other blockchain-based dispute resolution protocols like

optimistic roll-ups [78]. The rest of the truth discovery mechanisms are based on (b) ap-

proximating the truth.

A statistical approach is selecting, from a set of values proposed by different feeders,

the median of the values (e.g., appropriately distributed continuous numerical data) or the

mode (e.g., non-continuous or non-numerical data). It is possible to augment this approach

by having feeders stake collateral in some cryptocurrency (e.g., a governance token for the

oracle project), and this collateral is taken (slashed) from the feeder if their data deviates

from the median by some threshold. If the amount slashed is payed, in part or in full,

to the entity that filed and/or supported a dispute on the data, this incentivizes feeders to

help reduce false negative errors in addition to false positives. One challenge is setting

an acceptable threshold for slashing. A large threshold tolerates moderately incorrect data

without punishment, while a small threshold could punish data feeders that are generally

honest but faulty, slow, or reporting on highly volatile data.

If a governance token exists for the oracle project, a related approach is to introduce

voting on disputed data by any token holder, and not limit the decision to just the feeders.

In Augur [116] and ASTRAEA [3], disputers vote to change the tentative outcome because
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they believe that outcome is false. Voting occurs over a window of time which extends the

time to resolve disputes. By comparison, statistical mechanisms can be applied automati-

cally and nearly instantly after the data is aggregated. However voting incorporates human

judgement which might produce better outcomes in nuanced situations.

One final truth discovery mechanism is arbitrage which is applicable in the narrow

category of exchange rates between two on-chain tokens. This can be illustrated by the

NEST oracle [102] where data feeders assert the correct exchange rate between two tokens

by offering a minimum amount of both tokens at this rate (e.g., 10 ETH and 39,000 USDT

for a rate of ETH/USDT = 3900). If the rate is incorrect, other participants will be given an

arbitrage opportunity to buy/sell ETH at this rate, an action that can correct the price. This

is very similar to drawing a price from an on-chain exchange, like Uniswap, and suffers

from he same issue: an adversary can manipulate the oracle price by spending money. It

is secure when the Cost of Corruption (CoC) is greater than the Profit from Corruption

(PfC), however PfC can never be adequately accounted for because profit can come from

extraneous (extra-Ethereum) factors [61]. The UMA [84] oracle system has data feeders

provide their own PfC estimates for the data they provide.

Consequences for Incorrect Data

We now consider the consequences for disputed data that has been determined to be incor-

rect. In provider-oriented dispute resolution, incorrect data has consequences for the data

feeder (see next subsection) but not the data itself. By the time the dispute is resolved, it is

too late to change the data itself.

In data-oriented dispute resolution, data that has been deemed incorrect can either be

reverted or corrected. Reversion means the outcome result will be annulled and the system

should start from scratch to obtain new data, while corrected data will reflect a new undis-

puted value. The difference between the two is essentially in the complexity of the dispute
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resolution system. For reversion, a collective decision is taken to accept or reject data — a

binary option that is known in advanced. By contrast, correcting data requires new data to

be proposed and then a collective decision to be made on all the proposals which is more

complex but does not avoids rerunning the oracle workflow.

These differences also impact finality: when should oracle data be considered usable?

Dispute periods, re-running the workflow, and allowing resolved disputes to be further

disputed can all introduce delays. To illustrate, consider Augur [116] which implements a

prediction market on binary events. Any observer with an objection to a tentative outcome

can start a dispute round by staking REP (Augur’s native token) on the opposite outcome.

Dispute windows are 24 hours and then extended to 7 days for disputes on disputes. If the

total staked amount exceeds 2.5% of all REP tokens, the market enters a 60-day settlement

phase called a fork window when all REP holders are obliged to stake on the final outcome.

Consequences for Data Feeder

If data has been deemed incorrect through disputes or rejected for being an outlier, the

feeder who provided the data might face consequences like being banned, slashed, or suf-

fering reputational loss. It is also possible that there is no consequence for the feeder other

than the data being discarded. For example, in a sensor network, results from faulty sensors

could have their data filtered out but continue to contribute data in expectation that they will

be repaired in the future.

In oracle designs based on allowlists, a feeder could be banned or temporarily sus-

pended for providing incorrect data. For dispute resolution based on staking, a feed could

suffer economic loss by having their stake taken from them. It is important to reiterate

that this economic loss does not necessarily outweigh the utility of attempting to corrupt

oracle data. The profit from corruption depends on where the data is being used, which

could be within larger system than the blockchain itself [61]. Finally, a feeder might suffer
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reputational loss for providing incorrect data. One can imagine this would be the case if,

for example, the Associated Press misreported the outcome of the 2020 US Presidential

election after announcing that it would serve as an oracle for this event on Ethereum.

Another illustration of these options is Chainlink, which maintains a decentralized ana-

logue to a leaderboard where feeders are ranked according to the amount of LINK (Chain-

link’s token) they stake, as well as their past behavior in providing data that is timely and

found to be correct. Data feeders with the outlier data will be punished by losing their col-

lateralized LINK tokens and reducing their reputation score on the reputation registry. The

lost of tokens is a direct cost, while the loss of reputation could impact their future revenue.

4.4.7 Classification of Current Oracle Projects

In Table 6, we present a classification of several oracle implementations using the modular

framework described in this section. This table showcases a wide variety of approaches, as

well as some specialization on specific modules (e.g., TownCrier and Deco on data source

and Kleros on dispute resolution). We caution that blockchain projects can change how

they work very quickly, new projects will emerge, and current projects will be abandoned.

Table 6 has a limited shelf-life of usefulness, however the workflow itself (modules, sub-

modules, and design choices) is based on general principles and intended to have long-

lasting usefulness. We exclude modules described in section 4.5 from this table as the

infrastructure and implementation can differ for different use-cases of the oracle. While

we can find some sort of implementation for most of the projects listed in table 6, it is hard

to determine which one’s are deployed in "production". Many have testnet or sidechain

deployments, some are academic work and some have code but not clear if there are actual

users.
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Data Source

Selection Mechanism

Staking
Aggreg

ation Mechanism

Provider/D
ata Vettin

g

Determining the Truth

Consequences

Oracle Data Feeder Dispute

ChainLink [50] API
Reputation,

Staking • Statistical
Measure P

Statistical
Measure S

UMA [141] Human, API FCFS† • × D Staking S

Augur [116] Human
Single

Source? • × D Voting S

Uniswap [142] Smart Contract × × TWAP × × ×

MakerDAO V1 [93] Human, API
Centralized
Allowlist × Median × × ×

MakerDAO V2 [93] Human, API
Decentralized

Allowlist × Median P Voting B

NEST [102] Human × • ×?? D Arbitrage L

Band protocol [119] API
Random
Selection • Statistical

Measure P Staking S

Tellor [39] Human, API PoW • Median P Staking
S
B

ASTRAEA [3]
TruthCoin [136] Human Staking • Mode D Voting S

Provable [11]
PriceGeth [53] API × × × × × ×

DIA Oracle [47] API,
Smart Contract × × × D Staking B

DECO [155]
TownCrier [154] HTTPS × × × × × ×

API3 [10] \w Kleros [87] Oracles
Decentralized

Allowlist • Statistical
Measure P Voting

S
B

Table 6: A classification of the existing oracle implementations using the modular frame-
work described in Section 4.4.
• indicates the properties (columns) are implemented in the corresponding oracle (rows),
and × indicates the property is not applicable.
† First Come First Serve ?The Market Creator assigns the designated reporter ?? The se-
ries of reported prices will be sent to requester without aggregation (See 4.4.6)

4.5 Interacting with the Blockchain

While the initial inputs to an oracle are generally off-chain (with the exception of pulling

data from another smart contract) and the final output is by definition on-chain, the ora-

cle designer will choose to implement the intermediary modules—data feeder selection,

aggregation and dispute resolution—as either off-chain or on-chain. Generally, on-chain

modules are preferred for transparency and immutability, while off-chain modules are pre-

ferred for lower costs and greater scalability.

To illustrate, Chainlink and NEST Protocols were ranked #5 and #7 respectively in gas
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usage among all DApps on Ethereum.5 This ranking was achieved mainly because they

implement all modules fully on-chain. Later, Chainlink implemented an off-chain report-

ing (OCR) protocol [19] with the goal of reducing the gas costs associated with on-chain

transactions. This protocol uses digital signatures to authenticate feeders and a standard

(e.g., Byzantine fault tolerant [24]) consensus protocol between Chainlink nodes.

At some point, an oracle system must move on-chain and start interacting with the

underlying blockchain. We assume for the purpose of illustration that Ethereum is the

blockchain being used. Data flow from an off-chain module to a smart contract involves

the following three components which we detail in this section.

4.5.1 Off-chain Infrastructure: Assuming at least one module is off-chain, an infras-

tructure is required to monitor requests for oracle data from the blockchain, gather

the data from the data sources, implement a communication network between data

feeders, and create a final transaction to be sent to the blockchain infrastructure.

4.5.2 Blockchain Infrastructure: Off-chain infrastructure will pass the data as a trans-

action to blockchain nodes, which relay transactions and use a consensus algorithm

agree on new blocks. The nodes run by miners are discussed in particular as they

dictate the order of transactions in every block they mine.

4.5.3 Smart Contracts: The transaction triggers a state change in a smart contract on the

blockchain, typically a contract owned by the oracle which is accessible from all

other contracts. Alternatively, the oracle could write directly into a data consumer’s

contract (called a callback).
5Based on Huobi DeFiLabs Insight on September 2020 [77]
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4.5.1 Off-chain Infrastructure

Depending on the oracle design, there can be different types of off-chain infrastructure. If

financial data is pulled from Uniswap’s oracle [142], there is no off-chain infrastructure

needed because the oracle is already a fully on-chain oracle. For other applications, off-

chain infrastructure could consist of a single server (e.g., TownCrier [154]) or many nodes

that intercommunicate through their own consensus protocol (e.g., Chainlink OCR [19]).

Availability and DOS-resistance [133] are core requirements of off-chain infrastructure,

specially in oracle systems working with time-sensitive data and high update frequency. In

this section we describe different possible components of the off-chain infrastructure.

Monitoring the Blockchain

For oracles that are capable of returning a custom data request made on-chain (called

request-response oracles), every data feeder needs to monitor the oracle’s smart contract for

data requests. The common implementation consists of a server subscribing to a blockchain

node for specific events.

Connection to Data Source

The data feeder requires a connection to the data source 4.4.2 to fetch the desired data.

This connection can be an entry point for an adversary to manipulate the data however it

is possible to mitigate this issue by integrating message authentication (recall source au-

thentication in Section 4.4.3). Examples include relaying HTTPS data (e.g., Provable [11]

via TLSNotary [140]) or from trusted hardware enclaves (e.g., TownCrier [154] via Intel

SGX [40]). Vulnerabilities with the web-server or SGX itself [18] are still possible attack

vectors.
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Data Feeders Network

In order to increase the scalability of the oracle network, multiple data feeders might ag-

gregate their data off-chain (e.g., Chainlink OCR [19]). In OCR, a leader is chosen from

the participants to gather signed data points from other nodes. Once consensus is achieved

on the aggregated set of data, the finalized data, accompanied by the signatures, is trans-

mitted to the blockchain node. This reduces the costs as only one transaction is sent to

the blockchain, while maintaining similar security as having each chainlink nodes send the

data themselves.

Like any network system, availability is essential to the operation of the oracle. To

illustrate, in December 2020, MakerDAO’s oracle V2 had an outage due to a bug in their

peer-to-peer data feeder network stack [62]. We do not summarize all the literature on

peer-to-peer network attacks, but denial-of-service attacks [149] and sybil-attacks [49] are

critical to mitigate to ensure the availability of the network and the oracle.

Transaction Creation

In order to submit data to a blockchain, the data feeder is required to construct a valid

blockchain transaction that includes the requested data. This transaction must be signed

with the data feeder’s private key to be validated and authenticated on-chain. The data

feeders must protect the signing keys from theft and loss [52], as this key can be used to

impersonate the oracle.

Transactions compete for inclusion in the next block by offering different levels of

transaction fees, known as the gas fee in Ethereum. In time-sensitive oracle applications,

the relay must specify an appropriate amount of gas according to market conditions. For

instance, on ‘Black Thursday’ in March 2020 [147], the Ethereum network was congested

by high fee transactions and some oracles failed to adjust their price feed. To mitigate

this problem, the module which is responsible for creating the final transaction must have
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a dynamic gas mechanism for situations where gas prices are rapidly climbing. In this

case, pending transactions must be canceled, and new ones must be generated with higher

gas price, which may take a few iterations to get in. Dynamic fees depend directly on the

network state and require a connection to the blockchain node to estimate the adequate gas

price.

In addition, the data feeder’s sending address on the blockchain must have sufficient

funds to be able to pay the estimated gas price. It is crucial for the availability of the

oracle that the data feeders monitor their account balance as spam attacks might drain

their reserves with high gas fees, as happened to nine Chainlink operators in September

2020 [41].

4.5.2 Blockchain Infrastructure

In this section, we discuss the blockchain infrastructure that is required by any entity inter-

acting with the blockchain. While this infrastructure is not specific to oracles, we illustrate

key points that can impact oracle availability.

Blockchain Node

A blockchain node relays transactions to the other nodes in the network for inclusion in the

blockchain. The node is responsible for storing, verifying, and syncing blockchain data.

The availability of nodes is very important for the oracle system, as a blocked node cannot

send transactions. Extensive research on network partitioning attacks apply to decentral-

ized networks, with the main objective of surrounding an honest nodes with the malicious

nodes [143, 103, 156, 73, 74]. This results in the node believing it is connected to the

blockchain network when it is not.
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Block Creation

Transactions that have been circulated to the blockchain network are stored in each node’s

mempool. Mining nodes select transactions from their mempool according to their pri-

orities (e.g., by highest gas price as in Geth [56], while respecting nonces). Front-running

attacks [54, 43] try to manipulate how miners sequence transactions. For example, some-

one might observe an unconfirmed oracle transaction in the mempool, craft a transaction

that profits from knowing what the oracle data will be, and attempt to have this transaction

confirmed before the oracle transaction itself (called an insertion attack [54]). This might

be conducted by the miner themself. In this case, it is called transaction reordering, and the

profit miners stand to make from doing this is termed Miner Extractable Value (MEV) [43]).

Other nodes or users on the network who can act quickly and offer high fees can also con-

duct front-running attacks. Users might also attempt a bulk displacement attack [54] that

fills the consecutive blocks completely to delay reported data from oracles. There could

be a profit motive for this attack if the oracle data becomes expired, or if the data feeder’s

collateral is slashed and redistributed to the attacker.

Research on MEV (e.g., Flashbots [60]) has shown the possibility of new type of attacks

based on reordering the transactions, such that if there’s a high profit for changing the

order of some transactions in a (few) blocks, miner is incentivize to use his hash rate to

perform a reorganization attack6 [88], and profit from the execution of the newly ordered

transactions. For instance, Uniswap uses the last price in a block to determine the average

price (TWAP), in which a miner can add new trades while reordering the past trades with

the goal of manipulating the price average to profit on other applications that uses Uniswap

as price oracle.

6Also referred to as Time-bandit attacks [43]
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Consensus

The goal of the consensus algorithm used in the blockchain is to verify and append the next

block of transactions to the blockchain. If the nodes do not come to agreement on a state

change, a fork in the network happens with different nodes trying to finalize different forks

of the blockchain. Given the network is decentralized, short-lived forks happens frequently

in the network that generally are resolved within a few blocks [104]. All valid transactions

in the abandoned fork will eventually be mined in the main chain, likely in a new order

(called reorganization or a reorg).

A reorg opens the possibility of attacks by using known, unconfirmed, transactions from

the abandoned fork. To illustrate, consider Etheroll [57], an on-chain gambling game where

users bet by sending a number that payouts if it is smaller than a random number determined

by an oracle. To prevent front-running from the mempool, the Etheroll oracle would only

respond when a bet was in a block. Despite this mitigation, in April 2020, the Etheroll

team detected an ongoing front-running attack on their platform [51]. The attacker was

betting rigorously and waiting for small forks—collected by Ethereum in uncle blocks—

where the original bet and oracle’s random number response were temporarily discarded by

the reorg. The attacker would place a winning bet with a high fee to front-run the original

bet and eventual inclusion of the oracle’s transaction in the reorganized chain. A general

principle of this attack is that even if oracle data bypasses the mempool and is incorporated

directly by miners, front-running through reorgs is still possible.

There are two solutions to front-running through reorgs. The first is to delay the settle-

ment of the bet by a few blocks to prevent issues caused by small reorganization forks. The

second is to incorporate a hash of the request (e.g., request-id) in the response to prevents

the request (e.g., bet) from being swapped out once the response (e.g., random number) is

known.

Other consensus attacks [65, 13, 74] exist but are less related to oracles. We omit
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discussion of them.

4.5.3 Smart Contracts

Although oracles are usually designed to be the source of truth for on-chain smart contracts,

some smart contracts can also be used as oracles by others even though they were not

designed with the oracle use-case in mind. To expand this idea, oracles could be a ’an

end in itself’, which is to say they are designed specifically to be used as a source of truth.

These oracles fetch the data from external sources(4.4.2) and make it available on-chain

(e.g., PriceGeth [53]).

By contrast, a means to an end oracle is a contract that produces useful data as a

byproduct of what it is otherwise doing. Examples are on-chain markets and exchanges

like Uniswap and other automated market makers (AMMs). The markets are designed for

facilitating trades but provide pricing information (price discovery) that can be used by

other contracts (e.g., margin trading platforms) as their source of truth.

In this section we dive deeper in the relationship between the oracle’s smart contract

and the data consumer smart contract. We start by defining possible interaction models,

and then discuss specific issues related to the oracle’s contract and the consumer’s contract.

Oracle Interaction Models

A distinction in the oracle design is whether the interaction between with the consumer’s

contract is implemented as a feed, a request-response, or the related subscribe-response.

A Feed is a smart contract system that publishes the data for others to use. It does not

require any requests to fetch the data and using an interval to update the data on its smart

contract (e.g., Maker DAO Oracle [93]). From a technical aspect, in order to use a feed

oracle, the data consumer smart contract only needs to query the oracle’s smart contract

and no additional transactions are needed.
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The Request-Response model is similar to a client-server API request on traditional web

development. The requester must send a request to the oracle’s smart contract, which then

is picked up by the off-chain module of the oracle to fetch the requested data from the data

source. The data is then encapsulated in a transaction and sent back to the data requester

smart contract through the oracle’s smart contract. Due to the nature of this design, at least

two transactions are needed to complete the work flow, one from the requester and another

for the responder.

The Subscribe-Response model is similar to Request-Response with one main differ-

ence, the request does not need to be in a transaction. If there is pre-arranged agreement,

the oracle will watch for emitted events from the requester smart contract and respond to

the requests. Alternatively, the requester is allowed to read the feed through an off-chain

agreement (e.g., API3 [10]).

Oracle’s Smart Contract

In the oracle designs that implement some of the modules on-chain, the oracle’s smart

contract could include data feeder selection (Section 4.4.4), aggregation (Section 4.4.5),

and dispute resolution (Section 4.4.6). In addition to these modules, the oracle’s smart

contract can be used as the data feed storage for other smart contracts to read from, or to

authenticate the oracle’s response on the consumer smart contract. In the feed model, the

oracle’s smart contract is where the consumer fetches the oracle data from. In the Request-

Response model, the data consumer smart contract (defined below in Section 4.5.3) requires

knowledge of the oracle’s smart contract’s address in advance, for the initial request and

also verification of the oracle’s response. For the rest of this section, we discussion potential

attacks on the oracle’s smart contract.

Implementation Flaws There are many known smart contract vulnerabilities that have

been extensively discussed [38, 28] and possibly could affect the legitimacy of the oracle
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system.

In many DeFi projects, a common design pattern is to use on-chain markets, such as

Uniswap, for the price oracle, however, these systems were not designed to be used as

oracles and are prone to market manipulation. The end result is that currently, the most

prevalent attack vector in DeFi is oracle manipulation [42]. To illustrate this attack, con-

sider the lending (and margin trading) platform bZx. It fetched prices from KyberSwap, a

decentralized exchange, to calculate the amount of collateral of one cryptoasset is needed

to back the loan of a different asset. In one attack on bZx [112], the attacker used a flash

loan to manipulate KyberSwap’s sUSD/ETH exchange rate. The attacker then borrowed

ETH with insufficient collateral because the bZx contract believed the collateralized sUSD

was worth much more than it actually was. When the attacker absconded with the borrowed

ETH, forgoing its collateral, and then unwound its other positions and repaid the flash loan,

it profited at bZx’s expense. Arguably bZx (the data consumer) is the flawed contract but

the ease in which KyberSwap (the oracle contract) could be manipulated was not well un-

derstood at the time either. In reaction, decentralized exchanges embraced their role as

a price oracle and hardened themselves against price manipulation by using aggregation

methods like the Time-Weighted Average Price (TWAP) (described in Section 4.4.5).

Governance In order to remove the centralization of control in many DeFi projects, a

governance model is introduced that uses a native token for voting and staking. The gov-

ernance model for an oracle could propose, vote, and finalize changes to system variables

like the approved data feeders on the oracle’s allowlist or various fees.

While a decentralized governance model removes the trust in a central entity, it does

not remove the possibility of a wealthy entity (a whale) taking control of the system by

accumulating (or borrowing [120]) enough tokens to pass their proposals. In addition,

logical issues in the governance implementation could result in tricking the voters into

approving a proposal that has malicious consequences [101].
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As an example, in the MakerDAO platform, MKR token holders can vote to change

parameters related to Maker’s oracle module [93]. An attacker in October 2020, used a

flash loan to borrow enough MKR tokens to pass a governance proposal, aimed to change

the list of consumer smart contracts and obtain read access to the Maker’s oracle [91]. It

could be more dangerous if the attacker planed to change the other parameters of the oracle

such as Whitelisted data feeders or bar parameter : the sufficient number of data feeders for

data feeder selection module. Potentially an attacker may pay a bribe to the MKR holders

to buy their votes, or use a Decentralized Autonomous Organization (DAO) to pay for the

votes without having ownership of the tokens [44].

Data Consumer Smart Contract

The final point in the oracle workflow is the smart contract that needs the data for its

business logic. Aside from any possible code vulnerabilities in this smart contract, there

are common implementation patterns concerning the oracle workflow.

In the feed model, the data consumer smart contract relies on oracles to fetch the re-

quired data in order to function as intended. It is essential to use oracles with multiple

data feeders and a proper aggregation methods. To illustrate the importance, consider the

lending service Compound [37] which initially only used Coinbase Pro as their data feeder

without any aggregation mechanisms [45]. In November 2020, a faulty price feed on Coin-

base Pro, resulted in undercollarization of Compound loans and a liquidation of $89 million

dollars of the collateral. This could have been prevented by using an oracle with sufficient

data feeders and a proper aggregation mechanism.

Due to the commonality of this issue, there has been some Ethereum Improvement

Proposals (EIPs) to standardize the interface of the oracles implementing a feed (e.g., EIP-

2362 [138]). An interface would allow data consumer smart contracts to easily switch

between feeds or use multiple oracle feeds in their logic.
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In the request-response model, the data consumer smart contract sends a request for

specific data to the oracle’s smart contract. In some projects this request contains more

information like the data feeder selection method, aggregation algorithm and parameters

for dispute phase (e.g., Service Level Agreement in Chainlink). It is crucial that the data

consumer smart contract, verifies the authenticity of the oracle response. Failure to verify

the oracle’s response could result in malicious data injection in the data consumer smart

contract. To illustrate, the insurance service Nexus Mutual [101] implemented an oracle’s

response function (or callback) without any proper access control. This opened the possi-

bility of unauthorized entities providing data updates which would be wrongfully assumed

to have originated from the oracle’s smart contract.

4.6 Concluding Remarks

In this chapter, we described a specialized modular framework to analyze oracles. After

our systematization, we present the following discussion points and lessons learned from

our work.

1. Many oracles projects introduce their own governance tokens that are used to secure

the oracle system (e.g., through staking). Two conditions seem necessary: the market

capitalization of the token stays material and the token is evenly distributed. More

consideration should be given to leveraging an existing token with these properties

(even a non-oracle token) instead of creating new specialized tokens [22]. Also a

collapse in the value of the governance token threatens the entire system.

2. Oracle systems with on-chain modules are expensive to run on public blockchains

like Ethereum, which prices out certain use-cases that consume a lot of oracle data

but do not generate proportional amount of revenue (e.g., Weather data).
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3. Diversity in software promotes resilience in the system. If the oracle market coa-

lesces behind a single project, a failure within this project could cause cascading

failures across DeFi and other blockchain applications.

4. While determining the profit from corrupting the oracle is a promising approach to

thwarting manipulation (by ensuring the cost of corruption is greater), one can never

capture the full extent of the potential profit. Attackers can profit outside of Ethereum

by attacking oracles on Ethereum [61].

In summary of this chapter, the framework we present facilitates a modular approach

in evaluating the security of any oracle design and its associated components that exist to-

day or to be implemented in the future. As an example, the level of centralization can be

measured using choke points such as aggregation 4.4.5, or how the data is proceeded to

the blockchain 4.5.1. In order to design a secure oracle, all modules must be rigorously

stress tested to make sure it cannot be gamed by participants or malicious actors. In addi-

tion, many security auditors and analysis tools are specialized in detecting oracle-related

attacks through code review of the smart contracts. Specially with the rise of DeFi smart

contracts, the importance of a secure oracle system remain a paramount component of the

decentralized blockchain ecosystem.
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Chapter 5

Stablecoins and Synthetic Assets in DeFi

This chapter is adapted from work supervised by Jeremy Clark and Mohammad Mannan,

and published at the 2021 Workshop on Decentralized Finance (DeFi) co-located with

Financial Cryptography and Data Security (FC) [128].

5.1 Introductory Remarks

Cryptocurrencies like Bitcoin (BTC) and Ether (ETH) are marked by extreme volatility in

price relative to the US dollar (USD). As decentralized finance (DeFi) services mature on

Ethereum, a critical component to their success is letting users choose between holding

ETH and holding a stablecoin that targets USD (or some other metric of stability) in price.

Some stablecoins work like a hypothetical vending machine [32]: Alice deposits two

‘coins’ from a volatile currency (e.g., a cryptocurrency like ETH) into the machine and it

returns to her two new coins—a ‘black’ coin that is stable and a ‘red’ coin that is even more

volatile in price than the original coins Alice put in. Together, the red and black coins are

equal in value to the two input coins. The machine cannot reduce overall price volatility,

but it can push volatility from the black coin onto the red coin.

Consider the following example of such a stability mechanism. An asset is chosen
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that is considered stable by definition (e.g., the US dollar). The vending machine is im-

plemented as a decentralized app (DApp; a.k.a., smart contract) on a blockchain (e.g.,

Ethereum). Alice deposits an amount of ETH worth $1.50 USD into the DApp. The DApp

references a trusted oracle service for the current ETH/USD exchange rate to enforce this.

The DApp holds the ETH as a deposit for future redemption, and returns to Alice a red

coin and a black coin (e.g., as ERC-20 tokens). Alice can sell one or both coins. In the

future, the owner of the black coin can redeem it for ETH from the DApp, and receive the

equivalent of $1.00 USD. This assumes the initial deposit of $1.50 USD worth of ETH is

still worth at least $1.00 USD at redemption time—if not, the black coin owner receives

all of the collateral. The red coin holder receives any remaining ETH after the black coin

holder is paid.

The key idea is that the black coin will nearly always be worth the equivalent of $1.00

USD. This is true when ETH/USD increases in value, stays the same, or declines mod-

erately. Only if it declines significantly does the black coin start to experience volatility

in price—its redemption value will decrease at the same rate as ETH/USD itself. For the

red coin, the redemption value increases and decreases as ETH/USD itself increases and

decreases, however the gains and losses are amplified. This is an overview; we return to

these details below.

Relation to Dai. At the time of writing, the stablecoin Dai has (i) a market cap of $800M

(the largest of all non-centralized stablecoins); (ii) its parent service, Maker, locks $1.2B

worth of ETH (the third largest DeFi service, and the largest stablecoin); and (iii) it is the

most supplied and most borrowed asset on the DeFi lending service Compound.1 Dai uses

the red-black coin primitive—black coins are called Dai and a red coin is a Vault (née

collateralized debt position or CDP). However the system is immensely more complicated

because it adds a number of features that the basic red-black coin primitive lacks: (1)

1https://compound.finance/markets
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interchangeability (fungibility) of black coins across multiple producers, (2) a liquidation

process to incentivize red coin holders to increase the collateralized ETH as ETH/USD

declines or face an auction that automatically settles a red-black pair, and (3) fees to balance

supply/demand of black and red coins that are adjustable through a distributed governance.

Other projects built on the red-black primitive (for both stablecoins and synthetic assets)

include Synthetix’s sUSD,2 Kava’s USDX,3 UMA,4 and BitUSD.5

5.2 Contributions and Related Work

We reference some financial instruments and terminology throughout this chapter; we refer

the reader elsewhere for full explanations of these [71]. Several systemization of knowledge

papers cover stablecoins [115, 97, 32, 80]. Our notion of a red-black coin is inspired by

the ‘indirectly-backed’ classification from [32] and they are categorized as ‘non-custodial’

stablecoins with ‘exogenous collateral’ [80]. The stability mechanism is often described as

allowing a user to ‘borrow’ USD from themselves using their ETH as collateral [115, 97].

We find this framing less intuitive than one of a simple derivative contract [32]. None of

the SoKs provide modelling of the stability mechanism in this chapter, and instead focus

on surveying several different types of stablecoins. Maker is considered a decentralized

finance (DeFi) project and it (and other DeFi projects) has been studied from orthogo-

nal angles including attacks/measurements on governance and oracles, attacks using flash

loans, and modelling liquidity crises [66, 68, 121, 82, 80].

In this chapter, we isolate and study the red-black coin primitive to better understand its

characteristics, which seems prudent before analyzing more complex systems. We use the

2https://docs.synthetix.io/litepaper/
3https://www.kava.io/
4https://docs.umaproject.org/
5https://github.com/bitshares
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Figure 6: Redemption value in USD (y-axis) as the price of ETH (x-axis) changes.

ETH price model from [68] to model how risky red and black coins are under different sce-

narios. We then examine the necessity of the extra infrastructure projects like what Maker

adds to the red-black coins—precisely what does the added complexity (e.g., stability fees,

liquidation, global shutdown, etc.) achieve and what are the design alternatives for the

same functionality? We assume that the market for red and black coins are perfectly liquid

to have a simple model to analyze. Others have explored the effect of supply and demand

and the possibility of market collapse due to the feedback effects on liquidity and volatility

from deleveraging effects during crises [81, 82]. The key difference is these other works

consider liquidations to be an inherent building block in their analysis, whereas we study

an even simpler stablecoin without liquidations to better understand the parameters of what

liquidations are supposed to provide (and critically consider if these provisions could be

better provider by alternative mechanisms).

In addition to our work, there are other stablecoins that issue one stablecoin and one

volatile coin but provide stability through a different mechanism, such as algorithmically

expanding and contracting supply [130]. Cao et al. frame their stablecoin as a financial

instrument and use traditional option theory models to analyze their system [23].
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5.3 Financial Characteristics

In this section, we answer questions about the financial characteristics of the red-black

primitive. Consider a black coin that targets $1 USD when 1 ETH is $381.56 USD, and the

DApp holds 0.00393126 ETH (worth $1.5 USD). Assume for now that (i) a red-black coin

is a (non-fungible) contract between two individuals, (ii) it has a fixed maturity date, and

(iii) no one intervenes when ETH/USD declines enough that black coins starts to lose value

(no liquidations). Figure 6(a) shows how much a black coin is worth (y-axis) as the price of

ETH varies (x-axis). The starting point ($381.56 USD) is marked and if the price of ETH

increases (rightward), the black coin is always worth $1. If the value of ETH decreases

(leftward), the black coin is still stable until the value of ETH hits $254.37 (marked)—at

this point, 0.00393126 ETH starts to become worth less than $1 and the black coin ‘breaks

the buck.’

Figure 6(a) also shows the redemption value of a red coin. When created, a red coin is

redeemable for $0.50 USD. A user with $0.50 USD can choose between purchasing a red

coin or purchasing ETH (also shown). In both cases, the user profits when ETH increases

and loses when ETH decreases in price. However the slope of red coin is greater. This

indicates it is a leveraged position in ETH.

5.3.1 How Much Should You Pay for a Black Coin?

Consider a black coin that is purchased today when ETH is $381.56 USD. How much will

it be worth in 100 days? In most future worlds, the black coin will be worth $1. In some

future worlds (when ETH is worth less than $254.37), the black coin will break the buck.

But even here, it takes a ‘haircut’ on value as opposed to being worthless (e.g., it can be

redeemed for, say, $0.90).

The average value of a black coin for different possible outcomes can be estimated if

we have a statistical model for ETH price movements. In finance, many statistical models
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Figure 7: ETH/USD Monte Carlo simulation results.

have been proposed for many assets. Pricing ETH remains an open research problem. Until

future research from the finance community advocates for the most appropriate model, we

will sketch in some concrete numbers using Geometric Brownian Motion (GBM), which

underlies the Black-Scholes model for pricing options [14] and has been used for ETH in

other work [68]. We omit the details of the model itself (covered in nearly every financial

textbook [131]). We fit the model to the historical ‘closing’ prices of ETH for 1000 days

prior to 18 Sept 20206 and obtain µ = 0.000744754 (an upward drift in price over time)

and σ = 0.0524172 (a measure of volatility). If we simulate the next 100 days using Monte

Carlo, we obtain the results in Figure 7. For the parameters of this example, the average

value of the black coin is $0.94 USD at the maturity date. Our model can be adjusted for

the initial price, over-collateralization ratio (section 5.3.2), and days until redemption. It

is available in Python and Mathematica.7

As shown in Figure 7(b), the expected return is log-normal. When we model more

than 100 days, the variance increases and the average redemption value of a black coin

decreases: $0.94 USD after 100 days, $0.85 USD after 200 days, and $0.80 after 1 year.

This does not mean the black coin is worth less over time, it means the risk it falls out-of-

the-money increases the more time you give it.

6CoinGecko API: https://api.coingecko.com
7GitHub: https://github.com/GreatSoshiant/Monte-Carlo/tree/master/Code.
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5.3.2 Why Would You Want a Red Coin?

While a stablecoin has utility to the holder, it is less clear what the utility of a red coin

is. A red coin is a leveraged position in ETH, which means that both gains and losses

are amplified—compare the slope of the red coin value with a $0.50 ETH investment at

the same starting point ($381.56 USD) in Figure 6(a). Leverage is popular with investors.

Investing in a red coin is equivalent to investing $0.50 along with borrowing 2 × $0.50 in

ETH (i.e., 3:1 leverage). If the over-collateralization ratio is decreased from 1.50 to 1.10,

then leverage for the red coin increases to 11:1. However, the black coin becomes riskier

and its 100-day average value drops from $0.94 to $0.86. For a $2.00 collateralization, red

coin leverage is 2:1, and the black coin average value is $0.98.

Speculators seek out red coins but what about a user that wants to hold ETH without

any leverage? She seemingly has no interest in red (or black) coins. Consider two scenar-

ios: (a) she holds $1.50 worth of ETH; and (b) she takes her $1.50 worth of ETH, issues

and sells a black coin (e.g., for $0.97 USD), and holds the red coin. She actually has a

small portfolio of a red coin and close to $1 USD. The redemption value of (a) and (b) are

depicted in Figure 6(b), along with the red coin by itself. The portfolio is actually an attrac-

tive investment—she has ‘insurance’ against catastrophic loss during a devaluation of ETH

for a small fixed ‘fee’—the $0.03 USD difference between what she received for the black

coin ($0.94) and what the DApp pays out to the black coin holder ($1.00). Additionally,

she produced a stable black coin, which has external benefit to the decentralized economy.

5.4 Research Agenda: Extending Red-Black Coins

Red-black coins are primitives. Before deploying them, other aspects of their design should

to be considered. Design decisions include the maturity/redemption policy, how to make

black and red coins fungible, and interventions to prevent the black coin from breaking the
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buck. One path through the decision tree leads to a design like Dai, however there are many

other decisions that could result in very different stablecoins that have not been thoroughly

explored by academics or the DeFi community to our knowledge. We do not propose a

specific alternative but see our contribution as setting a research agenda.

5.4.1 Fungibility

Assume Alice creates a red/black coin, selling the red coin to Carol. Later, Bob creates a

red/black coin, selling the red coin to David. Alice’s black coin is not identical to Bob’s

black coin. Because they were created at different times, the ETH/USD exchange rate is

different, and thus the amount of collateral in ETH in the DApp will be different. The

more collateral, the more a black coin is worth (recall Section 5.3.2). Such coins are not

interchangeable or fungible which adds effort to valuation and exchange.

One design option is to (1) forgo fungibility and have each coin pair be its own in-

dividual contract between two counter-parties (a.k.a., over-the-counter (OTC) contracts).

This is the difference between, say, a forward and futures contract [71]. A second option

is to (2) pool the collateral of the red coins so that each black coin is a claim against the

pool. A pool can be unfair: the losses are democratized to all black coin holders. When

pooled, Alice might obtain a black coin before an ETH/USD price bubble; all the black

coins issued during the rising bubble are backed by significantly less collateral and when

the bubble bursts (consider the case that it reverts to the pre-bubble price), the pool could

become under-collateralized, impacting Alice. Had Alice used an OTC contract instead,

her red coin would acquire and lose value with the bubble but not be under-collaterialized

after bursting.

A third option is to additionally offer (3) red coin fungibility. Since red coins have

variable collateral (based on when they were created), two conditions need to be added to

its transfer function: (i) red coins with less than a specified collateral are not transferable,
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and (ii) red coins with more than the specified collateral will transfer the surplus to the

seller’s address while transferring it. While this is not possible with vaults in Dai currently,

it seems feasible to add.

5.4.2 Redemption

A policy for redeeming the collateralized ETH is the next design decision. Note that the

DApp can autonomously distribute the collateral without the participation of the red or

black coin holder, however someone needs to trigger a function call against the DApp to

finalize the process.

Red-black coins could (1) mature on a pre-specified date (e.g., the first day of a spec-

ified month). At any given time, red/black coins in circulation would have one of a few

different expiration dates, while still allowing some degree of fungibility. Coin holders

would shorten or extend their coins by trading for a coin with a different maturity date. This

is precisely how futures mature [71], and yTokens are based on the same principle [124].

After maturity, the DApp would lock all transfer functions and only allow withdrawal by

the coin holders. The first to ask for a withdrawal would trigger the DApp to look up the

ETH/USD price as of the maturity date and split the collateral accordingly.

Alternatively, red-black coins could be redeemed at any time (2) on demand by the

black coin holder, or (3) red coin holder, (4) either, or (5) both. Options (in the US

style) work on the principal of (2) or (3) [71, 131]. Allowing either to redeem is unlike

anything we could find in traditional finance—we speculate it would add uncertainty with-

out any clear gain. Requiring both to agree to redemption could be done by agreement, or

(consistent with futures contracts [71]), a red coin holder could acquire a (fungible) black

coin and redeem the (netted-out) pair.
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5.4.3 Under-collateralization

When the ETH/USD exchange rate drops enough that under-collateralization is possible,

the system could (1) do nothing and let the black coin holder price the risk of this into

the coin. If the design attempts further mitigation, the DApp could operate like a margin

trading account and require red coin holders to top-up their collateral. If they do not, it

is (2) liquidated (e.g., sold by auction for black coins). The challenge is incentivizing

users to sell USD-pegged black coins for ETH when ETH/USD is in decline (a counter-

cyclic investment). In Dai, because collateral is pooled, liquidation is essential because

under-collateralized red coins hurt all black coin holders. When collateral is not pooled,

liquidation is useless for black coin holders because both ETH and black coins decrease in

value at the same rate (recall Figure 6) so it is simpler to do nothing.

Liquidation does not incentivize topped-up collateral unless it is accompanied by a

(3) punishment (otherwise red coin holders might try to buy their liquidated assets from

themselves at a discount). Beyond charging a fee, a stablecoin system might also withhold

rewards (some systems used a secondary token for providing governance and providing

rewards) or block red coin transfers until collateral is restored. In traditional financial mar-

kets, it is also the case that a trader’s margin is inadequate to settle their account, they are

still legally liable for the difference. A stablecoin accompanied by a (4) reputation system

could mandate that red coin holders settle any obligation, however the potential loses for

a red coin holder becomes unbound. A different approach is to obtain (5) insurance or

financial coverage for the event of a decline in ETH/USD. This could be actual insurance,

whether decentralized or from a traditional brokerage, or an offsetting financial investment

that hedges the currency exchange risk.

The last approach is (6) bail out any losses through sales of a secondary token. This

was used recently by Maker for Dai holders when its normal procedures of (2) and (3) were

not adequate for dealing with a sharp, unexpected decline in the price of ETH on 12 Mar
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2020 (‘black Thursday’). While the auction was successful and recollateralized the pool, it

cannot be guaranteed that minting new tokens will be adequate for offsetting any incurred

debt. This event also exposed the lack of understanding and underestimation of risk by

many vault (i.e., red coin) holders who faced losses under (3), and raises the question of

whether a system should be designed that is more forgiving to red coin holders in turbulent

markets.

5.4.4 Autonomy

A design based on the red-black coin primitive that is OTC and does not liquidate is entirely

autonomous. It can be instantiated in a DApp and operate without human intervention.

While black coins are price-stable under most market conditions, traders who are time-

sensitive may forgo obtaining a good price in order to trade quickly. This particularly is

influential for stablecoins which provide a low-friction avenue in and out of speculative

positions on the price of ETH. Since red and black coins are issued in the same proportion,

supply/demand imbalances between them could also add volatility to the black coin price.

This could potentially be addressed in the design.

A non-interventionist approach would let the red and black coin price (1) float freely.

This avoids adding complexity to the design—in fact, a design goal might be to design a

system that traders can easily understand and grasp the risk of. This could thwart potential

lawsuits, such as a recent class action suit against Dai.8 An alternative is to further stabilize

prices by (2) setting rates and fees at various points in the system. For example, if black

coin holders can redeem at any time, a fee could be charged to the black coin holder and

paid to the red coin holder. If redemption requires both a red and black coin, the fee could

be collected by the DApp. This principle is used by central banks for targeting interest rates,

and is used in Maker to control the spot market for Dai. It is a struggle to set fees in the

8CoinDesk: https://t.co/iJET1JGJib
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context of a decentralized and autonomous organization—while allowing decisions to be

voted on is a first step, it does not guarantee that token holders are independent, informed,

and not unduly influenced by the ‘expert’ recommendations.

5.5 Concluding Remarks

In this chapter, we distil complex stablecoin systems into one of their core primitives, the

red-black coin and provide a detailed study of its characteristics and possible extensions.

It would be useful to have research results on the most suitable financial model for the

ETH/USD price rate (e.g., drift-diffusion or GARCH) for us to use in work like this chapter.

Future work could also examine the benefits of building a Dai alternative, still based on

red-black coins but using different design parameters. Two examples that seem interesting

are: (a) a more understandable system that reduces the amount of intervention, and (b)

a system with fungible red coins that can be traded freely. Finally, while our research

answers the question of how much you should pay for a black coin, the analysis is much

more complicated for Dai—with pooled collateral, liquidation, and bailouts, Dai is less

risky than a simple black coin but the risk that these countermeasures systemically fail is

not zero.
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Chapter 6

Conclusion and Future Work

In this thesis, we presented an analysis of three Ethereum components—upgradeability,

oracles, and stablecoins—which all add a degree of centrality. They each add trust points

to an otherwise decentralized system, increasing the attack surface.

The main takeaways from measuring upgradeability on Ethereum (Chapter 3) is that

immutability, as a core property of blockchain, is oversold. Also, we show that almost

64% of smart contracts are in the control of a centralized agent who can decide to change

the whole logic of the system. Future work on upgradability might examine our dataset

to learn more about actual upgrade events that have happened on Ethereum. For instance,

how many upgrades have happened, how frequently, and what can we determine about

the reason behind the upgrade? Undisclosed security vulnerabilities could also be reverse-

engineered from an upgrade serving as a security patch.

The main takeaways from studying oracle systems on Ethereum (Chapter 4) is that

most Ethereum projects depend on the data provided by Chainlink, which can be a single

point of failure for the Ethereum ecosystem. It highlights a need to diversify which oracle

services are used. We also point out that security is reduced to ensuring that the profit

from corruption is less than the cost of corruption. Future work should examine how to

capture the full extent of the potential profit, considering that attackers may profit outside
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of Ethereum by attacking oracles on Ethereum. It might conclude this can never be fully

captured.

The main takeways from enumerating the design space of Dai-like stablecoins (Chapter

5) is that they hide risk from the end-user or investor in complex ways that hard to analyze.

There is also a prevailing idea that the choices made by MakerDao in designing Dai are the

only way to make a stablecoin. We show that there are lots of other suitable designs with

differing properties that deserve further research attention. It would also be helpful to have

concrete results on the most suitable financial model for the ETH/USD exchange rate (e.g.,

would drift-diffusion or GARCH work better?). Finally, is there a stablecoin design that

would be more useful than Dai. Adding fungability to red coins (or CDPs/vaults in Dai) is

the most interesting idea from our perspective.
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