
ON MATCHING BINARY TO SOURCE CODE

Arash Shahkar

A thesis

in

The Department

of

Concordia Institute for Information Systems Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of Master of Applied Science

in Information Systems Security at

Concordia University

Montréal, Québec, Canada

March 2016

c© Arash Shahkar, 2016

Concordia University
School of Graduate Studies

This is to certify that the thesis prepared

By: Arash Shahkar

Entitled: On Matching Binary to Source Code

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Information Systems Security)

complies with the regulations of this University and meets the accepted standards

with respect to originality and quality.

Signed by the final examining committee:

Dr. Jia Yuan Yu Chair

Dr. Lingyu Wang Examiner

Dr. Zhenhua Zhu External Examiner

Dr. Mohammad Mannan Supervisor

Approved
Chair of Department or Graduate Program Director

2016

Dr. Amir Asif, Dean

Faculty of Engineering and Computer Science

Abstract

On Matching Binary to Source Code

Arash Shahkar

Reverse engineering of executable binary programs has diverse applications in

computer security and forensics, and often involves identifying parts of code that are

reused from third party software projects. Identification of code clones by comparing

and fingerprinting low-level binaries has been explored in various pieces of work as

an effective approach for accelerating the reverse engineering process.

Binary clone detection across different environments and computing platforms

bears significant challenges, and reasoning about sequences of low-level machine in-

structions is a tedious and time consuming process. Because of these reasons, the

ability of matching reused functions to their source code is highly advantageous, de-

spite being rarely explored to date.

In this thesis, we systematically assess the feasibility of automatic binary to source

matching to aid the reverse engineering process. We highlight the challenges, elab-

orate on the shortcomings of existing proposals, and design a new approach that is

targeted at addressing the challenges while delivering more extensive and detailed

results in a fully automated fashion. By evaluating our approach, we show that it is

generally capable of uniquely matching over 50% of reused functions in a binary to

their source code in a source database with over 500,000 functions, while narrowing

down over 75% of reused functions to at most five candidates in most cases. Finally,

we investigate and discuss the limitations and provide directions for future work.

iii

Contents

List of Figures viii

List of Tables ix

Code Listings x

1 Introduction 1

1.1 Motivation . 2

1.2 Thesis Statement . 3

1.3 Contributions . 3

1.4 Outline . 5

2 Background 6

2.1 Software Compilation and Build Process 6

2.1.1 High-level Source Code . 7

2.1.2 Abstract Syntax Tree . 9

2.1.3 Intermediate Representation 10

2.1.4 Control Flow Graph . 10

2.1.5 Compiler Optimizations . 11

2.1.6 Machine Code . 15

2.1.7 Linking . 15

2.2 Binary to Source Matching . 17

2.2.1 Automatic Compilation . 17

iv

2.2.2 Automatic Parsing . 19

3 Related Work 20

3.1 Binary to Source Comparison . 20

3.2 Binary Decompilation . 22

3.2.1 Decompilation as an Alternative 24

3.2.2 Decompilation as a Complementary Approach 25

3.3 High-Level Information Extraction from Binaries 25

3.4 Source Code Analysis . 26

3.5 Miscellaneous . 27

4 CodeBin Overview 29

4.1 Assumptions . 29

4.2 Comparison of Source Code and Binaries 30

4.3 Function Properties . 31

4.3.1 Function Calls . 31

4.3.2 Standard Library and API calls 31

4.3.3 Number of Function Arguments 32

4.3.4 Complexity of Control Flow 33

4.3.5 Strings and Constants . 35

4.4 Annotated Call Graphs . 37

4.5 Using ACG Patterns as Search Queries 40

5 Implementation 42

5.1 Challenges . 42

5.1.1 Macros and Header Files . 42

5.1.2 Statically Linked Libraries . 44

5.1.3 Function Inlining . 46

5.1.4 Thunk Functions . 47

5.1.5 Variadic Functions . 48

v

5.2 Source Code Processing . 49

5.2.1 Preprocessing and Parsing . 49

5.2.2 Source Processor Architecture 51

5.3 Binary File Processing . 53

5.3.1 Extracting Number of Arguments 53

5.3.2 ACG Pattern Extraction . 53

5.4 Graph Database . 55

5.4.1 Subgraph Search . 55

5.4.2 Query Results Analysis . 57

5.5 User Interface . 57

6 Evaluation 61

6.1 Methodology . 62

6.1.1 Test Scenario . 62

6.1.2 Pattern Filtering . 63

6.1.3 Result Collection and Verification 64

6.2 Evaluation Results . 64

6.3 No Reuse . 67

6.4 Different Compilation Settings . 68

6.5 Source Base and Indexing Performance 70

7 Discussion 73

7.1 Limitations . 73

7.1.1 Custom Preprocessor Macros 73

7.1.2 Orphan Functions . 75

7.1.3 Inaccurate Feature Extraction 76

7.1.4 Similar Source Candidates . 76

7.1.5 C++ Support . 77

7.2 CodeBin as a Security Tool . 79

7.3 Directions for Future Work . 79

vi

8 Conclusion 81

Bibliography 89

vii

List of Figures

1 Sample abstract syntax tree . 9

2 Control flow graph created from source code 11

3 The effect of LLVM optimizations on CFG 13

4 The effect of MSVC optimizations on CFG 14

5 Cyclomatic complexity of four different hypothetical CFGs 34

6 Cyclomatic complexity of source and binary functions without compiler

optimizations . 35

7 Cyclomatic complexity of source and binary functions with compiler

optimizations . 36

8 Sample partial annotated call graph 38

9 Overall design of CodeBin . 40

10 The effect of static linking on binary ACGs 45

11 Thunk functions . 48

12 The architecture of CodeBin source code processor. 50

13 User interface: Indexing source code 58

14 User interface: Inspecing ACGs . 59

15 User interface: Viewing matching results 60

16 User interface: Viewing source code 60

viii

List of Tables

1 Complementary information on Figure 8 39

2 Results of evaluating CodeBin in real-world scenarios. 65

3 CodeBin results in no-reuse cases. 67

4 Effect of different compilation settings on CodeBin’s performance. . . 69

5 CodeBin test dataset, parsing and indexing performance. 72

ix

Code Listings

1 Sample C source code. 8

2 Part of x86 assembly code for findPrimeSpeed function 16

3 Cypher query for the ACG pattern in Figure 8 56

4 Different implementations for ROTATE in OpenSSL. 74

5 Similar functions in Sqlite . 77

x

Chapter 1

Introduction

Analysis and reverse engineering of executable binaries has extensive applications in

various fields such as computer security and forensics [76]. Common security applica-

tions of reverse engineering include analysis of potential malware samples or inspecting

commercial off-the-shelf software; and are almost always performed on binaries alone.

Reverse engineering of programs in binary form is often considered a mostly manual

and time consuming process that cannot be efficiently applied to large corpuses.

However, companies such as security firms and anti-virus vendors often need to

analyze thousands of unknown binaries a day, emphasizing on the need for fast and

automated binary analysis and reverse engineering methods. To this end, there has

been several efforts in designing and developing reliable methods for partial or full

automation of different steps of reverse engineering and binary analysis.

Code reuse is referred to the process of copying part of an existing computer

program code in another piece of software with no or minimal modifications. Code

reuse allows developers to implement parts of a program functionality by relying on

previously written and tested code, effectively reducing the time needed for software

development and debugging.

Previous research has shown that code reuse is a very common practice in all sorts

of computer programs [17, 44, 60, 63, 75], including free software, commercial off-the-

shelf solutions and malware, all of which are typical targets of reverse engineering.

1

In the process of reverse engineering a binary program, it is often desirable to

quickly identify reused code fragments, sometimes referred to as clones. Reliable

detection of clones allows reverse engineers to save time by skipping over the fragments

for which the functionality is known, and focusing on parts of the program that drive

its main functionality.

This thesis is the result of exploring identification and matching of reused portions

of binary programs to their source code, a relatively new and less explored method

in the area of clone-based reverse engineering.

1.1 Motivation

The source code of a computer program is usually written in a high-level program-

ming language and is occasionally accompanied by descriptive comments. Therefore,

understanding the functionality of a piece of software by reading its source code is

much easier and less error-prone compared to analyzing its machine-level instructions.

On the other hand, as will be discussed later in Chapter 2, while huge repositories of

open source code is accessible for the public, creating large repositories of compiled

binaries for such programs bears significant challenges. As a result, matching reused

portions of binary programs to their source code would be an effective method in

speeding up the reverse engineering process.

Previous efforts have been made on identifying reused code fragments by searching

through repositories of open source programs [13, 39, 67]. However, research on binary

to source code matching is still very scarce. All previous proposals in this area follow

relatively simple and similar methods for matching executable binaries to source code,

and have not been publicly evaluated beyond a few limited case studies. Also, to the

best of our knowledge, there exists no systematic study on the feasibility and potential

challenges of matching reused code fragments from binary programs to source code.

2

1.2 Thesis Statement

In summary, the objective of this thesis is to assess the feasibility of automatically

comparing executable binary programs on the Intel x86 platform to a corpus of open/-

known source code to detect code reuse and match binary code fragments to their

respective source code. To reach this goal, we try to answer the following questions:

Question 1. What are the common features or aspects of a computer program that

can be effectively extracted from both its source code and executable binaries in an

automated fashion?

Question 2. How do compilation and build processes affect these aspects, and what

are the challenges of automated binary to source comparison?

Question 3. Can we improve the existing solutions for binary to source matching by

enriching the analyses with more reliable features and working around the challenges?

Question 4. To what extent can we use better binary to source matching techniques

to detect code reuse and facilitate reverse engineering of real world binary programs?

1.3 Contributions

1. Identification of Challenges. We have explored the effects of the compilation

and build process on various aspects of a program, and have shown why certain

popular features that are commonly used in previous work for comparing source

code [19, 45, 47, 69] or binary code fragments [30, 31, 32, 41, 46, 71] together

cannot be used for comparing source code to binary code. We have also studied

and hereby describe the challenges of automatically extracting features from

large corpuses of open source code, as well as the technical complications of

binary to source comparison.

2. New Approach. We explore the possibilities of improving current binary to

source matching proposals by studying additional features that can be used for

3

comparing source code to binary code, and propose a new approach, CodeBin,

which unlike previous proposals, tries to move from syntactic matching to ex-

tracting semantic features from source code and is capable of revealing code

reuse with much more detail.

3. Implementation. We have implemented CodeBin and created a system that

is capable of automating the matching of reused binary functions to their source

code on arbitrary binary programs and code bases. Our implementation can au-

tomatically parse and extract features from arbitrary code bases, create search-

able indexes of source code features, extract relevant features from disassembled

binaries, match binary functions to previously indexed source code, and gener-

ally reveal the source code of a majority of reused functions in an executable

binary.

4. Evaluation. We have evaluated CodeBin by simulating real world reverse en-

gineering scenarios using existing open source code. We present the results of

code reuse detection through binary to source matching, and assess the scala-

bility of our approach. To this end, we have indexed millions of lines of code

from 31 popular real world software projects, reused portions of the previously

indexed code in 12 binary programs, and used our prototype implementation to

detect and match reused binary functions to source functions. In summary, our

implementation is generally capable of uniquely matching over 60% of reused

functions to their source code, requiring approximately one second for indexing

each 1,000 lines of code and less than 30 minutes for analyzing relatively large

disassembled binary files on commodity hardware. We have also tested our sys-

tem in 3 cases where no previously indexed code is reused, and have investigated

the results in all cases. We present sample cases and describe the reasons why

the capabilities of our approach is undermined in certain circumstances, and

also discuss the possibilities for future work.

4

1.4 Outline

The rest of this thesis is organized as follows. Chapter 2 covers some necessary

background on how source code is translated into machine level executable binary

programs, as well as the challenges of automatically matching binary programs to

source code. In Chapter 3, we review related work in the field of reverse engineering

and software analysis, and discuss previous proposals for binary to source matching

and their shortcomings. Chapter 4 is dedicated to the formulation of our approach,

including the results of studying additional common features that can be extracted

from source code and binaries and our proposed method of creating searchable indices

from extracted features as well as performing searches over indexed source code. We

present the details of our prototype implementation in Chapter 5, and discuss certain

aspects of it that are incorporated to address several technical challenges that are

caused by the complexity of the compilation process. In chapter 6, we present the

results of evaluating our approach in real world clone detection-based reverse engi-

neering scenarios and our dataset. Chapter 7 includes the results of investigating the

evaluation results, covers challenging cases with samples and potential opportunities

for future work and improvements. Finally, we conclude in Chapter 8.

5

Chapter 2

Background

2.1 Software Compilation and Build Process

The build process, in general, is referred to the process of converting software source

code written in one or several programming languages into one or several software

artifacts that can be run on a computer. An important part of the build process is

compilation, which transforms the source code usually written in a high-level program-

ming language into another target computer language that is native to the platform

on which the program is meant to run. The target code is then processed further to

create target software artifacts.

The details of the build process highly varies between programming languages and

target platforms. For instance, building a program written in C into a standalone

executable binary for Intel x86 CPUs is completely different from building a Java

program that is executed in a Java Virtual Machine (JVM) [54].

Our goal is to facilitate reverse engineering of binary programs. C is arguably

the most popular programming language that is used to produce machine-executable

binaries [78], and x86 is still the predominant computing platform. Due to the nature

of our work, in the rest of this section we discuss the build process by focusing on C

as the source code programming language and Intel x86 as the target platform.

6

2.1.1 High-level Source Code

A computer program is usually written in a high-level programming language such

as C. These languages provide strong abstraction from the implementation details

of a computer, and allow the programmer to express the logic of the program using

high-level semantics.

We hereby discuss some related concepts in C programs using a simple example.

This sample code, along with many others, were used in the early stages of this work

to explore different ideas for binary to source matching.

Listing 1 shows a simple C program that receives an integer using a command

line argument and computes the largest prime number that is smaller than the input

integer using a pre-allocated array. The main logic of the program for finding the

target prime number is encapsulated in the function findPrimeSpeed, and the target

integer is passed to this function using its only argument, limit.

This program relies on three functions not defined in its source code, but imported

from the C standard library: malloc for allocating space in memory, printf for

writing in the standard output, and atoi for extracting an integer value from a

character string. Functions, as well as structs and other components can be imported

from other source files using the #include preprocessor directive.

As the first step towards creating an executable program from C source code,

the code is preprocessed. Each C source file usually refer to several other source

(header) files using #include directives, which instruct the preprocessor to simply

replace the directive line with the contents of the included header file. Preprocessor

macros are unique tokens defined by the programmer to replace arbitrary code, or to

simply include or exclude certain parts of source code in combination with #ifdef

and #ifndef directives. These macros shape an integral part of the C programming

language and are commonly used for a variety of reasons, including controlling the

build process and enclosing platform-dependent parts of code. In some projects such

as OpenSSL, macros are heavily used to include different implementations of the same

components, only one of which is eventually compiled. During the preprocessing step,

7

C compilers rewrite the source code based on a set of defined macros and form a

concrete version of the code. As a result, a piece of C source code is likely to be

incomplete without having a specific set of defined macros.

#include <stdio.h>

#include <stdlib.h>

int findPrimeSpeed(int limit) {

int *numbers = (int*) malloc(sizeof(int) * limit);

int lastPrime;

int n, x;

for (n = 2; n < limit; n++) {

numbers[n] = 0;

}

for (n = 2; n < limit; n++) {

if (numbers[n] == 0) {

lastPrime = n;

for (x = 1; n * x < limit; x++) {

numbers[n * x] = 1;

}

}

}

return lastPrime;

}

int main(int argc, char* argv[]) {

printf("%d\n", findPrimeSpeed(atoi(argv[1])));

}

Listing 1: Sample C source code.

8

2.1.2 Abstract Syntax Tree

Once the code is preprocessed, a lexer parses the program’s source code to convert

its text into a parse tree or concrete syntax tree, which consists of all its tokens

separated according to C syntax. The parse tree is then simply converted into an

abstract syntax tree or AST, which is an immediate representation of source code

based on its syntactic structure. AST differs subtlety from a parse tree as it does not

represent all the details appearing in the real syntax, such as comments and spaces.

However, each node in AST denotes a construct in the source code, and can represent

anything from an operator to the name of a function argument. Obtaining an AST

is therefore vital to any analysis of source code based on its semantics.

findPrimeSpeed ’int (int)’

limit ’int’ CompoundStmt

DeclStmt DeclStmt DeclStmt ForStmt ForStmt ReturnStmt

numbers ’int *’ cinit

lastPrime ’int’

n ’int’ x ’int’

...............

CompoundStmt

...............

CompoundStmt

...

...

’int’ ’=’

...

’int’ lvalue ’int’ 0

... ...

numbers[n] = 0

Figure 1: Abstract syntax tree for findPrimeSpeed function in Listing 1, created using
Clang [48].

9

2.1.3 Intermediate Representation

A computer program can be represented in many different forms. Translating code

from one language to another, as performed in compilation, requires analysis and

synthesis, which are in turn tightly bound to the representation form of the program.

Compilers usually translate code into an intermediate representation (IR), also

referred to as intermediate language (IL) [77]. Intermediate representations used in

compilers are usually independent of both the source and target languages, allowing

for creation of compilers that can be targeted for different platforms. Most syntheses

and analyses are performed over this form of code.

For instance, the GCC compiler uses several different intermediate representations.

These intermediate forms are internally used throughout the compilation process

to simplify portability and cross-compilation. One of these IRs, GIMPLE [58], is

a simple, SSA-based [20], three-address code represented as a tree that is mainly

used for performing code-improving transformations, also known as optimizations.

Another example is the LLVM IR [49], a strongly-typed RISC instruction set used as

the only IR in the LLVM compiler infrastructure.

2.1.4 Control Flow Graph

A control flow graph (CFG) is a directed graph that represents all the possible flows

of control during a program execution. CFGs are usually constructed individually for

each function. In a CFG, nodes represent basic blocks and edges represent possible

flows of control from one basic block to another, also referred to as jumps. A basic

block is a list of instructions that always execute sequentially, starting at the first

instruction and ending at the last.

A CFG can be created from any form of code, including source code (AST), its

intermediate representations, or machine-level assembly code. As will be discussed

later in this chapter, CFGs are an important form for representing a function or a

program in general, and are commonly used in reverse engineering.

10

Figure 2 shows the control flow graph of the findPrimeSpeed function created by

parsing the code into an AST and converting it to a CFG using Joern [83].

Figure 2: Control flow graph of findPrimeSpeed function as created from the original source
code.

2.1.5 Compiler Optimizations

Compilers in general, and C compilers in particular, are capable of automatically

performing a variety of code optimizations, i.e., transformations that minimize the

time and/or memory required to execute the code without altering its semantics.

These optimizations are typically implemented as a sequence of transformation passes,

which are algorithms that take a program as input and produce an output program

that is semantically equivalent, but syntactically different.

11

Although the target platform is a very important factor that affects code opti-

mizations, a majority of such optimizations are intrinsically language and platform-

independent [77]. On the other hand, to guarantee semantics preservation, the com-

piler should be able to perform several analyses such as data flow analysis and depen-

dency analysis on the code, most of which are facilitated by intermediate languages.

Based on these two reasons, most compiler optimizations are performed over the

intermediate representation.

Since compiler optimizations are generally CPU and memory-intensive, compilers

typically allow programmers to choose the level of optimization, an option that affects

the time required for the compilation to finish, and how optimized the output is.

Compiler optimizations can potentially make significant changes to a piece of

code, including considerable modifications of its control flow. The amount of changes

introduced to a function as a result of compiler optimizations depends on several

factors, including how optimal the original code is and what opportunities exist for

the compiler to optimize it.

Figure 3 shows two control flow graphs for the findPrimeSpeed function. The CFG

on the left side is derived from the LLVM IR that is obtained by directly translating

the C source code, without performing any further analysis or optimization. The

CFG on the right side is derived from the LLVM IR that is fully optimized, i.e., the

output of the LLVM optimizer instructed to optimize the IR as much as possible.

Similarly, Figure 4 shows the CFG of findPrimeSpeed as derived from x86 assembly

produced using Microsoft Visual C compiler, without any optimization and with full

optimization.

Two interesting observations can be made by comparing the LLVM IR CFGs

(Figure 3) and the x86 assembly CFGs (Figure 4) to the source CFG (Figure 2):

1. Language-independent nature of CFG. Combining the sequential basic

blocks of the source CFG yields a control flow graph that is structurally identi-

cal to the unoptimized CFGs obtained from LLVM IR or x86 assembly. In other

words, the control flow graph seems to be language-independent: an abstract

12

Figure 3: Control flow graph of findPrimeSpeed function as created from LLVM bytecode.
Left: Without any optimization. Right: With full LLVM optimization.

feature that is capable of representing the flow of code regardless of what lan-

guage it is written in. This is one of the key reasons why CFGs are an important

form of representing a piece of code, as well as understanding it during reverse

engineering, simply because its overall structure is generally not affected by the

complexities of native, low-level machine languages such as the x86 instruction

set.

13

Figure 4: Control flow graph of findPrimeSpeed function as created from the assembly
output of the Microsoft Visual C compiler. Left: Without any optimization. Right: With
full (level 3) optimization.

14

2. The effect of compiler optimizations on the CFG. Note how compiler

optimizations have significantly changed the control flow of a rather simple

function. Generally, as a function becomes bigger with a more complex control

flow, compilers are provided with more opportunities to transform it into a more

optimal, but semantically equivalent code. Consequently, the chance of the

CFG being changed as a result of these optimizations also increases. Therefore,

while the structure of CFG seems to be language-independent, it cannot be

effectively used to compare functions in source and target forms in the presence

of an optimizing compiler.

2.1.6 Machine Code

Once architecture-independent analyses and optimizations are performed on the in-

termediate representation, the code is passed to a machine code generator: A compiler

that translates IR code into native instructions for the target platform contained in

an object file. In C and some other languages such as Fortran, compilation is done on

a file-by-file basis: Each source file is translated into the intermediate and/or target

language separately. Therefore, for our simple example in Listing 1, only one object

file will be created.

The nature of the generated machine code relies heavily on the architecture of the

target platform. Listing 2 contains part of the assembly code of findPrimeSpeed in the

Intel syntax, as generated by Clang/LLVM [48] with full optimizations for the Intel

x86 platform. The first part of the machine code related to the calling convention [55]

is removed for brevity.

2.1.7 Linking

Object files are created per source file, contain relocatable machine code and are

not directly executable. A linker is then responsible for linking various object files

and libraries and creating the final executable binary. There are certain link-time

15

mov r14d, edi

movsxd r15, r14d

lea rdi, [4*r15]

call _malloc

mov rbx, rax

cmp r15d, 3

jl LBB0_6

mov rdi, rbx

add rdi, 8

lea eax, [r14 - 3]

lea rsi, [4*rax + 4]

call ___bzero

dec r14d

mov ecx, 2

.align 4, 0x90

LBB0_2:

cmp dword ptr [rbx + 4*rcx], 0

mov edx, 1

mov rsi, rcx

jne LBB0_5

.align 4, 0x90

LBB0_3:

movsxd rax, esi

mov dword ptr [rbx + 4*rax], 1

inc rdx

mov rsi, rdx

imul rsi, rcx

cmp rsi, r15

jl LBB0_3

mov eax, ecx

LBB0_5:

mov rdx, rcx

inc rdx

cmp ecx, r14d

mov rcx, rdx

jne LBB0_2

LBB0_6:

add rsp, 8

pop rbx

pop r14

pop r15

pop rbp

ret

Listing 2: Part of x86 assembly code for findPrimeSpeed function

16

optimizations, mostly known as inter-procedural optimizations (IPO), that may be

performed only during linking as the optimizer has the full picture of the program.

Link-time optimizations may be performed on the intermediate representation or on

the object files. In either case, the linker takes all the input files and creates a single

executable file for each target.

Even the simplest pieces of code typically rely on a library, i.e., external code

defined in sets of functions or procedures. For instance, our example relies on three

library functions: malloc, atoi and printf. Libraries can be linked either statically

or dynamically. Statically linked libraries are simply copied into the binary image,

forming a relatively more portable executable. A dynamically linked library only has

its symbol names included in the binary image and should be present in the system

in which the binary is executed.

2.2 Binary to Source Matching

Having the essentials of the software build process explained briefly, we now discuss

two opposing ideas for matching binaries to reused source code, and the reason we

opted for the latter: Automatic compilation and automatic parsing.

2.2.1 Automatic Compilation

An idea for identifying reused source code in binary programs is to compile the source

code to obtain a binary version, and to utilize binary clone detection techniques

afterwards. We have explored this idea during the early stages of this project and

have faced several significant obstacles. According to our observations, automatic

compilation of an arbitrary piece of source code bears significant practical challenges.

Here, we enumerate and explain some of the key obstacles for automatic compilation,

which highlight the importance of the capability of directly comparing source code

and binaries.

17

2.2.1.1 Various Build Configurations

As discussed before in Section 2.1.1, C code is preprocessed before parsing, a process

that is heavily affected by preprocessor macros. An automatic compilation system

faces a big challenge for obtaining a set of correct values for custom preprocessor

macros. Usually, certain sets of values for these macros are included in a configuration

script that comes with the codebase and is run before running the actual build script.

However, different projects utilize different build systems, resulting in various methods

for configuration and build. Therefore, it is difficult in practice to obtain a set of

macros needed to compile a piece of code without any prior knowledge about the

build system used. While modern build systems such as CMake [2] provide a cross-

platform way of targeting multiple build environments and make the build process

highly standardized, they are yet to be adopted by the majority of C/C++ code

bases.

2.2.1.2 External Dependencies

Relying on external libraries for carrying out certain operations is a very common

practice. These external dependencies are not necessarily included in the depen-

dent projects and need to be downloaded, compiled in a compatible fashion and

provided separately by the user. Automatic compilation requires a standardized sys-

tem for retrieving and building these dependencies. These dependencies are usually

either downloaded by build automation and dependency management scripts or doc-

umented to be read and installed by users. While standard dependency management

systems are widely adopted by other languages [9, 35, 57], C/C++ projects have

yet to embrace such dependency management systems, further hindering automatic

compilation.

2.2.1.3 Cross-Compilation

At the time of writing this thesis, binary clone detection techniques are generally

not reliable when applied on binaries compiled with very different configurations [31],

18

such as different compilers and different optimization levels (e.g., little optimization

vs. heavy optimization), or on different platforms (e.g., x86 vs. ARM). On the other

hand, there might be a large number of candidate projects over which the search will

run. In this case, there needs to be a solution to automatically compile all the source

code into binaries, ideally with different compilers and different levels of optimization.

If the underlying platform of the future target binaries is not known, the automatic

compilation step should also build the projects on different platforms to obtain a good

quality set of binaries to match against.

2.2.2 Automatic Parsing

As a result of the challenges discussed above, we do not aim for compiling target

source code into machine binaries as a first step towards source to binary comparison.

Instead, we process the source code by parsing it and traversing the AST for extraction

of key features that are later used for matching. Obviously, custom configuration

macros are still an issue. However when only AST creation is considered, lacking

knowledge about these macros results in a partially inaccurate process instead of

blocking it completely, a problem that occurs when executable machine code is to

be created. Similarly, the location of header files will also be a missing piece of

information. In Chapter 5, we will explain our approach for obtaining ASTs in a fully

automated fashion, without access to predefined custom macros or the location of

header files.

19

Chapter 3

Related Work

In this chapter, we discuss previous work on reverse engineering of executable binaries,

with a focus on high-level information recovery from program binaries and source code

as well as assembly to source code comparison.

3.1 Binary to Source Comparison

To the best of our knowledge, the idea of reverse engineering through binary to source

comparison is not explored much. There exist three tools and a few publications that

focus on comparing binary programs to source code for various purposes including

reverse engineering, all of which employ very similar preliminary techniques for com-

parison.

The oldest proposal, RE-Google [13, 50, 51], is a plugin for IDA Pro introduced in

2009. RE-Google is based on Google code search, a discontinued web API provided by

Google that allowed third party applications to submit search queries against Google’s

open source code repository. RE-Google extracts constants, strings and imported

APIs from disassembled binaries using IDA functionalities, and then searches for the

extracted tokens to find matching strings in hosted source files. This plugin was left

unusable once Google discontinued the code API.

The RE-Source framework and its BinSourcerer tool [66, 67] is an attempt to

20

recreate the functionalities originally provided by RE-Google using other online open

source code repositories such as OpenHub [11]. BinSourcerer is also implemented as

an IDA Pro plugin and follows a method very similar to RE-Google by converting

strings and constants as well as imported APIs in binaries to searchable text tokens.

Methods proposed in RE-Google and RE-Source are indeed very similar, and both

are based on syntactic string tokens and text-based searches. There are two major

drawbacks of these proposals:

1. Both rely on online repositories for searching, limiting their capabilities in terms

of source code analysis to what these online repositories expose in their APIs.

This essentially prevents these proposals from being capable of fine-grained

analysis, as online repositories APIs treat source code as text and only expose

text-based search to third party applications [10]. A successful search using

these tools returns a list of source files that contain the searched string token,

each of which may be quite large and contain thousands of lines of code. The

string tokens has an equal chance of being included in a comment and an actual

piece of code, and may also be part of code written in any language, including

the ones that are unlikely to be compiled into executable binaries [51].

2. One cannot use RE-Google or BinSourcerer to compare binaries to any arbi-

trary codebase, e.g., proprietary code that is not necessarily open source and

is of interest for applications such as copyright infringement detection. This

shortcoming may be addressed by creating a database of the non-open code

accompanied by a searchable index as a secondary target for querying.

The binary analysis tool (BAT) [38, 39], introduced in 2013, is a generic lightweight

tool for automated binary analysis with a focus on software license compliance. The

approach adopted by BAT is also similar to that of RE-Google and BinSourcerer, as it

also searches for text tokens extracted from binaries in publicly available source code.

BAT is capable of extracting additional identifiers such as function and variable names

from binary files, provided that they are attached to the binary. However, real-world

21

executable binaries are often stripped of such high-level information, and reasonable

identifiers used by BAT are practically limited to strings.

It should be noted that despite their limitations, these tools may provide the

reverse engineer with very useful information fairly quickly. For example, returning

similar files all including implementations of cryptographic hash functions informs

the reverse engineer that the binary file or function under analysis includes such a

functionality. However, not all functions include distinctive strings and constants,

a general factor that limits the potential of approaches that are purely based on

syntactic tokens.

As will be shown later in this thesis, a piece of source code contains significantly

more high-level information rather than just strings and constants, some of which can

be effectively compared to binary files and functions for detecting reused portions of

code.

Cabezas and Mooji [23] briefly discuss the possibility of utilizing context-based and

partial hashes of control flow graphs for comparing source code to compiled binaries

in a partially manual process. They do not however test, validate or provide evidence

for the feasibility of this approach. Also, as we showed through an example in Section

2.1.5, CFGs change significantly once source code is transformed into binaries using

an optimizing compiler.

3.2 Binary Decompilation

There has been several previous efforts on binary decompilation, which tries to gen-

erate equivalent code with high-level semantics from low-level machine binaries.

Historically, research on decompilation dates back to the 1960’s [15]. However,

modern decompilers have their roots in Cifuentes’ PhD thesis in 1994 [27], where

she introduced a structuring algorithm based on interval analysis [16]. Her proposed

techniques is implemented in dcc [26], a decompiler for Intel 80286 / DOS binaries

into C, which resorts back to outputting assembly in case of failure. The correctness

22

of dcc’s output is not tested.

Another well-known decompiler, Boomerang [1], was created based on Van Em-

merik’s proposal [80] for using the Single Static Assignment (SSA) form for data flow

components of a decompiler, including expression propagation, function signature

identification and dead code elimination. Van Emmerik performed a case study of re-

verse engineering a single Windows program by using Boomerang with some manual

analysis. However, other research efforts in this area have reported very few cases of

successful decompilation using Boomerang [72].

HexRays Decompiler [6, 36] is the de facto industry standard compiler, available

as a plugin for IDA Pro [7]. As of 2015, the latest version of HexRays is capable of

decompiling both x86 and ARM binaries, providing full support for 32-bit and 64-

bit binaries alike on both platforms. To the best of our knowledge, no other binary

decompiler is capable of handling such a wide variety of executable binaries.

Phoenix [72] is another modern academic decompiler proposed by Schwartz et al.

in 2013. Pheonix relies on BAP [22], a binary analysis platform that lifts x86 instruc-

tions into an intermediate language for easier analysis, and contains extensions such as

TIE [52] for type recovery and other analyses. Phoenix employs semantics-preserving

structural analysis to guarantee correctness and iterative control flow structuring to

benefit from several opportunities for correct recovery of control flow that other de-

compilers reportedly miss [72]. Phoenix output is reportedly up to twice as more

accurate as HexRays in terms of control flow correctness, but is unavailable for public

use as of this writing.

Yakdan et al. proposed REcompile [81] in 2013, a decompiler that similar to

dcc employs interval analysis for control flow structuring, but also uses a technique

called node splitting to reduce the number of produced GOTO statements in the

output. This technique reportedly has a downside of increasing the overall size of

the decompilation output. DREAM [82] is another decompiler proposed by the same

group in 2015, which also is focused on reducing the number of produced GOTO

statements by using structuring algorithms that are not based on pattern matching,

23

a common method used in other decompilers. Neither of these two decompilers are

available for public use as of the date if this writing.

In summary, previous research in the area of decompilation has highlighted sig-

nificant challenges in correct recovery of types as well as control flow. For instance,

experiments made by Schwartz et al. on Phoenix decompiler have shown several

limitations and failures in terms of correct decompilation caused by floating-point

operations, incorrect type recovery, inability to handle recursive structures and some

calling conventions [72]. Also, the HexRays decompiler, which is the only usable and

publicly available tool in this domain, does not perform type recovery [6] and is shown

to be limited in terms of correct recovery of control flow [72, 82].

Despite its limitations, decompilation can be considered both as an alternative

and a complementary approach when compared to binary to source matching.

3.2.1 Decompilation as an Alternative

In cases where there is no code reuse, decompilation output is very likely to be more

usable compared to the results of any binary to source matching approach. Also,

as will be shown later in Section 6.2, we have found that there are still cases where

binary to source matching is likely to fail to provide useful results (see Section 7.1.2).

On the other hand, we argue that binary to source matching has a lot more

potential in clone-based reverse engineering scenarios. Source code usually comes

with many identifiers such as identifier names (functions, variables, structures, etc.)

and comments that significantly facilitate understanding it, all of which are removed

in a compiled binary in realistic settings. In these cases, correct matching from binary

to source may provide a reverse engineer with more helpful results compared to correct

decompilation.

24

3.2.2 Decompilation as a Complementary Approach

Decompilation can also be used as a complementary approach to binary to source

matching. Due to limitations mentioned above, we have not tried to use a decompiler

output in our work, except for recovering the number of arguments for a function in an

optional fashion. However, one might try to apply several source-level clone detection

techniques proposed in the literature [69] to benefit from some of the in-depth analyses

decompilers perform for comparing binary functions to source functions.

3.3 High-Level Information Extraction from Binaries

There has been several research efforts on inference and extraction of high-level infor-

mation such as variable types [29, 52], data structures [53, 68, 74] and object oriented

entities [43, 70] from executable binaries using both static and dynamic analysis tech-

niques. Some of these proposals achieve promising results in particular scenarios.

However, we have not been able to use them in our work as they all have considerable

limitations either in terms of relying on dynamic analysis and execution, focusing on

very specific compilation settings, not supporting many realistic use cases, or simply

not being available for evaluation.

Zhiqiang et al. developed REWARDS [53], an approach for automatic recovery

of high-level data structures from binary code based on dynamic analysis and bi-

nary execution. REWARDS is evaluated on a subset of GNU coreutils suite, and

achieves over 85% accuracy for data structures embedded in the segments that it

looks into. TIE [52] is a similar approach by JongHyup et al. that combines both

static and dynamic analysis to recover high-level type information. TIE is an at-

tempt towards handling control flow and mitigating less than optimal coverage, both

of which are significant limitations of approaches that are merely based on dynamic

analysis. Based on an experiment on a subset of coreutils programs, TIE is reported

to be 45% more accurate than RWARDS and HexRays decompiler. However, other

work such as Phoenix [72] has shown considerable limitations of TIE in handling data

25

structures, and code with non-trivial binary instructions.

OBJDIGGER [43] is proposed by Jin et al. to recover C++ object instances,

data members and methods using static analysis and symbolic execution. While it is

shown to be able to recover classes and objects from a set of 5 small C++ programs, it

does not support many C++ features such as virtual inheritance and is only targeted

towards x86 binaries compiled by Microsoft Visual C++.

Prakash et al. proposed vfGuard [64], a system that is aimed at increasing the

control flow integrity (CFI) protection for virtual function calls in C++ binaries.

vfGuard statically analyzes x86 binaries compiled with MSVC to recover C++ se-

mantics such as VTables.

There also exist a few old IDA Pro plugins for recovering C data structures [33]

and C++ class hierarchies [73] using RTTI [87], but they all seem limited in terms

of capabilities and are not actively developed in the public.

3.4 Source Code Analysis

Necula et al. have developed CIL [62], a robust high-level intermediate language

that aids in analysis and transformations of C source code. CIL is both lower level

than ASTs and higher level than regular compiler or reverse engineering intermediate

representations, and allows for representation of C programs with fewer constructs

and clean semantics. While it is extensively tested on various large C programs such

as the Linux kernel, it needs to be run instead of the compiler driver to achieve correct

results [61]. This basically means that one needs to modify the configure and make

scripts that ship with the source code. As discussed earlier in Section 2.2.1.1, while

this is not a limitation by any means, it makes automatic processing of arbitrary

codebases infeasible due to customized build scripts.

SafeDispatch [40] is proposed by Jang et al. to protect C++ virtual calls from

memory corruption attacks, a goal very similar to that of vfGuard [64]. However,

SafeDispatch inserts runtime checks for protection by analyzing source code. This

26

system is implemented as a Clang++/LLVM extension, and needs to be run along

with the compiler. Due to this requirement and similar to CIL [62], SafeDispatch

cannot be automatically invoked on arbitrary C++ source bases.

Joern [83] is a tool developed by Yamaguchi et al. for parsing C programs and

storing ASTs, CFGs and program dependence graphs in Neo4J [59] graph databases.

Joern is used along with specific-purpose graph queries for detecting vulnerabilities

in source code [84, 85, 86]. During our experiments, we have found that graphs

created by Joern are not always reliable, specially in the presence of rather complex

C functions or moderate to heavy use of custom preprocessor macros. As will be

discussed later in Section 5.2, we adopt Clang [48], a mature open source modular

compiler for parsing C source code.

3.5 Miscellaneous

Although not directly related, there are other pieces of work that make use of some

of the key concepts we focus on in this thesis for a variety of purposes.

Lu et al. [56] propose a source-level simulation (SLS) system that annotates source

code with binary-level information. In such a system, both source and binary versions

of the code are available. The goal is to simulate the execution of the code, usually on

an embedded system, while allowing the programmer to see how and by what extent

specific parts of the code contribute to simulation metrics. The authors propose

a hierarchical CFG matching technique between source and binary CFGs based on

nested regions to limit the negative effect of compiler optimizations on SLS techniques.

In a recent paper [24], Caliskan-Islam et al. implement a system for performing

authorship attribution on executable binaries. They use lexical and syntactic fea-

tures extracted from source code and binary decompiler output to train a random

forest classifier, and use the resulting machine learning model to de-anonymize the

programmer of a binary program. Features include library function names, integers,

AST node term frequency inverse document frequency (TFIDF) and average depth

27

of AST nodes among few others. The authors claim an accuracy of 51.6% for 600

programmers with fixed optimization levels on binaries. Although it is claimed that

syntactic features such as AST node depth survive compilation, we have not been able

to verify such a fact specially when multiple optimization levels, limitations of decom-

pilers and hundreds of thousands of functions with potentially multiple programmers

are to be considered.

28

Chapter 4

CodeBin Overview

We now outline our general approach for matching executable binaries to source code.

4.1 Assumptions

The underlying assumption is that the binary program under analysis may have used

portions of one or more open source projects or other program for which the source

code is available to the analyst, and identifying the reused code is a critical goal in

the early stages of the reverse engineering process. Functions are usually considered

as a unit of code reuse in similar work on binary clone detection. However, in some

cases only part of a function might be reused. We do not aim at detecting partial

function reuse in this work. Our main goal, therefore, is to improve the state of the

art for binary to source matching by targeting individual binary functions instead of

the entire executable. We do not aim at identifying all the functions in a piece of

executable binary, but rather those that are reused and of which the source code is

available.

We also do not consider obfuscated binaries, as de-obfuscation is considered as an

earlier step in the reverse engineering process [37, 79].

29

4.2 Comparison of Source Code and Binaries

We introduce a new approach for identifying binary functions by searching through a

repository of pre-processed source code. This approach aims at automatically finding

matches between functions declared in different code bases and machine-level binary

functions in arbitrary executable programs. At the core of CodeBin, we identify and

carefully utilize certain features of source code that are preserved during the compila-

tion and build processes, and are generally independent of the platform, compiler or

the level of optimization. As a result, these features can also be extracted from binary

files using particular methods, and be leveraged for finding similarities between source

code and executable binaries at the function level without compiling the source code.

Due to the sophisticated transformations applied on source code by an optimizing

compiler, we have found that the number of features that can be extracted from both

plain source code and executable binaries and then directly used for comparison is

rather small. Detailed properties of a binary function such as its CFG or machine

instructions are often impossible to predict solely with access to its source code and

without going into the compilation process, as they are heavily subject to change and

usually get affected by the build environment. Hence, features that can be used for

direct comparison of binary and source functions usually represent rather abstract

properties of these functions.

A small number of abstract features may not seem very usable when a large corpus

of candidate source code is considered. However, we have found that the combination

of these features produces a sufficiently unique pattern that can be effectively used for

either identifying reused functions or narrowing the candidates down to a very small

set, which is easy to analyze manually. This key observation has helped us establish

a method for direct matching of binary and source functions.

30

4.3 Function Properties

We leverage a few key properties of functions to form a fingerprint that can be later

used to match their source code and binary forms. These properties have one obvious

advantage in common: They are almost always preserved during the compilation

process regardless of the platform, the compiler, or the optimization level. In other

words, despite the feature extraction methods being different for source code and

binaries, careful adjustments of these methods can yield the same features being

extracted from a function in both forms. These features are as follows:

4.3.1 Function Calls

Functions in a piece of software are not isolated entities and usually rely on one

another to for own functionality. A high-level view of the call relations between

different functions in a certain program can be represented as a function call graph

(FCG), a directed graph in which nodes represent functions and edges represent

function calls. In majority of the cases, calls between different binary functions follow

the same pattern as in source code. We utilize this fact to combine other seemingly

abstract features into sufficiently unique patterns that can be later searched for in

source code. There are special cases, most notably inline function expansion (or

simply inlining), which sometimes cause this relation not to be easily detectable in

binaries. However, as discussed in Section 5.1.3, we employ a technique to minimize

the effect, and have actually found inlining not to be a significant limiting factor for

our approach in real-world scenarios.

4.3.2 Standard Library and API calls

System calls and standard library function invocations are rather easy to spot in

source code. Once function calls are identified, cross-referencing them in each function

against the list of declared functions in the same code base separates internal and

external calls. Using a list of known system calls and standard library functions,

31

external calls can be further processed to identify system calls and library function

invocations. On the binary side, the situation might be more complex due to different

linking techniques. If all libraries are linked dynamically (i.e., runtime linking), the

import address table (IAT) of the executable binary yields the targeted system and

library calls. While system APIs such as accept for socket connections in Linux or

those defined in kernel32.dll on Windows can be found in the IAT, static linking of the

standard library functions such as memset results in library function calls appearing

like normal internal calls in the binary and not being present in the IAT. However,

certain library function identification techniques such as those utilized by IDA Pro’s

FLIRT subsystem [4] can be used to detect library functions in executable binaries

and distinguish them from regular calls between user functions.

4.3.3 Number of Function Arguments

The number of arguments in the function prototype is another feature that can be

extracted from source code as well as binaries in a majority of cases. It should be noted

however that this is not the case for the actual function prototype as well, since exact

type recovery from executable binaries is still an ongoing research problem without

fully reliable results [52]. On the source side, parsing the source code easily yields the

number of arguments for each defined function. On the binary side, this number can

be derived from detailed analysis of the function’s stack frame and its input variables

combined with identification of the calling conventions used to invoke the function.

HexRays Decompiler [6], for instance, uses similar techniques to derive the type and

number of arguments for a binary function. While we have found the types not be

accurate enough for our purpose, the number of arguments as extracted from binaries

is correct in the majority of the cases according to our experiments. An exception

to this are functions known as “variadic” functions, such as the well-known “printf”

function in C standard library, which can accept a variable number of arguments

depending on how they are invoked and the number of passed arguments. However,

variadic functions account for a very small fraction of all the functions defined in

32

real-world scenarios (approximately 1% according to our observations), and they can

be treated in a special way to prevent mismatches, as outlined in Section 5.1.5.

4.3.4 Complexity of Control Flow

Control flow can be considered as a high-level representation of a function logic. As

discussed in Section 2.1.4, the control flow of each function is represented through a

CFG. Predicting the control flow structure of the compiled binary version of a source

function without going through the compilation process is extremely unreliable and

inaccurate, if not impossible. While the structure of the CFG is usually suscepti-

ble to compiler optimizations, we have found that its complexity remains far more

consistent between source and binary versions. In other words, simple and complex

source functions generally result in respectively simple and complex binary functions,

whether or not compiler optimizations are applied.

We use the number of linearly independent paths in a control flow graph to mea-

sure its complexity. This metric is referred to as the cyclomatic complexity, and

is similarly used in previous work [42] as a comparison metric for binary functions.

Cyclomatic complexity is denoted by C and defined as:

C = E −N + 2P

, where E is the number of edges, N is the number of nodes, and P is the number of

connected components of the CFG. In our use case, P = 1, as we are measuring the

complexity of the control flow structure of individual functions. As can be seen in

Figure 5, control structures such as branches and loops contribute to code complexity.

We have carried out an experimental study on the cyclomatic complexity of source

and binary versions of approximately 2000 random functions extracted from various

projects and compiled with different configurations. The results show that generally,

compiler optimizations in fact do not heavily alter the complexity of control flow.

Figures 6 and 7 show the correlation between the cyclomatic complexity of source

33

(a)

C = 1

(b)

C = 1

(c)

C = 2

(d)

C = 4

Figure 5: Cyclomatic complexity of four different hypothetical CFGs. c includes a branch
at second basic block, and d includes a loop and a break statement at second basic block.

and binary versions, in which each function is denoted by a dot in the scatter graph.

Note how optimizations affect the CFGs of functions by relatively diversifying

the graph, but still resulting in a fairly strong correlation between the complexity

of source and binary functions. The empty space in the upper left and lower right

portions of both graphs, caused by the relative concentration of most dots around

the identity (x = y) line, shows that cyclomatic complexity can indeed be effectively

used as an additional feature for comparing source and binary functions.

For clearer representation of the results, we have only included the functions of

which the complexity falls below 150. For 7 functions, accounting for less than 0.4%

of all the cases, the complexity of both source and binary control flow graphs is

above 150. While they are not depicted in the figures, they follow the same pattern.

Among all samples in this study, the maximum difference between source and binary

complexities is 32% and belongs to a function with a source CFG complexity of 350.

Our study confirms the fact that predicting the exact cyclomatic complexity for

a binary CFG based on the source CFG cyclomatic complexity, or vice versa, is not

feasible. However, it also suggests that complexity can still be used as a comparison

metric when multiple candidates for a binary function are found. Therefore, in cases

34

0 25 50 75 100 125
0

25

50

75

100

125

Source cyclomatic complexity

B
in
ar
y
cy
cl
om

at
ic

co
m
pl
ex
ity

Figure 6: Correlation between the cyclomatic complexity of various functions’ control flow
in source and binary form, with compiler optimizations disabled.

where multiple candidate source functions are found for one binary function, we will

use this metric as a means to reduce the number of false positives and rank the results

based on their similarity to the binary functions in terms of control flow complexity.

4.3.5 Strings and Constants

String literals and constants are used in similar work such as RE-Google [50] to

match executable binaries with source code repositories. While these two features are

certainly usable for such a purpose and can sometimes be used to uniquely identify

portions of software projects, we have found them not be reliable enough for function-

level matching. For instance, despite the fact that it is relatively easy to extract

string literals referenced and used by functions in the source code, we have found

35

0 25 50 75 100 125
0

25

50

75

100

125

Source cyclomatic complexity

B
in
ar
y
cy
cl
om

at
ic

co
m
pl
ex
ity

Figure 7: Correlation between the cyclomatic complexity of various functions’ control flow
in source and binary form, with compiler optimizations set to default level (-O2).

that assigning strings to individual binary functions accurately is rather difficult and

does not result in reliable feature extraction. The same issue exists for constants.

As a result, we believe string literals and constants can be used in a better way to

narrow down the list of candidate projects (and not individual functions), which may

actually help in reducing the number of false positives if patterns used by CodeBin

exist in more than one software project.

It is notable that the combination of features mentioned above is far more useful

than any of them in isolation. For instance, a set of a few API calls may be helpful in

narrowing down the list of candidate source functions for a given binary function, but

using this technique alone does not lead to many functions being identified, as only

36

a portion of functions in general include calls to system APIs or standard libraries.

On the other hand, while number of arguments is a feature applicable to nearly any

function, the set of candidate source functions with a specific number of arguments is

still too large to be analyzed manually. However, we show that a carefully designed

combination of all these features is sufficient for detecting a large number of binary

functions just by parsing and analyzing the source code.

4.4 Annotated Call Graphs

We introduce and utilize the notion of annotated call graphs (ACG), function call

graphs in which functions are represented by nodes annotated with function proper-

ties. These properties are the features discussed previously, except for the function

calls that are represented by the graph structure itself. Hence, an ACG is our model

for integrating the features together, forming a view of a piece of source code that is

later used to compare it to an executable binary.

In an ACG, functions defined by the programmer, simply referred to as user

functions, are represented by nodes. A call from one user function to another user

function results in a directed edge from the caller to the callee. Library functions and

system APIs may be represented either as nodes or as node properties. If represented

by nodes, each called library function or system API will be a node with incoming

edges from the user functions that have called it. In this case, calls between library

functions may or may not be representable depending on whether the source code for

the library is available. If represented by properties, each node (user function) will

have a property that lists identifiers for each library function or system API called by

that function. As will be discussed later in Section 5.1.2, the decision whether to use

nodes or properties for representing library functions and system APIs is critical to

the effectiveness of our approach. Temporarily, let’s assume than we represent calls

to system APIs and library functions as node properties, and a node itself always

represents a user function.

37

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

N: 9
E: 4
C: 47

A

N: 6
E: 7
C: 42

B

N: 4
E: 1
C: 2

C

N: 3
E: 0
C: 3

D

N: 4
E: 1
C: 2

E

N: 7
E: 4
C: 12

F

N: 3
E: 2
C: 6

G

Figure 8: Sample partial annotated call graph from Miniz. N , E and C respectively denote
number of arguments, system API and library calls and cyclomatic complexity.

Figure 8 depicts a partial ACG consisting of 17 user functions extracted from

Miniz, a relatively simple library that combines optimized compression/decompres-

sion and PNG encoding/decoding functionalities, with its complete ACG consisting

of 127 nodes and 159 edges. We will use this sample partial ACG to explain our ap-

proach advantages and effectiveness. Table 1 includes the actual names of highlighted

nodes in Figure 8 for readers’ reference.

Each node in the graph is annotated with the features extracted from its respec-

tive source function, including the number of function arguments, calls to known

standard library functions and system APIs, and the cyclomatic complexity of its

control flow graph. Hence, an ACG can be considered a good high-level representa-

tion of a software project, combining all its “interesting” characteristics discussed in

Section 4.3.

The fundamental idea of our approach for binary to source matching is the fol-

lowing observation: The overall call graph of a piece of software, when augmented by

the features discussed before, is fairly unique and generally survives compilation. In

38

Table 1: Complementary information on Figure 8

Alias Real Function Name Library and API calls

A mz_zip_writer_add_mem_ex strlen, memset, time, _wassert

B mz_zip_writer_add_file memset, strlen, fclose, fread,
_wassert,_ftelli64, _fseeki64

C tdefl_init memset

D mz_crc32

E tdefl_compress_buffer _wassert

F tdefl_write_image_to_png_file
_in_memory_ex malloc, memset, memcpy, free

G tdefl_output_buffer_putter realloc, memcpy

many cases, even a small portion of the call graph exhibits unique features.

The outlined portion of the ACG in Figure 8 consists of one function, F , calling

four other functions, C, D, E and G. When the number of arguments and the names

of recognizable library and system API calls of each of those functions is also taken

into account, we have found the pattern to be unique among call graphs of 30 different

open source projects, consisting of over 500,000 functions. This basically means that

once and if the same pattern is extracted from a binary call graph, it can be searched

in many different projects and uniquely and correctly identified.

Although the case highlighted in the paragraph above is a best-case scenario, it

is imperative to note that it can be leveraged to identify many more functions as

well. For instance, once C, D and E are uniquely identified, such a fact can be

effectively used to identify A and B as well. The same idea can be applied once again

to identify the functions denoted by f1 to f10, if they exhibit enough difference in

terms of their own properties. Therefore, not all functions need to have very unique

and distinctive features or call graph patterns in order to be identifiable. This is

in contrast to approaches adopted by previous work on binary to source matching,

which can detect reuse only to the extent that unique and identifiable tokens exist in

both binaries and source code.

39

Source Processor Binary Processor

Source
Processor

Code
Bases

ACG
Indexer

Source
ACGs

Graph
Database

Binary
File

Binary
Processor

Graph Query
Generator

Binary
ACG

Patterns

Matching
Results

Figure 9: Overall design of CodeBin

4.5 Using ACG Patterns as Search Queries

Based on the observations discussed in this chapter, our approach for matching reused

functions in binaries to source code is designed around the following procedure (see

Figure 9):

1. Source Feature Extraction. First, we parse and analyze the source code and

transform it into an ACG by extracting specific features and relationships, such

as internal functions calls, number of function arguments, complexity of control

flow and calls to standard library functions and system APIs.

2. Source ACG Storage. Once an ACG is created from source code, it is stored

in a database accompanied by specific indices that allow for fast searching and

retrieval. All codebases will be stored in a single graph database with unique

labels, allowing for lookup operations over many different codebases.

3. Binary Feature Extraction. For each target binary file, we disassemble and

analyze the binary to extract the same features as source, creating binary ACG

patterns.

4. Binary ACG Search. ACG patterns extracted from binary functions are

then converted into queries that can be run against the source graph database,

effectively searching for similar patterns in all preprocessed source code.

40

Overall, our adopted method can be compared from various aspects to some

previous proposals in the area of binary analysis and software fingerprinting. Bin-

Diff [30, 34, 88] uses similar graph-based techniques to propagate unique features

used for matching between two binaries. Joern [85, 84, 86] transforms source code

into property graphs and uses graph queries for various analyses on source code.

Rendezvous [46] creates a searchable index of binary functions to implement a binary

search engine.

Implementing the above procedure bears considerable challenges and complica-

tions; and most are unique to the problem of binary to source matching and are

caused by the complexities of the compilation process as well as how large projects

are usually developed. We discuss these complications and our mitigation techniques

in Chapter 5.

41

Chapter 5

Implementation

In this chapter, we discuss the details of CodeBin, the proof-of-concept implemen-

tation of our approach. We also highlight the technical challenges of implementing

our approach, and discuss the solutions and workarounds we have integrated into

CodeBin to overcome them.

5.1 Challenges

At the core of our approach, we rely on the fact that function call graphs usually

follow the same pattern in source code and compiled binaries. There are technical

aspects of a compilation process that often change the call graph, effectively making

it slightly different than what is perceived from the source code. For the purpose of

source to binary matching, it is crucial to either reverse or account for these changes

before trying to match call graphs. Below, we discuss these technical aspects and

explain how they are mitigated.

5.1.1 Macros and Header Files

As mentioned in Chapter 2.2, we aim at designing a highly automated approach

that is ideally capable of handling any code base written in C. This requirement

translates into a generic approach for source code processing that is independent of the

42

build system or other characteristics of the code base. We explained in Section 2.1.1

that defined preprocessor macros and location of header files are essential pieces of

information for deriving a correct AST. However, generally, such information cannot

be automatically derived from source files. Different projects adopt different layouts

for placement of the header files, and many have completely different sets of custom

preprocessor macros, all glued together using build scripts that are written for a

specific build system.

To better understand the extent of this problem, consider a function defined in

a source file that calls another function for which the prototype and implementation

are not present in the current source file. If the called function is actually defined in

one of the included header files, it is crucial to recognize such a fact, as call graphs

form the foundation of our approach. If the header file is not placed in a default

directory (e.g., compiler’s default directory for header files or the current directory in

which the source file resides), a generic approach to source code processing will fail to

create the relationship between the caller and the callee. A similar problem exists for

“dynamic call expressions”, i.e., calls to function pointers that are resolved at runtime

and do not represent a concrete call relationship either on the source level or inside

the executable binary.

To overcome this problem, we first record all the call expressions encountered

inside each function by the name of the called function. The parser also keeps a

record of every function declaration (i.e., function prototype) it encounters in all

source and header files. When all files are parsed, the list of call expressions for each

function is cross-referenced against all declared prototypes, essentially creating valid

call graphs and removing dynamic call expressions. A more detailed explanation of

these steps can be found in Section 5.2.

An automatic source code processing solution is also likely to miss custom pre-

processor macros, which are usually passed along to the compiler using generated

build scripts and sometimes are utterly important to derive a correct AST from code.

This problem undermines the capabilities of CodeBin in certain circumstances and is

43

discussed more in Section 7.1.1.

5.1.2 Statically Linked Libraries

As discussed in Section 4.3, we enumerate calls to certain standard library functions

to form one of the features of each function. Standard libraries, just like any other li-

brary, have a chance of being statically linked to the target program during the linking

process. During static linking, the linker treats libraries as part of the code, effec-

tively inserting library functions into the binary. This differs from dynamic (runtime)

linking, in which only the symbol names are inserted into the final executable.

Static linking results in significant changes in the call graph, which is demonstrated

in Figure 10. Calls to statically linked library functions change the call graph by

creating additional nodes and corresponding edges for each library function. As a

result, not only the binary call graph is different from the source code call graph,

but also the library calls cannot be easily extracted from binary functions just by

enumerating the symbols used as call targets.

There are three possible solutions to the problem of statically linked libraries, all

of which are based on the idea of normalizing the call graph patterns extracted from

source code, binary, or both.

1. The first solution is to change the source call graph, effectively inserting library

functions as separate nodes instead of properties of their callers. In other words,

the first solution is to process the source code with the assumption that standard

libraries will always be linked statically. Even when the libraries are actually

linked in a dynamic fashion, the binary call graph can be easily adjusted to

represent static linking, simply because the names of library functions can be

retrieved by enumerating imported symbols. The obvious advantage of this ap-

proach is that it requires no additional information other than a list of standard

library functions, and it bears low technical overhead. On the other hand, this

approach shifts the matching criteria more towards the call graph pattern and

44

Library
Calls:

memset,
memcpy

Function A

Library
Calls:
strchr

Function B

No
Library
Calls

Function C

No
Library
Calls

Function A

No
Library
Calls

Function B

No
Library
Calls

Function C

No
Library
Calls

memset

No
Library
Calls

memcpy
No

Library
Calls

strchr

Figure 10: The effect of static linking on binary ACGs. A, B and C are user functions.
Top: Dynamically linked libraries. Bottom: Statically linked libraries.

away from the features of individual nodes, leaving the nodes (functions) with

even less identifiable features.

2. Another solution is utilizing tools such as FLIRT to identify library functions in

binaries, and adjusting the binary call graph accordingly. In this approach, the

source processor always inserts library functions calls as node properties into

the call graph. The advantage of this solution compared to the first one is that

individual functions keep one of their important properties, making them more

45

identifiable when an entire pattern is found. The downside is that this solution

relies heavily on the library function identification technology to be robust and

reliable, which is not always true. For instance, while FLIRT identifies some

specific library functions rather reliably, it may fail in identifying others. Such

a failure at the presence of a statically linked library results in the wrong graph

pattern being extracted, which in turn causes a mismatch.

3. The third solution combines the first two and aims at bringing the best of both

into one solution. With this technique, the source processor is made aware of

the capabilities of the library function identification technology used. This can

be done through a simple configurable list of library functions, which includes all

the functions that can be reliably detected using the mentioned technology. If a

library function call is seen on the source side, the source processor either inserts

it as a node property or a separate node, depending on whether the function is

included in the list or not, respectively. With this approach the capabilities of

existing technologies for binary clone detection are used for handling statically

linked libraries, while their occasional failures do not negatively affect the results

of binary to source matching. CodeBin adopts this approach to overcome the

problem of statically linked libraries.

5.1.3 Function Inlining

Inline function expansion or simply inlining is a form of compiler optimizations that

replaces a call to a function with the function body, eliminating the call and making

the callee part of the caller function. While there are ways to instruct compilers

to enforce or avoid function inlining [3], it is often up to the compiler, which in

turn depends on the chosen optimization level among other factors. Since inlining

has complicated effects on performance [25], prediction of it happening for a specific

function is rather difficult. Generally, a small function that is not called by many

other functions has a better chance of being inlined.

46

Function inlining changes the ACG extracted from binaries by eliminating the con-

nection representing the call to the inlined function, and adding the inlined function’s

library and system API calls into the callers’ features.

To understand the effect of inlining on our approach, it is important to note

that ACG search queries are generated from binaries and performed over source call

graphs. These queries can be broken down into two integral components: Graph

structure (nodes and edges) and node properties. Search queries will match the

structure of the source ACG if the structure of the source ACG remains a superset of

the binary ACG structure, which is still true when inlining happens. However, library

and system API calls will create a mismatch. Such a situation can be partially avoided

by making the lookup operation for this feature work in reverse: Names of library

functions and system APIs called by a source function that is matched in terms of

the ACG structure will be looked upon in the names of APIs called by the binary

function, but not vice versa. As a result, if the binary function includes calls to other

libraries and system APIs as a result of inlining one of its callees, a mismatch is

avoided.

However, two issues still remain: (i) Mismatch of the feature representing stan-

dard library function calls when a library function gets inlined, and (ii) change to

the cyclomatic complexity of the binary function. The latter will only be an issue if

another candidate with the same features and similar cyclomatic complexity is found

for the binary function. While we have not been able to remedy these issues com-

pletely, we have found both of them to be of minor effect in the overall accuracy of

CodeBin.

5.1.4 Thunk Functions

Thunk functions, also known as jump functions, are helper functions generated and

inserted into assemblies by compilers. Thunk functions typically contain very few or

simply a single jump instruction, and are used for a variety of reasons. For instance,

47

Microsoft Visual Studio C/C++ compiler with the “incremental linking” option en-

abled (which is so by default), inserts jump thunks into binaries to minimize the

time needed to relocate a function during runtime after load. Other usages of thunk

functions include conversion of calling conventions, or implementing virtual calls in

object oriented languages such as C++.

Caller

Callee

Thunk

Actual Call in
Source Code

Intermediate Node in
Binary Call Graph

Figure 11: Thunk functions

Nevertheless, thunk functions interfere with call graph matching as they intro-

duce intermediate nodes into the binary call graph (see Figure 11). During feature

extraction from binaries, the probable presence of such functions should be taken into

account, and intermediate nodes should be recognized and removed before searching

for the extracted binary ACG. CodeBin adjusts the binary call graph in the pres-

ence of thunk functions by identifying and removing them. Identification of thunk

functions is done by relying on IDA Pro function flags as well as a simple analysis of

function instructions.

5.1.5 Variadic Functions

Variadic functions are defined to accept an undetermined number of arguments. A

very well-known example of such a function is printf, which writes a series of bytes

48

into the standard output by receiving a template and a variable number of arguments

based on the output template. The actual number of arguments for a variadic function

as observed in a binary file is indeterministic and depends heavily on how the function

is called. As CodeBin uses the number of arguments as an exact feature of call graph

nodes, variadic functions should be handled in a special way so that such a fact does

not result in mismatches.

CodeBin implementation includes such special handling by detecting variadic func-

tions during parsing and incorporating a special boolean property for each node in the

derived ACG. This property is dedicated to variadic functions and is set to true only

when the node represents such a function. A small tweak in graph query generation

ensures that the number of arguments is only matched if the variadic property of the

node is set to false, i.e., the function is not variadic.

5.2 Source Code Processing

5.2.1 Preprocessing and Parsing

Automatic generation of the annotated call graphs from source code requires a robust

preprocessor and parser. We utilize Clang, a full fledged open source C/C++ front-

end for the LLVM compiler infrastructure, to parse and process source codes. Clang

exposes some of its functionalities through a high-level API, which can be used for

general high-level processing of C/C++ and Objective C code. However, more de-

tailed functionalities such as creation of control flow graphs from syntax trees are not

available via the high-level API. The LLVM framework is written in a fully modular

fashion, and one can use any part of its internal functionalities for miscellaneous pur-

poses, commonly referred to as “tooling”. CodeBin uses both techniques to leverage

Clang functionalities in parsing and reasoning about source code.

49

Source
Code

Directory

Library / API
Configuration

Clang

Clang API Clang Tooling

Parsing File Handling Code Analysis

Initial
ACG

Function

Prototypes

Secondary

ACG
Additional

Features

Calls Sanitization
and ACG

Adjustment

Aggregation

Indexing Engine

Final
ACG

Neo4J
Graph

Database

List of

Files

Figure 12: The architecture of CodeBin source code processor.

5.2.2 Source Processor Architecture

The architecture of CodeBin source processor is depicted in Figure 12. It is mostly

developed in Python 2.7, except for the “code analysis” module that is a Clang tool

written in C++. CodeBin source processor can be used in a completely standalone

mode, with no need for Clang or the LLVM framework being present on the system.

CodeBin processes code bases one at a time. User inputs to the source processor are

the path to the code base, a name for the project being indexed, and any additional

compilation switches (such as predefined macros).

A file handling module iterates over all the files in the specified path, targeting C

source code and header files. A list of found source files is then separately fed to pars-

ing and analysis modules. The parsing module invokes the Clang parser on each file,

extracting function definitions, prototypes and call expressions using pre-registered

callback functions. The parsing module distinguishes between library functions and

user functions by the path of the file in which the function definition is found, and

only parses user functions. Up to this point, a set of individual functions is created,

each having several properties such as a name, an exact location, as well as the num-

ber of arguments. Once all function definitions are visited, call expressions of each

function are enumerated in order to separate internal and external calls. Any function

call with a “known” target (i.e., one that is already defined amongst user functions)

is treated as an internal call, creating directed edges between the nodes represent-

ing the caller and the callee. All other call expressions are temporarily treated as

being external. This set includes calls to library functions as well as dynamic call ex-

pressions. Dynamic call expressions are calls of which the target will be determined

during runtime. An example of such an expression is a call performed via a function

pointer. The output of the parsing module is an initial annotated call graph as well

as a list of all the function prototypes visited, whether they are defined by the user

or exist in a library.

On the other side, the code analysis module uses a similar technique for parsing

source files and identifying user functions, this time using Clang internal libraries

51

instead of its high-level API. This module leverages the Clang library to generate

source control flow graphs from the abstract syntax tree of each function, and cal-

culates their cyclomatic complexities. This modules also can determine whether a

function accepts a variable number of arguments (i.e., a variadic function), thanks to

Clang library capabilities that are only available through tooling. The output of this

module is a set of two features, namely cyclomatic complexity and whether the func-

tion is variadic, for each user function. These additional features are then integrated

with other features during the next steps.

The outputs of the parsing module, as well as a set of configuration files for library

functions and system APIs are used by the call sanitization and call graph adjustment

module to generate a refined annotated call graph. This module performs two main

tasks:

1. It identifies and removes external calls that are a result of dynamic call expres-

sions based on the list of all visited function prototypes it has received as the

second input.

2. It adjusts the call graph and normalizes the library calls based on the configura-

tion files provided for library functions and system APIs. This step, as discussed

in Section 5.1.2, is crucial to have usable call graphs.

The call graph adjustment module outputs a modified, secondary ACG. The func-

tion properties extracted by the code analysis module now have to be integrated with

this ACG, a task that is performed by the aggregation module. This module cre-

ates a finalized version of the ACG, which includes all the function properties and is

adjusted to deal with special scenarios such as statically linked libraries.

Finally, an indexing module is responsible for storing the final ACG into a graph

database. This module transforms CodeBin’s internal representation of the ACG into

a format that is understood by the backing database, and stores it so that it can be

queried later by the binary analysis module.

52

5.3 Binary File Processing

Decoding and disassembly of binary files is a complicated process. We use IDA Pro

as a platform for binary analysis, utilizing and building upon many of its capabilities

using its scripting engine, IDAPython [8]. We rely on IDA pro for disassembling

binary files, recovering functions and control flow graphs, recognizing calling conven-

tions and stack frame analysis, identifying cross-references in the binaries, parsing

import address tables, and identification of common standard library functions using

its FLIRT subsystem.

Our binary file processing engine is written as a Python plugin for IDA Pro, and

introduces additional analysis passes on a binary file assembly instructions. These

analysis passes enable the CodeBin plugin for IDA Pro to form a high-level view of

the disassembled binary, including binary function ACGs.

5.3.1 Extracting Number of Arguments

CodeBin incorporates two different components for extracting the number of argu-

ments for binary functions. One of these components performs a stack frame analysis

partially by using IDA Pro capabalities. The other component invokes the HexRays

Decompiler plugin for IDA Pro and counts the number of arguments on the function

prototype reported by the decompiler. During our experiments, we have found both

methods to be fairly accurate for 32-bit x86 binaries. However, the latter component

considerably outperforms the former on 64-bit binaries in terms of accuracy, while

being also significantly slower, especially for larger functions. CodeBin includes a con-

figuration option that allows the user to choose the second component for extracting

the number of function arguments, provided that the decompiler plugin is installed.

5.3.2 ACG Pattern Extraction

CodeBin matches binary functions to source functions by searching for partial ACG

patterns. ACG patterns may be extracted in several ways. However, CodeBin uses

53

a very specific method: For each binary function, a partial ACG pattern is created

by extracting features from the function and all the other functions called by it. In

other words, each ACG pattern represents a function and its immediate callees, all

annotated by their respective features. The rationale for adopting this method is

based on the following observations:

1. CodeBin is designed to detect code reuse, where only portions of a specific

program might be reused. Since a function relies on all the other functions it

calls to perform its operation, callees of a function are very unlikely be changed

when it is reused in another program for performing the same operation. On

the other hand, callers of a function may be changed based on the context the

function is used for. As a result, the ACG pattern extracted from a function and

its callers may not be found in a the previously indexed source code containing

the target function, even when it is actually copied. Based on this observation,

CodeBin forms an ACG for each function only based on its callees.

2. During our experiments, we have found that our implementation does not always

yield the correct features of binary functions. This limitation is discussed more

in Section 7.1.3. Inaccurate feature extraction from a single function in an ACG

pattern results in the whole pattern not being matched to source code ACG,

effectively lowering the chance of correct matching for all the other functions in

the pattern. While enumerating callees of the callees of a function, i.e., going

more than one level deep in the call graph, theoretically yields a more unique

pattern; we have found it to have non-negligible negative effect on querying

performance as well as matching accuracy due to occasional inaccurate feature

extraction. As a result, CodeBin only enumerates the immediate callees of each

function, and adopts a different method discussed in Section 5.4.1 for leveraging

the uniqueness of bigger call graph patterns.

Similar to fine-grained adjustments performed on source ACGs (see Section 5.2),

CodeBin may additionally modify the extracted ACGs to bring them closer to source

54

ACGs. For instance, if a call to a statically linked library function identified by IDA

FLIRT is detected, CodeBin removes the node representing the library function and

adds its name to the list of library functions called by the caller function, which forms

one of its features and is treated as a node property. Other minor adjustments on

node properties such as normalizing the names of library functions is also performed.

Once an ACG is extracted from a binary function and its immediate callees, it is

converted into a query that can be run against the source graph database.

5.4 Graph Database

Currently, we use Neo4J that is a general purpose graph database to index the anno-

tated call graphs we extract from source code. We have chosen Neo4J mainly due to

its querying capabilities with the Cypher query language. As discussed in Section 5.1,

we introduce slight complications in the queries we run against the graph data store

to compensate for possible differences between the binary and source call graphs, e.g.

those caused by function inlining.

At the core of our approach, we are relying on lookup operations on call graphs.

In these search operations, we are representing the subjects (ACG patterns) by nodes

relationships and properties. Therefore, it is necessary for our back-end data store to

be able to perform fast lookups based on graph features, and to expose an interface

for representing such partial graph patterns. Neo4J is therefore an ideal solution, as

it indexes the graphs by the features we use in our queries and also supports a query

language tailored to graph pattern lookups.

5.4.1 Subgraph Search

Cypher is a declarative query language for Neo4J and allows for complex lookups to be

performed over Neo4J graphs using relatively simple queries. Partial ACGs extracted

from binaries are first transformed into Cypher queries by the CodeBin IDA Pro

plugin and then executed against the source ACG indexed by Neo4J. Cypher queries

55

are generated in a way to represent CodeBin’s searching approach, including tweaks

introduced for handling variadic functions and possible changes in node properties

due to inlining. These queries also contain carefully designed aggregations to allow

concise representation of the results, in case a binary ACG pattern matches many

different source ACG patterns and returns a large number of results.

MATCH a-->b,a-->c,a-->d,a-->e

WHERE a.nargs = 7 OR a.variadic=TRUE
AND ALL (ea IN ["free","malloc","memset","memcpy"]
WHERE ea IN a.excalls)

AND b.nargs = 3 OR b.variadic=TRUE
AND ALL (eb IN ["realloc","memcpy"]
WHERE eb IN b.excalls)

AND c.nargs = 4 OR c.variadic=TRUE
AND ALL (ec IN ["_wassert"]
WHERE ec IN c.excalls)

AND d.nargs = 4 OR d.variadic=TRUE
AND ALL (ed IN ["memset"]
WHERE ed IN d.excalls)

AND e.nargs = 3 OR e.variadic=TRUE

RETURN collect(distinct id(a)
+ "|" + labels(a)[1]
+ "|" + a.name
+ "|" + a.file
+ "|" + a.line
+ "|" + a.column
+ "|" + a.complexity) as a,

collect ...

Listing 3: Cypher query for the ACG pattern in Figure 8

Listing 3 includes part of the Cypher query generated from the outlined pattern

in Figure 8. Part of the RETURN expression is left out for brevity.

As can be seen in Listing 3, binary functions are represented by aliases in gener-

ated Cypher queries. CodeBin keeps track of a mapping between binary functions,

56

represented by their addresses in the binary, to aliases in each query and uses it as

a reference to assign candidate source functions to binary functions once it receives

and parses the results of running queries.

5.4.2 Query Results Analysis

It is likely for binary functions to appear on more than one ACG pattern. For instance,

in Figure 8, C, D and E will be part of three patterns, generated from F , A and B.

As a result, more than one set of candidate source functions may be assigned to one

binary function. In these cases, CodeBin analyzes and compares the candidate sets

two by two. If two candidate sets have a non-empty intersection, only the candidates

in their intersection are kept and the rest are ruled out. If the intersection is empty, it

simply means that both candidate sets can be equally correct, and CodeBin will keep

all candidates in both sets until the binary function appears in yet another pattern.

Finally, when all the patterns are generated and their respective queries are run,

CodeBin will rank the candidates for each binary function according to their simi-

larity to the binary function in terms of control flow complexity. CodeBin uses an

adaptive threshold to remove the candidates with cyclomatic complexities that are

highly unlikely to be correct, but only if more probable source candidates are already

found for the binary function.

5.5 User Interface

Except for the source code processing and indexing engine, the rest of CodeBin is

implemented as an IDA Pro plugin. This plugin exposes the following functionalities

of CodeBin through a user interface integrated into IDA Pro:

1. Source code parsing and indexing. CodeBin plugin for IDA Pro allows users

to invoke the source processing engine on a code base by pointing to its root

directory. When a name is chosen for the code base and optional preprocessing

57

Figure 13: User interface: Indexing source code.

macros are given, the code base will be automatically parsed and indexed into

the graph database. This part of the interface is depicted in Figure 13.

2. Viewing partial ACGs. As shown in Figure 14, it is possible for users to

conveniently inspect partial ACGs extracted from arbitrary binary functions

using extra commands inserted into the context menu of IDA Pro Functions

View widget. Users can also copy the respective Cypher query for each partial

ACG, as well as a simplified version of it. The simplified version is not optimized,

but is easier to understand and run in Neo4J interactive web console.

3. Selective matching of binary functions to source code. Similar to view-

ing partial ACGs, the plugin also allows users to selectively match individual

binary functions to source functions. By invoking this command, ACG patterns

will be extracted from selected binary functions and then converted into Cypher

queries, which are then run against the source graph database. The results will

be processed to match returning source candidates to binary functions, and can

58

Figure 14: User interface: Inspecting ACGs.

later be viewed using the next feature.

4. Inspection of results. The plugin lays out the results of binary to source

matching in a table, allowing users to see all the returning source candidates for

each binary function, as well as their similarity to the binary function in terms

of cyclomatic complexity. An example is depicted in Figure 15.

5. Viewing source code. CodeBin plugin for IDA Pro also allows the users to

see the source code for each matching candidate without leaving IDA Pro. As

shown in Figure 16, the source code is syntax-highlighted and represents the

code exactly as written in the code base, with all the original comments and

before any preprocessing is performed.

Similar to modern IDA Pro plugins such as DIE [18], CodeBin utilizes PySide [65]

shipped with IDA Pro 6.8 and later to provide user interface widgets integrated with

IDA Pro. Call graph patterns are displayed using IDA Pro built-in Graph View, and

source code syntax highlighting is performed using Pygments [21].

59

Figure 15: User interface: Viewing matching results.

Figure 16: User interface: Viewing source code.

60

Chapter 6

Evaluation

We have evaluated CodeBin in a scenario that is similar to real-world reverse engi-

neering settings. In this scenario, the whole or parts of specific projects for which the

source code is available may be reused in a program for which only the executable

binary is available. The goal is to leverage CodeBin for detecting code reuse and au-

tomating the binary to source matching process as much as possible. By evaluating

CodeBin in such a scenario, we explore the following questions:

1. Can CodeBin be used to match binary functions to source functions in real-

world programs compiled with realistic settings?

2. Are the features used in CodeBin enough to uniquely identify or significantly

narrow down reused functions amongst tens of different projects and several

millions lines of code?

3. How does CodeBin perform when there is no reuse?

4. Is CodeBin able to perform similarly on binaries compiled with different com-

pilers and/or for different operating systems?

5. How viable is automatic binary to source matching for reverse engineering, and

what are the challenges?

61

Overall, our experiments show that CodeBin has the potential to identify a signif-

icant number of reused binary functions in source code. Localizing searches through

the call graph by using previously identified functions is shown to be fairly effective.

In the rest of this chapter, we present the methodology, test cases and data, and the

results of our evaluation.

6.1 Methodology

6.1.1 Test Scenario

To evaluate CodeBin, we have downloaded and indexed a total of 31 open source

projects, accounting for 524,168 source functions and 24,344,652 lines of code. These

projects were obtained from several sources such as Github [5] and SourceForge [14].

No specific decision factor is taken into account for deciding on which projects to

choose among open source software. That being said, we have tried to incorporate all

kinds of projects including standalone applications, special-purpose solutions, libraries

and system tools to test CodeBin in a general setting.

We have used 11 executable binaries, 7 of which reuse all or portions of previously

indexed projects. The other 4 binaries do not reuse any of the indexed source code.

To be able to establish this ground truth, we have chosen binary versions of programs

for which the code is open and available, and have manually confirmed that they

do not include any part of indexed source code. From the first 7 binaries, we have

compiled 2 programs on two different operating systems (Linux and Windows) using

two different compilers (GCC 4.9.2 and Microsoft Visual C++ 12.0), to see how

CodeBin is affected by changes in these settings. All tests are run on a Windows

7 x64 desktop machine powered by an Intel Core i7-4790 CPU with a frequency of

3.6GHz utilizing 8GB of memory and regular SSD storage.

Currently, we only target C source code and x86 binaries; however, CodeBin does

not rely on any functionality of IDA Pro that is specific to x86 binaries, and therefore

adopting it to other binary file formats and platforms should be straightforward. We

62

do not however limit the build process by choosing specific optimization levels or

other compilation options, and the default settings are used for all binaries. Our

results show that except for slight differences in compiler’s decision to inline certain

functions that in turn slightly affects the extent of identified functions, CodeBin’s

overall performance is not susceptible to changes in such compilation options.

6.1.2 Pattern Filtering

Since we evaluate our approach in a scenario when hundreds of thousands of source

functions have an equal chance of being reused in a target binary, searching for very

simple call graph patterns results in tens or hundreds of results being returned. Man-

ually inspecting such a high number of results one by one is arguably a very tedious

and error-prone process. In some cases, manual analysis of a binary function to

understand its operations may even be quicker. On the other hand, searching for

these patterns by running queries and analyzing the large result sets returned also

considerably slows down CodeBin.

As a result, we have implemented a feature in CodeBin to filter out simple call

graph patterns. This is a custom feature and it is possible to query all ACG patterns

by default. CodeBin assigns a score to each extracted ACG based on the presence of

distinctive features, such as library and API calls, high number of function arguments

and the total number of binary functions included in the pattern. A threshold is then

defined and used to filter out simpler patterns, so that only distinctive ones are

converted into queries and searched for. This feature also filters out the patterns

generated from standard library or compiler functions, in part by relying on IDA

FLIRT [4] flags.

Hence, the total number of patterns extracted and searched for from each binary

is smaller than the total number of binary functions in an executable. This feature

significantly speeds up the search process and helps to achieve more useful results.

63

6.1.3 Result Collection and Verification

The evaluation is performed as follows: First, we have processed and indexed the

source code of all 31 projects in the graph database (see Section 6.5). Then, for

each binary file in our collection of 10 candidate binaries, CodeBin has extracted

ACG patterns from all binary functions and run the filtering process. Once relatively

distinctive patterns are identified, CodeBin has searched for them by converting them

into and executing Cypher graph queries. Eventually, result sets are analyzed as

discussed in Section 5.4.2 and reported.

We have used debugging information as the ground truth to evaluate and measure

the accuracy of CodeBin in identifying reused parts of code (i.e., functions). CodeBin,

however, does not use any debugging info for extracting features from binary func-

tions, and equally works on stripped binaries. It is important not to use debugging

information, since most real-world executable binaries are stripped from any such

information. By running CodeBin on stripped binaries and establishing ground truth

by manually comparing 50 binary functions in 3 projects compiled with and without

debugging information, we have confirmed the similarity of the results on stripped

and non-stripped binaries.

Finally, using the ground truth established based on debugging information, we

have reviewed and verified the matching results as reported in the next section.

6.2 Evaluation Results

Results of evaluating CodeBin on binaries that reuse parts of previously indexed

source code is listed in Table 2. For each binary file, we have included the total

number of functions that are also present in our source base. Due to inlining of simpler

functions, partial reuse of a project’s code in some binaries, and other compilation

complexities such as dead code elimination, this number is different from the total

number of source functions in the main reused project. Total number of candidate

ACG patterns for searching is also included for each binary, which may include some

64

Table 2: Results of evaluating CodeBin in real-world scenarios.

Reused Project
To

ta
lR

eu
se
d
Fu

nc
ti
on

s

Q
ue
ri
ed

A
C
G

P
at
te
rn
s

U
ni
qu

e
an

d
C
or
re
ct

C
or
re
ct

C
an

di
da

te
in

To
p
3

C
or
re
ct

C
an

di
da

te
in

To
p
5

C
or
re
ct

C
an

di
da

te
in

To
p
10

To
o
M
an

y
C
an

di
da

te
s
(2
0+

)

M
is
m
at
ch
ed

/
Fa

ls
e
P
os
it
iv
e

N
ot

M
at
ch
ed

To
ta
lR

un
ni
ng

T
im

e
(m

in
:s
ec
)

Miniz 114 131 65.8% 70.2% 76.3% 78.9% 1.8% 2.6% 16.7% 1:14

Sqlite 1391 682 74.5% 78.6% 81.3% 84.4% 0.6% 1.2% 13.8% 6:41

Silver Searcher 66 95 68.2% 75.8% 77.3% 81.8% 1.5% 4.5% 12.1% 1:07

Redis 2329 1532 65.2% 75.1% 80.2% 86.8% 0.5% 2.1% 10.6% 11:51

Coreutils 1856 1194 53.4% 64.9% 73.4% 76.4% 1.9% 2.2% 19.5% 9:08

PCRE 342 74 31.2% 41.8% 49.4% 55.8% 1.8% 3.5% 38.9% 3:55

OpenSSL 3982 2163 9.4% 11.3% 12.6% 14.7% 0.6% 1.4% 83.3% 23:42

OpenSSL (manual) 3982 2163 62.0% 64.9% 68.1% 72.7% 6.8% 1.2% 25.5% 27:16

statically linked standard library functions missed by our filtering process.

Once all queries are executed and results are analyzed, we have verified the re-

sults, which is a list of mappings between binary functions and one or more source

candidates, using debugging information (function names and parent project). In the

results list, a binary function may be correctly matched to a unique source candidate

(Unique and Correct results). It may be mapped to several source candidates, in

which the correct source function is in the top 3, 5, or 10 candidates. As expected,

for some binary functions the ACG patterns have not been distinctive enough, re-

sulting in the list of candidates having more than 20 source functions. Some reused

functions have not been matched to any source candidate, either because the pattern

has not been distinctive enough and was filtered out, or because the search query

has not returned any results. In some cases, binary functions are matched to one or

more source candidates, all of which have been wrong, which account for Mismatched

/ False Positives.

For OpenSSL, we have conducted the experiment twice. In the first run, we have

processed the source code in a fully automated setting, without specifying any pre-

processor macros. In the second run, we have removed all the OpenSSL nodes in the

graph database, and reprocessed the source code with carefully chosen preprocessor

macros so that they exactly match the ones specified during the compilation process.

While the second setting results in significantly better results, choosing the correct

set of preprocessor macros cannot be performed automatically and requires manual

work. For further discussion on this issue, see Section 7.1.1.

Our evaluation results show CodeBin’s potential for speeding up the reverse en-

gineering process. For instance, note that for a program that uses Sqlite, over two

thirds of reused functions (1036 out of 1391) are uniquely and correctly matched to

their source code. This process has taken less than 7 minutes to complete on a moder-

ately powerful workstation and the original source code, potentially with descriptive

comments, are shown to the reverse engineer afterwards. Less than 2% of all the

returned results are false positives in this case. Similar results have been observed

66

Table 3: CodeBin results in no-reuse cases.

Project Binary Functions Matched ACG
Patterns

Matched
Functions

Pidgin 2618 63 8.7%

Custom Program 1153 16 4.9%

FFMpeg Utility 974 28 8.6%

HT Editor 527 19 8.2%

for Miniz, Redis, Silver Searcher and Coreutils. In some cases, CodeBin has also

identified several statically linked library functions missed by FLIRT, thanks to the

technique discussed in Section 5.1.2.

In the rest of this section, we report and investigate CodeBin’s results on binaries

that do not include any reused functions, as well as binaries compiled in different

environments.

6.3 No Reuse

4 out of 11 executables used in our evaluation do not reuse any part of code from the

31 indexed projects, a fact that is known due to manual inspection of their source

code. Our custom program is created by mixing 92 random functions and statically

linking the C standard library to the compiled binary. Clearly, CodeBin may still

return matches in these cases, as there is always a chance of multiple ACG patterns

in different projects, previously processed or not, to possess the same structure and

features. This situation can be considered similar to when portions of previously

indexed source code is actually reused in a binary, but the source code is then taken

out of the source database before running CodeBin on the binary. In this case, one

or more source candidates will be returned for some binary functions, except for the

fact that the correct candidate will not be in the results list, as it is now absent in

the source database.

67

Table 3 includes the results of running CodeBin on each of the 4 binaries that do

not reuse any part of previously processed source code. Matched Patterns denotes the

total number of queried patterns that have returned results, and Matched Functions

shows the total number of binary functions for which at least one candidate is returned

in the results list.

These results show a noticeable difference compared to cases where part of the

code is actually reused, as the total number of matched functions compared to the

number of binary functions is significantly lower. However, for a fairly large binary

like Pidgin, the number of matched functions (all of which are false positives in this

case) is still high considering that no reuse is taken place. Mitigating this issue

in general requires identifying and leveraging more features from binary and source

functions, which may also help in reducing the number of candidates returned for a

binary function when it is actually reused.

This may cause a problem compared to cases where a small number of binary

functions are reused, making it difficult to distinguish between small reuse and false

positives in no-reuse. A relatively noticeable difference however is seen in the size of

matched ACGs. False positives in no-reuse cases usually form small, isolated ACGs

scattered through the binary. When some functions are actually reused, they usually

form bigger coherent ACGs representing the piece of functionality that is reused.

6.4 Different Compilation Settings

To test the effect of different compilation settings on CodeBin’s performance, we

have compiled Miniz and Sqlite for both Windows and Linux using Microsoft Visual

C++ Compiler (MSVC) 10.0 (2008) and 12.0 (2013) and GCC 4.7 (released in 2012)

and 4.9.2 (released in 2015) under three different optimization levels, and then run

CodeBin on all binaries and compared the results (see Table 4). Overall, we have

made the following observations:

• Different optimization levels. Disabling compiler optimizations consistently

68

Table 4: Effect of different compilation settings on CodeBin’s performance.

P
ro
je
ct

C
om

pi
le
r
U
se
d

O
pt
im

iz
at
io
n
Le

ve
l

To
ta
lR

eu
se
d
Fu

nc
ti
on

s

To
ta
lC

an
di
da

te
P
at
te
rn
s

U
ni
qu

e
an

d
C
or
re
ct

M
is
m
at
ch
ed

/
Fa

ls
e
P
os
it
iv
e

N
ot

M
at
ch
ed

To
ta
lR

un
ni
ng

T
im

e

Miniz

MSVC 12.0
O2 108 130 69.4% 2.8% 18.5% 1:04

Ox 101 128 65.3% 4.9% 16.8% 1:03

GCC 4.9.2
O2 114 131 65.8% 2.6% 16.7% 1:08

O3 99 125 63.4% 4.0% 14.1% 1:04

Sqlite

MSVC 12.0
O2 1391 682 74.5% 1.2% 13.8% 6:31

Ox 1342 664 69.2% 2.5% 12.6% 6:18

GCC 4.9.2
O2 1427 693 73.7% 1.4% 12.5% 6:49

O3 1359 671 64.9% 2.1% 11.8% 6:24

improves CodeBin’s performance and results in accuracy figures higher than

what is reported in Tables 2 and 4. However, we do not consider these cases

realistic, as the reason for disabling or selecting a low optimization level is

usually ease of debugging during the development phase [12]. Optimizing for

size (Os flag on both GCC and MSVC) slightly improves the results compared

to level 2 optimization (O2 flag on both compilers), as it prevents the compiler

from inlining some of the functions in favor of the total size of the binary. On

the other hand, performing full optimization in favor of speed (O3 and Ox flags

on GCC and MSVC) results in very aggressive inlining decisions and impacts

CodeBin accuracy. We have included the results for level 2 optimization (usually

the chosen level in projects build settings) and full optimization for speed (the

69

most challenging case for CodeBin) in Table 4.

• Different compiler versions. We have found changing the compiler version

to have the least effect on CodeBin’s performance. Binaries compiled with the

same level of optimization but using different versions of the same compiler

are distinctively different in terms of the overall layout, binary instructions

and introduced compiler functions. However, call graphs and ACGs extracted

by CodeBin from these binaries are usually the same and the differences in

matching results are negligible.

• Different compilers/platforms. the total number of reused binary functions

slightly varies as the compiler changes, due to different inlining decisions. We

have observed more aggressive inlining performed by MSVC compared to GCC,

which has in turn slightly reduced the number of recognizable functions by Code-

Bin because of less distinctive patterns. Nevertheless, CodeBin performs very

similar on both versions, resulting in close numbers in terms of both matched

and mismatched reused functions. These results are expected, as almost all

of the differences caused by different binary formats and other variations are

abstracted away by IDA Pro. CodeBin uses the same interface provided by

IDAPython to analyze and extract features from binaries, and is therefore au-

tomatically able to operate in the same way over different executable files as

long as IDA Pro retains its disassembly and analysis capabilities.

6.5 Source Base and Indexing Performance

We have collected a total of 31 open source C projects to form a source base for our

evaluation experiments, which are then processed and indexed into a Neo4J graph

database by CodeBin source processor. This source base consists of 24,344,652 lines

of C code as counted by cloc [28], excluding blank lines and comments. The graph

70

database consists of 548,023 nodes, with 524,168 nodes representing functions iden-

tified within the source code of the indexed projects by CodeBin. Other nodes, as

explained in section 5.1.2, represent standard library functions.

Our source base is deliberately made very large by including several big projects

(3 OS kernels including Linux kernel and large projects such as Wireshark, OpenSSL,

Tor, Git, etc) to test CodeBin’s ability in searching on big datasets. We have measured

the time required by CodeBin to preprocess, parse, analyze and index each project

source code. On average, CodeBin source processor has spent barely over a second

for completely processing each 1000 lines of code (again, excluding blank lines and

comments). It should be noted that due to online updating and creation of indexes by

Neo4J, the time required for indexing source code expectedly increases as the dataset

grows larger.

Table 5 includes the number of functions, number of lines of code, and indexing

time for each of the indexed projects.

71

Table 5: CodeBin test dataset, parsing and indexing performance.

Project Functions Lines of Code Indexing Time
Linux Kernel 236,083 13,416,043 2:29:14
Wireshark 67,216 2,917,350 0:51:38
GCC Compiler 52,531 2,480,461 1:04:53
Minix 3 89,057 2,305,133 1:08:21
Inferno OS 28,694 672,553 0:19:42
Hashkill 2,782 420,719 0:02:38
Vim 9,481 311,865 0:11:09
OpenSSL 4,697 280,826 0:03:37
Apache HTTPD 3,496 188,807 0:02:11
Tor 4,241 179,282 0:05:27
Git 5,880 157,858 0:07:11
Tengine 706 165,620 0:00:32
Nginx 547 119,517 0:00:26
MPV Player 4,105 107,411 0:03:25
Sqlite 1,859 99,674 0:01:31
Unqlite 2,682 84,347 0:02:05
Putty 2,275 80,882 0:01:53
PCRE 394 71,241 0:00:21
Coreutils 2,124 59,673 0:00:56
STB 452 56,899 0:00:21
Redis 2,952 46,407 0:01:49
MozJPEG 1,058 44,028 0:00:48
JQ 571 17,624 0:00:27
Zmap 360 11,638 0:00:19
Memcached 296 10,931 0:00:12
LMDB 199 9,837 0:00:12
Curl 64 9,434 0:01:03
Miniz 120 5,260 0:00:07
Wrk 138 4,481 0:00:07
RobotJS 98 4,438 0:00:23
Silver Searcher 75 4,413 0:00:13

Total 524,168 24,344,652 6:42:12
Average 16,908 785,311 0:12:58

72

Chapter 7

Discussion

In this section, we investigate the results of evaluating CodeBin and highlight its

limitations through actual examples. We also discuss CodeBin from a security per-

spective, and provide possible directions for future work towards mitigating its limi-

tations.

7.1 Limitations

7.1.1 Custom Preprocessor Macros

OpenSSL heavily relies on custom preprocessor macros to customize implementations

on different environments and optimize performance. This technique includes snip-

pets of code written to operate on a set of parameters just like regular functions,

but instead defined using macros. Many functionalities in OpenSSL have multiple

implementations, some defined using parameterized macros and others as regular

functions. Values for these macros are then defined during the build process to incor-

porate one of the implementations for each functionality into the binary, depending

on the compiler, platform, and operating system.

Listing 4 shows four different implementations for a bit rotation function in

73

OpenSSL, defined using a parameterized macro specified as ROTATE. These dif-

ferent definitions along with similar others result in more than 10 different versions

of the des_encrypt1 function in OpenSSL with 4 different call graph patterns. Each

of these versions is optimized for a specific environment and will be put into the

executable according to macros passed to the compiler.

if (defined(OPENSSL_SYS_WIN32) && defined(_MSC_VER))

define ROTATE(a,n) (_lrotr(a,n))

elif defined(__ICC)

define ROTATE(a,n) (_rotr(a,n))

elif defined(__GNUC__) && __GNUC__>=2 && \

!defined(__STRICT_ANSI__) && ...

if defined(__i386) || defined(__i386__) || \

defined(__x86_64) || defined(__x86_64__)

define ROTATE(a,n) ({ register unsigned int ret; \

asm ("rorl \%1,\%0" \

: "=r"(ret) \

: "I"(n),"0"(a) \

: "cc"); \

ret; \

})

endif

endif

ifndef ROTATE

define ROTATE(a,n) (((a)>>(n))+((a)<<(32-(n))))

endif

Listing 4: Different implementations for ROTATE in OpenSSL.

Extended use of this technique, as observed in OpenSSL, significantly undermines

CodeBin’s capabilities in a fully automated setting. If the same set of preprocessor

macros are not used for compiling the binary program and parsing the code using

CodeBin’s source processor, different implementations mentioned above almost always

74

result in significant differences in the call graph structure as well as the function

properties, hence causing mismatches during partial ACG searches. When the same

set of preprocessor macros are used, the results significantly improve, as can be seen

in Table 2.

7.1.2 Orphan Functions

Another challenging case for identification of reused functions using CodeBin’s ap-

proach is caused by dynamically invoked functions. In C, function pointers are utilized

to perform such dynamic invocation. The target of a call operation that is performed

via a function pointer is only determined during runtime. Hence, no assumption can

be made about the target of such call during parsing or even compilation. While

sophisticated inter-procedural data flow analysis techniques might help in identifying

the targets of dynamic calls during compilation, dynamic analysis is usually consid-

ered the only robust solution in similar cases [31].

Functions that are only invoked via function pointers therefore result in “orphan”

nodes in the source call graph, i.e., nodes that are isolated and not connected to

the rest of the graph. While they exhibit the same behavior in a binary call graph

extracted via static analysis, an isolated function effectively disallows using call graph

relations to augment its feature set. These orphan functions are extremely unlikely to

match to anything less than hundreds of candidates due to their very small single-node

ACG, regardless of their own feature set.

PCRE is a library for incorporating Perl-compatible regular expressions into C

programs, and heavily relies on dynamic function invocation. Based on the call graph

generated by CodeBin, 184 out of 394 functions in its source code are orphan. As a

result, CodeBin has failed to detect over 33% of reused PCRE functions. We consider

such a case to be an inherent limitation of static analysis rather than binary to source

matching, and argue that a reliable solution for handling such cases is highly unlikely

to be achievable without symbolic execution or dynamic analysis.

75

7.1.3 Inaccurate Feature Extraction

In a relatively small number of cases, mismatches or false positives are simply caused

by inaccurate feature extraction, i.e., the binary ACGs having incorrect properties.

A majority of these cases can be further broken down into two main categories:

1. Incorrect identification of number of arguments. CodeBin uses the out-

put of the HexRays decompiler to determine the number of arguments for each

binary function, with a fallback mechanism that incorporates a heuristic based

on stack frame analysis and is invoked if the decompiler plugin is absent. Tests

are done on 32-bit binaries using the fallback mechanism, which has the advan-

tage of speed. However, it results in an incorrect number of arguments being

extracted for some binary functions. While the accuracy of these two mecha-

nisms are comparable on 32-bit binaries, HexRays decompiler relatively retains

its accuracy while the fallback mechanism fails in many cases on 64-bit binaries.

2. Incorrect demangling of symbol names. CodeBin incorporates a mecha-

nism to demangle and normalize the names of invoked system APIs and stan-

dard library functions. This mechanism fails to extract the correct name in

some cases, resulting in incorrect properties in binary ACGs.

Due to the fact that these problems have limited negative effects compared to

custom preprocessor macros and orphan functions, we have not investigated them

further in our current implementation.

7.1.4 Similar Source Candidates

The results show that in many situations, CodeBin returns multiple source candidate

functions for a binary function. While CodeBin ranks the candidates for each binary

function based on their similarity to the binary function in terms of control flow

complexity, the correct candidate does not end up in the top 3 or top 5 in some

cases. By manual inspection of some of such results, we have found that CodeBin

76

int SQLITE_STDCALL sqlite3_column_count(sqlite3_stmt *pStmt) {

Vdbe *pVm = (Vdbe *)pStmt;

return pVm ? pVm->nResColumn : 0;

}

__

static int strlen30(const char *z) {

const char *z2 = z;

while(*z2) {

z2++;

}

return 0x3fffffff & (int)(z2 - z);

}

Listing 5: Similar functions in Sqlite

usually runs out of features to further distinguish between possible candidates in these

cases. A simple example for such a case in Sqlite is shown in Listing 5, where two

functions, sqlite3_column_count and strlen30, both called from do_meta_command,

share exactly the same features: Both have the same number of arguments of 1, the

same control flow complexity of 2, and neither call any other function.

To human eyes, these source functions still look distinguishably different: They

employ different control constructs (a loop versus a condition), they have different

types for the arguments, and the latter includes a distinctive constant (0x3fffffff)

while the former includes a very common one (zero). However, annotating functions

in a large database with features that differentiate them in terms of such properties

bear significant challenges. See Sections 2.1.5, 4.3.3 and 4.3.5 respectively for further

discussion on these issues.

7.1.5 C++ Support

CodeBin is currently only capable of extracting ACGs from C code, and does not

yield correct results for C++ code. We highlight three major challenges of adopting

our approach to C++ code.

77

1. Late/Dynamic Bindings. Dynamic bindings of function call targets in C++

results in an issue similar to dynamic function invocations in C, while being

much more common due to techniques like polymorphism and virtual functions.

Handling these cases on source code requires dependency analysis, which is

unlikely to be possible without compilation. On binaries, virtual table call

resolution code precedes the actual call instruction and should be analyzed and

reasoned about, an analysis that is outside the scope of this work.

2. Library Function Identification. We have found FLIRT performance on

C standard library functions to be relatively good with approximately 80%

of statically linked functions being identified on average. CodeBin uses these

results to annotate binary ACGs and create more distinctive patterns. However,

according to our experiments, FLIRT shows very low accuracy on C++ standard

library functions, with over 90% of linked functions (606 out of 668) missed in

a sample executable binary. C++ templates further intensify this problem,

as they result in compile-time code generation that is very likely to impose

significant challenges on a signature-based detection system such as FLIRT.

3. Overloaded Functions. On the source side, CodeBin relies on function names

to resolve internal calls and distinguish external calls across whole codebases

without necessarily having access to the location of header files. Since function

names are unique descriptors in C, this approach results in fairly accurate call

graphs while having the advantage of being fully automatic. In C++, function

names are not enough to resolve a call target and much more entities such as

prototypes, namespaces, classes and object references should be taken into ac-

count. Such an analysis, as performed by compilers, requires data flow analysis

and is not possible to perform on potentially non-compilable code.

78

7.2 CodeBin as a Security Tool

Binary analysis and reverse engineering tools are in part used for security purposes,

such vulnerability detection and tracking, exploit generation, malware analysis and

clustering, etc.

However, many such tools, including CodeBin, are not primarily designed as a

security tool. The reason is twofold: First, popular obfuscation techniques like binary

packing are usually dealt with before any actual binary analysis is done [37, 79]; for

example by processing the obfuscated binary through a toolchain that unpacks the

binary and reverses known obfuscation techniques. Second, many automated analyses

do not succeed at completely addressing unintentional complicating variables such

as different computing platforms and build environments [31]. In these cases, an

unknown obfuscation technique may simply render the problem inexplicable in an

automated way, at least until robust techniques are developed for handling non-

malicious cases.

This basically means that these tools are not developed with a strong threat model

in mind, and do not try to be robust against intentional evasion. In this particular

case, for example, CodeBin is not designed or evaluated against an adversary who

actively tries to conceal code reuse. For instance, adding dummy arguments in random

function prototypes and performing dummy operations on these variables would be a

relatively easy way to change ACGs and make then unrecognizable by CodeBin, even

though the main functionality of the reused code stays the same.

7.3 Directions for Future Work

CodeBin establishes a base for binary to source matching, augmenting syntactic to-

kens and text-based searches. According to what is perceived from its evaluation,

CodeBin can be extended in several directions, all of which may well introduce new

challenges.

79

Detecting build systems and leveraging configuration and make scripts will proba-

bly bring a key improvement to CodeBin. We argue that for binary to source match-

ing to retain its advantages, processing of source code should remain fully automatic.

Our approach currently incorporates several techniques to work around the limita-

tions caused by this requirement, but does so by compromising accuracy in certain

cases as discussed in Section 7.1.1. In the presence of an automatic system for detect-

ing popular build systems such as GNU make, CMake or MSBuild, a large number of

open source projects can be parsed more accurately by leveraging the exact compiler

invocation commands along with a tool like CIL.

CodeBin can also be improved by leveraging symbolic execution and dynamic

analysis techniques in certain cases, as highlighted in Section 7.1.4. While these

techniques are not without their disadvantages in terms of execution speed, they may

still be beneficial if they are proven to help in extracting additional features from

binary functions such as referenced strings and constants.

80

Chapter 8

Conclusion

Reverse engineering is a demanding and complex process, and requires manual effort

in many cases. It is shown in previous work that certain aspects of binary analysis

and fingerprinting such as clone and reuse detection can be automated to aid the

process and make it more efficient.

We explored a relatively new and less explored idea in the area of clone-based

reverse engineering based on automatic binary to source matching. We characterized

the challenges by elaborating on the important aspects of the software build process

that affect the similarity of an executable binary program to its source code. Through

several experiments, we also identified certain features that can be reliably extracted

from both source code and binary code and used for comparison in an automated

fashion.

Based on our findings, we designed a graph-based approach to binary to source

matching that is based on relative uniqueness of program call graphs augmented by

high-level function properties. We discussed the challenges and technical complica-

tions of implementing this approach, and introduced several workarounds and miti-

gation techniques so that the process can remain fully automatic. Through designing

realistic evaluation scenarios, we showed that our approach is capable of detecting a

significant number of reused functions in executable binaries by only processing the

source code while requiring relatively low computing resources and time. Eventually,

81

we elaborated on the limitations and provided directions for future work towards

further improvements.

Based on the results of our experiments, we argue that binary to source matching

can be considered as a complementary approach to clone-based reverse engineering,

and has the potential of revealing code reuse while not being affected by many issues

that undermine binary clone detection techniques. We hope that our work establishes

a robust base for future research in this direction.

82

Bibliography

[1] Boomerang: A general, open source, retargetable decompiler of machine code
programs. SourceForge project. http://boomerang.sourceforge.net.

[2] CMake. Build system for C/C++ projects. https://cmake.org.

[3] Common function attributes. GNU Compiler Collection online documen-
tation. https://gcc.gnu.org/onlinedocs/gcc/Common-Function-
Attributes.html.

[4] Fast Library Identification and Recognition Technology (F.L.I.R.T.). Online
article (May 2015). https://www.hex-rays.com/products/ida/tech/
flirt/in_depth.shtml.

[5] GitHub. https://github.com.

[6] Hex-Rays Decompiler: Overview. Online article. https://www.hex-rays.
com/products/decompiler/index.shtml.

[7] IDA: About. Online article. https://www.hex-rays.com/products/
ida/.

[8] IDAPython project for HexRay’s IDA Pro. GitHub project. https://github.
com/idapython/src.

[9] Node package manager (npm). Project website. https://www.npmjs.com.

[10] Ohloh API documentation. Online article (2014). https://github.com/
blackducksoftware/ohloh_api.

[11] Open Hub. https://www.openhub.net.

[12] Options that control optimization. GNU Compiler Collection online documenta-
tion. https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.
html.

[13] RE-Google aids code analysis. H-Online Security Blog (Nov. 2009).
http://www.h-online.com/security/news/item/RE-Google-
aids-code-analysis-862539.html.

83

http://boomerang.sourceforge.net
https://cmake.org
https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html
https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html
https://www.hex-rays.com/products/ida/tech/flirt/in_depth.shtml
https://www.hex-rays.com/products/ida/tech/flirt/in_depth.shtml
https://github.com
https://www.hex-rays.com/products/decompiler/index.shtml
https://www.hex-rays.com/products/decompiler/index.shtml
https://www.hex-rays.com/products/ida/
https://www.hex-rays.com/products/ida/
https://github.com/idapython/src
https://github.com/idapython/src
https://www.npmjs.com
https://github.com/blackducksoftware/ohloh_api
https://github.com/blackducksoftware/ohloh_api
https://www.openhub.net
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
http://www.h-online.com/security/news/item/RE-Google-aids-code-analysis-862539.html
http://www.h-online.com/security/news/item/RE-Google-aids-code-analysis-862539.html

[14] SourceForge. http://sourceforge.net.

[15] The Decompilation Wiki. Online article. http://www.program-
transformation.org/Transform/DeCompilation.

[16] F. E. Allen. Control flow analysis. In Symposium on Compiler Optimization,
New York, NY, USA, 1970.

[17] L. Aversano, L. Cerulo, and M. Di Penta. How clones are maintained: An empir-
ical study. In European Conference on Software Maintenance and Reengineering
(CSMR’07), Amsterdam, Netherlands, Mar. 2007.

[18] Y. Balmas. Dynamic IDA enrichment. GitHub project. https://github.
com/ynvb/DIE.

[19] I. D. Baxter, A. Yahin, L. Moura, M. S. Anna, and L. Bier. Clone detection using
abstract syntax trees. In International Conference on Software Maintenance
(ICSM’98), Bethesda, MD, USA, Nov. 1998.

[20] M. M. Brandis and H. Mössenböck. Single-pass generation of static single-
assignment form for structured languages. ACM Transactions on Programming
Languages and Systems, 16(6):1684–1698, Nov. 1994.

[21] G. Brandl, T. Hatch, and A. Ronacher. Pygments. Project website. http:
//pygments.org.

[22] D. Brumley, I. Jager, T. Avgerinos, and E. Schwartz. Bap: A binary analysis
platform. In Computer Aided Verification, Snowbird, UT, USA, July 2011.

[23] D. Cabezas and B. Mooij. Detecting source code re-use through a bi-
nary analysis hybrid approach. Online article (Feb. 2013). http:
//www.forensicmag.com/articles/2013/02/detecting-source-
code-re-use-through-binary-analysis-hybrid-approach.

[24] A. Caliskan-Islam, F. Yamaguchi, E. Dauber, R. Harang, K. Rieck,
R. Greenstadt, and A. Narayanan. When coding style survives compi-
lation: De-anonymizing programmers from executable binaries. Technical
report (Dec. 2015). https://www.princeton.edu/~aylinc/papers/
caliskan-islam_when.pdf.

[25] W. Y. Chen, P. P. Chang, T. M. Conte, and W.-m. W. Hwu. The effect of code
expanding optimizations on instruction cache designar. IEEE Transactions on
Computers, 42(9):1045–1057, Sep. 1993.

[26] C. Cifuentes. Structuring decompiled graphs. Technical report (1994).

[27] C. Cifuentes. Reverse Compilation Techniques. PhD thesis, University of Queens-
land, 1994.

84

http://sourceforge.net
http://www.program-transformation.org/Transform/DeCompilation
http://www.program-transformation.org/Transform/DeCompilation
https://github.com/ynvb/DIE
https://github.com/ynvb/DIE
http://pygments.org
http://pygments.org
http://www.forensicmag.com/articles/2013/02/detecting-source-code-re-use-through-binary-analysis-hybrid-approach
http://www.forensicmag.com/articles/2013/02/detecting-source-code-re-use-through-binary-analysis-hybrid-approach
http://www.forensicmag.com/articles/2013/02/detecting-source-code-re-use-through-binary-analysis-hybrid-approach
https://www.princeton.edu/~aylinc/papers/caliskan-islam_when.pdf
https://www.princeton.edu/~aylinc/papers/caliskan-islam_when.pdf

[28] A. Danial. CLOC - count lines of code. GitHub project (2016). https://
github.com/AlDanial/cloc.

[29] E. Dolgova and A. Chernov. Automatic reconstruction of data types in the
decompilation problem. Programming and Computer Software, 35(2):105–119,
Mar. 2009.

[30] T. Dullien and R. Rolles. Graph-based comparison of executable objects (english
version). In Symposium sur la sécurité des technologies de l’information et des
communications (SSTIC’05), Rennes, France, June 2005.

[31] M. Egele, M. Woo, P. Chapman, and D. Brumley. Blanket execution: Dynamic
similarity testing for program binaries and components. In USENIX Security
Symposium, San Diego, CA, USA, Aug. 2014.

[32] M. R. Farhadi, B. Fung, P. Charland, and M. Debbabi. BinClone: Detecting
code clones in malware. In International Conference on Software Security and
Reliability (SERE’14), San Francisco, CA, USA, June 2014.

[33] H. Flake. The StrucRec plugin. IDA-Pro Plugin. https://www.hex-rays.
com/products/ida/support/freefiles/strucrec.zip.

[34] H. Flake. Structural comparison of executable objects. In International
Workshop on Detection of Intrusions and Malware & Vulnerability Assessment
(DIMVA’04), Dortmund, Germany, July 2004.

[35] P. S. Foundation. Pypi - The Python Package Index. https://pypi.python.
org/pypi.

[36] I. Guilfanov. Decompilers and beyond. In BlackHat Security Conference, Las
Vegas, NV, USA, Aug. 2008.

[37] Y. Guillot and A. Gazet. Automatic binary deobfuscation. Journal in Computer
Virology, 6(3):261–276, Aug. 2010.

[38] A. Hemel. Binary analysis tool. Online article. http://www.
binaryanalysis.org/en/home.

[39] A. Hemel. Introducing the binary analysis tool. Online slide
set. http://events.linuxfoundation.org/sites/events/files/
slides/bat.pdf.

[40] D. Jang, Z. Tatlock, and S. Lerner. SAFEDISPATCH: Securing C++ Virtual
Calls from Memory Corruption Attacks. In Network and Distributed System
Security Symposium (NDSS’14), San Diego, CA, USA, Feb. 2014.

85

https://github.com/AlDanial/cloc
https://github.com/AlDanial/cloc
https://www.hex-rays.com/products/ida/support/freefiles/strucrec.zip
https://www.hex-rays.com/products/ida/support/freefiles/strucrec.zip
https://pypi.python.org/pypi
https://pypi.python.org/pypi
http://www.binaryanalysis.org/en/home
http://www.binaryanalysis.org/en/home
http://events.linuxfoundation.org/sites/events/files/slides/bat.pdf
http://events.linuxfoundation.org/sites/events/files/slides/bat.pdf

[41] J. Jang, D. Brumley, and S. Venkataraman. Bitshred: feature hashing malware
for scalable triage and semantic analysis. In ACM Conference on Computer and
Communications Security (CCS’11), Chicago, IL, USA, Oct. 2011.

[42] J. Jang, M. Woo, and D. Brumley. Towards automatic software lineage inference.
In USENIX Security Symposium, Washington, DC, USA, Aug. 2013.

[43] W. Jin, C. Cohen, J. Gennari, C. Hines, S. Chaki, A. Gurfinkel, J. Havrilla, and
P. Narasimhan. Recovering C++ objects from binaries using inter-procedural
data-flow analysis. In Program Protection and Reverse Engineering Workshop
(PPREW’14), San Diego, CA, USA, Jan. 2014.

[44] C. K. Roy and J. R. Cordy. An empirical study of function clones in open source
software. In Working Conference on Reverse Engineering (WCRE’08), Antwerp,
Belgium, Oct. 2008.

[45] T. Kamiya, S. Kusumoto, and K. Inoue. Ccfinder: A multilinguistic token-based
code clone detection system for large scale source code. IEEE Transactions on
Software Engineering, 28(7):654–670, Aug. 2002.

[46] W. M. Khoo, A. Mycroft, and R. Anderson. Rendezvous: A search engine for
binary code. In Working Conference on Mining Software Repositories (MSR’13),
Piscataway, NJ, USA, May 2013.

[47] R. Komondoor and S. Horwitz. Using slicing to identify duplication in source
code. In International Symposium on Static Analysis (SAS’01). Springer, Paris,
France, July 2001.

[48] C. Lattner. LLVM and clang: Next generation compiler technology. In The BSD
Conference, Ottawa, ON, Canada, May 2008. http://clang.llvm.org.

[49] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong program
analysis transformation. In Code Generation and Optimization (CGO’04), Palo
Alto, CA, USA, Mar. 2004. http://llvm.org.

[50] F. Leder. RE-Google. Online article (2009). http://regoogle.carnivore.
it.

[51] F. Leder. RE-Google plugin documentation. Readme file. https://www.hex-
rays.com/contests/2009/REGoogle/README.TXT.

[52] J. Lee, T. Avgerinos, and D. Brumley. TIE: Principled reverse engineering of
types in binary programs. In Network and Distributed System Security Sympo-
sium (NDSS’11), San Diego, CA, USA, Feb. 2011.

[53] Z. Lin, X. Zhang, and D. Xu. Automatic reverse engineering of data structures
from binary execution. In Network and Distributed System Security Symposium
(NDSS’12), San Diego, CA, USA, Mar. 2010.

86

http://clang.llvm.org
http://llvm.org
http://regoogle.carnivore.it
http://regoogle.carnivore.it
https://www.hex-rays.com/contests/2009/REGoogle/README.TXT
https://www.hex-rays.com/contests/2009/REGoogle/README.TXT

[54] T. Lindholm, F. Yellin, G. Bracha, and A. Buckley. The Java virtual machine
specification. Pearson Education, 2014.

[55] C. Lindig. Random testing of c calling conventions. In International Symposium
on Automated Analysis-driven Debugging (AADEBUG’05), Monterey, CA, USA,
Sep. 2005.

[56] K. Lu, D. Muller-Gritschneder, and U. Schlichtmann. Hierarchical control flow
matching for source-level simulation of embedded software. In International
Symposium on System on Chip (SoC’12), Tampere, Finland, Oct. 2012.

[57] V. Massol and T. M. O’Brien. Maven: A Developer’s Notebook: A Developer’s
Notebook. O’Reilly Media, Inc., 2005. https://maven.apache.org.

[58] J. Merrill. Generic and gimple: A new tree representation for entire functions.
In GCC Developers’ Summit, Ottawa, ON, Canada, May 2003.

[59] J. J. Miller. Graph database applications and concepts with Neo4J. In Southern
Association for Information Systems Conference (SAIS’13), Atlanta, GA, USA,
Mar. 2013.

[60] A. Mockus. Large-scale code reuse in open source software. In First Inter-
national Workshop on Emerging Trends in FLOSS Research and Development
(FLOSS’07, Washington, DC, USA, May. 2007.

[61] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. Cil - infrastructure
for c program analysis and transformation (v. 1.3.7). https://www.cs.
berkeley.edu/~necula/cil/.

[62] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL: Intermediate lan-
guage and tools for analysis and transformation of C programs. In International
Conference on Compiler Construction (CC’02), Grenoble, France, Apr. 2002.

[63] K. Noyes. Open source is driving business app development, survey finds.
PCWorld Online Article. http://www.pcworld.com/article/254296/
open_source_is_driving_business_app_development_survey_
finds.html.

[64] A. Prakashm, X. Hu, and H. Yin. vfGuard: Strict Protection for Virtual Func-
tion Calls in COTS C++ Binaries. In Network and Distributed System Security
Symposium (NDSS’15), San Diego, CA, USA, Feb. 2015.

[65] Python Package Index. Pyside 1.2.4. https://pypi.python.org/pypi/
PySide/1.2.4.

[66] A. Rahimian. BinSourcerer. GitHub project. https://github.com/
BinSigma/BinSourcerer.

87

https://maven.apache.org
https://www.cs.berkeley.edu/~necula/cil/
https://www.cs.berkeley.edu/~necula/cil/
http://www.pcworld.com/article/254296/open_source_is_driving_business_app_development_survey_finds.html
http://www.pcworld.com/article/254296/open_source_is_driving_business_app_development_survey_finds.html
http://www.pcworld.com/article/254296/open_source_is_driving_business_app_development_survey_finds.html
https://pypi.python.org/pypi/PySide/1.2.4
https://pypi.python.org/pypi/PySide/1.2.4
https://github.com/BinSigma/BinSourcerer
https://github.com/BinSigma/BinSourcerer

[67] A. Rahimian, P. Charland, S. Preda, and M. Debbabi. RESource: A framework
for online matching of assembly with open source code. In Foundations and
Practice of Security (FPS’13), La Rochelle, France, Oct. 2013.

[68] G. Ramalingam, J. Field, and F. Tip. Aggregate structure identification and its
application to program analysis. In Symposium on Principles of Programming
Languages (POPL’99), San Antonio, TX, USA, Jan. 1999.

[69] C. K. Roy, J. R. Cordy, and R. Koschke. Comparison and evaluation of code clone
detection techniques and tools: A qualitative approach. Science of Computer
Programming, 74(7):470–495, May 2009.

[70] P. V. Sabanal and M. V. Yason. Reversing C++. In BlackHat Security
Conference, Las Vegas, NV, USA, Aug. 2007. http://www.blackhat.
com/presentations/bh-dc-07/Sabanal_Yason/Paper/bh-dc-07-
Sabanal_Yason-WP.pdf.

[71] A. Sæbjørnsen, J. Willcock, T. Panas, D. Quinlan, and Z. Su. Detecting code
clones in binary executables. In International Symposium on Software Testing
and Analysis (ISSTA’09), Chicago, IL, USA, July 2009.

[72] E. J. Schwartz, J. Lee, M. Woo, and D. Brumley. Native x86 decompilation using
semantics-preserving structural analysis and iterative control-flow structuring. In
USENIX Security Symposium, Washington, D.C., Aug. 2013.

[73] Sirmabus. Class informer plugin. SourceForge project. http://
sourceforge.net/projects/classinformer/.

[74] A. Slowinska, T. Stancescu, and H. Bos. DDE: Dynamic data structure excava-
tion. In Asia-pacific Workshop on Systems (APSys’10), New Delhi, India, Aug.
2010.

[75] M. Sojer and J. Henkel. Code reuse in open source software development: Quan-
titative evidence, drivers, and impediments. Journal of the Association for In-
formation Systems, 11(12):868–901, Mar. 2010.

[76] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. Kang, Z. Liang, J. New-
some, P. Poosankam, and P. Saxena. Bitblaze: A new approach to computer
security via binary analysis. In International Conference on Information Sys-
tems Security (ICISS’08). Hyderabad, India, July 2008.

[77] Y. Srikant and P. Shankar. The compiler design handbook: optimizations and
machine code generation. CRC Press, 2007.

[78] TIOBE Software BV. Tiobe index. Online article. http://www.tiobe.com/
index.php/content/paperinfo/tpci/index.html.

88

http://www.blackhat.com/presentations/bh-dc-07/Sabanal_Yason/Paper/bh-dc-07-Sabanal_Yason-WP.pdf
http://www.blackhat.com/presentations/bh-dc-07/Sabanal_Yason/Paper/bh-dc-07-Sabanal_Yason-WP.pdf
http://www.blackhat.com/presentations/bh-dc-07/Sabanal_Yason/Paper/bh-dc-07-Sabanal_Yason-WP.pdf
http://sourceforge.net/projects/classinformer/
http://sourceforge.net/projects/classinformer/
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

[79] S. K. Udupa, S. K. Debray, and M. Madou. Deobfuscation: Reverse engineering
obfuscated code. In Working Conference on Reverse Engineering (WCRE’05),
Pittsburgh, PA, USA, Nov. 2005.

[80] M. Van Emmerik. Static Single Assignment for Decompilation. PhD thesis,
University of Queensland, 2007.

[81] K. Yakdan, S. Eschweiler, and E. Gerhards-Padilla. Recompile: A decompilation
framework for static analysis of binaries. In Malicious and Unwanted Software:
“The Americas” (MALWARE’13), Oct. 2013.

[82] K. Yakdan, S. Eschweiler, E. Gerhards-Padilla, and M. Smith. No more
gotos: Decompilation using pattern-independent control-flow structuring and
semantics-preserving transformations. In Network and Distributed System Secu-
rity Symposium (NDSS’12, San Diego, CA, USA, Feb. 2015.

[83] F. Yamaguchi. Joern. GitHub Project. https://github.com/fabsx00/
joern.

[84] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck. Modeling and discovering vul-
nerabilities with code property graphs. In IEEE Symposium on Security and
Privacy, San Jose, CA, USA, May. 2014.

[85] F. Yamaguchi, M. Lottmann, and K. Rieck. Generalized vulnerability extrap-
olation using abstract syntax trees. In Annual Computer Security Applications
Conference (ACSAC’12), Orlando, FL, USA, Dec. 2012.

[86] F. Yamaguchi, C. Wressnegger, H. Gascon, and K. Rieck. Chucky: Exposing
missing checks in source code for vulnerability discovery. In ACM Conference
on Computer and Communications Security (CCS’13), Berlin, Germany, Nov.
2013.

[87] Z. Zihui. RTTI technology and dynamic creation in MFC. Microcomputer In-
formation, 9:79, Sep. 2008.

[88] Zynamics. Bindiff. Online article. http://www.zynamics.com/bindiff.
html.

89

https://github.com/fabsx00/joern
https://github.com/fabsx00/joern
http://www.zynamics.com/bindiff.html
http://www.zynamics.com/bindiff.html

	List of Figures
	List of Tables
	Code Listings
	Introduction
	Motivation
	Thesis Statement
	Contributions
	Outline

	Background
	Software Compilation and Build Process
	High-level Source Code
	Abstract Syntax Tree
	Intermediate Representation
	Control Flow Graph
	Compiler Optimizations
	Machine Code
	Linking

	Binary to Source Matching
	Automatic Compilation
	Automatic Parsing

	Related Work
	Binary to Source Comparison
	Binary Decompilation
	Decompilation as an Alternative
	Decompilation as a Complementary Approach

	High-Level Information Extraction from Binaries
	Source Code Analysis
	Miscellaneous

	CodeBin Overview
	Assumptions
	Comparison of Source Code and Binaries
	Function Properties
	Function Calls
	Standard Library and API calls
	Number of Function Arguments
	Complexity of Control Flow
	Strings and Constants

	Annotated Call Graphs
	Using ACG Patterns as Search Queries

	Implementation
	Challenges
	Macros and Header Files
	Statically Linked Libraries
	Function Inlining
	Thunk Functions
	Variadic Functions

	Source Code Processing
	Preprocessing and Parsing
	Source Processor Architecture

	Binary File Processing
	Extracting Number of Arguments
	ACG Pattern Extraction

	Graph Database
	Subgraph Search
	Query Results Analysis

	User Interface

	Evaluation
	Methodology
	Test Scenario
	Pattern Filtering
	Result Collection and Verification

	Evaluation Results
	No Reuse
	Different Compilation Settings
	Source Base and Indexing Performance

	Discussion
	Limitations
	Custom Preprocessor Macros
	Orphan Functions
	Inaccurate Feature Extraction
	Similar Source Candidates
	C++ Support

	CodeBin as a Security Tool
	Directions for Future Work

	Conclusion
	Bibliography

