
Last-Mile TLS Interception: Analysis and Observation of the

Non-Public HTTPS Ecosystem

Xavier de Carné de Carnavalet

A thesis

in

The Concordia Institute

for

Information Systems Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of

Doctor of Philosophy (Information and Systems Engineering) at

Concordia University

Montréal, Québec, Canada

July 2019

c© Xavier de Carné de Carnavalet, 2019

CONCORDIA UNIVERSITY
School of Graduate Studies

This is to certify that the thesis prepared

By: Mr. Xavier de Carné de Carnavalet
Entitled: Last-Mile TLS Interception: Analysis and Observation of the

Non-Public HTTPS Ecosystem
and submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Information and Systems Engineering)

complies with the regulations of this University and meets the accepted standards with re-

spect to originality and quality.

Signed by the final examining committee:

Dr. William Lynch
Chair

Dr. Carlisle Adams
External Examiner

Dr. Wahab Hamou-Lhadj
External to Program

Dr. Amr Youssef
Examiner

Dr. Jeremy Clark
Examiner

Dr. Mohammad Mannan
Thesis Supervisor

Approved by
Dr. Mohammad Mannan, Graduate Program Director

July 24, 2019
Dr. Amir Asif, Dean
Gina Cody School of Engineering and Computer Science

Abstract

Last-Mile TLS Interception: Analysis and Observation of the Non-Public
HTTPS Ecosystem

Xavier de Carné de Carnavalet, Ph.D.

Concordia University, 2019

Transport Layer Security (TLS) is one of the most widely deployed cryptographic protocols

on the Internet that provides confidentiality, integrity, and a certain degree of authenticity of

the communications between clients and servers. Following Snowden’s revelations on US

surveillance programs, the adoption of TLS has steadily increased. However, encrypted

traffic prevents legitimate inspection. Therefore, security solutions such as personal an-

tiviruses and enterprise firewalls may intercept encrypted connections in search for mali-

cious or unauthorized content. Therefore, the end-to-end property of TLS is broken by

these TLS proxies (a.k.a. middleboxes) for arguably laudable reasons; yet, may pose a se-

curity risk. While TLS clients and servers have been analyzed to some extent, such proxies

have remained unexplored until recently. We propose a framework for analyzing client-

end TLS proxies, and apply it to 14 consumer antivirus and parental control applications

as they break end-to-end TLS connections. Overall, the security of TLS connections was

systematically worsened compared to the guarantees provided by modern browsers.

Next, we aim at exploring the non-public HTTPS ecosystem, composed of locally-

trusted proxy-issued certificates, from the user’s perspective and from several countries in

residential and enterprise settings. We focus our analysis on the long tail of interception

events. We characterize the customers of network appliances, ranging from small/medium

iii

businesses and institutes to hospitals, hotels, resorts, insurance companies, and govern-

ment agencies. We also discover regional cases of traffic interception malware/adware that

mostly rely on the same Software Development Kit (i.e., NetFilter). Our scanning and

analysis techniques allow us to identify more middleboxes and intercepting apps than pre-

viously found from privileged server vantages looking at billions of connections.

We further perform a longitudinal study over six years of the evolution of a prominent

traffic-intercepting adware found in our dataset: Wajam. We expose the TLS interception

techniques it has used and the weaknesses it has introduced on hundreds of millions of user

devices. This study also (re)opens the neglected problem of privacy-invasive adware, by

showing how adware evolves sometimes stronger than even advanced malware and poses

significant detection and reverse-engineering challenges. Overall, whether beneficial or

not, TLS interception often has detrimental impacts on security without the end-user being

alerted.

iv

Acknowledgments

I would like to express my deepest gratitude and appreciation to my supervisor Dr. Mo-

hammad Mannan, for his continuous support, guidance, and pushing me to surpass myself.

His patience and dedication contributed to making this thesis possible.

My journey into the Ph.D. was an adventure, and I am grateful to those I met and who

supported me along the way. In particular, my love and appreciation go to Mengyuan

Zhang.

I wish to thank all members of the Madiba Security Research Group, especially Liany-

ing Zhao (Viau), as well as the rest of my research colleagues of the CIISE department, for

their enthusiastic discussions.

I also would like to express my gratitude to my friends and family, who helped me keep

on track.

v

Contents

List of Figures xiii

List of Tables xv

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis Statement . 3

1.3 Objectives and Contributions . 3

1.4 Related Publications . 5

1.5 Outline . 5

2 Background 6

2.1 SSL/TLS . 6

2.2 Terminology . 7

2.3 Trusted Root CA Stores . 8

2.3.1 System CA Store . 8

2.3.2 Third-party CA Stores . 8

2.4 OS-provided APIs for Key Storage . 9

2.5 Insertions in Trusted Stores: Implications 10

2.6 Client-side TLS Proxies and Appliances 11

vi

3 Literature Review 13

3.1 Surveys on SSL/TLS and the CA Infrastructure 13

3.2 Certificate Collection and Analyses . 14

3.2.1 Internet-wide Active Scans . 14

3.2.2 Passive Certificate Collection . 18

3.3 TLS Proxy-oriented Analyses and Protocols 19

3.3.1 Network Appliances . 20

3.3.2 Software Proxies . 20

3.3.3 TLS Proxy Protocols . 21

3.4 Implementation Verification . 21

3.4.1 Certificate Generation for Testing Purposes 22

3.4.2 Source Code Analysis . 23

3.4.3 TLS Implementation Testing . 23

3.5 Miscellaneous . 23

3.5.1 Related Technologies . 24

3.5.2 Mimicking TLS handshakes . 24

4 Analyzing Client-end TLS Interception Software 25

4.1 Methodology . 25

4.1.1 Analysis Framework . 25

4.1.1.1 Root Certificate and Private Key 26

4.1.1.2 Certificate Validation 26

4.1.1.3 Server-end Parameters 26

4.1.1.4 Client-end Transparency 27

4.1.2 Threat Model . 27

4.1.3 Product Selection . 28

4.2 Contributions . 28

vii

4.3 Major Findings . 31

4.4 Private Key Extraction . 32

4.4.1 Locating Private Keys in Files and Windows Registry 33

4.4.2 Application-protected Private Keys 34

4.4.2.1 Identify the Process Responsible for TLS Filtering 34

4.4.2.2 Retrieving Passphrases 35

4.4.2.3 Encrypted Containers 36

4.4.3 Security Considerations . 36

4.5 Limitations of Existing TLS Test Suites 38

4.5.1 Certificate Verification . 39

4.5.2 TLS Security Parameters . 41

4.6 Our TLS Proxy Testing Framework . 41

4.6.1 Test Environment . 41

4.6.2 Certificate Validation Testing . 42

4.6.3 Proxy-embedded Trusted Stores 44

4.6.4 TLS Versions and Known Attacks 46

4.7 Results Analysis . 47

4.7.1 Root Certificates . 47

4.7.1.1 Certificate Generation 48

4.7.1.2 Third-party Trusted Stores 49

4.7.1.3 Self-acceptance . 49

4.7.1.4 Filtering Conditions . 49

4.7.1.5 Expired Product Licenses 50

4.7.1.6 Uninstallation . 50

4.7.2 Private Key Protections . 50

4.7.2.1 Passphrase-protected Private Keys 51

viii

4.7.2.2 Encrypted Containers 52

4.7.3 Certificate Validation and Trusted Stores 53

4.7.3.1 Invalid Chain of Trust 53

4.7.3.2 Weak and Deprecated Encryption/signing Algorithms . . 55

4.7.3.3 Proxy-embedded Trusted Store 55

4.7.4 TLS Parameters . 57

4.7.4.1 SSL/TLS Versions . 57

4.7.4.2 Certificate Security Parameters 59

4.7.4.3 Cipher Suites . 60

4.7.4.4 Known Attacks . 60

4.8 Practical Attacks . 61

4.9 Company Notifications and Responses . 64

4.10 Recommendations for Safer TLS Proxying 65

4.11 Conclusion . 70

5 A Client-side View of the HTTPS Ecosystem 71

5.1 Introduction . 71

5.2 First Data Collection: L17 . 76

5.2.1 Data Collection Methodology . 77

5.2.1.1 Luminati . 77

5.2.1.2 Domain Datasets . 78

5.2.1.3 Country List . 80

5.2.1.4 Browser-like TLS Handshake Simulation 81

5.2.1.5 Scanning Methodology 84

5.2.1.6 Verifying Certificates 85

5.2.1.7 Analysis Methodology 87

5.2.2 Findings . 89

ix

5.2.2.1 Personal Filters & Enterprise Middleboxes Identification 90

5.2.2.2 Middleboxes . 92

5.2.2.3 NetFilter-based Interceptions 95

5.2.2.4 New Trends . 99

5.2.2.5 Country-wide Censorship and ISP-level Interception . . . 100

5.2.2.6 Likely Malware . 103

5.2.2.7 False Positives . 103

5.2.2.8 Remaining Unknown Certificates 105

5.2.3 Discussion on Network Errors . 106

5.2.4 Trusted Certificates and CT logs 108

5.3 Second Data Collection: L19 . 109

5.3.1 Data Collection Methodology . 109

5.3.1.1 Domain Datasets . 110

5.3.1.2 Country List . 112

5.3.1.3 Browser-like TLS Handshake Simulation for TLS 1.3 . . 112

5.3.1.4 Scanning Methodology 114

5.3.1.5 Verifying Certificates 117

5.3.2 Findings . 118

5.3.2.1 Enterprise Proxies and Home Filters 119

5.3.2.2 ISP-level Injection . 120

5.3.2.3 NetFilter-based Interceptions 121

5.3.2.4 False Positives . 121

5.4 Insights . 123

5.4.1 Interpretation of the Results . 123

5.4.2 Comparison with Related Work 125

5.5 Ethical Considerations . 127

x

5.6 Limitations and Generalization . 131

5.6.1 Threats to Internal Validity . 131

5.6.2 Threats to External Validity . 134

5.7 Concluding Remarks . 135

6 Privacy and Security Risks of “Not-a-Virus” Bundled Adware:

The Wajam Case 137

6.1 Introduction . 137

6.2 Wajam’s History . 142

6.3 Related Work . 143

6.4 Sample Collection and Overview . 146

6.4.1 Sample Collection . 147

6.4.2 Categories . 149

6.5 Analysis Methodology . 151

6.6 Technical Evolution Summary . 153

6.7 Prevalence . 157

6.7.1 Domains Popularity . 158

6.7.2 Worldwide Infections . 160

6.8 Private Information Leaks . 161

6.9 Anti-analysis and Evasion . 163

6.10 Security Threats . 173

6.11 Content Injection . 178

6.11.1 Targeted Domains . 178

6.11.2 Injected Content . 179

6.11.3 Browser Hooking Rules . 180

6.11.4 Updates and Injections . 182

6.12 Directions for Better Detection . 183

xi

6.12.1 Root Certificate Fingerprints . 184

6.12.2 Other Approaches . 185

6.13 Wajam Clones . 187

6.14 Concluding Remarks . 189

7 Conclusion and future work 190

Bibliography 193

Appendix A Glossary 213

Appendix B Recovering private keys from antivirus and parental control appli-

cations 215

B.1 BitDefender . 215

B.2 Net Nanny . 220

B.3 Avast . 222

B.4 ESET . 223

Appendix C Sample email notification sent to AV/PC companies 225

Appendix D List of Luminati countries 227

Appendix E Certificate fingerprinting rules 229

Appendix F Wajam domains 234

Appendix G Wajam samples 237

xii

List of Figures

1 Storage location of a sample machine-wide certificate 9

2 Illustration of a man-in-the-middle (MITM) attack 12

3 Optimal handshake for TLS ClientHello and ServerHello when proxying a

connection . 68

4 Scanning process overview for L17 . 77

5 Illustration of a dummy TLS handshake between a TLS client and server . . 83

6 Illustration of a dummy TLS 1.3 handshake with a compatible server 113

7 Illustration of a retry when the server refuses the initial key share (TLS 1.3) 115

8 Scanning process overview for L19 . 116

9 Snippet of Javascript injected into webpages by Rimon Internet in Israel . . 121

10 Consent splash screen displayed by the Luminati SDK in an application . . 128

11 Timeline of first appearance of key features 155

12 VirusTotal detection rates of 36 samples starting from their release time . . 157

13 Wajam domains in Umbrella’s top list (2017–2019) 159

14 Icon polymorphism with slight pixel alteration 164

15 Icons used in the Wajam’s installers we collected 165

16 NSIS script to modify Microsoft MRT settings 169

17 Example of traffic injection rule for facebook.com that matches all

pages except xti.php . 176

18 Traffic injection rule to insert a malicious script on login.bank.com . . 177

xiii

login.bank.com

19 Example of injected content on google.com 179

20 Browser injection rule for Chrome 66.0.3353.2 183

B.1 CA certificate inserted into Windows’ trust store 215

B.2 Obtain the SHA1 fingerprint of the A certificate 216

B.3 Monitor file activities with Procmon . 216

B.4 Explore the program’s folder where a certificate was identified 217

B.5 Find an encrypted private key . 217

B.6 Dump all processes . 217

B.7 Find the process handling the private key 218

B.8 Find interesting DLL components of that process 218

B.9 Search for key functions in the DLL components 219

B.10 Analyze calls to key functions and locate the passphrase 219

B.11 Original and patched db.dll to decrypt the database upon opening, then

close and crash . 220

B.12 Original db.dll, decompiled . 220

B.13 Patched db.dll, decompiled . 220

B.14 Net Nanny’s decrypted framework.db database 221

B.15 Recovering Avast’s private key with Mimikatz 222

B.16 ESET’s private key is associated with a certificate but unexportable 223

B.17 ESET protects the CNG service . 223

B.18 Disabling ESET self-defense feature . 224

B.19 Exporting ESET’s private key . 224

xiv

google.com

List of Tables

1 Comparison with scanning techniques used in related work 15

2 List of antiviruses tested . 29

3 List of parental control applications tested 30

4 Security aspects related to root certificates insertion/removal, and filtering . 48

5 Protections for a root certificate’s private key 51

6 Results of the certificate validation process against 9 invalid certificates . . 53

7 Results for TLS parameters, proxy transparency and known attacks 58

8 Browser profiles . 81

9 Breakdown of certificate categories in L17 90

10 Antivirus, enterprise middleboxes and home filters found in L17 96

11 Certificates issued by ProtocolFilters in L17 98

12 Breakdown of certificate categories in L19 118

13 Antivirus, enterprise middleboxes and home filters found in L19 120

14 Certificates issued by ProtocolFilters in L19 122

15 Wajam samples summary . 148

16 Distribution of samples among generations 150

17 Steganographic techniques to hide a nested installer in samples from end-

2017 to 2018 . 164

18 Decryption keys for the DLL used to retrieve information about the system

and browsers . 166

xv

19 Decryption keys for the “goblin” DLL injected into browsers in samples

from the third generation . 167

20 Nested installer’s decryption keys for samples from 2016 to mid-2017 . . . 167

21 Security solutions checked by Wajam in registry 172

22 TLS root certificates in 2nd and 4th generations 174

23 Fingerprints for Wajam-issued leaf certificates 186

D.1 List of countries through which we conducted scans through Luminati . . . 228

F.2 List of 332 domains that appear to belong/have belonged to Wajam 235

F.3 List of 332 domains that appear to belong/have belonged to Wajam (cont’d) 236

G.4 Hashes of the 52 samples we collected . 237

xvi

Chapter 1

Introduction

1.1 Motivation

Internet communications are increasingly shifting to encrypted channels. In particular, dur-

ing the last five years, web pages transported over HTTPS as visited by the Firefox browser

globally rose from about 30 to 78% of all pages [13, 157]. This move towards more secure

web communications originates from the Snowden revelations in 2013, which revealed the

extent of the United States’ spying program and the vulnerability of unencrypted commu-

nications [21, 116]. As a result, major players such as Google pushed for the adoption of

HTTPS by taking its presence into account for page rankings in 2014 [122], and visibly

marking non-encrypted HTTP traffic as “not secure” in 2018 [123]. This increase is also

made possible thanks to the launch of Let’s Encrypt, a Certification Authority that allows

anyone to easily deploy HTTPS on their web servers by obtaining free certificates. As

of September 2018, Let’s Encrypt has issued 380 million such certificates [20], and 100

million are active as of May 28, 2019 [157].

The public HTTPS certificate ecosystem is well studied [23, 131, 24, 113, 111, 109,

238, 57]. Also, initiatives by Google to log all publicly-trusted issued certificates, Cer-

tificate Transparency, is now enforced in the Chrome browser [35, 41] and provides near

1

real-time visibility of newly issued certificates.

However, encrypted traffic is also shielded against legitimate inspection purposes. There

is indeed a need for inspection as bad actors also leverage HTTPS for phishing [128] and

malware delivery and communications [14, 163, 19]. Therefore, security solutions, e.g.,

personal antiviruses (AVs) and enterprise firewalls, may intercept encrypted connections

in search for malicious or unauthorized content [134, 192, 85]. To this aim, they split and

proxy the encrypted connection, breaking the end-to-end property of the underlying TLS

protocol, and possibly introducing security weaknesses.

Moreover, most of the effort to study the HTTPS ecosystem discards the actual client

perspective. Indeed, while intercepting TLS, the proxy needs to generate on-the-fly site

certificates to be received by the browser in place of the original server certificate. These

proxy-issued certificates are publicly untrusted by design, and are neither logged by CT

nor visible on most (or even any) part of the network. Also, these certificates are often

stealthily made trusted on the user device to avoid browser warnings. This phenomenon

results in a unique environment in which browsers may never see real server certificates,

yet they do not show any error. As they do not trigger warnings, proxy-issued certificates

are also invisible from browser telemetry on certificate errors [48] (unless misconfigured).

In addition, a few studies hint that security solutions are not the only entities that in-

tercept TLS traffic [134, 192, 85]. Rather, there seems to be a tail of poorly explained

interception events, sometimes attributed to malware. However, these studies are restricted

by the geographic origin of the clients or the domains monitored, and do not offer a satis-

fying view of the landscape.

Finally, a given client perspective might not be totally isolated from others. The Su-

perFish case [28] showed that certificates generated by an ad-replacing application on one

device can be directly trusted on another one where this application is installed, enabling

2

anyone to tamper with encrypted communications proxied by SuperFish. Therefore, be-

yond individual proxy-issued certificates, the link between them across devices is also rel-

evant. Hence, we call this environment, physically bound to or near the end-user’s device,

symbolically located in the last mile on the path from the server to the client, as the non-

public HTTPS ecosystem. This ecosystem is important to study as it can highlight how

insecure encrypted communications are in practice, despite proper observable server con-

figurations and up-to-date browsers.

1.2 Thesis Statement

Our research is aimed at studying the non-public HTTPS ecosystem, created as a byproduct

of TLS interception. This ecosystem includes TLS proxies/interceptors, and their generated

certificates. As part of this goal, we explore the following research questions:

Question 1. Can we identify the actors of client-end TLS interception from a global

perspective, and measure the extent of their impact?

Question 2. Do legitimate interceptors introduce any new security threat for end users?

Question 3. Can we characterize bad actors, and in particular, are they simply a nui-

sance or are they involved in something more nefarious?

1.3 Objectives and Contributions

This research first aims to provide a framework for analyzing TLS proxies, and to study

the non-public HTTPS ecosystem in terms of its certificates, TLS proxies involved, and the

security of the underlying TLS interception. Throughout this work, we make the following

contributions.

1. We provide a framework for analyzing the security of TLS proxies installed on a user

3

device. Before we investigate actual proxies, we develop a comprehensive frame-

work to guide further studies. We then analyze TLS interception as done by antivirus

and parental control software. Such security- and safety-enhancing applications are

expected to preserve the security of encrypted communications they intercept. We

apply our framework to verify this expectation on a number of popular antivirus and

parental control applications.

2. We collect the largest dataset of certificates from the non-public HTTPS ecosystem

with a client perspective in residential and enterprise settings in various countries.

We first leverage a peer-to-peer Virtual Private Network (VPN) provider that enables

us to route our network requests through exit nodes located around the globe. Sec-

ond, we compile a comprehensive list of domains to be tested that better represents

user browsing preferences. Third, we design a scanner that partially mimics browser

behaviors.

3. We analyze the collected certificates as exhaustively as possible and shed light on ne-

glected, new, lesser-known, or geographically-dependent interception events. From

our unique vantage, we are able to observe improbable interception cases. Some of

these are worthy of further analysis and discussion, and may highlight previously

overlooked problems.

4. We further investigate the case of the most widespread traffic-intercepting adware in

our dataset. We perform a longitudinal study of the evolution of Wajam over six years

and expose the TLS interception techniques it has used and the weaknesses it has in-

troduced on hundreds of millions of users. This study also (re)opens the neglected

problem of privacy-invasive adware, by showing how adware evolves sometimes

stronger than even advanced malware and poses significant detection and reverse-

engineering challenges.

4

1.4 Related Publications

The work discussed in Chapter 4 has been peer-reviewed and published in the following

conference article:

Killed by Proxy: Analyzing Client-end TLS Interception Software. X. de Carné de

Carnavalet and M. Mannan. Network and Distributed System Security Symposium

(NDSS’16), Feb. 21–24, 2016, San Diego, CA, USA.

This work has also been presented at FTC PrivacyCon, Jan. 12, 2017, Washington,

D.C., USA. Moreover, it has been used by the TLS Workgroup on the standardization of

TLS 1.3 as an argument to reject interception-friendly design proposals [115].

We are preparing the work discussed in Chapter 5 for submission to an academic con-

ference. The work discussed in Chapter 6 is available at arXiv:1905.05224.

1.5 Outline

The rest of the thesis is organized as follows. Chapter 2 introduces a short necessary back-

ground on SSL/TLS. Chapter 3 reviews the literature related to Chapter 4 and 5. Chapter 4

presents our analysis framework for client-end TLS proxies. Chapter 5 discusses the study

of the non-public HTTPS certificate ecosystem. Chapter 6 then focuses on the Wajam

traffic-intercepting adware. Due to the nature of this last piece of work, the relevant related

work is presented in that chapter. Chapter 7 concludes.

5

https://arxiv.org/abs/1905.05224

Chapter 2

Background

This chapter introduces some key concepts and technologies.

2.1 SSL/TLS

The Secure Socket Layer (SSL) protocol, later renamed Transport Layer Security (TLS),

has evolved since 1995 through major milestones: SSL v2.0, SSL v3.0, TLS v1.0, TLS

v1.1, TLS v1.2 [135], up to the recently standardized v1.3 [136]. This cryptographic proto-

col is intended to protect communications from passive eavesdropping (privacy) and active

modifications (integrity), and to authenticate at least one party in the exchange according to

a given Public Key Infrastructure (PKI). By nature, SSL/TLS is an end-to-end encryption

protocol.

The SSL/TLS protocol distinguishes a client and a server in the communication. The

client starts a handshake by sending a ClientHello message to the server, advertising sup-

ported cryptographic primitives, as part of a negotiation phase with the server. The server

replies with a ServerHello message, setting the primitives to be used, followed by other op-

tional messages that may contain, e.g., the server’s certificate, certificate revocation status,

additional key material. The server finishes its series of messages with a ServerHelloDone

6

message. The client then verifies the authenticity of the server’s certificate and checks

whether a signature chain leads to a trusted root. The client and server are then able to

derive a common secret master key and derive sub-keys for encryption and message au-

thentication purposes. The handshake may continue with optional messages and finishes

when both the client and the server exchange a Finished message. Then, all further com-

munications are encrypted by keys established during the handshake. In the recent version

1.3, this exchange is slightly revised but follows the same logic.

2.2 Terminology

We refer to content-control applications as CCAs, or simply products; these include an-

tivirus and parental control applications when they perform some form of traffic filtering.

Products that support TLS filtering are termed as TLS proxies, or simply proxies. Each

product imports a root certificate in the OS trusted CA store for the proper functioning of

their proxy, and possibly other third-party stores (primarily browser CA stores).

A proxy acts between a client application and a remote server. Client applications in-

clude web browsers, email clients, OS services, and any other TLS clients. We mostly

discuss the consequences of bad TLS proxies from a browser’s perspectives, considering

browsers as the most critical TLS client application for users; however, other application-

s/services may also be affected. We use the terms browsers and client applications inter-

changeably. For browsers, we consider Microsoft Internet Explorer (IE), Mozilla Firefox

and Google Chrome.

7

2.3 Trusted Root CA Stores

2.3.1 System CA Store

All versions of Windows starting from Windows 2000 [174], provide a Trusted Root Certi-

fication Authorities certificate store that comes preloaded with a list of trusted CAs, meet-

ing the requirements of the Microsoft Root Certificate Program.1 Updates to this list are

generally provided by Microsoft, but applications and users can add additional certificates

(only via specific Windows APIs or the Windows Certificate Manager). We refer to this

store as the OS trusted (CA) store, which can either be user-dependent, service-dependent

or machine-wide. The machine-wide trusted store is located in Windows registry as (key,

value) pairs [176]: a key (Certificates) hosting each trusted certificate as a subkey, labeled

with the certificate’s SHA1 fingerprint; and a value (Blob) hosting the certificate in the

ASN.1 DER format. CCAs import their root certificates in the machine-wide store, mak-

ing those certificates trusted by the OS and all applications relying on the OS trusted store.

Importing a root certificate into the machine-wide store requires admin privileges, in which

case Windows does not warn users about the security implications of such a certificate.

Importing a root certificate to the current-user’s trusted store by a userland application

however triggers a detailed warning, and requires explicit user acceptance. As CCAs ob-

tain admin privileges during installation (e.g., via a UAC prompt), the insertion of a root

certificate into the OS trusted store remains transparent to the user.

2.3.2 Third-party CA Stores

TLS applications may choose to use their own CA store, instead of relying on the OS-

provided store (possibly due to not fully trusting the validation process as used by Mi-

crosoft to accept a root certificate). For example, Firefox uses an independent root CA

1https://technet.microsoft.com/en-ca/library/cc751157.aspx

8

https://technet.microsoft.com/en-ca/library/cc751157.aspx

HKEY_LOCAL_MACHINE
SOFTWARE
Microsoft
SystemCertificates
ROOT
Certificates
6973ad1e104db6bf10cc0ceb9b2927e375539ca
Blob

Figure 1: Storage location of a sample machine-wide certificate, with SHA1 thumbprint
6973ad1e104db6bf10cc0ceb9b2927e375539ca

list, populated according to the Mozilla CA Certificate Policy [179]. In addition to the OS

store, several CCAs also insert their root certificates into the application stores to filter traf-

fic to/from those applications. CCAs may check for such applications during installation,

and automatically insert their root certificates into selected third-party stores (transparently

to users), or simply instruct users to manually add root certificates to application stores.

2.4 OS-provided APIs for Key Storage

The legacy Microsoft CryptoAPI (CAPI) and the new Cryptography API: Next Generation

(CNG) provide specialized functions to store, retrieve, and use cryptographic keys [175].

Cryptographic Service Providers (CSP) such as the Strong Cryptographic Provider in the

previous CAPI, and the CNG Key Storage Provider (KSP) offer such features. For TLS

filtering, CCAs must store their private keys (corresponding to their root certificates) in the

host system to sign site certificates for browsers on-the-fly. If a CCA uses CSP/KSP to se-

curely store its private key, Windows encrypts the private key using a master key only avail-

able to the OS, and stores the ciphertext in %ProgramData%\Microsoft\Crypto\

RSA\MachineKeys in the case of machine-wide RSA private keys. For CCAs using

CSP/KSP, we check whether a key is marked as exportable (by the CCA). Machine-wide

keys are exportable only with admin privileges. If a key is marked non-exportable, it is

9

not supposed to be exported even with admin privileges. However, tools requiring ad-

min/system privileges are available to bypass this restriction, e.g., Jailbreak [143] and

Mimikatz [101] as we tested on Windows 7 SP1. Non-exportable keys can be used by

the CAPI or CNG to directly encrypt or decrypt data without letting the application access

the key. Such a method should be preferred by CCAs; however, our results show other-

wise (see Section 4.7). In this thesis, we consider that exporting OS-protected private keys

requires admin privileges. Note that, an unprivileged application running under an admin

account, can open the Windows Certificate Manager (run with admin privileges), and then

instrument the UI to access an exportable private key; such an attempt will not trigger the

Windows UAC prompt under default UAC settings (under Windows 7, 8.1 and 10 as we

tested), which allow auto-elevating whitelisted Microsoft tools [212].

2.5 Insertions in Trusted Stores: Implications

There are several trusted stores that can be affected by CCAs. Windows provides a trusted

store that we refer to as the OS trusted CA store, while third-party applications may main-

tain their own store (e.g., Mozilla Firefox, Opera); see Section 2.3. CCAs install a root

certificate in a trusted store so that TLS applications relying on that store accept TLS con-

nections filtered by the proxy without any warning or error. However, an imported CCA

root certificate implies that those TLS applications thereafter automatically trust any web

content signed by that certificate, not simply the filtered content. When the CCA is man-

ually disabled or uninstalled, or the CCA stops filtering due to an expired license, the root

certificate may still remain in the trusted store. As a consequence, TLS clients may be

vulnerable to impersonation attacks when the private key for the root certificate is not suit-

ably protected. Example scenarios include the following: CCAs that simply reuse the same

public/private key pair across installations; CCAs that do not remove a root certificate from

the trusted stores and the corresponding private key becomes compromised later (e.g., a

10

RSA-1024 root certificate valid for 10 years leaves plenty of time for a dedicated attacker

to factor the key). Compared to installing a new application, inserting a root certificate in a

trusted store has more security implications that may span even beyond the product’s lifes-

pan. Such insertions are also mostly invisible to users, i.e., no explicit message is displayed

by the OS, CCAs, or browsers, beyond granting generic admin privileges to the CCAs.

2.6 Client-side TLS Proxies and Appliances

Several antivirus and parental control software tools analyze client-end traffic, including

HTTPS traffic, before it reaches browsers for reasons including eliminating drive-by down-

loads, removing unwanted advertisements, protecting children’s online activities by block-

ing access to unwanted websites, or simply hiding swear words. Such tools are possibly

used by millions of users (cf. [134]); sometimes they are installed by OEMs on new com-

puters (perhaps unbeknownst to the user), often downloaded/purchased by users, and after

installation, remain active by default (although may not always perform filtering).

To analyze encrypted traffic, these tools generally insert an active man-in-the-middle

(MITM) proxy to split the browser-to-web server encrypted connection into two parts:

browser-to-proxy and proxy-to-web server. First, such a tool grants itself signing authority

over any TLS certificate by importing its own root certificate into the client’s trusted CA

stores. Then, when a TLS connection is initiated by a client application (e.g., browser,

email client) to a remote server, the TLS proxy forges a certificate for that server to “im-

personate” it in the protocol. Client encryption effectively terminates at the proxy, which

dutifully forms a second TLS connection to the remote server. The proxy inspects mes-

sages between the two connections, and forwards, blocks or modifies traffic as deemed

appropriate. However, the use of such a proxy may weaken TLS security in several ways.

Figure 2 illustrates this mechanism.

Similarly, dedicated network appliances are already in position of a MITM, and may

11

Figure 2: Illustration of a man-in-the-middle (MITM) attack against a content-control ap-
plication performing TLS interception that accepts its own root certificate as the issuer
of externally-delivered certificates. In addition, TLS parameters are not transparent to
browsers, and may be lowered by the proxy to an unwanted level. All SSL/TLS versions
shown are the highest ones that can be negotiated between two parties, assuming the MITM
supports at most TLS 1.2.

also split TLS connections. However, such appliances may be less dangerous, as they are

configured by IT professionals, and their root certificate and corresponding private key are

self-contained within the device.

12

Chapter 3

Literature Review

This chapter provides a comprehensive view of previous work aiming to analyze the TLS

ecosystem, propose alternative TLS proxy mechanisms, audit source code, and generate

certificates for testing purposes, along with surveys on the state of HTTPS and a few side

components.

3.1 Surveys on SSL/TLS and the CA Infrastructure

Meyer and Schwenk [172] survey theoretical and practical cryptographic attacks against

SSL/TLS, along with problems with the PKI infrastructure. They gather lessons learned

from these attacks, e.g., the need for reliable cryptographic primitives and awareness for

side-channel attack origins.

In parallel, Clark and van Oorschot [90] survey issues related to SSL/TLS from a cryp-

tographic point of view in the context of HTTPS, as well as general issues related to current

PKI and trust model proposals. Recent proposals, e.g., key pinning and HSTS variants,

OCSP stapling and short-lived certificates, have also been evaluated against known issues.

Authors note a shift from cryptographic attacks against TLS to attacks on the trust model,

where valid certificates can be issued by attackers.

13

3.2 Certificate Collection and Analyses

In this section, we discuss prominent past studies on TLS certificate monitoring and large-

scale network scanning, and compare them (see Table 1 for a summary).

3.2.1 Internet-wide Active Scans

A few notable projects focus on scanning the entire IPv4 address space (∼4 billion IPs),

either from a single vantage, several decentralized devices, or selected multiple vantages.

Single vantage. In 2010, the EFF and iSEC Partners conducted a scan of the IPv4 space on

port 443 [23] to evaluate the CA ecosystem. It took three months to complete from three

hosts. In contrast, ZMap [113] scans the entire IPv4 space in under 45 minutes from a sin-

gle machine using a Gigabit network connection. ZMap is similar to masscan [127], which

advertises 3 minutes for the IPv4 space using two 10-gigabit Ethernet cards. Both leverage

a custom TCP stack to enable asynchronous half-open connections without requiring the

OS kernel to allocate any resource or performing lookups and filtering. This mechanism

allows them to initiate a massive amount of connections. Destination IP addresses are sam-

pled randomly and deterministically to avoid overloading destination subnetworks. ZMap

allows modules to be run when a connection is successfully established; e.g., ZGrab acts

as a TLS client and records various parameters including the server’s certificate chain and

negotiated ciphersuite.

Censys [109] is an efficient search engine based on the data regularly collected by

ZMap, coupled with various modules. Censys offers a periodic scan of the IPv4 space of

more than 15 ports and protocols, including SSL/TLS (443), IMAP(S) (143/993), POP3(S)

(110/995), SSH (22). The data is accessible to researchers, and enables the research com-

munity to analyze different ecosystems. Similar to Censys, Rapid7 [24] periodically scans

the IPv4 space on multiple ports. Their datasets were analyzed by Chung et al. [86] for

invalid certificates, Liu et al. [161] for certificate revocation, and Cangialosi et al. [81] for

14

P a
pe

r
(y

ea
r)

Sca
ntyp

e
#va

ntag
e

#co
untri

es

Van
tag

etyp
e

#dire
ct

IP
s

sca
nned

#dom
ain

s

sca
nned

SNIused
?

Pro
toc

ols
sca

nned

Brow
ser

-lik
e

HTTPS?

E
FF

SS
L

O
bs

er
va

to
ry

[2
3]

(D
E

FC
O

N
’1

0)
A

1
1

(U
S)

U
nk

no
w

n
IP

v4
×

×
H

T
T

PS
×

L
e v

ill
ai

n
(2

01
0–

14
)[

15
8]

A
1

1
(F

R
)

U
ni

ve
rs

ity
IP

v4
×

×
H

T
T

PS
×

H
ol

z
et

al
.[

13
1]

(I
M

C
’1

1)
A

+P
11

7
U

ni
ve

rs
ity

,P
la

ne
tL

ab
×

1M
A

:×
H

T
T

PS
A

:×
P:
X

In
te

rn
et

C
en

su
s

[1
6]

(2
01

2)
1

A
42

0K
45

+
V

ar
io

us
IP

v4
×

N
/A

74
2

T
C

P
&

U
D

P
po

rt
s

N
/A

IC
SI

SS
L

N
ot

ar
y

[5
6]

(2
01

2–
pr

es
en

t)
P

10
1

(U
S)

U
ni

ve
rs

ity
N

/A
N

/A
N

/A
H

T
T

PS
X

R
ap

id
7

[2
4]

(2
01

3–
pr

es
en

t)
A

1
1

(U
S)

D
at

ac
en

te
r

IP
v4

×
×

H
T

T
PS

,e
m

ai
l,

...
×

W
in

te
re

ta
l.

[2
45

](
PE

T
S’

14
)

A
68

35
N

/A
To

r/
V

ar
io

us
×

1
N

/A
H

T
T

PS
,

X
M

PP
,

IM
A

P(
S)

,S
SH

,F
T

P
×

H
ua

ng
et

al
.[

13
4]

(S
&

P’
14

)
S

3M
45

+
V

ar
io

us
/U

nk
no

w
n

×
1

V
ar

io
us

H
T

T
PS

X
Z

M
ap

[1
13

](
U

SE
N

IX
Se

c.
20

13
)

C
en

sy
s

[1
09

](
C

C
S’

15
)

A
1

1
(U

S)
U

ni
ve

rs
ity

,D
at

ac
en

te
r

IP
v4

1M
X

H
T

T
PS

,e
m

ai
l,

...
×

O
’N

ei
ll

et
al

.[
19

2]
(I

M
C

’1
6)

A
3M

14
2

V
ar

io
us

/U
nk

no
w

n
×

1+
17

N
/A

H
T

T
PS

X

V
an

de
rS

lo
ot

et
al

.[
23

8]
(I

M
C

’1
6)

A
1

1
(U

S)
U

ni
ve

rs
ity

×
30

M
X

H
T

T
PS

A
:×

P:
X

C
hu

ng
et

al
.[

85
](

IM
C

’1
6)

A
80

8k
11

5
H

om
e/

V
ar

io
us

×
90

8
N

/A
D

N
S,

H
T

T
P,

H
T

T
PS

×
D

ur
um

er
ic

et
al

.[
11

2]
(N

D
SS

’1
7)

S
8B

N
/A

H
om

e/
V

ar
io

us
×

N
/A

2
V

ar
io

us
H

T
T

PS
X

A
ce

r e
ta

l.
[4

8]
(C

C
S’

17
)

B
N

/A
N

/A
V

ar
io

us
36

1M
er

ro
rr

ep
or

ts
X

H
T

T
PS

X
A

m
an

n
et

al
.[

57
](

IM
C

’1
7)

A
+P

5
4

U
ni

ve
rs

ity
×

19
3M

X
D

N
S,

H
T

T
PS

×
O

ak
es

et
al

.[
19

0]
(T

M
A

’1
9)

P
2M

N
/A

3
H

om
e/

V
ar

io
us

×
N

/A
3

X
H

T
T

PS
X

Th
is

w
or

k
A

5.
2M

20
4

U
ni

ve
rs

ity
,H

om
e/

V
ar

io
us

×
43

8k
X

H
T

T
PS

X
L

eg
en

d.
“S

ca
n

ty
pe

”:
A
→

A
ct

iv
e,

P
→

Pa
ss

iv
e

cl
ie

nt
-s

id
e,

B
→

B
ro

w
se

r-
ce

nt
ri

c,
S
→

Se
rv

er
-c

en
tr

ic
;“

V
an

ta
ge

ty
pe

”:
V

ar
io

us
m

ea
ns

a
va

ri
et

y
of

po
or

ly
sp

ec
ifi

ed
va

nt
ag

es
,U

nk
no

w
n

m
ea

ns
th

at
th

e
ty

pe
is

no
ts

pe
ci

fie
d

in
th

e
st

ud
y.

1
A

ut
ho

rs
ill

eg
iti

m
at

el
y

ac
ce

ss
ed

no
de

s
by

ab
us

in
g

de
fa

ul
tt

el
ne

tc
re

de
nt

ia
ls

2
D

om
ai

ns
as

so
ci

at
ed

w
ith

Fi
re

fo
x

up
da

te
se

rv
er

,e
-c

om
m

er
ce

w
eb

si
te

s,
C

lo
ud

fla
re

C
D

N
,p

os
si

bl
y

m
an

y.
3

T
he

au
th

or
s

w
or

ke
d

w
ith

a
gl

ob
al

m
ea

su
re

m
en

tp
la

tf
or

m
fo

cu
si

ng
on

us
er

-g
en

er
at

ed
tr

af
fic

Ta
bl

e
1:

C
om

pa
ri

so
n

w
ith

sc
an

ni
ng

te
ch

ni
qu

es
us

ed
in

re
la

te
d

w
or

k

15

private key sharing.

Mayer et al. [169] analyzed TLS certificates in the email ecosystem, and identified

more than 2M unique leaf certificates (majority self-signed). While email certificates are

out-of-scope for us, the use of Server Name Indication (SNI) with Alexa’s top domains is

a notable attribute of this work.

Levillain [158] studied the TLS ecosystem by probing TLS servers on the IPv4 range

with various ClientHellos to assess server support for different features.

Decentralized. In 2012, an anonymous group performed a distributed scan of IPv4, called

the Internet Census or the Carna botnet [16]. They (illegally) instructed 420,000 third-

party devices, accessed through an exposed telnet interface accepting default passwords, to

perform a chunk of the whole scan. A total of 742 TCP and UDP ports were tried at least

once, but not port 443 (HTTPS). Dainotti et al. [98] published an analysis of a similar type

of scan by a different botnet in early 2011, as seen by the UCSD Network Telescope.

Multi-vantage: Tor. Winter et al. [245] proposed Exitmap, a Python tool to run custom

modules through all Tor exit nodes. They studied passive sniffing of the IMAP and FTP

protocols by sending plaintext credentials to honeypot destinations, as well as active tam-

pering of HTTPS, XMPP, IMAPS and SSH. In seven months, they found 40 exit nodes

that performed active MITM attacks mainly from Russia and India, but also Hong Kong,

USA, Turkey and other countries. When a certificate was replaced, it was always a self-

signed certificate. Authors initiated about 27,000 connections over FTP and IMAP each to

a honeypot with unique credentials, and observed that 0.24% of them were used later (from

3 minutes to 2 months later). Also, they observed that the Tor network has a significant

churn rate as they observed 6835 unique exit nodes, while only about 1000 were active at

any given time. Moreover, 2698 were active for less than 50 hours.

Khattak et al. [148] investigate how Tor users are refused access to web sites from the

IPv4 range, or presented with CAPTCHAs on Alexa’s Top-1k list.

16

Multi-vantage: Ads campaign. O’Neill et al. [192] pushes a Flash application through

a Google AdWords campaign to actively collect certificates presented while connecting to

their own server. They analyzed reported certificates from about 3M connections from 142

countries and found that 0.4% of connections were proxied. Firewalls, parental filters and

malware were the main cause of interception.

Multi-vantage: Residential nodes. Using Luminati, Chung et al. [85] studied HTTPS

certificate replacement by active MITM on HTTPS traffic from 808k vantages, to the top

20 sites from each country-specific Alexa top domains (908 domains in total). Antivirus on

end-user systems were found to be responsible for a significant number of replaced certifi-

cates, along with other content filtering software and a case of malware. While the idea is

similar, Chung et al. focused mostly on the existence of certificate replacement and high-

lighted the main culprits. Our work significantly differs from this study in the number of

domains tested (up to 438k per country vs. up to 33), and the number of nodes (910k+4.3M

vs. 808k). To limit the cost of the study, we first focused on 33 selected countries then

expanded to 203 (vs. 115). The breadth of our scan allows us to simultaneously observe

many more accounts of interception, as detailed in Chapter 5.

More recently, Oakes et al. [190] collected certificates from the traffic of 2M residential

client from the user device’s perspective through comScore’s global desktop user panel, and

observed 35M unique certificate chains. Among invalid certificates, they found interception

done mostly by what we can identify as NetFilter-based products, including Wajam, as

evident from the issuer DNs (as we discuss in Chapters 5 and 6).

17

3.2.2 Passive Certificate Collection

Notaries. In Perspectives [244], a static list of domains is periodically crawled from a

trusted network to retrieve TLS certificates. Through a browser add-on, users can automat-

ically verify a visited site’s certificate against the notary. Users are warned of any discrep-

ancies (see also [194, 8]). The ICSI SSL Notary gathers certificates found in Internet traffic

from 10 organizations [139], mostly North American academic/research institutions [56].

One can submit the fingerprint of a certificate to learn if the notary has ever seen the corre-

sponding certificate (the dataset is possibly available through an NDA [238]).

While notaries expect users to verify certificates against them, Dong et al. [105] propose

to leverage machine learning to automatically detect rogue certificates.

Certificate Transparency. CT [4] is a framework that aims to monitor certificates is-

suance by CAs, and enable any interested parties (e.g., website owners) to check for the

existence of rogue certificates. CT relies on public logs, maintained by CAs, CDNs and

other third parties [5], which keep track of the certificates submitted to them. Monitors can

periodically check the logs for mis-issued certificates, while auditors can verify that logs

are honest. In practice, monitors are often run by the CAs themselves or web hosts to alert

their clients, while auditors are mostly run by independent parties [15]. Only certificates

signed by a public CA can be submitted [138], thus excluding any self-signed or otherwise

invalid certificates from the CT logs. CAs can submit a pre-certificate to a CT log and

include a Signed Certificate Timestamp (SCT) in the final issued certificate as an X.509v3

extension, as a proof of inclusion. The final certificate could be later submitted to CT logs,

although this step is not mandatory. Alternatively, a web server can automatically query a

CT log and attach an SCT via a special TLS extension or through OCSP stapling; however,

these options are scarcely used [57]. To push this system forward, Google Chrome has re-

quired CT for all EV certificates since 2015 [25], and for all certificates starting from Apr.

2018 [35, 41].

18

Passive server-side collection. Durumeric et al. [112] analyzed about 8 billion TLS hand-

shakes from traffic reaching Firefox update servers, selected popular e-commerce websites,

and Cloudflare CDN. They found that about 5–10% of the connections were intercepted

depending on the vantage. The underlying detection tool, MITMengine [95], is used by

CloudFlare for measuring TLS interception of traffic reaching their CDN [94].

Hybrid approaches. Holz et al. [131] analyzed TLS certificates from the traffic at a large

research network in Germany over 1.5 years between 2009 and 2011, along with certifi-

cates obtained from active scans of Alexa’s Top-1M websites from vantage points in seven

countries through PlanetLab. VanderSloot et al. [238] combine various sources of certifi-

cates collection to increase the coverage of TLS certificates, including: Censys, their own

IPv4 scans, Alexa’s Top-1M, domains found in the .com/.net/.org zone file [240], CT logs,

ICSI, and the Common Crawl dataset [96]. They noted that all these sources complement

each other, with CT logs contributing the most certificates. Authors found that 77% of over

20 million active domains extracted from CT logs accepted connections without SNI, and

only 35% served the same certificate as when contacted with SNI, further highlighting the

importance of scanning with SNI. They also reported that the Censys dataset represented

only 38% of all the certificates, mostly due to the lack of SNI.

3.3 TLS Proxy-oriented Analyses and Protocols

We summarize below the related work on TLS proxies, including analyses on network

appliances and software proxies, and proposals for TLS proxy protocols.

19

3.3.1 Network Appliances

Dell SecureWorks Counter Threat Unit [100] propose a framework for testing dedicated,

network-based TLS interception appliances as used in enterprise environments; several se-

curity flaws were also reported. CERT [106] lists a few common vulnerabilities in TLS

proxies, and identifies possibly affected products (mostly for enterprises). In the past, such

devices used to receive certificate signing authority from an existing client-trusted CA to

avoid user configuration; however, many OS/browser vendors disallow this practice, and

have removed/sanctioned the issuing CA when discovered, e.g., Trustwave [18], TURK-

TRUST [184], ANSSI [183] and CNNIC [9]. Such enterprise proxies require users/admin-

istrators to independently install the proxy’s root certificate into their clients. Our work

is focused on client-end interception proxies, which pose additional challenges, and are

installed and used by everyday users. Also, Dell’s framework is mostly oriented towards

certificate validation, while we extend the focus to TLS versions and various recent attacks.

Waked et al. [243, 242] applied our framework presented in Chapter 4 to 13 network

appliances and found security flaws, including insecure defaults, and a lack of certificate

validation in four appliances.

3.3.2 Software Proxies

In a preliminary work, Böck [72] analyses three antiviruses, and reports that they are vul-

nerable to CRIME and FREAK attacks, and support only old SSL/TLS versions. Böck also

tracks commercial products that leverage the Netfilter SDK1 to intercept HTTPS traffic us-

ing pre-generated certificates. Our work is more comprehensive in terms of the number of

tested products, and tests we perform in our framework.

Huang et al. [134] study TLS traffic filtering by investigating Facebook’s server cer-

tificate as seen from browsers. They found that 0.2% of the 3 million TLS connections

1http://netfiltersdk.com/

20

http://netfiltersdk.com/

they measured were tampered with by interception tools, mostly antiviruses and enterprise

CCAs, but also parental control tools and malware. O’Neill et al. [192] also found that

firewalls, parental filters and malware were the main cause of interception.

Graham [125] shows how easy it is to retrieve the private key for SuperFish, and con-

sequently to eavesdrop communications from clients using SuperFish in specific Lenovo

laptops. Recently, Böck [72] listed several observations about three antiviruses, including

vulnerability to CRIME and FREAK attacks, and the use of old SSL/TLS versions. Other

studies (e.g., [100, 106]) also highlight the possible dangers of filtering by dedicated TLS

interception appliances, targeted for enterprise environments.

3.3.3 TLS Proxy Protocols

The TLS Proxy Server Extension and HTTP 2.0 Explicit Trusted Proxy RFCs [171, 162]

discusses possible ways for proxies to be more transparent. Various proposals introduce

extensions to TLS and new encryption schemes that enable transparent inspection of en-

crypted traffic with fine-grained authorization and controls of the middleboxes, see e.g., [216,

188, 187, 156]. They require changes to the browsers, middleboxes and often to the servers,

making their adoption challenging.

Liang et al. [159] show the architectural difficulties faced by CDNs to deploy HTTPS,

as they are automatically placed in a man-in-the-middle position. CloudFlare [93] proposes

a mechanism for CDNs to handle TLS connections without the knowledge of the server’s

private key.

3.4 Implementation Verification

We provide a brief description of related work on certificate generation for testing valida-

tion implementations, and source code analysis.

21

3.4.1 Certificate Generation for Testing Purposes

Frankencert [78] generates artificial certificates that are composed of a combination of

existing extensions and constraints, randomly chosen from a large corpus of input certifi-

cates. The generated certificates are then tested against TLS clients. Errors are uncovered

through differential testing between at least two implementations. Frankencert has been

tested mainly on open-source TLS libraries (not much testing on browsers), and uncov-

ered several high-impact validation flaws. The authors use a script to instrument browsers

and TLS libraries to generate a web request and log the status of the reply (i.e., to check

certificate rejection errors). We provide a simple mechanism to make Frankencert compat-

ible with client-end TLS proxies; however, we do not use/modify Frankencert as obvious

validation errors are already apparent from simple tests.

While Frankencert randomly generates millions of certificates, mucert [84] generates

certificates that are aimed to trigger maximum code coverage in the certificate validation

procedure. By starting from a thousand samples, it mutates them while keeping only inter-

esting ones, following the Markov Chain Monte Carlo (MCMC) sampling algorithm. Cer-

tificate validation issues are identified through differential testing on OpenSSL, PolarSSL,

gnuTLS, NSS (in file-mode); CyaSSL and MatrixSSL (in client-server mode); Chrome,

Mozilla Firefox, and Microsoft Internet Explorer (by importing certificates in their trusted

store). However, no host validation is performed in non-client-server mode, no policy is

explicitly asked to be verified, nor is the intended purpose of the certificate verified (e.g.,

client/server authentication, code signing). Mucerts mostly identify bugs and discrepancies

between implementations that do not necessarily lead to security implications. In fact, no

tests are performed with incorrect signatures/keys. Unlike in Frankencert, no vulnerability

has been clearly uncovered.

SymCerts [83] creates certificate chains composed of symbolic and concrete values to

check the certificate chain validation logic of TLS libraries. It has been applied on popular

22

TLS libraries to uncover various flaws.

3.4.2 Source Code Analysis

SSLint [129] is a scalable, automated, static analysis system for detecting incorrect use

of SSL/TLS APIs. It applies static analysis to C/C++ application source codes to extract

Program Dependence Graphs (PDGs), and verifies whether their implementation of the

OpenSSL and gnuTLS APIs is correct against reference graph-based signatures. From 485

applications from the Ubuntu repository using either OpenSSL/gnuTLS or both, represent-

ing 22 million lines of code, they extracted 381 PDGs and found 27 vulnerabilities.

Project Wycheproof [32] is set of security tests to verify the source code of crypto-

graphic libraries for known weaknesses, including 80 test cases. It was used to uncover 40

bugs in well-known libraries.

3.4.3 TLS Implementation Testing

FlexTLS [67] is a tool for testing TLS implementations by crafting handshake scenarios,

and was used to discover a number of vulnerabilities in TLS libraries. It builds on miTLS,

a formally verified reference implementation of TLS written in F# [68].

Somorovsky proposes TLS-Attacker [220], a fuzzer for TLS implementations targeted

for TLS library developers, which also tests for memory-related bugs.

3.5 Miscellaneous

Other work related to various other aspects of our work are presented below.

23

3.5.1 Related Technologies

HTTP Strict Transport Security (HSTS [137]) is a simple mechanism to protect against

SSL stripping attacks. Kranch and Bonneau [152] studied how HSTS and key pinning are

deployed in practice, and found that even such simple proposals to enhance the HTTPS

security are challenging to implement. We note that key pinning is overridden by Chrome

47.0 when the server certificate is signed by an imported root certificate, and is deprecated

as of Chrome 68.

Huang et al. [133] study the deployment of forward secrecy (FS) compatible ciphers

from the server perspective, and found that despite their wide-scale adoption, weak param-

eters (weak keys) are still often negotiated.

3.5.2 Mimicking TLS handshakes

In parallel to our work in Chapter 5, Frolov and Wustrow proposed uTLS [119], a Golang li-

brary for mimicking reference ClientHellos and thus bypassing filters targeting censorship-

circumvention tools. DummyTLS also mimicks reference handshakes, while also support-

ing now-deprecated backoff ClientHellos. uTLS could be substituted in place of Dum-

myTLS and would provide more flexibility to adapt to new browser versions. Also, by

finishing TLS handshakes, we would not need to fall back on OpenSSL to fetch server

pages in L19.

24

Chapter 4

Analyzing Client-end TLS Interception

Software

In this chapter, we describe our first framework, focused on the analysis of client-end TLS

proxies.

4.1 Methodology

We present our general methodology below, including our analysis framework, threat model,

and the selection of products to be analyzed.

4.1.1 Analysis Framework

We propose a framework to analyze client-end and network appliance TLS proxies. Our

framework follows the structure of a TLS proxy, which is interested in the following four

categories: (a) root certificates of proxies, and protections of corresponding private keys;

(b) certificate validation; (c) server-end TLS parameters; and (d) client-end transparency.

25

4.1.1.1 Root Certificate and Private Key

First, if the proxy’s root certificate is pre-generated (i.e., fixed across different installa-

tions/devices), users could be vulnerable to impersonation by an active MITM network

adversary, having access to the signing key, if the proxy accepts external site certificates

issued by its own root certificate; see Fig. 2. In Feb. 2015, the advertisement-inserting

tool SuperFish [28] was found to be vulnerable to such an attack due to its use of the Ko-

modia SDK, which pre-generates a single root certificate per product. As this SDK is used

by other products, independent work tracked their root certificates and associated private

keys.1 In Nov. 2015, two Dell laptop models were found to be shipped with the same root

certificate along with its private key [108]. The same attack is also possible, if the private

signing key of a per-installation root certificate can be accessed by unprivileged malware in

a targeted machine. Note that, unlike advertisement-related products, removing antivirus

and parental control tools may not be feasible or desirable.

4.1.1.2 Certificate Validation

Second, as the TLS proxy itself connects to the server, it is in charge of the certificate vali-

dation process, which may be vulnerable to several known problems, including: accepting

any certificate (cf. Privdog [29]), failing to verify the certificate chain, relying on an out-

dated list of trusted CAs, or failing to check revocation status. Brubaker et al. [78] show

that certificate validation is a particularly error-prone task, even for well-known and tested

TLS libraries and clients.

4.1.1.3 Server-end Parameters

Third, the TLS proxy introduces a new TLS client (w.r.t. the remote server) in the end-to-

end client-server connection. Similar to browsers, these proxies must be kept updated with

1https://gist.github.com/Wack0/17c56b77a90073be81d3

26

https://gist.github.com/Wack0/17c56b77a90073be81d3

the latest patches as developed against newly discovered vulnerabilities (e.g., BEAST [107],

CRIME [208], POODLE [177], FREAK [66], and Logjam [50]). Outdated proxies may

also lack support for safe protocol versions and cipher suites, undermining the significant

effort spent on securing web browsers.

4.1.1.4 Client-end Transparency

Fourth, the proxy may not faithfully reproduce a connection to the browser with the same

parameters as the proxy’s connection to the server. For example, the proxy may not match

the use of extended validation (EV) certificates, and mislead the browser to believe that

the connection uses lower or higher standards than it actually does; hence, the proxy may

trigger unnecessary security warnings or suppress the critical ones. We refer to the capacity

of a TLS proxy to reflect TLS parameters between both ends as proxy transparency (not to

be confused with Certificate Transparency [4]).

4.1.2 Threat Model

To exploit the vulnerabilities identified in our analysis, we primarily consider two types of

attacks (see below). In both cases, we assume an attacker can perform an active MITM

attack on the target (e.g., an ISP, a public WiFi operator), and the goal is to impersonate a

server in a TLS connection, or at least extract authentication cookies from a TLS session.

Attackers cannot run privileged malware (e.g., rootkits) in a target system, as such malware

can easily defeat any end-to-end encryption. However, attackers can execute privileged

code in their own machines to study the target products.

Generic MITM: The attacker may learn (e.g., from network access log) whether a vul-

nerable CCA is installed on a target system; otherwise, a generic MITM attack can be

launched against all users in the network, with the risk of being detected by users who

are not vulnerable. Typically, CCAs that install pre-generated certificates may enable such

27

a powerful attack, if the corresponding private keys can be retrieved (on an attacker con-

trolled machine). No malicious code needs to be executed on the target system.

Targeted MITM: The attacker can run unprivileged code on the target system, prior

to the attack (e.g., via drive-by-downloads, social engineering). Such malicious code can

extract a dynamic, proxy-generated private key, which can then be used to impersonate any

server at that specific target system.

4.1.3 Product Selection

We relied on AV-comparatives.org [62, 63], Wikipedia2 and other comparatives [235] to se-

lect well-known antivirus and client-end parental control products under Windows. When

a vendor offers multiple versions of an antivirus or network firewall, we review the spec-

ifications of each product to find the simplest or cheapest one that supports TLS/HTTPS

interception; if the specifications are unclear, we try several versions. Our preliminary test-

set includes a total of 55 products (see Tables 2-3): 37 antiviruses and 18 parental control

applications. Fourteen of these tools import their own root certificates in the OS/browser

trusted CA stores, and 12 of them actually proxy TLS traffic. The rest of our analysis fo-

cuses on these 14 applications/12 proxies. Several of these proxies have also been identified

as a major source of real-world traffic filtering (see e.g., [134, 192]).

4.2 Contributions

1. We design a hybrid TLS testing framework for client-end TLS proxy applications, com-

bining our own certificate validation tests with tests that can be reliably performed

through existing test suites (see Section 4.6). Using this framework, we analyzed 14

2https://en.wikipedia.org/wiki/Comparison_of_antivirus_software, and
/wiki/Comparison_of_content-control_software_and_providers

28

https://en.wikipedia.org/wiki/Comparison_of_antivirus_software
https://en.wikipedia.org/wiki/Comparison_of_content-control_software_and_providers

Company Product Version
Agnitum Outpost Security Suite Pro 9.1
AhnLab V3 Internet Security 8.0
Avast Internet Security 2015 10.2.2218

10.3.2225
AVG Internet Security 2015.0.?

2015.0.6122
Baidu Antivirus 2015 5.0.3
BitDefender Antivirus Plus 2015 v8
BullGuard Antivirus 15.0.297

Internet Security 15.1.302
15.1.307.2

Checkpoint ZoneAlarm Security Suite 2015 13.4.261
Comodo Antivirus Advanced 8.1

Internet Security 8.1
CMC Internet Security 2012
Dr. Web Security Space 10
Emsisoft Anti-Malware 9.0
eScan Internet Security Suite 14.0
ESET Smart Security 8.0.312.0

8.0.319.0
F-Secure SAFE 2.15 build 364
G DATA Antivirus 2015 25.0.0.2

25.1.0.3
K7 Computing K7 Internet Security 14.2.0.249

K7 Total Security Pro 14.2.0.249
Kaspersky Antivirus 15.0.2.361

16.0.0.614
Kingsoft Antivirus 2010
McAfee Internet Security 12.8
Norman Security Suite 11
Output Total Security 1.1.4304.0
Panda Security Antivirus Pro 2015

Internet Security 2015
Qihoo 360 Internet Security 5.0.0.5104

360 Total Security 6.0.0.1140
Quick Heal Internet Security 16.00 (9.0.0.20)
Sophos Endpoint Security 10.3
TGSoft VirIT Lite 7.8.51.0
Total Defense Internet Security Suite 9.0.0.141
TrendMicro Internet Security 8.0
TrustPort Total Security 2014 14.0.5.5273

Internet Security 2015 15.0.3.5432
VIPRE Internet Security 2015 8.2.1.16
Webroot SecureAnywhere 8.0.7.33

Table 2: List of antiviruses tested. Highlighted entries are products that may install a root
certificate and proxy TLS connections; we analyzed all such products.

29

Company Product Version
Awareness Tech WebWatcher 8.2.30.1147
BlueCoat K9 Web Protection 4.4.276
ContentWatch Net Nanny 7.2.4.2

7.2.6.0
Cybits Ag JuSProg 6.1.0.106
Fortinet FortiClient 5.2
Entensys KinderGate Parental Control 3.1.10058.0.1
KinderServer AG KinderServer 1.1
LavaSoft Ad-Aware Total Security 11
McAfee SafeEyes 6.2.119.1
Norton Family 3.2.1
Pandora Corp PC Pandora 7.0.22
Profil Parental Filter 2
Salfeld Child Control 2014 14.644
Solid Oak Software CYBERsitter 11
SpyTech SpyAgent 8
TuEagles AntiPorn 2.15
Verify Parental Control 1.15
Witigo Parental Filter (unknown)

Table 3: List of parental control applications tested. Highlighted entries are products that
may install a root certificate and proxy TLS connections; we analyzed all such products.

leading antivirus and parental control products under Windows that offer HTTPS/se-

cure email filtering, or at least install a root certificate in the client’s trusted CA stores

(OS/browsers) to expose potential TLS-related weaknesses introduced by these tools to

their hosting systems.

2. We investigate whether the tools generate product-specific root certificates dynamically,

and to what extent they protect the associated private keys. We perform an extensive

analysis of certain products to recover their private keys, requiring non-trivial reverse-

engineering and deobfuscation efforts (although one-time only, for each product). When

the same key is used on all systems using the same product, simple MITM attacks are

possible (see Section 4.4).

3. We expose flaws in the certificate validation process of the TLS proxies, given only

a small corpus of carefully-crafted invalid certificates, which include expired and re-

voked certificates along with chains of trust that are broken for various reasons (see Sec-

tion 4.7). While testing our invalid certificates, we faced several challenges that are not

30

generally considered in existing client TLS tests (cf. Qualys [199] and others [71, 234];

see Section 4.5).

4. We analyze the TLS proxies against known attacks, and test their support for the latest

and older TLS versions. We also test whether the TLS version negotiated with the

server differs from what the browser sees (as supplied by the proxy), along with various

other parameters, e.g., certificate key size, signature hashing algorithm, EV certificates.

We observe that browsers (and in turn, users) are often misled by these proxies (see

Section 4.7).

5. We discuss implications of our findings in terms of efforts required for launching prac-

tical attacks (see Section 4.8), and outline a few preliminary suggestions for safer TLS

proxying (see Section 4.10).

4.3 Major Findings

We applied the framework on 14 well-known antivirus and parental control tools for Win-

dows (including two from the same vendor, and sometimes multiple versions), between

March and August 2015.

We found that all the analyzed products in some way weaken TLS security on their

host. Three of the four parental control applications we analyzed are vulnerable to server

impersonation because they either import a pre-generated certificate into the OS/browser

trusted stores during installation, lack any certificate validation, or trust a root certificate

“for testing purpose only” with a well-known 512-bit RSA key. The remaining one imports

a pre-generated certificate when filtering is enabled for the first time, and never removes it

even after uninstalling the product, leaving the host perpetually vulnerable. One antivirus

did not validate any certificate in the first version we analyzed, then changed to prompt-

ing the user for each and every certificate presented on email ports (secure POP3, IMAP

31

and SMTP), leaving users unprotected or in charge of critical security decisions. Another

antivirus fails to verify the certificate signatures, allowing a trivial MITM attack when fil-

tering is enabled. A third antivirus leaves its host vulnerable to server impersonation under

a trivial MITM attack after the product license is expired (accepts all certificates, valid or

otherwise). Due to the expired license, this product also cannot be automatically updated

to a newer version that fixes the vulnerability. We contacted the affected companies and

report their responses.

4.4 Private Key Extraction

Most CCAs implement various protection mechanisms to safeguard their private keys on-

disk. In this section, we discuss our methodologies to identify the types of protection

as used by CCAs, and how we extract plaintext private keys from application-protected

storage. OS-protected private key extraction requires admin privileges, excluded in our

threat model for targeted attacks (see Section 2.4).

Overview. Our primary goal here is to extract private keys from disk on a user’s machine,

using only unprivileged code. Extracting private keys from memory requires admin privi-

leges, and we consider such an approach for two cases: to extract private keys associated

to pre-generated certificates, and to understand the application process dealing with an in-

memory private key to identify how the key is stored/protected on disk. We discuss the

protection mechanisms used by our tested CCAs; we circumvented the two main on-disk

protection mechanisms without requiring admin privileges on the target system. We then

discuss some contextual security aspects.

32

4.4.1 Locating Private Keys in Files and Windows Registry

Most CCAs (optionally generate and) import their root certificates into OS/browser trusted

stores during installation. Using Process Monitor (“procmon” from Microsoft/SysInter-

nals), we monitor all the application processes of a CCA during installation. After instal-

lation, we manually check for any newly added trusted CA using the Windows Certificate

Manager. If a new entry in the Windows store is inserted, searching for the SHA1 fin-

gerprint of that certificate in procmon’s log identifies the exact event where the entry was

created. We can thus identify the specific application process that inserted the new cer-

tificate, and possibly identify other affected files and registry locations, and which may

potentially contain the associated private key. Specifically, we perform manual analysis

(e.g., searching for keywords such as “certificate”) on file and registry operations (poten-

tially hundreds), executed right before and after the root certificate insertion. When a CCA

leverages the Windows CAPI/CNG, we find obvious traces in the log; we can then easily

identify the correct key in a protected container with a label that is often similar to the

CCA’s name.

We also explore a CCA’s installation directory for files that appear to be certificates or

keys (with extensions such as .cer, .crt, .cert, .pem, .key; or filenames containing cert or

CA). If a private key is found, we match it to the root certificate for confirmation. We also

check whether the key file is accessible by unprivileged code, allowing targeted MITM

attacks.

If no root certificate is imported during installation, we explore the application’s settings

for the availability of TLS filtering, and enable filtering when found. We then reboot the

system (sometimes required to activate filtering), and visit an HTTPS website in a browser

to trigger TLS interception, forcing the proxy to access its private key. At this point, if

no root certificate is installed and no sample HTTPS connections are filtered, we discard

the application from the rest of our analysis. In the end, we fully analyze 14 products that

33

support filtering and/or import a root certificate in the OS trusted store.

4.4.2 Application-protected Private Keys

Instead of using the OS-protected key storage, some CCAs store their private keys pro-

tected by the application itself, using encryption and sometimes additional obfuscation.

After locating the on-disk protected private keys (Section 4.4.1), we try to defeat such cus-

tom protections to extract the keys. Here, we detail our methodology to bypass two main

protection mechanisms we encountered, requiring some reverse-engineering effort (non-

trivial, but one-time only for each mechanism).

4.4.2.1 Identify the Process Responsible for TLS Filtering

First, we find the application process responsible for handling a private key, and then

investigate the corresponding binary files (DLLs) involved in this process to extract the

passphrase/key used in encrypting the private key. As the private key must be in memory

when a proxy is performing TLS filtering, we can identify the specific process respon-

sible for filtering as follows: (a) Identify all the running processes of a target CCA, by

finding services with related names or identifying new running processes following the

CCA installation; (b) Dump the process memory of each of these processes; (c) Search

the memory dumps for a private key that matches the root certificate’s public key; and (d)

Identify the process that handles the TLS filtering, i.e., the one that holds the private key

in its memory space. As all CCAs in our study use RSA key pairs, and those that do not

rely on OS-provided key storage use the OpenSSL library for handling keys, we use the

heartleech tool [126] to search for a private key in the memory dumps, by specifying the

corresponding root certificate.

34

4.4.2.2 Retrieving Passphrases

We discuss three techniques used to extract a passphrase or the derived encryption key,

to recover a target private key from an on-disk encrypted/obfuscated container. When a

specific method is successful against a given CCA, it yields a static “secret” that allows for

decryption of the private key using unprivileged operations, satisfying our threat model for

targeted MITM attacks (see Section 4.1.2).

Method 1: Extracting strings. We extract strings of printable characters from the binaries

of the TLS filtering process, and use them as candidate passphrases. This method was used

to recover the SuperFish private key (cf. Graham [125]).

Method 2: Disassembling/Decompiling. We disassemble the process binaries using IDA

Pro, and search for selected OpenSSL functions related to private keys; we label such

functions as passphrase consumer functions.3 Then, we follow the source of the argument

representing a passphrase, and locate potentially hardcoded passphrases. This method is

quite effective as all tested CCAs use the OpenSSL library for private key operations, and

IDA FLIRT can reliably identify such OpenSSL functions from process binaries.

Method 3: Execution tracing. Some CCAs may obfuscate a hardcoded encryption

passphrase/key by performing additional computation on it, prior to calling a consumer

function. These computations may not be accurately disassembled by IDA Pro, due to

e.g., the use of ad-hoc calling conventions. In such cases, we rely on execution tracing.

However, instead of debugging a live proxy process, we trace only selected parts from a

proxy, by executing those parts independently.4 We first load a candidate binary containing

consumer functions into a debugger (Immunity Debugger5 in our case), and set breakpoints

3Examples: SSL_CTX_use_PrivateKey, SSL_CTX_use_PrivateKey_file, PEM_write_RSAPrivateKey,
X509_check_private_key, PKCS8_decrypt.

4Debugging a live proxy is complicated by several factors: a proxy often operates as a Windows service,
requiring kernel-level debugging; services are often started early in the boot process and may access the
private key before we can debug the execution; services may not be restarted afterwards without rebooting;
and services may use anti-debugging techniques.

5http://immunityinc.com/products/debugger/index.html

35

http://immunityinc.com/products/debugger/index.html

on these functions. Then, we change the binary’s entry point to a function that is two/three

function calls away from a consumer function, as we do not know the precise location of

instructions processing the passphrase/key. Using this method, we identified all remaining

runtime-generated passphrases that could not be extracted through Methods 1 and 2. Note

that if the encryption key is dynamically generated from runtime parameters (as opposed

to hardcoded), further reverse-engineering is needed to extract the logic to generate the

correct key on a target machine. In practice, we only encountered static encryption keys.

4.4.2.3 Encrypted Containers

Some CCAs protect on-disk private keys using encrypted database containers such as SQL-

Cipher, an extension of SQLite with AES-256 encryption support. While techniques from

Section 4.4.2.2 are mostly effective against SQLCipher, we develop a generic method that

can possibly be used with any encrypted SQLite variant. This method helped us unlock an

encrypted container that uses a modified version of SQLCipher. We locate SQL queries in

the target binary that are executed immediately after the database is opened. By modifying

such a query to PRAGMA rekey=‘’, we instruct the SQL engine to reencrypt the database

with an empty key, essentially decrypting the database containing the intended private key.

When we need to make a CCA operate with our decrypted/modified database, we also

patch the CCA’s binary not to require a passphrase when opening the database. This is

particularly useful for CCAs relying on their own trusted stores saved within a SQLCipher

database, which we must modify to insert our test root certificate (see Section 4.6.3).

4.4.3 Security Considerations

When the private key corresponding to a proxy’s root certificate is retrieved, new security

considerations emerge, as discussed below; a proxy must be tested accordingly.

36

Time of Generation. Some CCAs come with a preloaded root certificate that they im-

port during installation or when TLS filtering is activated. We label such certificates as

pre-generated, which may enable generic MITM attacks. In contrast, others may generate

a fresh root certificate unique to the local machine; we label such certificates as install-

time generated. If the private key of an install-time generated certificate is accessible from

unprivileged code, a targeted MITM attack becomes possible. We verify whether a certifi-

cate is generated at install-time or pre-generated by simply installing the product on two

different machines with distinct environments (e.g., different hardware, x86 vs. x86-64),

and compare the installed certificates. We also search for pre-generated certificate files and

private keys in the installer.

Entropy During Generation. It is possible that the entropy used during the generation of a

new public/private key pair in install-time generated certificates is inadequate. In practice,

since most products we analyzed generate a root certificate with RSA keys using OpenSSL,

the generation process is expected to call certain known functions, e.g., RAND_seed(),

RAND_event(), RSA_generate_key_ex(); we found calls to the last function in

many cases. However, we did not investigate further the key generation algorithm in CCAs.

Self-acceptance. For TLS interception, there is no need for a TLS proxy to accept proxy-

signed remote certificates, as the proxy’s root certificate is intended only to be used in the

local machine. A proxy must not accept such remote certificates; otherwise, it becomes

vulnerable to generic (for pre-generated root certificates), or targeted (for install-time gen-

erated root certificates) MITM attacks that use a forged certificate, signed by the proxy’s

private key.

Filtering Conditions. CCAs may only filter TLS traffic under specific conditions. For

example, filtering may be activated by default after installation, or offered as an optional

feature disabled by default. Filtering may be applied only for selected categories of web-

sites (especially for parental control tools), or for all websites. Filtering could also be

37

port-dependent, or applied to any TCP port. Finally, only specific browsers/applications

may be filtered. Self-acceptance is only relevant when the proxy is actively filtering. It

may happen that the proxy is not enabled by default; however, its root certificate is already

imported in trusted stores.

Expired Product Licenses. CCAs may stop filtering traffic when their license or trial

period is expired. If a proxy’s root certificate is still present in trusted stores, it leaves

browsers vulnerable to potential generic or targeted MITM attacks. This is especially rel-

evant if the TLS proxy does not accept its own root certificate as a valid issuer for site

certificates before license expiration; i.e., users are not vulnerable to MITM attacks involv-

ing a proxy-signed certificate before license expiration but become vulnerable afterwards.

Alternatively, a CCA may decide to continue filtering traffic even in an expired state. In

this case, we test whether the proxy’s certificate validation process is still functional (e.g.,

rejects invalid certificates).

Uninstallation. When a CCA is uninstalled, its root certificate should be removed from

OS/browser trusted stores. Otherwise, it may continue to expose browsers to MITM at-

tacks, e.g., if the certificate is pre-generated, or the private key of an install-time generated

certificate has previously been compromised.

4.5 Limitations of Existing TLS Test Suites

Existing test suites possess certain limitations that prevent them from being used directly

to test client-end TLS proxies. Note that such test suites have not been designed for the

TLS proxies we target. We summarize these limitations below, and address them in our

framework.

38

4.5.1 Certificate Verification

After the Komodia incident [28], to check whether users are affected by Komodia-based

interception tools, several web-based test sites appeared (e.g., [237, 71]). These tests are

based on loading a CSS or JavaScript file hosted on a server with an invalid certificate

(e.g., signed by the pre-generated root certificate of a broken TLS interception tool). If

the CSS/JavaScript resource is successfully fetched, the client is then notified about the

vulnerability. To test client-end TLS proxies, the following limitations must be addressed.

Unimplemented SNI Extension. Certificate validation tests are often served on subdo-

mains that are hosted from the same IP address since it is usually costly to use a unique

IPv4 address per test. To distinguish multiple domain names, the server implicitly relies

on the SNI TLS extension to receive the hostname requested by the client at connection

time. SNI has been widely adopted in modern browsers and TLS clients [1]. However,

we encountered a few proxies that use ad-hoc ways to relay a TLS connection to the real

server, without using the SNI extension. Test servers are thus unable to properly identify

the requested host and are forced to deliver a default certificate, and eventually a 4xx error.

For example, while badcert-superfish.tlsfun.de delivers a certificate signed by SuperFish’s

pre-generated certificate when the SNI extension is used, lacking SNI results in a 400 Bad

Request webpage owned by the hosting company, served under their own domain name’s

certificate. Thus, the test would report that a carefully-crafted invalid certificate was not

accepted (i.e., the proxy is not vulnerable), while the real reason is due to the wrong domain

name. As a result, the invalid certificate is never tested against the proxy.

Caching-incompatible. A TLS proxy may cache certificates as seen from an initial con-

nection to a server and reuse them upon further visits to the same website. Some suites are

apparently incompatible with caching proxies, especially when numerous certificates must

be tested (e.g., Frankencert [78] uses 8,127,600 test certificates presented on localhost).

39

https://badcert-superfish.tlsfun.de

Undetected Passthrough. Certain proxies only filter selected connections, e.g., only spe-

cific categories of websites or supported TLS versions; other connections are simply for-

warded to a browser, letting the browser deal with untrusted certificates or unsupported

configurations. To test whether a proxy trusts its own root certificate, we must verify that

content delivered by a web server with a proxy-signed certificate is successfully inspected.

If the proxy chooses to passthrough this connection, the browser will simply accept the

proxy-signed certificate (as if the proxy has generated the certificate as part of an active

filtering process). We must make sure that the proxy was trying to filter the connection,

and that it detected its own root certificate as the issuer, or simply did not find the issuer in

its trusted store, and decided to let the browser deal with an untrusted issuer error. When

successfully inspecting the connection, the proxy re-generates a similar certificate on-the-

fly with a different key. Hence, the certificate received by the browser must be verified,

e.g., by its fingerprint.

Fragile Implementations. Proxies may behave inconsistently in specific test cases, lead-

ing to nondeterministic test results. For example, if several simultaneous connections are

attempted to web servers with invalid certificates, a proxy may crash, or deny all future

connections. Even a simple invalid certificate could lead to timeouts and incorrect test

outcomes. Special care must be taken to test such buggy proxies.

Client-dependent Filtering. Proxies may filter or accept only specific clients; e.g., while

common browsers are filtered, we found that the OpenSSL toolkit launched from the com-

mand line was not filtered by half of the proxies. Sometimes, only selected browsers are

filtered. This restriction is implemented simply by checking process names, or through

a more involved mechanism (e.g., using non-obvious program characteristics). Thus, a

proxy-testing client application must make sure that its connections are processed by the

proxy.

40

4.5.2 TLS Security Parameters

Existing test suites, e.g., Qualys [199] and howsmyssl.com, perform an extensive test of

TLS parameters (and relevant features), including: protocol versions, cipher suites, TLS

compression, and secure renegotiation. Various sites also evaluate high-impact vulnerabil-

ities; e.g., freakattack.com for the FREAK attack and weakdh.org for Logjam. As TLS

parameters are generally tied to a server rather than a domain, online test suites resort

to serving these tests on several TCP ports (e.g., [199, 234]). However, this solution is

inadequate, as CCAs generally filter only specific ports (e.g., 80 and 443), sometimes non-

configurable. We also found an antivirus that only analyses encrypted emails on ports 465,

993 and 995. Thus, existing sites cannot properly test these TLS proxies.

4.6 Our TLS Proxy Testing Framework

We design a hybrid solution combining our own certificate validation tests with tests that

can be reliably performed through existing test suites. We discuss our methodology for

testing certificate validation engines of the proxies, TLS parameters as apparent to browsers

and remote servers, and known TLS attacks against each proxy.

4.6.1 Test Environment

We set up a target TLS proxy in a virtual machine running Windows 7 SP1, and a test web

server in the host OS. To address the lack of SNI support in proxies, we assign multiple IP

addresses to a single network interface to map various test domain names to different IP

addresses. We also instrument a DNS server on the host to serve predefined IP addresses in

response to a query for our test domain names. For example, we map wrong-cn.local.test

to 192.168.80.10, assign this IP to the network interface, and configure the web server

to serve the corresponding certificate with a wrong CN field for requests made to that

41

https://howsmyssl.com
https://freakattack.com
https://weakdh.org

IP address. While private IPv4 address spaces can assign up to 16,387,064 individual

addresses (far enough to map all our tests), a few CCAs do not filter traffic from these

address spaces. Thus, we also configure our test environment to use Internet-addressable

IPs from a randomly picked range.

If all ports are filtered by the target TLS proxy (or ports are configurable), we simply

leverage existing online testing suites to analyze the proxy for security-sensitive TLS pa-

rameters. Otherwise, we use a TCP proxy on the host to forward traffic addressed to these

test suites from a proxy filtered port to the real server port. In this setup, we must preserve

the correct domain names to avoid HTTP 300 redirections. While testing the TLS proxy on

multiple server ports, we effectively need to serve several tests through the same test IP and

port of our TCP proxy. To avoid caching issues, we restart the VM (with the TLS proxy)

after each test. Our testing environment is made to conduct all tests within a single phys-

ical machine, requiring the CCA to be installed within a VM. Alternatively, two physical

machines could also be used.

4.6.2 Certificate Validation Testing

We generate test certificates signed by the private key corresponding to our root certificate;

we also make the proxies trust our root certificate (see Section 4.6.3). We visit test web

pages using a browser filtered by the proxy under test (preferably Chrome, since it relies on

the OS trusted store and provides details about the main connection). We use a couple of

valid, control certificates to verify that a TLS proxy accepts our root certificate, or does not

perform any filtering in a given setting (e.g., an unfiltered IP range, domain name or TLS

version). When filtering is active, we test each TLS proxy with 9 certificates with a broken

chain of trust, including:

1. Self-signed: A simple self-signed certificate. If accepted, trivial generic MITM attacks

are possible.

42

2. Signature mismatch: The signature of a valid certificate is altered. If accepted, the proxy

lacks signature verification, and may allow simple certificate forgery.

3. Fake GeoTrust CA: A certificate signed by an untrusted root certificate that has the same

subject name as the GeoTrust root CA (any OS/browser trusted CA can be used). We

also include this fake CA certificate in the certificate chain. The leaf certificate does

not specify an Authority Key Identifier (AKI), limiting the identification of the issuer

certificate to only its subject name. The goal is to check if the proxy refers to the correct

root certificate.

4. Wrong CN: Incorrect Common Name (CN) not matching the domain where it is served

from. If accepted, a valid certificate for any website could be used to impersonate any

server.

5. Unknown CA: A certificate signed by an untrusted root certificate (e.g., generated by

us).

6. Non-CA intermediate: A valid leaf certificate is used as an intermediate CA to sign a

new certificate. If accepted, a valid certificate for any website could be used to issue

valid certificates for any other websites (cf. early versions of IE [64] and iPhone [149]).

7. X.509v1 intermediate: An X.509 version 1 certificate acting as an intermediate CA

certificate. X.509v1 does not support setting a basicConstraints parameter to limit a

certificate to be a leaf. If accepted, any valid v1 certificate could be used to issue any

other certificates.

8. Revoked: We rely on https://revoked.grc.com to test the revocation support.

This website delivers a revoked certificate with the necessary extensions to refer to the

signing CA’s CRL list and OCSP server (both would report the certificate as revoked).

Revocation is particularly useful in cases where legitimate certificates are issued after a

security breach at a CA, e.g., Comodo [7].

43

https://revoked.grc.com

9. Expired: A certificate with a past “valid-before” date.

We also examine whether the proxies accept certificates with deprecated algorithms

(e.g., RSA-512 and MD5), or algorithms that are being gradually phased out (e.g., RSA-

1024, SHA1).6 Regarding proxy transparency of a certificate’s extensions and parameters,

we examine how the proxy deals with Extended-Validation (EV) certificates, and whether

the key length and hashing algorithm in a proxy-signed certificate are identical to the orig-

inal server certificate.

Our small corpus of 15 certificates is intended to identify the most obvious validation

errors. More comprehensive analysis (cf. [78]) can be performed by identifying the TLS

library and version used by a CCA, and running more tailored tests against the library.

In practice, we observed that most CCAs rely on OpenSSL or Microsoft Secure Channel

(Schannel); however, more reverse-engineering is needed to accurately report which library

is effectively used as the TLS stack by a given CCA. Additional certificates can also be

generated to test whether the proxies interfere with recent enhancements to TLS (e.g., key

pinning, HSTS). Note that in Chrome 56.0 (the latest version, as of January 2017), key

pinning is overridden when a local TLS proxy filters connections.7

4.6.3 Proxy-embedded Trusted Stores

To validate server certificates, proxies may rely on the OS trusted store, or on a custom

embedded store. Below we discuss testing considerations related to such custom stores.

Trusting Our Own Root Certificate. A valid issuer is required for signing several of

our test certificates (e.g., expired, wrong CN, weak keys, or testing TLS support); we sign

6Firefox 68.0 and Chrome 76.0 still accept RSA-1024 keys in leaf certificates (at least from locally
trusted authorities, as of July 2019); however, the trust in CAs using 1024-bit keys is being progressively
revoked [181]. The use of MD5 for certificate signature has also been banned by modern browsers during
2011 (e.g., [178]) due to obvious forgery attacks [222]. SHA1 is also gradually being phased out (e.g., [11]).

7https://www.chromium.org/Home/chromium-security/security-faq

44

https://www.chromium.org/Home/chromium-security/security-faq

such certificates with a well-formed X.509v3 root certificate we generated (with RSA-

2048). We make the proxies trust our root certificate, when possible. Note that a valid

wildcard certificate (issued by a real CA) is insufficient for our purpose. Rather, we require

a certificate that can be used to issue additional certificates (i.e., similar to an intermediate

CA certificate); at the end, we did not obtain such certificates from a real CA as we do not

meet the eligibility requirements (e.g., being a middle/large organization with a substantial

net worth).

Usually, it is sufficient to import our root certificate into the OS/browser trusted stores.

However, several CCAs rely on their own embedded stores (sometimes obfuscated), ef-

fectively introducing a new independent trusted CA store without any documented policy

(cf. Mozilla [179]). We tried to insert our certificate in the proxy-trusted stores (see Sec-

tion 4.4.2.3).

If we cannot make a proxy trust our root certificate, we generate relevant test certificates

using the proxy’s root certificate (with its retrieved private key). However, not all proxies

trust their own root certificates to sign arbitrary certificates (as expected). In such cases,

we search for external web servers with similar certificates, and visit them to test the proxy.

Since we do not control external test websites, there is a possibility that our local tests yield

different results than the online ones. We still provide both methods as the local tests can

be made more comprehensive while online tests can serve as a backup solution to test at

least certain available cases.

For example, an expired certificate can be tested at expired.badssl.com, if the proxy

supports SNI. A wrong CN can be tested thanks to misconfigured DNS entries (e.g.,

tv.eurosport.com pointing to Akamai’s CDN servers, delivering a certificate for the CDN’s

domain name). For weak RSA keys and deprecated signature algorithms, we were unable

to find online tests. This is an expected limitation, as valid CAs currently do not issue such

certificates. Hence, these tests cannot be performed when the proxy does not trust its own

45

https://expired.badssl.com

root certificate or the root certificate we generate; we had one such proxy among our tested

products.

Store Analysis. We try to determine the provenance of proxy-embedded stores (if read-

able), and check for issues such as globally distrusted CAs (e.g., DigiNotar), expired CAs,

and CAs with weak keys (below RSA 1024 bits). When we find expired CAs, we verify

that the proxy correctly checks the period of validity of its trusted store by (a) importing

our own expired root certificate into the store, (b) attempting to connect to a test page serv-

ing a valid certificate signed by that expired CA. If the page loads, the proxy introduces

vulnerabilities through its custom store.

4.6.4 TLS Versions and Known Attacks

We test support for SSL 3.0, TLS 1.0, 1.1 and 1.2. We rely on Qualys to perform the version

check, when a proxy’s filtering is not port-specific. Otherwise, if we can generate a valid

certificate for the proxy, using our own or the proxy’s root certificate, we run an instance of

the OpenSSL tool as a TLS server, configured to accept only specific versions of SSL/TLS

on desired ports. Finally, if we cannot provide a valid certificate, we simply proxy traffic

from a proxy-filtered port to the Qualys server’s real port. Following this methodology, we

can detect vulnerabilities to POODLE, CRIME and insecure renegotiation. We also check

how TLS versions are mapped between a browser and the proxy, and the proxy and the

remote server (cf. Fig. 2). Any discrepancy in mapping would mislead the browser into

believing that the visited website offered better/worse security than it actually does. This

problem is particularly important when SSL 3.0 connections are masqueraded as higher

versions of TLS.

Browsers support an out-of-specification downgrade mechanism for compatibility with

old/incompatible server implementations [177, 90]. When a browser attempts a connection

and advertises a TLS version unsupported by the server (e.g., TLS 1.2 in the ClientHello

46

message), a broken server implementation may simply close the connection. The browser

may then iterate the process by presenting a lower TLS version (e.g., TLS 1.1). This mech-

anism can be abused by an active MITM attacker to downgrade the protocol version used in

a TLS communication, while both parties actually support a higher version. Abusing this

mechanism is at the core of the POODLE attack. We verified whether proxies also imple-

ment this behavior by simulating such a broken server implementation (by simply closing

the connection after receiving ClientHello, and inspecting further ClientHello messages).

We then analyze the list of ciphers presented by the proxy to the remote server using

Qualys and howsmyssl.com. Weak, export-grade and anonymous Diffie-Hellman (DH)

ciphers can be detected by these tests. When supporting TLS 1.0 (or lower) and CBC-

mode ciphers without implementing mitigations (cf. record splitting [227]), proxies are

vulnerable to the BEAST attack [107]. howsmyssl.com allows to test this scenario only

when a proxy does not support TLS 1.1 or 1.2. We patched howsmyssl [130] and deployed

it locally to test for the remaining cases. If the TLS version is not made transparent by

the proxy, the cipher suites cannot be transparent either. Finally, we verify the proxy’s

vulnerability to FREAK and Logjam attacks using freakattack.com and weakdh.org.

4.7 Results Analysis

In this section, we provide the results of our analysis of the CCAs we considered, using

our framework. We uncover several flaws that can significantly undermine a host’s TLS

security; we discuss practical attacks in Section 4.8.

4.7.1 Root Certificates

We discuss the results of 14 products (out of the 55 initially analyzed) that install a root

certificate in the OS/browser trusted CA stores; see Table 4 for a summary.

47

https://howsmyssl.com
https://howsmyssl.com
https://freakattack.com
https://weakdh.org

Certificate gen-
eration time

Filtering en-
rollment

Reject own root
certificate

Insertion in
Firefox trusted

store

Removal during
uninstallation Filtered clients

Avast Installation Mandatory X X Internet Explorer,
Chrome, Firefox

AVG Installation Mandatory X1 X Internet Explorer,
Chrome

BitDefender Installation Mandatory X X Internet Explorer,
Chrome, Firefox

BullGuard AV Installation Unsupported —2 X —
BullGuard IS Installation Opt-in X X All
CYBERsitter Pre-generated3,4 Opt-in X All
Dr. Web Installation Mandatory All
ESET Installation4 Opt-in X All
G DATA Installation Mandatory X All

Kaspersky Installation Mandatory X Internet Explorer,
Chrome, Firefox

KinderGate Installation Mandatory All

Net Nanny Installation Mandatory X X Internet Explorer,
Chrome, Firefox

PC Pandora Pre-generated Opt-in X Internet Explorer
ZoneAlarm Installation Unsupported — —

1 The product does not filter connections with a proxy-signed certificate, leaving clients to accept the cer-
tificate

2 “—” means not applicable
3 A pre-generated public key is wrapped in a new certificate during its creation
4 A root certificate is installed when the relevant option is activated (and removed when deactivated for
ESET)

Table 4: Security aspects related to root certificates insertion/removal, and filtering

4.7.1.1 Certificate Generation

CYBERsitter and PC Pandora use pre-generated certificates; the remaining 12 CCAs use

install-time generated certificates, two of which do not perform any TLS-filtering (Bull-

Guard AntiVirus (AV) and ZoneAlarm). For ZoneAlarm, we could not find any option to

enable TLS interception in its settings. Since its antivirus engine is based on the Kasper-

sky SDK, we could find a file tree structure similar to Kaspersky Antivirus. In particular,

the files storing the root certificate along with its plaintext private key reside in similar

locations in both cases. For ZoneAlarm, the certificate file is named after what seems to

be an undefined variable name, “(fake)%PersonalRootCertificateName%.cer”. Apparently,

ZoneAlarm developers were unaware that the SDK generates and installs this root certifi-

cate (or chose to ignore it), readable from unprivileged processes.

Additionally, when activating ZoneAlarm’s parental control feature, a rebranded ver-

sion of Net Nanny is installed. We also separately analyze the original version of Net

48

Nanny (an independent parental control application). In turn, this bundled Net Nanny in-

stalls a second (pre-generated) root certificate; however, we were unable to trigger TLS

filtering.

4.7.1.2 Third-party Trusted Stores

Among third-party trusted stores, we only verify and report our results for Mozilla Firefox;

other applications such as Opera (and Mozilla Thunderbird when CCAs also target emails)

may have also been affected. Eight of the 14 CCAs import their root certificates in the

Firefox trusted store.

4.7.1.3 Self-acceptance

From the 12 products that support filtering, BullGuard Internet Security (IS) and AVG

do not accept certificates signed by its own root certificate. However, AVG lets browsers

continue the communication without any filtering. The browser is then left to accept site

certificates signed by the proxy’s root certificate as if they were issued by the local proxy.

Others happily trust any site certificate issued by their root certificates.

We searched all the certificates from a ZMap [113] scan on July 21, 20158 to find cer-

tificates issued by any of the 14 root certificates from our CCAs. Finding such certificates

would indicate exploitation of proxies supporting self-acceptance. We found only one such

certificate at a Russian hosting site (signed by the “Kaspersky Antivirus Personal Root

Certificate”).

4.7.1.4 Filtering Conditions

Eight CCAs activate TLS filtering upon installation, four provide an option, and the two

others perform no filtering. Six CCAs only filter traffic from/to specific browsers. PC

8https://scans.io/series/443-https-tls-full_ipv4

49

https://scans.io/series/443-https-tls-full_ipv4

Pandora disallows browsers other than IE by aborting connections. KinderGate only filters

specific categories of websites by default (related to, e.g., advertisement, dating, forums,

nudity, social networking). Finally, the March 2015 version of Kaspersky lacks certificate

validation for at least a minute after Windows is started up.

4.7.1.5 Expired Product Licenses

The version of Kaspersky we analyzed in March 2015 continues to act as a TLS proxy

when a 30-day trial period is expired; however, after the license expiration, it accepts all

certificates, including the invalid ones. The August 2015 version corrected both issues;

however, customers who installed the vulnerable product version and did not uninstall it,

remain vulnerable to a generic MITM attack as they do not benefit from automatic updates

that could solve the issues (since their license has expired). Other CCAs either disable their

proxy after expiration, or continue filtering with similar validation capabilities as before.

4.7.1.6 Uninstallation

Eight CCAs do not remove their root certificates from the OS/browser trusted stores after

uninstallation, leaving the system exposed to potential attacks.

4.7.2 Private Key Protections

We provide below the results of our analysis on retrieving protected private keys; see Ta-

ble 5 for a summary. We also explain how we retrieved four passphrase-protected private

keys and a key stored in a custom encrypted SQLCipher database; our mechanisms illus-

trate why such protections are unreliable (although require non-trivial effort to defeat).

Summary. CCAs store private keys as follows: plaintext (CYBERsitter, Kaspersky, Kinder-

Gate and ZoneAlarm); CAPI/CNG encrypted (Avast, Dr. Web, ESET and PC Pandora); and

application encrypted (six applications). Out of the six application-encrypted private keys,

50

we are able to decrypt five with our methodology from Section 4.4.2.2. AVG appears to

store its private key in a custom configuration file with an obfuscated structure. The types

of protection we encountered are static, i.e., the secret used to protect a private key is fixed

across all installations, requiring only a one-time effort. The results here are reported for the

latest versions of the CCAs (August 2015); some results are for March 2015 versions (ex-

plicitly stated). We provide more details about how we retrieved passphrases, OS-protected

and custom-encrypted private keys in Appendix B.

4.7.2.1 Passphrase-protected Private Keys

BitDefender stores its private key protected by a simple hardcoded passphrase typically

found in cracking dictionaries; we retrieved the passphrase using Method 1. G DATA also

protects its private key stored in registry using a custom format and a random-looking hard-

coded passphrase (Method 1). Using Method 2, we found that BullGuard AV/IS generate

the final passphrase at runtime based on a hardcoded string, as a form of simple obfusca-

tion. In all cases, the passphrases are fixed across installations, and the protected private

keys are readable by unprivileged processes, enabling targeted MITM attacks as defined in

Section 4.1.2. We do not report the plaintext passphrases to avoid obvious misuse.

Location Protection Access
Avast CAPI Exportable key Admin
AVG Config file Obfuscation Unknown
BitDefender DER file Hardcoded passphrase User
BullGuard AV DER reg key Hardcoded passphrase User
BullGuard IS DER reg key Hardcoded passphrase User
CYBERsitter CER file Plaintext User
Dr. Web CAPI-cert1 Exportable key Admin
ESET CAPI Non-exportable key Admin
G DATA Registry Obfuscated encryption User
Kaspersky DER file Plaintext User
KinderGate CER file Plaintext User
Net Nanny Database Modified SQLCipher User
PC Pandora CAPI-cert Non-exportable key Admin
ZoneAlarm DER file Plaintext User
1 CAPI-cert means that the private key is associated with the certificate

Table 5: Protections for a root certificate’s private key

51

4.7.2.2 Encrypted Containers

Net Nanny relies on a modified SQLCipher encrypted database to protect its settings (scat-

tered in multiple database files), including its private key. We provide details on Net Nanny

to highlight the challenges posed by custom obfuscation techniques, which can be defeated

with some effort (i.e., achieve less protection than OS-protected keys).

We noticed that one of Net Nanny’s DLLs (db.dll) exports a few functions with mean-

ingful names, apparently relating to SQLite. Following some differences in the functions

names with the official sqlite3 project, we realized that the DLL actually uses IcuSqlite3.9

A quick search revealed that the IcuSqlite3 developer apparently works for ContentWatch,

the company developing Net Nanny. From this connection, we assumed that IcuSqlite3

was used in Net Nanny, which benefited us by complementing the disassembly of db.dll by

IDA Pro.

We were able to extract Net Nanny’s passphrase using Method 3, which contained the

name of the developing company. We failed however to simply leverage SQLCipher to

open the encrypted databases.10 Using the method from Section 4.4.2.3, we could success-

fully decrypt the first two databases before the program crashed. We rotated the database

files until all were decrypted, and then found Net Nanny’s root certificate and private key in

a database. In the March 2015 version, we found that the proxy was using a pre-generated

certificate, which made it vulnerable to a generic MITM attack in its default configuration.

In the August 2015 version, the private key is install-time generated. A targeted MITM

attack is still possible (the databases are readable from unprivileged processes). Further-

more, the private key is passphrase-protected by a long random string, also stored in the

database. We also made Net Nanny trust our root certificate by inserting it in Net Nanny’s

9An sqlite3 derivative: https://github.com/NuSkooler/ICUSQLite3.
10Note that, such databases can be encrypted using various ciphers, and the encryption key could be derived

from the passphrase by an arbitrary number of iterations of SHA1 using PBKDF2; these parameters are
unavailable to us. We failed to decipher the databases using the extracted passphrase with several common
ciphers, and the number of iterations from 1 to half a million.

52

https://github.com/NuSkooler/ICUSQLite3

custom root CA list, stored in the encrypted databases.

Invalid certificate tests
Trusted
store

Self-
signed

Signature
mismatch

Fake
GeoTrust

Wrong
CN

Unknown CA /
Non-CA / v1 inter. Revoked Expired

Avast OS u-CA Block u-CA Pass u-CA / Block /
Block Accept Mapped

AVG Own u-CA N/A N/A Pass u-CA / N/A / N/A Unfiltered Mapped
BitDefender Own u-CA u-CA u-CA u-CA u-CA Accept u-CA
BullGuard IS Own S-S Accept Accept Pass S-S Accept Mapped
CYBERsitter None Accept Accept Accept Change Accept Accept Mapped
Dr. Web OS u-CA u-CA u-CA Pass u-CA Accept u-CA
ESET OS Ask Ask Ask Pass Ask Accept Ask
G DATA (old) None Accept Accept Accept Change Accept Accept Change
G DATA (new) None Ask Ask Ask Ask Ask Ask Ask
Kaspersky OS Ask Ask Ask Ask Ask Ask Ask
KinderGate None Accept Accept Accept Pass Accept Accept Change
Net Nanny Own Ask Ask Ask Ask Ask Ask Ask
PC Pandora None Accept Accept Accept Pass Accept Accept Change

Table 6: Results of the certificate validation process against 9 invalid certificates. For
legends, see Section 4.7.3.1; “N/A” means not tested.

4.7.3 Certificate Validation and Trusted Stores

Our certificate validation analysis reveals various flaws in nine out of 12 proxies.

4.7.3.1 Invalid Chain of Trust

We use nine test certificates with various errors in their chain of trust; see Table 6. We

highlight the dangerous behaviors in the table (“Accept” and “Changed”). If a proxy can

detect a certificate error, it may react as follows: send the browser a certificate issued by

an untrusted CA (“u-CA” in the table), typically named “untrusted” along with the proxy’s

name; send a self-signed certificate (“S-S”); ask confirmation from the user by deliver-

ing a warning webpage or an alert dialog (“Ask”); or, terminate the connection altogether

(“Block”). For expired certificates, the period of validity may be passed as-is to the client

(“Mapped”), or updated to reflect a working period (“Changed”); in the latter case, the

browser cannot detect if the original certificate has expired. For certificates issued for the

wrong domain name, the CN field may be passed as-is to the browser, or may be changed

to the domain name expected by the browser. Finally, proxies may entirely fail to detect

invalid certificates, exposing browsers to generic MITM attacks (“Accept”).

53

Only Kaspersky and Net Nanny successfully detected all our invalid certificates; how-

ever, when detected, the user is asked to handle the error. In contrast, most browsers now

make it significantly difficult to bypass such errors (e.g., complex overriding procedure), or

simply refuse to connect. AVG also detected the 6 invalid certificates we tested. We could

not perform the remaining tests on AVG, as it is immune to self-acceptance, and we could

not make it trust our own root certificate; online tests were also inapplicable.

In contrast, CYBERsitter, KinderGate and PC Pandora accepted nearly all invalid cer-

tificates we presented. The March 2015 version of G DATA also accepted all certificates,

while the August version requires user confirmation (via an alert window) for all certifi-

cates, including valid ones signed by legitimate CAs. BullGuard IS fails to validate the sig-

nature of a certificate, and accepts our signature mismatch and fake GeoTrust certificates.

Apparently, BullGuard IS verifies the chain of trust only by the subject name, allowing triv-

ial generic MITM attacks. Finally, we found that 9 proxies do not check for the revocation

status of a certificate.

Proxy transparency. Validation errors such as wrong CN, self-signed, expired certificate,

and unknown issuer, may cause modern browsers to notify users (and allow the connection

when confirmed via complex UI); most proxies modify these errors, causing browsers to

react differently. For example, BitDefender turns a wrong CN into a certificate signed by

an unknown issuer, and CYBERsitter changes the CN field to make the certificate valid.

Most other proxies relay the CN field as-is, or ask for user confirmation. Avast, AVG, Bit-

Defender and Dr. Web change self-signed certificates to certificates issued by an untrusted

CA. Conversely, BullGuard IS turns certificates signed by an unknown issuer into self-

signed. The behavior for unknown CA, non-CA intermediate and X.509v1 intermediate

is always identical for a given proxy, with the exception of Avast that blocks connections

for the last two cases. Finally, we observed that all proxies but Avast filter HTTPS com-

munications when the servers offer an EV certificate and present it as a DV certificate to

54

browsers.

4.7.3.2 Weak and Deprecated Encryption/signing Algorithms

We tested proxies against certificates using MD5 or SHA1 as the signature hashing algo-

rithm, combined with weak (RSA-512) or soon-to-be-deprecated keys (RSA-1024). Nine

out of 12 proxies accept MD5 and SHA1, implying that if an attacker can obtain a valid

certificate using MD5 signed by any proxy-trusted CA, she can forge new certificates for

any website (generic MITM). Seven proxies also accept RSA-512 keys in the leaf certifi-

cate. An attacker in possession of a valid certificate using a 512-bit RSA key for a website

could recover the private key “at most in weeks” [66] and impersonate the website to the

proxy. We could not test the behavior of AVG due to limitations explained in Section 4.6.3.

Browser-trusted CAs are known to have stopped issuing RSA-512 certificates (some

have even been sanctioned and distrusted for doing so, see e.g., [17]), and certificates using

MD5 were not issued past 2008 [10]. Recently, Malhotra et al. [167] showed that attacks

on the Network Time Protocol can trick a client system to revert its clock back in time by

several years. Such attacks may revive expired certificates with weak RSA keys (easily

broken), and weak hashing algorithms (i.e., re-enabling any certificate colliding with a

previously-valid certificate, e.g., the colliding CA certificate forged in [222]).

4.7.3.3 Proxy-embedded Trusted Store

AVG, BitDefender, BullGuard IS, and Net Nanny solely rely on their own trusted stores.

For Net Nanny, we managed to insert our root certificate in its encrypted database (see

Section 4.7.2.2). BullGuard IS prevents modifications to its list of trusted CAs. If modified,

it triggers an update to restore the original version. An option in its configuration allowed us

to stop this protection. BitDefender adopts a similar mechanism, with no option to disable

it; we bypassed this protection and changed the trusted store file by booting Windows

55

in safe-mode (without BitDefender being started). Finally, more reverse-engineering is

needed to make AVG accept our root certificate.

Except for AVG, we were able to retrieve all proxy-trusted CAs. BitDefender’s trusted

store contains 161 CA certificates, 41 with a 1024-bit key (most are now deprecated by

browsers). As a comparison, Mozilla Firefox trusted store contains 180 certificates, includ-

ing 13 RSA-1024 as of August 2015. Ten of BitDefender’s trusted CA certificates have

already expired as of August 2015; however, BitDefender does not accept certificates is-

sued by an expired trusted root certificate. Most importantly, BitDefender’s trusted store

includes the DigiNotar certificate, distrusted by major browsers since August 2011, due to

a security breach. It also includes the CNNIC certificate that was at the center of another

breach in March 2015, subsequently distrusted by Firefox and Chrome.11

BullGuard IS trusted store was apparently generated in May 2009, from Mozilla’s list of

trusted CAs; as expected, this then-six year-old store has been outdated long ago. Among

its 140 CAs, there is a CA with a 1000-bit key and 43 CAs with a 1024-bit key. Similar

to BitDefender, BullGuard IS also includes the distrusted DigiNotar root certificate. It also

fails at verifying the expiration dates of its root CAs during certificate validation, leaving

the 13 expired root certificates in its store still active.

Net Nanny’s trusted store contains 173 certificates; one CA with a 512-bit key (named

“Root Agency”), and 27 CAs with a 1024-bit key. The 512-bit root certificate comes from

Microsoft’s makecert certificate management tool. By default, when creating a new leaf

certificate, makecert chains it to a dummy root certificate called Root Agency. While this

root certificate is not trusted by the OS or any browser, it is included in the Intermedi-

ate Certification Authorities store of Windows. The root certificate is valid since 1996,

meaning it has probably been there since Windows 95 or 98. It was also generated with

then-current standards and simply carry a 512-bit RSA public key. The certificate is valid

11https://blog.mozilla.org/security/2015/03/23/revoking-trust-in-one-
cnnic-intermediate-certificate/

56

https://blog.mozilla.org/security/2015/03/23/revoking-trust-in-one-cnnic-intermediate-certificate/
https://blog.mozilla.org/security/2015/03/23/revoking-trust-in-one-cnnic-intermediate-certificate/

until 2040. Thus, Net Nanny is vulnerable to a generic MITM attacker, who can simply re-

trieve Root Agency’s private key from any version of makecert.exe in the PVK resource. In

addition, 16 CAs are expired, but Net Nanny effectively does not trust such root certificates

when validating a site certificate.

After we contacted ContentWatch (the company developing Net Nanny, see Sec-

tion 4.9), we retested Net Nanny two years after (in 2017), and were still able to conduct

a MITM attack by leveraging the Root Agency certificate and corresponding private key.

The author of this dissertation co-found a similar issue in a network appliance from Untan-

gle [243]. The webpage provided at https://madiba.encs.concordia.ca/~x_

decarn/rootagency.html can evaluate whether a proxy trusts this root certificate.

4.7.4 TLS Parameters

In this section, we provide the results of our analysis of TLS parameters; see Table 7.

4.7.4.1 SSL/TLS Versions

At the end of 2014, following the POODLE attack, major browsers dropped support for

SSL 3.0 by default [201, 182, 6]. However, as of August 2015, we found half of the 12

proxies still support SSL 3.0.

Only Avast and Kaspersky support TLS 1.0, 1.1, 1.2, and map them appropriately;

other proxies upgrade the SSL/TLS versions for the proxy-browser connection, and/or do

not support recent versions. AVG, BitDefender and CYBERsitter upgrade all versions to

TLS 1.2. G DATA also upgrades TLS 1.0, 1.1 and 1.2 to TLS 1.2. Net Nanny, which

supports only SSL 3.0 and TLS 1.0 to connect to a server, communicates with TLS 1.2

with the browser. Similarly, BullGuard IS supports only TLS 1.0 but maps it to TLS 1.2

for browsers. Finally, Dr. Web, ESET, KinderGate and PC Pandora support only TLS

1.0, along with SSL 3.0 for the former two. The fictitious upgrade of TLS versions as

57

https://madiba.encs.concordia.ca/~x_decarn/rootagency.html
https://madiba.encs.concordia.ca/~x_decarn/rootagency.html

Fi
lte

r e
d

po
rt

s

Pr
ot

oc
ol

m
ap

pi
ng

C
er

tifi
ca

te
m

ap
pi

ng
V u

ln
er

ab
ili

tie
s

T
L

S
1.

2
T

L
S

1.
1

T
L

S
1.

0
SS

L
3.

0
K

ey
si

ze
H

as
h

al
go

ri
th

m
E

V
ce

rt
.

C
ip

he
r

su
ite

pr
ob

le
m

s

In
se

cu
re

re
-

ne
go

tia
tio

n
B

E
A

ST
C

R
IM

E
FR

E
A

K
L

og
ja

m

A
va

st
Sp

ec
ifi

c
1.

2
1.

1
1.

0
—

M
ap

pe
d

M
ap

pe
d

U
nfi

lte
re

d
AV

G
Sp

ec
ifi

c
1.

2
1.

2
1.

2
1.

2
20

48
M

ap
pe

d
D

V
W

B
itD

ef
en

de
r

Sp
ec

ifi
c

1.
2

1.
2

1.
2

1.
2

20
48

SH
A

25
6

D
V

W
×

B
ul

lG
ua

rd
IS

Sp
ec

ifi
c

—
—

1.
2

—
10

24
SH

A
1

D
V

W
×

×
C

Y
B

E
R

si
tte

r
Sp

ec
ifi

c
1.

2
1.

2
1.

2
1.

2
10

24
SH

A
1

D
V

W
,E

×
×

D
r.

W
eb

A
ll

—
—

1.
0

1.
0

10
24

SH
A

1
D

V
W

×
*

×
*

E
SE

T
Sp

ec
ifi

c
—

—
1.

0
1.

0
20

48
SH

A
25

6
D

V
W

×
*

×
*

G
D

A
TA

Sp
ec

ifi
c

1.
2

1.
2

1.
2

—
10

24
SH

A
1

D
V

A
×

×
K

as
pe

rs
ky

A
ll

1.
2

1.
1

1.
0

—
20

48
SH

A
25

6
D

V
×

K
in

de
rG

at
e

Sp
ec

ifi
c

—
—

1.
0

—
10

24
SH

A
1

D
V

W
N

et
N

an
ny

A
ll

—
—

1.
2

1.
2

10
24

SH
A

1
D

V
W

×
×

×
PC

Pa
nd

or
a

A
ll

—
—

1.
0

—
M

ap
pe

d
SH

A
1

D
V

W
×

×

T a
bl

e
7:

R
es

ul
ts

fo
r

T
L

S
pa

ra
m

et
er

s,
pr

ox
y

tr
an

sp
ar

en
cy

an
d

kn
ow

n
at

ta
ck

s.
U

nd
er

“P
ro

to
co

lm
ap

pi
ng

”
w

e
lis

tt
he

T
L

S
ve

rs
io

ns
as

ob
se

rv
ed

by
br

ow
se

rs
w

he
n

a
T

L
S

pr
ox

y
co

nn
ec

ts
to

a
se

rv
er

us
in

g
T

L
S

1.
2,

1.
1,

1.
0,

SS
L

3.
0

(“
—

”
m

ea
ns

un
su

pp
or

te
d)

.
Fo

r
“C

ip
he

r
su

ite
pr

ob
le

m
s”

,w
e

us
e:

“W
”

fo
r

w
ea

k
(a

cc
or

di
ng

to
Q

ua
ly

s)
;

“E
”

fo
r

ex
po

rt
-g

ra
de

ci
ph

er
s;

“A
”

fo
r

an
on

ym
ou

s
D

iffi
e-

H
el

lm
an

.“
×

”
re

pr
es

en
ts

vu
ln

er
ab

ili
ty

to
th

e
lis

te
d

at
ta

ck
s;

“*
”

in
di

ca
te

s
th

at
th

e
vu

ln
er

ab
ili

ty
to

B
E

A
ST

or
FR

E
A

K
co

ul
d

be
du

e
to

th
e

un
pa

tc
he

d
Sc

ha
nn

el
lib

ra
ry

us
ed

in
ou

rt
es

tin
g.

58

done by a majority of these proxies mislead browsers to believe that the server provides

stronger/weaker security than it actually does.

We test whether protocol downgrade attacks as seen against certain browser implemen-

tations are possible, and we found that no proxies in our test implement such a version

downgrading. These proxies are thus not vulnerable to POODLE [177] via a downgrade

attack. However, when connecting to servers that only support SSL 3.0 or lower, and offer

CBC-mode ciphers, the practical padding oracle attack proposed in POODLE still applies

to proxies with SSL 3.0. Six proxies accepted connections to such servers (disallowed by

modern browsers) and presented the connections as TLS 1.0 or above to browsers.

We did not test whether the TLS proxies support SSL 2.0; note that, proxies that support

SSL 2.0 (if any), may pose additional risks against servers that also support this version.

For completeness, such testing may also be incorporated.

4.7.4.2 Certificate Security Parameters

All proxies, except Avast and PC Pandora, generate certificates with fixed RSA keys to

communicate with browsers. Six use RSA-1024 and the remaining four use RSA-2048.

While RSA-1024 still does not pose an immediate security risk, proxies may need to re-

move RSA-1024 to avoid warning/blocking by browsers (cf. [181]). Regarding the hashing

algorithm used for the certificate signature, 7 proxies replace the original certificate’s sign-

ing algorithm with SHA1, triggering security warnings in Chrome when the certificate ex-

piration date is past December 31, 2015. BitDefender, ESET and Kaspersky use SHA256,

effectively suppressing potential warnings for server certificates with SHA1 or MD5. Other

proxies map hash algorithms properly.

59

4.7.4.3 Cipher Suites

SSL 3.0 and TLS 1.0 support ciphers that are vulnerable to various attacks. For exam-

ple, CBC-mode ciphers are vulnerable to the Lucky-13 and BEAST attacks; and RC4 is

known to have statistical biases [55]. To mitigate BEAST from the server-side, the pre-

ferred ciphers for SSL 3.0/TLS 1.0 were based on RC4. However, as modern browsers

now mitigate this attack by using record splitting [227], servers continue to use CBC-mode

ciphers in TLS 1.0 to avoid RC4 [206] (considering recent practical attacks against RC4

used in a TLS setting [239]).

We test TLS proxies for their supported cipher suites by using a browser that does not

support any weak ciphers. When the Qualys test reports that weak ciphers are presented

to the server, this indicates that the proxy negotiated its own cipher suite with problematic

ciphers. Weak ciphers as ranked by the Qualys test include the ones relying on RC4, as

presented by most proxies. Other used weak cipher suites include: export-grade ciphers

with 40 bits of entropy (CYBERsitter); 56-bit DES (BullGuard IS and CYBERsitter); ci-

phers relying on anonymous Diffie-Hellman, which lacks authentication and may enable a

generic MITM attack (G DATA). PC Pandora only supports three ciphers, two of which are

based on RC4.

4.7.4.4 Known Attacks

All proxies, except Avast, BitDefender (March 2015 version) and Kaspersky, are vulnerable

to at least one of the following attacks: insecure renegotiation, BEAST, CRIME, FREAK,

or Logjam.

BullGuard IS, CYBERsitter, Dr. Web, ESET, G DATA and Net Nanny are vulnerable

to FREAK and/or Logjam against vulnerable servers. When the browser connects to a

vulnerable server, an active MITM attacker could force the use of export-grade DH or RSA

keys to access plaintext traffic. As of August 2015, 8.4% of servers from the Alexa Top 1

60

million domains are vulnerable to Logjam [50], and 8.5% to FREAK.12 While Logjam and

FREAK attacks are relatively recent (less than a year old at the time of our tests in August

2015), other attacks are known for several years. Kaspersky is vulnerable to CRIME, and

PC Pandora to insecure renegotiation. In the latter case, an active MITM attacker could

request server resources using the client’s authentication cookies.

Although BEAST requires bypassing the Same-Origin Policy (SOP) and the support for

Java applets, the main mitigation relies on Java’s TLS stack implementation [206]. These

mitigations are however canceled by five proxies that support TLS 1.0 at most (BullGuard

IS, Dr. Web, ESET, Net Nanny and PC Pandora), since they do not implement proper

mitigations with CBC (record splitting) or do not individually proxy each TLS record from

the browser/Java client.

BullGuard IS, Dr. Web, ESET, Kaspersky, Net Nanny and PC Pandora may allow

MITM attackers to decrypt partial traffic (typically authentication cookies, leading to ses-

sion hijacking) because of their vulnerability to BEAST, CRIME, or insecure renegotiation.

4.8 Practical Attacks

In this section, we summarize how an attacker may exploit the reported vulnerabilities,

and turn them into practical attacks against a target running Windows 7 SP1. For exam-

ple, even if a CCA relies on a pre-generated root certificate, it may not become instantly

vulnerable to a generic MITM attack. Other factors must also be considered, e.g., whether

the certificate is imported in the OS/browser stores during installation, or later when the

filtering option is enabled; whether the proxy is enabled after installation by default and in

this case, if it accepts its own root certificate. We discuss such nuances when considering

what attackers can realistically gain from the flaws we uncovered, and give a preliminary

ranking of CCAs according to the level of effort required for launching practical attacks.

12https://freakattack.com/

61

https://freakattack.com/

We contacted the 12 affected companies; only four of them provided a detailed feedback,

sometimes demonstrating a poor understanding of TLS security; see Section 4.9.

An attacker who can launch a generic MITM attack can impersonate any server with

very little or no effort to hosts that have any of the following four CCAs installed (33% of

all CCAs analyzed). (a) PC Pandora, as it imports a pre-generated root certificate in the

Windows store during installation, and does not filter TLS traffic by default (i.e., allow-

ing external site certificates signed by the PC Pandora private key to be directly validated

by clients relying on the OS store, e.g., IE). It also remains vulnerable when filtering is

enabled, as it accepts external certificates signed by its own root certificate. (b) Kinder-

Gate, for selected categories of websites, due to its lack of any certificate validation. (c) G

DATA (for emails only), as the March version does not perform certificate validation, and

both March/August versions support anonymous DH ciphers. (d) Net Nanny, as its March

version uses a pre-generated certificate, and both March/August versions trust a root cer-

tificate with a factorable RSA-512 key (only one factorization is required to impersonate

any server).

The following three CCAs (25%) become vulnerable to full server impersonation when

filtering is manually activated (disabled by default), or when the product’s trial period is

over. The attacker simply needs to wait for these attack opportunities, and requires no

additional effort. (a) Kaspersky’s March version, as it does not perform any validation

after the product license is expired. Also, no automatic update of the product is possible

(requires a valid license), thus leaving customers with the March version vulnerable until

they manually upgrade or uninstall the product. (b) BullGuard IS, if the parental control

feature is enabled, due to its lack of certificate signature validation. (c) CYBERsitter, when

its TLS filtering option is enabled as it does not perform any certificate validation.

By exploiting the CRIME vulnerability, with limited effort (see e.g., [208]), attackers

62

can retrieve authentication cookies under a generic MITM attack from hosts where Kasper-

sky is installed (both March/August versions). However, only the servers that still support

TLS compression can be exploited. According to the SSL Pulse project [236], 4.4% of the

TLS servers surveyed remain vulnerable, as of August 2015.

If attackers can launch the BEAST attack, they can retrieve authentication cookies from

hosts with Dr. Web (out-of-the-box), ESET (when filtering is enabled) and BitDefender

(both versions, for servers supporting at most TLS 1.0), representing another 25% of all

CCAs. As estimated [12], a PayPal cookie can be extracted using BEAST in about 10

minutes. According to SSL Pulse [236], 86.8% of TLS servers present CBC-mode ciphers

in SSL 3.0/TLS 1.0, as of August 2015 (mostly due to mitigations being implemented in

recent browsers, see e.g., [206]).

Attackers can exploit the FREAK attack against BitDefender’s March version against

servers that support TLS 1.1 or above (other FREAK-vulnerable CCAs can be exploited

with simpler attacks). It will allow server impersonation for all websites served from a

vulnerable web server. Note that 8.5% of Alexa’s top 1 million domain names are reported

to be vulnerable to FREAK, as of August 2015 [66].

If the attacker can execute unprivileged code on a target machine to retrieve private keys

(not protected by the OS), she can further impersonate any server to 58% of the CCAs (in-

cluding BullGuard AV, BitDefender (August version) and ZoneAlarm). BullGuard IS and

Kaspersky (March versions) could already be targeted by an opportunistic attack mentioned

above, or the CRIME attack; however, a targeted attack requires no waiting and does not

depend on server compatibility. BitDefender (March version), Kaspersky (August version)

and Dr. Web can already be exploited for selected vulnerable websites, now it extends the

attacker’s ability to target any website. Finally, KinderGate also facilitates this attack, even

after uninstallation (recall that KinderGate is already vulnerable to server impersonation

under a generic MITM attack).

63

A more powerful attacker could further exploit RC4 weaknesses against systems with

AVG installed (for selected websites only). More than 55% of servers surveyed by SSL

Pulse in August 2015 present a cipher suite that includes RC4. The attack however is

costly; it is reported by Vanhoef et al. [239] to require 75 hours to recover a single cookie.

For Avast, the only way to impersonate a server is to trick/compromise a CA to is-

sue valid certificates for targeted websites. Even if the breach is later discovered and the

certificates are revoked, Avast would continue to accept them.

4.9 Company Notifications and Responses

We contacted all affected companies except Avast (as its lack of revocation checking is not

serious enough). The companies behind the products that we tested are listed in Tables 2-

3. We first searched for security-related email addresses, or directly contacted the support

address. A typical email we sent to those companies is provided in Appendix C. Among

the 12 emails we sent, we received an acknowledgment from seven companies (beyond a

simple automatic reply), and received a detailed reply in four cases. Among these four

replies, two antivirus companies were already aware of most bugs we reported and had

fixed them in more recent releases of their software or were planning to release them.

For instance, regarding transparency of the TLS version and certificate strength, ESET

responded with the following: “Forcing of same TLS protocol version for both sides of the

MITM is implemented too, however not yet enabled, not even in the newest ESS 9, but this

will start working soon as well. Using of the same key size and algorithms on both sides

of the MITM is much trickier however, there are some limitations. But we are currently

looking into that too, and will try to improve it as much as possible.”

One reply from a parental control software company highlighted several discrepancies

and misconceptions. For example, our tests on the latest version of the product on Windows

7 SP1 with patches for Schannel against BEAST and FREAK reveal that it supports at most

64

TLS 1.0 when connecting to remote websites. However, the company states that “In fact,

Net Nanny supports up to TLS v1.2.”, and further adds that the “*real* server connection

is established with the highest settings we can use without being rejected.” Also, while

the FREAK attack is an implementation flaw in some TLS libraries that allows an attacker

to force both parties to agree on export-grade ciphers, the company states that “FREAK

and logjam are again, due to having to support old browsers/servers.” As for the 512-bit

“Root Agency” root certificate, the company simply responded: “The Net Nanny CA store

is created by importing from the browsers/stores we detect. That is, Windows/IE, Mozilla,

Android, and Apple/Safari stores. Additionally, we ship a list of CA’s that matches Mozilla’s

CA’s (since they use their own store).” As we mentioned in Section 4.7.3.3, the product

remained vulnerable two years later. We then tried to obtain a CVE for this vulnerability

through CMU CERT; however, the CERT responded with the following: “We generally do

not accept reports of issues that have already been publicly disclosed.”

The last parental control software company simply downplayed the risks as their soft-

ware does not filter sensitive websites by default (but can be configured to do so). They

wrote: “That’s why our users are not affected by any vulnerability or MITM-attack.”

Finally, the companies behind the most offending products never replied, even after a

reminder.

4.10 Recommendations for Safer TLS Proxying

Encryption as provided by TLS is by design end-to-end, and insertion of any filtering

MITM proxy is bound to interfere with TLS security guarantees. In this section, we discuss

a few recommendations that may reduce negative interference of proxies/filtering. We also

briefly discuss how browsers can help make proxying safer.

We first discuss the use of a special SSL key logging feature provided by recent browsers

that would avoid the need for TLS proxies in CCAs, while allowing filtering to some extent.

65

If proxies are still used (e.g., for clients without SSL key logging support), we then discuss

how they may be designed to function safely. We believe following these guidelines may

significantly improve CCAs in general, but we want to stress that more careful scrutiny is

required to assess security, functionality and performance impacts. Note that, some TLS

security features will be affected, no matter how the proxies are designed. For example,

EV certificates cannot be served to browsers, if a proxy is used for filtering traffic from

websites with EV certificates.

TLS Key-logging. Recent Firefox and Chrome browsers support saving TLS parameters

in a file to recreate a TLS session key that can be used to decrypt/analyze TLS traffic (e.g.,

via Wireshark); the key file is referenced by the SSLKEYLOGFILE environment vari-

able [180]. TLS proxies can offload all TLS validation checks to browsers, by configuring

the key file and using the session key to decrypt the TLS encrypted traffic reaching sup-

porting browsers. Thus, proxies can passively intercept the traffic, and perform filtering

as usual, without interfering with TLS security. This mechanism should be sufficient for

antiviruses to protect browsers from active exploits, and parental control applications to

block access to restricted content. We found no CCAs leveraging this functionality.

If TLS key logging is used, modification of the traffic may not be possible (e.g., censor

swear words, remove ads). Also, browsers and other TLS applications (e.g., Microsoft IE,

Safari, email clients) that currently do not support TLS key logging, cannot be filtered; note

that, most CCAs filter traffic from selected applications only (see Table 4).

Private Keys. Most CCAs attempt to manage their private keys independently (i.e., with-

out relying on OS-protected storage), making the keys accessible to unprivileged code.

Several keys are stored in plaintext, and others are protected by application-specific en-

cryption/obfuscation techniques, which can be defeated with a one-time moderate effort.

Instead, proxies can simply use the OS-provided API (CNG) to securely store private keys,

which would then require an attacker to run admin-privileged code to access the keys. Of

66

course, OS APIs should be used properly for effective protections (e.g., non-exportable

key). Also, proxies must generate a separate root certificate for each installation, i.e., must

never use a pre-generated certificate to avoid generic MITM attacks.

Certificate Validation. To perform filtering, proxies must use dynamically generated

server certificates for the proxy-browser TLS communication channel. Thus, proxies can-

not transparently forward a server certificate to the browser. However, they must properly

validate the received server certificates, with no less rigor than popular browsers, and relay

certificate errors to browsers, as closely as possible. These are no easy tasks, but must not

be sidestepped by proxies, as they become the effective Internet-facing TLS engine for the

filtered applications.

Validation: Proxies that perform validation checks (albeit incomplete), apparently rely

on the validation mechanisms offered by their respective TLS library. Such mechanisms

as provided by, e.g., OpenSSL, may require additional support to ensure the chain of trust,

and revocation status, and to enforce supplementary policies.13 The revocation status of

certificates (via CRL or OCSP) should also be checked (e.g., through the OpenSSL ocsp

interface).

Errors: Communicating non-critical validation errors such as expired certificate or

wrong CN should be done in a way that users still have a choice to accept or reject them,

similar to common browsers. Other invalid scenarios, e.g., non-CA and X.509v1 interme-

diate, could also be replicated; however, simply refusing such certificates might also be

acceptable (reflecting how browsers deal with such error cases).

Transparency. For the browser-proxy connection, proxies should not use a fixed-size key

or a fixed hashing algorithm, which we observed for most products. When certificate at-

tributes are not properly mapped, browsers may remain unaware of the true TLS security

level of an intended server. Achieving transparency of certificate attributes includes at least

13https://www.openssl.org/docs/apps/ocsp.html, /docs/apps/verify.html

67

https://www.openssl.org/docs/apps/ocsp.html
https://www.openssl.org/docs/apps/verify.html

the replication of the same signature hashing algorithm and key type/size. Regarding the

TLS version and other parameters such as the cipher suite, a transparent TLS handshake

is possible that satisfies constraints from both the browser and server. Below, we outline a

simple protocol to achieve this goal; see also Fig. 3.

C P S

Vc, Cc //
min(Vc, Vp), Cc ∩ Cp //

oo
min(Vc, Vp, Vs), c ∈ Cc ∩ Cp ∩ Cs

Figure 3: Optimal handshake for TLS ClientHello and ServerHello when proxying a con-
nection

In this three-party TLS handshake, the client (C) sends a ClientHello message with its

supported TLS version (Vc) and cipher suite (Cc). The proxy (P) intercepts the message

and attempts a connection with the remote server (S) using the best version that both the

client and the proxy support, i.e., min(Vc, Vp), along with a cipher suite that is compatible

with both the client and proxy (Cc ∩ Cp). Finally, the server naturally chooses a TLS

version and a cipher (c) that would transparently satisfy both the proxy and the client, i.e.,

min(Vc, Vp, Vs) and c ∈ Cc ∩ Cp ∩ Cs respectively (Vs is the best version supported by the

server and Cs is the server’s cipher suite). The proxy simply relays the ServerHello message

to the client, and continues the two handshakes (client- and server-end) separately.

The proxy achieves complete transparency, if its supported cipher suite is a superset of

the client’s (Cp ⊇ Cc), and if it supports at least a TLS version as high as the client (Vp ≥

Vc). Such a handshake requires the proxy to be at par with the latest TLS standards. This

requirement is also necessary to help deter newly discovered attacks (e.g., Heartbleed,14

FREAK).

Recommendations for Browser Manufacturers. As TLS filtering obviously breaks end-

to-end security, we recommend a few additional active roles for browsers, specifically, to
14http://heartbleed.com/

68

http://heartbleed.com/

reduce harm from broken proxies. For example, browsers can warn users when a root

certificate is inserted to a browser-specific trusted store (e.g., the Firefox store), or when

filtering is active (e.g., via a warning page, once in each browsing session); connections

via proxies may also be contingent upon user confirmation. Such warnings may be unde-

sirable for parental-control applications, which may be mitigated by having the warning

feature as an option, turned on by default. At least, browsers should make active filter-

ing apparent to users through security indicators. Note that browsers can easily detect the

presence of proxies, e.g., from the received proxy-signed certificate, and recent browsers

already accommodate several UI indicators, to show varying levels of trust in a given TLS

connection.15 Some users may ignore such indicators, but others may indeed be benefited

(cf. [54]). Recently, Ruoti et al. [211] surveyed user attitudes toward traffic inspection, and

reported that users are generally concerned about TLS proxies (in organizations, public

places, or operated by the government); 90.7% of participants expected to be notified when

such proxying occurs.

As the most used interface to web, browser manufacturers in the recent years have taken

a more pro-active role in improving online security than simply faithfully implementing the

TLS specifications, e.g., deploying optional/experimental extensions to TLS, such as HSTS

and key pinning; blocking malware and phishing sites; and restricting misbehaving CAs,

such as CNNIC [9] and TURKTRUST [184]. We thus expect browser manufacturers to

force companies behind the most offending CCAs to fix obvious vulnerabilities, by block-

ing connections when a known, broken proxy is involved.

15See e.g., Chrome: https://support.google.com/chrome/answer/95617; and Fire-
fox: https://support.mozilla.org/en-US/kb/how-do-i-tell-if-my-connection-
is-secure.

69

https://support.google.com/chrome/answer/95617
https://support.mozilla.org/en-US/kb/how-do-i-tell-if-my-connection-is-secure
https://support.mozilla.org/en-US/kb/how-do-i-tell-if-my-connection-is-secure

4.11 Conclusion

We propose a framework for the evaluation of client-end TLS proxies, by addressing limi-

tations of regular TLS test suites, and adding more tests specifically relevant to such prox-

ies. We use the framework to comprehensively analyze 14 antiviruses and parental control

applications, specifically their TLS proxies. While these applications may require TLS in-

terception capabilities for their functionality, they must avoid introducing new weaknesses

into the already fragile browser/SSL ecosystem. However, we found that not a single TLS

proxy implementation is secure with respect to all of our tests, leading to trivial server

impersonation under an active man-in-the-middle attack in 33% of them, as soon as the

product is installed on a system. Our analysis calls the purpose of such proxies into ques-

tion, especially in the case of antiviruses, which are tasked to enhance host security. Indeed,

these products in general, appear to significantly undermine the benefits of recent security

fixes and improvements as deployed in the browser/SSL ecosystem. We suggest prelimi-

nary guidelines for safer implementations of TLS proxies based on our findings. However,

due to the foreseeable implementation complexities of our proposed guidelines, we suggest

the adoption of interfaces that would let client-end TLS proxies monitor encrypted traffic

originating from browsers in a more secure way, e.g., using the SSL key log file feature.

Our work is intended to highlight weaknesses in current TLS proxies, and to motivate bet-

ter proposals for safe filtering. Finally, our findings also call into question the so-called

security best-practice of using antiviruses on client systems, as commonly advised by IT

professionals, and even required by some online banking websites.

70

Chapter 5

A Client-side View of the HTTPS

Ecosystem

This chapter presents our second work on the characterization of the non-public HTTPS

ecosystem.

5.1 Introduction

Our understanding of the HTTPS certificates landscape comes from measurement studies

that leverage a number of active and passive scanning techniques. Various studies have em-

ployed active scanning, albeit from a single or at most a handful of vantage points [23, 131,

113, 109, 238, 57]. Even when multiple ones are chosen, they reside on privileged points

in the network, e.g., universities or datacenters, therefore discarding client perspectives and

network behaviors in other parts of the world. In this work, we leverage more than 900,000

vantages on the Internet, mostly residential, for a closer look from HTTPS end-users.

When existing active scans rely on a domain list (as opposed to scanning the IPv4

space), they often select few domains [245, 134, 85], or query Alexa’s Top-1M domain

list [131, 109]. However, Alexa only sorts websites by popularity and lacks subdomain

71

information, critical for the use of the TLS Server Name Indication (SNI) extension and to

trigger selective middlebox filters. Panchenko et al. [193] scanned a more comprehensive

domain list, but focused on encrypted traffic fingerprinting. Amann et al. [57] aggregated

a large list of 193M domains to collect certificates; however, the list was queried through

only two—privileged—university vantages.

As traffic interception is likely sensitive to the domains queried, we gather meaningful

domain lists. We consider Alexa top domain list along with Cisco Umbrella, a compre-

hensive domain list that includes exact subdomain information sorted by their frequency

in DNS queries originating from 65 million active users [87]. We also include domains

collected from URLs in tweets from Twitter (as done in [193]) to better represent more

localized domain groups. Finally, we also consider the more recently proposed Tranco

list [155].

We leverage the Luminati residential proxy to gain the perspective of 5.2M nodes lo-

cated in 203 ISO-defined countries. Chung et al. [85] also used this service to route traffic

through 808k nodes in 115 countries to study, among other things, HTTPS certificate re-

placement. However, their study considers only 33 domains per country to collect TLS cer-

tificates, including the country-specific Alexa’s Top-20, 10 university domains (US), and 3

test domains. The results briefly highlight interception by antiviruses, OpenDNS redirec-

tion, and a case of traffic-hijacking malware on 14 nodes. Our study involves thousands of

times more domains per country (up to 438k), which allows us to see a better picture of the

ecosystem, including several undocumented or unreported interception events.

In contrast, our findings draw attention on several security and privacy risks. In partic-

ular, beyond the existence of well-known antivirus and enterprise middleboxes, we found

19 dubious intercepting ad/malware applications in 22 countries, of which 16 are based on

a common interception SDK that makes applications vulnerable by default. Some of them

are widespread in several countries while others are localized and low profile. We also

72

identified 28 middlebox vendors in 178 countries and provide insights on the customers of

identifiable ones, which is more than previously listed in previous studies. We emphasize

that Waked et al. [243] looked at weaknesses in 6 appliances, and do not consider their

prevalence. The focused study by Durumeric et al. [112] measures only 13 appliances

and does not inform on the location/institutions behind the middleboxes. We also observe

ISP interception, analyze an insecure employee spyware, and identify various risky cases.

While Chung et al. did not conclude that the situation is worrisome; our findings reveal

several practical privacy and security risks for users.

A recent study by Mi et al. [173] shows that various residential proxies such as Lumi-

nati leverage “suspiciously compromised residential hosts.” The authors note however that

Luminati is the brightest of such proxies. In particular, authors note that Luminati recruits

users explicitly through the use of a legitimate VPN application. While also suggesting

that Luminati is installed on compromised IoT devices, their conclusion is only drawn

from scanning the node’s IP from the outside of the network. Considering that residential

networks commonly use a NAT to host multiple devices, it is possible that one host is an

IoT device while the legitimate user’s machine is running the Hola VPN. The authors of

the study would confuse both for a single device in their study. Recently, Luminati pro-

vides developers with a way to monetize their applications by adding a library that asks

users to share their Internet connection as exit node. We verified some mobile applications

and confirm that a consent screen is systematically presented to the user. Moreover, this

feature may not have existed or was recently launched at the time of our study. Therefore,

we consider our choice of Luminati to be reasonable and describe in Section 5.5 various

ethical concerns including how users are recruited and how we mitigate possible risks.

Compared to active scans, passive scans located closer to the clients can observe real

browsing data from a diverse user group. Unfortunately, existing studies consider only traf-

fic from universities and research institutions [56, 57], missing a range of other vantages

73

(e.g., residential/enterprise users). More importantly, such techniques are unable to observe

what clients actually see from their ends. Passive traffic fingerprinting done at the server-

side has been used to identify TLS interception [112] by the last middlebox in user traffic;

however, this technique also misses the certificates used between clients and intermediate

middleboxes/proxies (if any). Server-controlled measurements were able to collect certifi-

cates seen by clients for selected domains using Flash applets [134, 192]. Unfortunately,

this technology is scheduled for retirement in 2020 and browsers will fully deprecate it in

2019 [33]. Scaling this technique also poses ethical concerns (cf. [186]).

More recently, Acer et al. [48] analyze Chrome error reports sent back as telemetry

data, and study the root causes of HTTPS-related browser warnings. Although this way of

collecting certificates captures a client-side view, it is limited to certificates that resulted in

validation errors, including e.g., expired certificates, captive portals, and missing interme-

diate or root certificates due to misconfigurations. Our scanning method naturally captures

the client view of TLS connections, but is not limited to invalid certificates that trigger

browser warnings. In particular, we were able to detect widespread interception events,

different from antiviruses, where root certificates are made trusted by browsers, which will

not trigger browser warnings/errors, and be missed by [48].

Moreover, past active techniques generally do not generate TLS requests resembling

any popular browser behavior. On the contrary, they may rely on TLS library defaults or

include a comprehensive list of supported ciphersuites for completeness (i.e., to collect as

many certificates as possible), resulting in distinct and fingerprintable patterns that may lead

to different outcomes. This discrimination is already at the core of Durumeric et al.’s [112]

interception study. We keep the generated traffic realistic while minimizing bandwidth

requirements by mimicking known browser ClientHello messages and fallback behaviors.

Specifically, we conduct a lightweight interrupted TLS handshake that aborts quickly after

we obtain the remote certificate chain. Incidentally, we also leverage SNI as done by the

74

four browsers we consider (i.e., Internet Explorer, Firefox, Chrome and Safari).

We investigate untrusted certificates and the non-publicly-trusted certificate ecosystem,

comprised of certificates found in cases of interception software installed on the user’s

machine, or when the root certificate of enterprise proxies is duly installed. Note that our

untrusted certificates are not issued by servers as studied in [86], but rather by intermediate

intercepting applications/middleboxes. We uncover various widespread interception events

including ad/mal-ware campaigns that intercept network requests in an insecure fashion to

inject ads. More importantly, we uncover risky practices: e.g., market research companies

that pay users in exchange for their traffic, and a retailer-installer custom filter on university

laptops that could potentially lead to a Superfish-like scenario if the software is found to

be insecure. Finally, we draw attention to the repeated use of TLS interception on school

networks and student laptops by technologies that are not well known or studied.

Contributions.

1. First, we performed ∼31M connections and collected 235,472 unique certificates from

221,455 different domains queried through 910,573 IPs in 33 countries mimicking four

browser handshakes. We identify 58,953 certificates that are not expected nor trusted

and investigate them. In a second experiment, we performed 48M connections, collected

507,254 certificates from a total of 1M domains through 4,327,232 nodes in 203 ISO-

defined countries, of which 12,441 certificates were not expected nor trusted.

2. We investigate the non-publicly-trusted certificate ecosystem, and uncover 16 counts

of interception due to adware or other malware based on the NetFilter SDK, some of

which are immediately vulnerable to TLS MITM attacks due to shared private keys.

While prior work identified traffic-intercepting malware, their number and continuous

occurrence should alert the security community.

3. We characterize the use of interception by middleboxes in various context, ranging from

75

small/medium businesses and institutes to hospitals, hotels, resorts, insurance compa-

nies, and government agencies. One interesting sector is the use of TLS interception

from primary schools all the way to universities. One instance of a pre-installed custom

filter by a retailer should raise questions.

4. We propose to mimic browser behaviors while establishing a TLS handshake to avoid

possible mistreatment by network entities due to distinctive (non-browser) ClientHel-

los. We also stop the connection after retrieving the server’s certificate chain, reducing

bandwidth needs.

This work comprises two separate experiments conducted in 2017 and 2019 that lever-

age the Luminati network, referred as L17 and L19, respectively. Both experiments follow

the same structure. We first detail our data collection methodology through Luminati (Sec-

tion 5.2.1 and 5.3.1). We discuss our scanning methodology (Section 5.2.1.5 and 5.3.1.4),

and detail our results (Section 5.2.2 and 5.3.2). We discuss interesting network errors dur-

ing our experiments (Section 5.2.3). We provide insights into our results (Section 5.4),

explore ethical concerns from this study and answer them in Section 5.5, explain the limi-

tations of this work (Section 5.6) and conclude (Section 5.7).

5.2 First Data Collection: L17

Our first experiment was conducted in 2017. We present below our data collection method-

ology (Section 5.2.1), including the choice of domains, countries, our scanning methodol-

ogy and our general analysis methodology. Then, we present our findings in Section 5.2.2.

We discuss network errors in Section 5.2.3, and briefly study the trusted certificates we

obtained in Section 5.2.4.

76

5.2.1 Data Collection Methodology

Overview. We leverage Luminati1 (Section 5.2.1.1), a P2P HTTP and HTTPS proxy

provider that advertises “10s of millions of devices”. For each domain list (Section 5.2.1.2)

and each country (Section 5.2.1.3), we instrument Luminati to establish a tunnel through

the exit node to the target domain. We perform an interrupted TLS handshake given one of

our four browser profiles (Section 5.2.1.4) to retrieve the server’s certificate chain with the

minimal network traffic. As we are interested in analyzing deviations from one vantage to

another, and assume that these will affect a minority of observations, we shape our scans

accordingly. We only record mismatching certificates compared to a baseline we establish

from another (non-interference) country, using the same handshakes. We continuously re-

new our baselines and use the most up-to-date one for the next batch to run through the

proxy. Scans results are logged in a database and later aggregated for analysis. Figure 4

gives a high-level view of our data collection process.

Popular domains

Handshake templates

IE, Firefox, Chrome,
Safari

Alexa, Umbrella, Twitter

Scanner

Luminati nodes Central databaseLocal database+
-

University
Baseline

dummyTLS

Figure 4: Scanning process overview for L17

5.2.1.1 Luminati

Luminati is based on the Hola network, composed of users who installed the Hola browser

add-on to proxy their traffic through different countries to evade censorship or access geo-

restricted content. Users either pay a fee (5 USD monthly) for a “premium” access, or

they can access the network freely but become an active peer by sharing their own Internet

access. Nodes accessible through Luminati are Hola’s free users.
1Luminati (https://luminati.io/about) is based on Hola (https://hola.org)

77

https://luminati.io/about
https://hola.org

We are provided with an authenticated HTTP/HTTPS proxy interface, run by one of

Luminati’s “super proxy”, which accepts special HTTP headers to, e.g., specify the target

country, a session ID bound to an exit node, and whether DNS resolution should happen at

the super proxy or the exit node. We choose to resolve domain names through the exit node

to observe the effect of DNS hijacking in any target country. Unfortunately, Luminati does

not offer a way to retrieve the resolved IP, therefore, when we detect an interception, we

cannot distinguish whether it originates from a DNS redirection, or impersonation of the

destination server. All the traffic goes through the super proxy, so we do not communicate

directly with the exit nodes.

Many nodes can be chosen within a given country. Luminati offers a way to select the

same node for different requests (if the exit node is online), by providing a fixed arbitrary

session ID mapped to an exit node by the super proxy. We avoid creating tunnels for each

domain to be queried by reusing the same session for at most 10 queries. We note that in

certain countries, there may not be enough exit nodes to guarantee that any exit node will

be queried at most 10 times from us. However, in such cases, the same exit node will be

picked at random among its peers for a batch of 10 queries, which effectively balances the

load among the nodes.

5.2.1.2 Domain Datasets

Alexa. Alexa publicly distributes a regularly updated list of top 1M website domains,

and top 50 country-specific domains. While Alexa rankings identify popular websites,

they lack information about the actual domains. Indeed, only the main domain names

without subdomains are provided in the lists. For example, the most popular domain is

google.com; however, no information on ranking of various Google products is provided

(e.g., mail.google.com, maps.google.com, docs.google.com). The lack of any subdomain

information in Alexa rankings possibly leads to an unquantified bias in studies that do

78

not take this fact into account. Several prior work on HTTPS-related analysis used the

domains as is [241, 113, 250, 110, 210, 111, 109, 169, 81, 238, 51], while a few prepended

the “www” subdomain [131, 210, 152] to compensate for a common type of subdomain

mismanagement [53]. This problem possibly extends to other types of work relying on

Alexa lists.

Our certificate collection is also influenced by the exact subdomain queried, as a subdo-

main could be resolved to a separate IP address if the server runs a different configuration.

Even when directed to the same server, the web server can distinguish which host is re-

quested through the SNI extension and serve the appropriate certificate. For these reasons,

we also seek to combine other more complete domain lists. We extract Alexa’s 1M do-

mains on July 7, 2017, and use the top 100k domains (to limit our Luminati expense). We

do not consider the country-specific Alexa domains as most are already included in the top

100k list.

Twitter. Similar to [193], we collected URLs found in tweets from Twitter, over two weeks

in May 2017. We used Twitter’s Streaming API, which only lets us access a random 1%

sample of all tweets published and requires a filter with at least one criterion. We satisfied

this criterion by searching for tweets with any geolocation attached, coming from users

who opted-in to show their location. This criterion adds a bias to our dataset; however, we

assume it is more uniform across users, compared to a regular keywords filter. In total, we

gathered 28,121,425 URLs (22,507,491 unique) from 293,256 domains. Finally, we reduce

this dataset by selecting the domains that are found in at least two URLs, giving 110,200

domains.

Umbrella. Cisco Umbrella [87] consists of the top 1M most queried domains for DNS

resolution originating from 65 million daily active users in more than 160 countries. This

dataset is not limited to popular websites, and includes domains queried by e.g., mobile

applications, possibly shedding light on previously unreported domains. Crucially, this list

79

also includes subdomains. We use the top 100k domains from Umbrella, collected on June

9, 2017.

Overlap. In total, we consider 289,291 unique domains (from a total of 310,200). The

overlap between Alexa and Umbrella is about 10.45%, highlighting the clear difference

between these lists. The Twitter list is also distinct (only 5.58% and 5.37% overlap with

Alexa and Umbrella, respectively). We scan each list individually, effectively scanning

overlapping domains multiple times.

5.2.1.3 Country List

Various countries seek to monitor, censor and influence what their citizens can access on the

Internet. Several projects and organizations aim at tracking censorship practices in various

countries. In particular, Reporters Without Borders (RWB) is an international non-profit,

non-governmental organization that promotes and defends freedom of information and of

the press. It provides a list [203] of “Enemies of the Internet”, including countries that

are known to censor content (e.g., political, social), and imprison or sanction those that try

to bypass active measures. A second list of countries “under surveillance” keeps track of

those known to be engaged in mass surveillance of the Internet.

We use both RWB lists, considering the current status and any past statuses, resulting in

a total of 36 territories across five continents. Our choice is motivated both by geographical

comprehensiveness and the potential for observing TLS interception behaviors in scarcely

studied countries. We refer to each country by its ISO 3166 code (except the United King-

dom, simplified to UK). Note that, we consider China to include mainland China and Hong

Kong (HK), and distinguish them as two territories, since Luminati allows us to choose

both separately. In total, we consider 33 territories that are available through Luminati,

plus our baseline country that is outside RWB’s lists. Luminati did not offer nodes in these

four countries: Eritrea (ER), Kazakhstan (KZ), North Korea (KP), and Turkmenistan (TM).

80

Name Platform Browser
Handshake
version (back-
offs)

ClientHello
version (back-
offs)

ciphersuites
(back-offs) Timestamp

IE11Win7x64 Windows 7
x64

IE 11.0.9600.18738
KB4025252 (July 2017) TLS 1.2 (1.0) TLS 1.2 (1.0) 26 (12) Current

FF53 Windows Firefox 53.0.3 x86 (May
2017) TLS 1.0 TLS 1.2 15 Random

Chrome59x64 Windows Chrome 59.0.3071.115
x64 (June 2017) TLS 1.0 TLS 1.2 14 Random

Safari1031 iOS 10.3.1 Safari 602.1 WebKit
603.1.30 (April 2017)

TLS 1.0
(1.0, 1.0, 1.0)

TLS 1.2
(1.2, 1.0, 1.0) 19 (22, 17, 17) Current

Table 8: Browser profiles

5.2.1.4 Browser-like TLS Handshake Simulation

Unlike maximizing coverage by supporting a wide range of SSL/TLS versions, ciphersuites

and other extensions, our goal is rather to imitate the normal behavior of specific browsers

to observe any tampering of regular user-generated traffic. Compared to related studies, we

increase the ecological validity of the results. We thus need to understand how individual

browsers could be specifically targeted and how to shape our tests to generate seemingly

legitimate traffic.

Browser/proxy identification through TLS fingerprinting. Browsers can be finger-

printed using the differences in their TLS handshake components, e.g., TLS ciphersuites in

ClientHello messages [207, 205], TLS version, extensions and flags [165, 249]. Question-

able client-side TLS proxies (e.g., SuperFish [28], PrivDog [29]), software security solu-

tions and network filtering appliances could also be identified using TLS handshakes [77,

76, 112]. Web servers (e.g., Caddy [3]) may use fingerprinting of TLS handshakes to de-

tect possible interception, allowing website owners to refuse to serve content or insert a

warning when interception is detected. This technique could also be used to identify par-

ticular vulnerable versions of browser for targeted attacks. For these reasons, we believe

that adopting browser-like behavior in HTTPS studies should be considered.

Challenges and threat model. A naive way of generating browser-like traffic is to ac-

tually instrument real browsers. However, leveraging multiple configurations on desktop

81

and mobile devices (e.g., own setup or external resources, e.g., Browserstack [2]) may in-

cur significant hardware and bandwidth costs. More importantly, retrieving the full page

content is unnecessary, since we are interested only in the certificate chain given in early

stages of the connection. We thus resort to simulating accurately the browser TLS hand-

shake behavior until we obtain the certificate chain, with the following assumptions. (1)

The entity providing the leaf certificate knows the corresponding private key. As we do not

complete the TLS handshake, we cannot verify the server’s or proxy’s knowledge of the

private key, which could be faked to mislead our certificate collection. (2) Only passive and

stateless browser fingerprinting methods are used for TLS traffic. In particular, we assume

that an interception entity does not try to trigger client-specific behaviors (e.g., with specific

TLS alerts or unexpected messages) to reliably identify whether the client is a real browser.

Therefore, we assume that only features in any intercepted ClientHello message for a target

domain are relevant for distinguishing real vs. artificial TLS connections. Consequently,

we do not attempt to launch several parallel connections to the same target (as commonly

done by browsers to optimize the user experience [34]). Also, we do not simulate browser

behaviors past the Certificate message in the TLS handshake, which contains the certifi-

cates we need. Being stateless, any new connection is assumed to be treated independently

of previous ones, disregarding a possibly high volume of unfinished handshakes.

DummyTLS. To overcome poor customization support in TLS libraries, we implement

DummyTLS, a lightweight TLS client that supports exchanges until the Certificate message

is received, and then aborts the TLS handshake. In particular, we do not compute any

cryptographic operations. We send a ClientHello message to the server following a given

browser template, and parse the server’s SSL/TLS records to extract the server’s certificate

chain in the Certificate message. We ignore optional Handshake messages until we receive

a ServerHelloDone message or if no further data is available, in which case, we close

the TCP connection gracefully by sending a TCP FIN/ACK packet, aborting the regular

82

handshake, see Figure 5.

TLS client TLS server

[TCP SYN] //

oo [TCP SYN/ACK]

[TCP ACK] //

ClientHello
Supported TLS version, ciphersuites, compression methods, signature algorithms, etc.

//

oo ServerHello
Negotiated TLS version, ciphersuite, compression method, etc.

oo Certificate
Certificate chain, if key exchange requires one

oo CertificateStatus
Stappled OCSP status, optional

oo CertificateRequest
Client certificate request, optional

oo ServerKeyExchange
Additional key material, optional

oo ...
Other additional/optional handshake messages

oo ServerHelloDone

[TCP FIN/ACK]
Close the connection

//

Figure 5: Illustration of a dummy TLS handshake between a TLS client and server

Additionally, browsers may support a back-off mechanism that reattempts a connection

to the server using a lower version of the SSL/TLS protocol when the first attempt fails.

Upon retrial, a different ClientHello is sent. This mechanism has been abused in the past

(cf. POODLE [177]). We study and imitate the back-off behavior to resemble the browsers

we consider. We retry a handshake with the available back-off templates if the connection

closes abruptly after we send the ClientHello, or when the server sends a TLS protocol

version alert (70). Given the simplicity of ClientHello and Certificate message structure

83

and their consistency across versions from SSL 3.0 to TLS 1.2, our implementation is

straightforward. It is written in 300 SLOC of Python, plus 100 SLOC to interface it with

Luminati, and additional ClientHello templates that correspond to browser profiles.

Browser profiles. We collected ClientHello records from reference browsers on Windows

7 (IE, Firefox, and Chrome) and iOS 10 (Safari). We analyzed the network traffic upon a

connection to a HTTPS server with each browser. We then parametrized the client random

value, timestamp, hostname (as part of SNI), and dependent length fields of the ClientHello

record to be used against any given domain name. We specify whether a specific browser

makes use of the current time or a random time for the timestamp, a feature that could

also be used for fingerprinting. Furthermore, we trigger a browser’s back-off behavior by

rejecting incoming connections to our test server, and capture new incoming ClientHellos.

We implement the back-off strategy in DummyTLS, following IE and Safari (one and three

back-off connections, respectively). We list our four browser template characteristics in

Table 8.

Our Chrome profile is based on our experiment on a recent desktop machine, which

is the same on Android phones with AES hardware acceleration. On other Android de-

vices, the ciphersuites are the same; however, the ChaCha20-Poly1305 suites have a higher

priority.

5.2.1.5 Scanning Methodology

We first establish baselines of certificates as seen from a reference country, to later only

record mismatching certificates obtained through Luminati. We also validate mismatching

certificates to focus only on untrusted ones.

Baselines. We collected baselines periodically between July 7–Aug. 9, 2017. For our

289,291 unique domains, we collect at least one certificate chain for 221,445 of them

(76.5%) in our baselines, consisting of 172,683 unique leaf certificates. We collected

84

baselines continuously by rotating the browser profiles, with four threads by domain lists

(Alexa, Twitter, Umbrella). Depending on the dataset and external network incidents, base-

lines generation for a domain list and browser profile took up to 24 hours (median 12

hours). Overall, baselines for a given browser profile are refreshed on average every 2.5

days. When launching a new scan through Luminati, we select the most recent baseline

available for the target profile, which can be outdated at most by 4 days.

Scans. We collected certificates from 33 countries through Luminati between July 17—

Aug. 7, 2017 (22 days). We performed about 58M connection attempts through 910,573

nodes (identified by their IP address), including retries in case of timeouts or back-off

ClientHellos, for a total of 31,131,341 observations, 28,928,337 (93%) of which returned a

certificate chain. To avoid stressing the network in countries with slow Internet, we limited

our experiments to a maximum of 8 concurrent threads by country, divided on two domain

lists. We also allowed a timeout of 30 seconds to receive a response from the exit node and

retried once upon failure (excluding back-offs).

Stats. Our raw results indicate that about 3.29% of all observed certificates (1,023,057, of

which 103,550 are unique) do not match those found in the baseline used during the scans.

After we cross-reference these certificates with those served in all other baselines, the

volume of mismatching certificates reduces to 0.63% (195,853 overall, including 63,682

unique certificates)—a reduction of 38.5% in unique certificates.

5.2.1.6 Verifying Certificates

We verify the chain of trust for all the certificates we collected. We consider the trusted

certificate stores of Windows, NSS (used in Firefox), and Apple (macOS and iOS) that

were current during July–Aug. 2017. Windows store contains 314 certificates for TLS

Server Authentication (362 in total), NSS contains 155, and Apple macOS Sierra/iOS 10

contains 168 certificates. The combined trust store sums up to 350 unique TLS certificates.

85

Web servers are responsible for delivering the necessary chain of intermediate certifi-

cates for clients to chain the leaf to a trusted root. In practice, servers may be misconfigured

and may not provide a full chain, or may provide one that is not trusted by the client [48].

Browsers commonly rely on their own cache of intermediate certificates to cover such gaps

in certificate chains. Moreover, leaf certificates can indicate a URL pointing to their issuer

certificate in the Authority Information Access (AIA) extension, which a browser can fetch

to complete a chain. To alleviate this missing intermediate certificate problem, we gather

all intermediate certificates that we have seen during our scans. We also fetch 587 unique

intermediate certificates pointed to by the AIA extensions in all leaf certificates. We keep

only intermediate certificates that chain up to a root from our combined store, consider-

ing the list itself to construct the chain.2 This step is necessary as several (intermediate)

certificates we collected suffered from corruption (e.g., bit flips), and OpenSSL failed dur-

ing signature validation without considering alternative certificates. There are 1784 trusted

intermediate certificates.

Finally, we verify each leaf certificate against the combined trust store and combined

validated intermediate certificates. We do not check for expiration (-no_check_time),

revocation status, nor matching domain name. Thus, our verification merely confirms

whether the certificate is trusted, but does not indicate whether it is valid for the context

it has been used in (however, we do verify that it is meant for server authentication, i.e.,

-purpose sslserver).

Among our baseline certificates, 95.23% of unique certificates are trusted. 58,953 cer-

tificates are untrusted. This is in sharp contrast to Chung et al.’s results who found that 65%

of certificates served during IPv4 scans were untrusted, mostly due to being self-signed or

signed by an untrusted entity [86]. Note that the authors’ definition of invalid certificates

2For each intermediate.pem, we use openssl verify -no_check_time -CAfile
combined-root.pem -untrusted all-intermediates.pem intermediate.pem

86

closely matches our notion of untrusted. One main difference with our scanning method-

ology is the use of the SNI extension combined with a list of meaningful domains, which

expectedly mostly yields trusted (and also probably valid) certificates.

From certificates collected through Luminati that are not seen in any baseline, only

7.36% are trusted. Although this number is not high, it indicates that at least a non-

negligible amount of trusted certificates are not seen by repeatedly querying domains through

a static vantage point. Several factors may influence their exposure to users, including load

balancing, internal CDN certificate management, various geographical datacenters. In Sec-

tion 5.2.2, we analyze prominent categories of non-publicly-trusted certificates observed

through Luminati.

5.2.1.7 Analysis Methodology

To investigate our results, we focus first on issuer DNs, as this tends to categorize several

interception cases. Indeed, it is common for an antivirus or some enterprise proxies to

generate a root certificate with fixed details, which helps to directly categorize the observed

certificates, e.g., some versions of Kaspersky use the self-contained issuer O=AO Kaspersky

Lab, CN=Kaspersky Web Anti-Virus Certification Authority.

We also identify groups of issuer DNs that are related, i.e., when root certificates for a

given product follow the same pattern. We build a regular expression to match all such cer-

tificates, e.g., a Fortinet root certificate issuer could be CN=FGT60C3G12345678, O=Fortinet

Ltd., which we generalize to ˆCN=F(G|W)[0-9A-Zn\-]6[0-9]8, O=Fortinet

Ltd\.$. Fingerprint rules we built are given in Appendix E.

Once we identify an intercepting product interfering with a given node, we further

explore all other certificates seen by this node. This either reveals that all connections are

intercepted and the given certificate is issued by the root we already identified, or there

may be other certificates that we did not identify. Those typically occur when the server

87

certificate is invalid or when the domain is not allowed. For instance, BitDefender shows a

certificate issued by CN=Untrusted Bitdefender CA, OU=IDS, O=Bitdefender, C=US when it cannot

validate the server certificate. WatchGuard also has specific common names to describe

particular situations, e.g., when the OCSP response for the server certificate is somewhat

invalid, it uses the issuer O=WatchGuard_Technologies, OU=Fireware, CN=Fireware HTTPS Proxy:

OCSP Invalid Certificate.

Next, we tackle root issuers that are not self-explanatory. For instance, C=IN, O=SPI-

CHN, OU=IT, CN=SPI-CHN. Using the technique mentioned above, we find certificates issued

by a Cisco product for invalid certificates and therefore can label these certificates as Cisco

issued certificates.

Some products follow a different approach when filtering a connection that is either not

allowed or with invalid server certificates. They may simply issue a self-signed certificate

with limited information in the issuer/subject DN such as only the domain name requested

as the CN, or copying the original subject DN. In some cases, both the subject and issuer

DNs are copied from the original certificate, which could be confusing if we do not further

verify whether the certificate is valid or has been observed in the baselines. It is important

to make the distinction, as we would otherwise mislabel legitimate certificates or omit to

label cases of interception. When the certificate is not trusted and the subject/issuer DNs

do not match those of certificates collection as part of the baselines, we verify whether

this certificate has been observed through many more nodes and countries or whether it is

an isolated case. In the former case, it is possible that our baselines did not capture such

sporadic certificates. Otherwise, it is highly likely that the certificate has been issued by a

proxy and we label it the same way as the main intercepted connections for that node.

We also measure the distribution of countries where certificates were seen. This helps

to identify potentially geographically-dependent situations such as ISP interception. We

further narrow down to individual Autonomous Systems (AS).

88

When we cannot find enough information in the certificates, we resolve to manual Inter-

net searches to uncover possible meanings of the little information we have. For instance,

C=KR, O=KIOM, CN=KIOM actually corresponds to the Korea Institute of Oriental Medecine,

and therefore, it is likely that the node’s traffic was intercepted by an enterprise proxy.

Finally, the most effort-intensive task is to distinguish untrusted and unseen certificates

that are seen by few nodes for which no other information is available (i.e., the node is

not known to be intercepted by another product, or we only have few similar certificates

to study). In some cases, we observe that a given domain name issues several certificates,

possibly one for each connection or per resolved IP. If such a certificate is only observed

by one node, we cannot further infer whether it has been issued by the server or modified

by a proxy. Such case remains unknown in our analysis. In the L19 study (Section 5.3), we

further attempt to collect the main page for the domain when the certificate is untrusted in

an effort to gain knowledge about a possible interception, i.e., if the allegedly intercepted

page shows more information such as the name of the product.

5.2.2 Findings

Overview. First, we discuss our findings about known cases of interception including an-

tivirus and enterprise middleboxes. We discover more middleboxes than previously studied

and shed light on their customers. Then, we focus on a series of interception events that

have been poorly studied (if at all) in the literature. Those include a series of widespread

and localized ad/mal-ware applications built on top of the NetFilter SDK, localized em-

ployee monitoring software, a computer equipment vendor preinstalling its own content

filter, and user traffic monetization by the users themselves. Finally, we provide a view on

censorship through intercepted HTTPS connections in Russia, Turkey, Myanmar and Hong

Kong. We show a breakdown of different categories of interceptions in Table 9.

89

Certificate subsets Size
(#certificates)

Size
(#affected IPs)

products/
distinct events

Percentage
of successful
connections

All certificates from Luminati +
baselines 235,470 – – –

All certificates from Luminati
not in baselines 62,787 47,695 – 0.42048%

Trusted certificates 3,834 34,496 – 0.16817%
Antivirus software 36,530 1,481 7 products 0.13026%
ISP censorship 97 9,741 4 countries 0.03865%
Adware/malware 11,133 533 17 products 0.03849%
Enterprise filters 7,835 377 22 vendors 0.03013%
Home filters 1,669 362 2 services 0.00578%
Unknown 633 672 259 issuers 0.00372%
False positives 359 785 13 services 0.00284%
Anti-ads software 289 5 3 products 0.00102%

School filters 234 10 10 schools/
associations 0.00081%

Pre-installed monitor 120 1 1 retailer 0.00041%
Corrupted certificates 28 22 – 0.00011%
Analytics 16 2 1 service 0.00006%
Employee monitor 10 1 1 product 0.00003%
Intercepted connections 57,933 12,511 10 subsets 0.24564%

Table 9: Breakdown of certificate categories in L17. “–” indicates that the number is either
inapplicable or irrelevant.

5.2.2.1 Personal Filters & Enterprise Middleboxes Identification

Luminati nodes are mainly personal devices, on which users may run antivirus and parental

control applications [99], adware [28, 29] and other malware acting as TLS proxies. Du-

rumeric et al. [112] showed that it is possible to fingerprint such proxies as their server-

facing ClientHello messages carry a unique ciphersuite list and extensions. For our pur-

pose, we leverage the client-facing proxy-issued certificate to identify the presence and type

of the TLS proxy. Luminati users may also roam through public Wi-Fi networks or con-

nect their devices to enterprise networks that perform deep packet inspection of TLS traffic.

Other network intermediaries (e.g., ISPs, adversaries) may also employ similar technolo-

gies. Similarly, we fingerprint enterprise middleboxes based on their client-facing certifi-

cates. We summarize the 30 personal and enterprise content filters found in our dataset in

Table 10. We discuss these findings in Section 5.2.2.2.

90

Antivirus and home filters. We consider the personal applications acting as proxies an-

alyzed in [99, 112], those reported in [134, 85], as well as known Komodia-based appli-

cations [82, 91]. We collect products available for download and install them to extract

sample leaf certificates they generate. We create fingerprinting rules from these certificates

based on the issuer’s distinguished name (DN), i.e., the order list of common name (CN),

organization (O), organization unit (OU) and other listed information. We also include cer-

tificates issued by antiviruses for untrusted website certificates, certificates seen in older

versions of the product, and for Windows and Mac OS as they may differ. All root cer-

tificates include a stable DN across installations, except Qustodio and NordNet for which

a simple regular expression can match their pattern. For DefenderPro, we were unable to

trigger TLS interception when installed with versions from 2014 and 2018. We rely in-

stead on [134], which specifies only the O field. In total, we consider 9 antiviruses and 11

parental control applications.

We also consider the FamilyShield filter by OpenDNS, which redirects DNS queries

for certain domains to an OpenDNS error page. If this page is accessed through HTTPS,

the server certificate is issued by OpenDNS for the queried domain and signed by a non-

browser trusted root certificate that users are asked to install. Compared to [85], we take

into account the new root certificate for OpenDNS from Cisco [88].

Similarly, we consider Techloq, another alternative DNS provider that also redirects

certain domains to an error page.

Enterprise middleboxes. We create fingerprints for appliances, standalone and cloud-

based filtering systems from 15 vendors. From the list of network appliances found in [112],

we tested and extracted fingerprints from the default root certificates in Cisco IronPort,

Sophos UTM, Untangle, and WebTitan. From this list, we further crawled support forums

for known default CA names for Blue Coat (cloud-based solution), Microsoft Forefront

91

TMG, and Sophos XG Firewall. We also tested Entensys UserGate, McAfee Web Gate-

way, pfSense, and TrendMicro IWSVA. Furthermore, we add Elitecore/Cyberoam found

in [85], augmented by our own research of possible default certificates. We also rely on

details provided in [134] for Fortinet Fortigate, and Netbox Blue. Finally, NetSpark pub-

lishes their default root certificate.3 We also consider the list of MITM software detected by

Chrome [124]; however, we found that it is often unreliable, i.e., it confuses the O and OU

fields and sometimes relates to only specific and/or old versions of products. We consider

only ContentKeeper, SonicWall, Blue Coat appliances, and Zscaler from this list, which we

also augment by our own searches of possible default certificates. We also identified the

patterns for the root certificate of WatchGuard Fireware.

Known VPN, adware. Following previously disclosed Komodia-based applications [91],

we include fingerprints for two such VPN applications, as well as five adware (ImpresX/Dis-

countCow, Lavasoft Ad-Aware Web Companion, Objectify Media WebProtect, Sendori,

and Superfish). We also include PrivDog.

Caveats. Note that such fingerprints are only heuristics and could be forged. We are unable

to verify the validity of certificates issued by these proxies since different root certificates

are used across installations. However, while these certificates are usually trusted by the

user’s browser, forged certificates would be untrusted, hence mitigating the impact on end

users and the motivation for forging such certificates in the first place. For OpenDNS

FamilyShield, we validate the certificates against Cisco’s root certificate.

5.2.2.2 Middleboxes

We found interception done by at least 21 different network appliance vendors. We discuss

below how we identified middlebox vendors from our collected certificates and/or the insti-

tution using the middleboxes. We also discovered occurrences of filtering by products not

3https://www.netsparkmobile.com/support/en/faqs/116-crt-en.html

92

https://www.netsparkmobile.com/support/en/faqs/116-crt-en.html

found or studied in the literature, e.g., school content filtering system (CyberHound Roam-

Safe), and data loss prevention (DLP) software (Devicelock, InfoWatch, and Somansa).

Several middleboxes serve certificates where the issuer points directly at the technology,

e.g., middlebox vendor and model. We identified two challenges compared to the simple

fingerprinting of AV products.

Variations in root certificates. Unlike personal filters, enterprise middleboxes are meant

to be managed by professionals and the root certificate configured by default (if any) is

often changed in practice. However, we found that certain appliances keep some traces

of their product name, which helps in their identification. For example, the default root

certificate we obtained for Cisco IronPort Web Security has a clear issuer CN (Cisco IronPort

WSA Root CA); however, we consider certificates issued by C=LY, O=Libyana, OU=IT, CN=WSA

to also belong to this Cisco appliance due to the keyword WSA. In such cases, a manual yet

error-prone effort is needed to make the connection.

Invalid certificates. Certificates served by a middlebox in place of browser-trusted server

certificates may not indicate the technology used. However, when requested to connect to

a website that serves an invalid certificate, some middleboxes serve a different certificate

akin to some antivirus product. Although the root certificate for trusted connections can

be customized, we found that the certificate returned by middleboxes to reflect a validation

failure of the server certificate has the same issuer across middleboxes of the same model.

This behavior helps to identify cases when the default root certificate has been changed and

lacks identifiable information.

For instance, a node in India received certificates issued by C=IN, O=SPI-CHN, OU=IT,

CN=SPI-CHN on behalf of trusted server certificates; however, the issuer is C=US, ST=California,

L=San Jose, O=Cisco Systems, Inc., CN=Untrusted Certificate Warning otherwise, clearly indicating

Cisco as the middlebox. The PTR record for the node’s IP points to spi-global.com, there-

fore, given the root certificate CN, this is likely a case of enterprise filtering.

93

Other middleboxes do not include technical details in the certificates they issue, or have

been configured in this way. Rather, they are usually more verbose about the location or

institution using the middlebox.

Hybrid verbosity. Sophos UTM binds the certificate information to the customer name

and address provided during the purchase, providing useful information as to the type of

network where these certificates are found. Such certificates also follow an easily iden-

tifiable pattern that allows us to link them to such middleboxes. Indeed, Sophos simply

appends “Proxy CA” at the end of the CN that represents the customer’s institution, and

copies the name without this appendix in the O field. Among the companies using Sophos

UTM, we could identify hospitals, hotels, universities and learning centers, resorts, com-

munity service organizations, car dealerships, real-estate and other small businesses, across

9 countries.

While CyberHound is advertised as a school content filtering system, we also found

that Smoothwall is particularly popular for school traffic filtering. We found both products

used in eight primary/prep, middle and high schools in the United Kingdom and Australia.

In addition, Cisco IronPort is used by a school district in the United States.4

Various businesses. We report below on traffic intercepted by unknown middleboxes at

various businesses.

In Korea, we found traffic intercepted at the Korea Institute for National Unification

(KINU), a South Korean think tank, and the Korea Institute of Oriental Medicine (KIOM).

There were also several cases of IPs in South Korea, China, and the United States that be-

long to ASes of the Korean company LG. We found an example of a construction company.

Finally, another node was issued certificates by C=KR, ST=SEOUL, L=GURO, O=NETMARBLE

GAMES, OU=SECURITY TEAM, CN=Netmarble.com, emailAddress=NMG9101056@NETMARBLE.COM.
4Surf Coast Secondary College, Cathedral College, Roseville College (AU), and Bedes Prep School,

Clifton College, St Johns School, Study Group, The Bourne Education Trust (UK), Montebello Unified
School District

94

Netmarble is a South Korean game publishing company. The node’s IP belongs to Korea

Telecom, therefore it is unclear whether this interception comes from a Netmarble-owned

machine or if a game they install provides filtering capability for users.

Elsewhere, we found an example of a credit card company in Venezuela, a software and

analytics company and an ERP solution vendor in India, the Turkish Atatürk Forest Farm

and Zoo (a farm and zoo complex), an insurance company in Australia, an IT management

company and a government agency in Malaysia, and a UK hospital.

5.2.2.3 NetFilter-based Interceptions

Wajam and NetFilter. We noticed several invalid certificates with odd issuer names

such as “4110ff3115cb96fe” and “778585eb1e5659ac 2”, apparently a 16-character ran-

dom hexadecimal string, sometimes followed by a space and the digit 2. There are 8351

such unique certificates (all with RSA-1024 keys) in our dataset, spanning over 338 IPs

in 19 countries, and representing over 14% of unique untrusted certificates not found

in baselines. About half of them indicate an issuer email address, following the pattern

info@technologie*.com. These domains all serve the same website as wajam.com

or social2search.com, a now-defunct social search engine for Windows called Wajam/So-

cial2Search/SearchAwesome. We fetched few recent samples of this adware and found

that its TLS proxy relies on NetFilter. NetFilter is a Software Development Kit (SDK) that

helps intercept network traffic through a Windows driver. To manipulate TLS traffic, an

additional layer, ProtocolFilters, is necessary. When generating new root certificates, it ap-

pears that a hardcoded private key is used by default. We obtained demos of this tool from

the author’s website [218], extracted the default key and searched for certificates in our

dataset that were signed with it. Not only did we match all previously identified certificates

with random-looking issuer names, we also found 14 other ProtocolFilters-based intercep-

tions accounting for 2299 certificates found in 10 countries. Compared to our results for

95

Product name # IPs Countries where seen

avast!/Avast 652 AU,BY,CN,EG,FR,HK,IN,JO,KR,LK,LY,MM,MY,PK
RU,SA,SY,TH,TN,TR,UK,US,VE,VN

AVG 487 AE,AU,BH,BY,CN,EG,FR,HK,IN,KR,LK,MY,PK,RU
SA,TH,TR,UK,US,VE,VN

OpenDNS 361 AU,BY,CN,EG,FR,HK,IN,IR,JO,LK,LY,MM,MY,PK
RU,SA,SD,SY,TH,TN,TR,UK,US,VE,VN,YE

Fortinet FortiGate 186 AE,AU,BY,CN,EG,ET,FR,HK,IN,JO,KR,LK,LY,MM
MY,TH,TR,UK,US,VE,VN

ESET 181 AU,BY,EG,FR,HK,IR,JO,LK,LY,MY,PK,RU,SA,SD
SY,TH,TN,TR,UK,US,UZ,VE,VN,YE

Kaspersky 96 AU,BH,BY,EG,FR,HK,IN,IR,JO,LY,MY,RU,TH,TJ
TR,UK,US,VN

Cyberoam / Elitecore 78 AU,EG,ET,IN,JO,LY,SA,TH,TN,TR,UK
BitDefender 47 AU,FR,HK,IN,KR,MY,TR,UK,US
Sophos UTM 22 AU,FR,IN,LK,MY,PK,TR,UK,US,VE,VN
Dr.Web 17 BY,RU
Sophos XG Firewall 14 AU,CN,EG,IN,PK,TR
Symantec Blue Coat Cloud 11 FR,TH,TR,UK,US
Zscaler 9 AU,SA,SD,UK,US,VN
Netbox Blue / CyberHound 8 AU
Smoothwall 6 AU,UK
Cisco IronPort 5 IN,LY,US
Symantec Blue Coat ProxySG/ASG 5 AU,MY,UK,US
SonicWall 4 SA
Untangle NG Firewall 4 IN,MY
TitanHQ WebTitan 3 UK
ContentKeeper 2 AU
TrendMicro IWSVA 2 MY,VE
WatchGuard Fireware 2 AE
Websense 2 AU,IN
BullGuard 1 HK
DeviceLock 1 UK
InfoWatch 1 RU
Kerio 1 RU
Somansa 1 KR
Sophos Web Appliance 1 UK
Techloq 1 UK

Table 10: Antivirus, enterprise middleboxes and home filters found in L17

96

personal and enterprise filters, Wajam is more widespread than most of them. Only Avast

and AVG systematic filtering, and OpenDNS selected filters, were seen more frequently.

We also noticed that the issuer country on Wajam and ProtocolFilters’ leaf certificates

is always “EN”, an incorrect country code. Another 100 certificates grouped under three

additional issuer names possess this country code; however they are not signed with Proto-

colFilters’ default key. We summarize ProtocolFilters-based certificates in Table 11 along

with the countries from which we have observed them. Most of these certificates are found

in India and Russia. Also, we note that most CNs are linked to single countries, suggesting

that they could correspond to localized interception mechanisms/software. For instance,

we also traced “thawte 2” to a software installer, whose purpose is only to insert a script

from a Russian URL into every webpage. The injected script was no longer available on

the remote server during our experiments.

We note that while Wajam’s root certificate appears random, other leaf certificates have

a fixed CN, enabling trivial MITM attacks. Notably, the certificates named “Sample CA 2”

found only in India were seen through 102 distinct IPs, suggesting a possibly widespread

phenomenon. Chung et al. [85] observed such certificates from only 29 nodes and did

not comment on their origin. This certificate may belong to the iTranslator malware [42].

All ProtocolFilters-derived certificates we found are the result of TLS interception on user

devices. As these activities are found in 10 countries, we could infer that NetFilter-based

TLS interceptions are widespread.

ProtocolFilters’ appended “2”. While reverse-engineering ProtocolFilters’ demo binary,

we found that the digit 2 was forcefully appended to the customized root certificate CN

during creation. Not all root certificates generated by this tool have this appended digit,

as evident from our analysis. We traced this feature in the tool’s changelog to version

1.1.4.6 released in May 2015, which indicates that a “postfix is appended to root certificate,

to regenerate old certificates signed with SHA1 to new signed with SHA256” (sic). This

97

Common name # IPs Countries where seen

X Wajam: [0-9a-f]{16} 193 EG,HK,IN,IR,KR,LY,MY,PK,
RU,TH,TR,UK,VN

X Wajam: [0-9a-f]{16} 2 145 BY,EG,FR,HK,IN,LK,LY,MY,
PK,TH,TR,UK,US,VE,VN,YE

X Sample CA 2 102 IN
X thawte 2 6 ET,MY,RU,TJ
X Windows Extend Root CA 6 JO,RU
X xpon CA 4 RU,VN
X StopAd 2 3 UK
× Generic Root CA 3 2 RU
X packagest CA 2 RU
× Adguard Personal CA 1 RU
X Adguard Personal CA* 1 UK
X geckof CA 1 RU
X monotype CA 1 VN
X NetFilterSDK 2 1 IN
X Pifbunbaw 1 TR
X unityp CA 1 RU
X Windows Trust Root CA 1 HK
X xmarin CA 1 RU

X: all certificate signatures were verified against ProtocolFilters’ hardcoded key,
× otherwise; ∗ RSA-2048 leaf certificates.

Table 11: Certificates issued by ProtocolFilters in L17

feature helps understand the possible age of interception software based on ProtocolFilters,

i.e., if the CN has an appended “2”, it has been compiled after May 2015. It also constitutes

a giveaway indicator that the NetFilter SDK could be responsible for root certificates that

exhibit this pattern. We note that the SDK’s source code is also available for sale, which

could be modified to remove this artifact.

Adguard, StopAd. We found two nodes that were running Adguard in Section 5.2.2.3 as

the software relies on NetFilter. We found two different leaf certificate key sizes; only the

RSA-2048 certificates were signed by Netfilter SDK’s hardcoded private key. Böck [73]

reported that Adguard relies on a known hardcoded key. The company behind Adguard

fixed the vulnerability in a later version in mid-2015 [49], which explains the two different

key types. We obtained the latest version of this ad blocker and confirm that it randomly

generates the root certificate key during installation while still relying on NetFilter. It is in-

teresting to note that while Adguard has been patched for more than three years, vulnerable

98

versions of the product are still in use. Similarly, we identified certificates named issued by

“StopAd 2”, which are properly signed by NetFilter’s default key. We obtained the latest

version of StopAd, which also randomly generates root certificate keys. We note that the

latest version’s root certificate CN is simply “StopAd”, suggesting that the appended digit

has been dropped from ProtocolFilters’ source code. Both Adguard and StopAd seem to

properly validate certificates and do not intercept connections having an invalid certificate.

AdSafe. We also identified a Chinese ad blocker, AdSafe, seen through two IPs in China

and Hong Kong. The last version we could obtain, 5.3.117.9800 signed in Jan. 2017, in-

stalls a pre-generated certificate, does not validate certificates, and does not remove its

root certificate during uninstallation. These behaviors are unsafe, leaving users vulnera-

ble to trivial MITM attacks past AdSafe’s lifespan. As the root certificate expires in Oct.

2021, the damages will eventually cease as MITM attacks would not benefit from abus-

ing AdSafe’s root certificate, and users will be forced to uninstall the software to continue

browsing without systematic warnings.

5.2.2.4 New Trends

Employee monitoring. We found the employee spyware FileControl5 (C=RU, ST=Russia,

L=Moscow, O=FileControl, OU=CA, CN=FileControl) used on one node in Russia. Upon fur-

ther inspection, we found that it installs a pre-generated root certificate into the Windows

trust store. The corresponding private key is hidden inside the program and protected by

the passphrase “1111”. The certificate is used as part of the software’s TLS proxy. We

were able to conduct a successful man-in-the-middle attack by signing a certificate for

google.com using FileControl’s private key. Worse, FileControl does not actually check

for the validity of server certificates and accepts even self-signed certificates. Upon unin-

stallation, the root certificate, which expires at the end of 2024, remains trusted by Windows

5https://allsoft.ru/software/vendors/alarum/filecontrol-4/

99

google.com
https://allsoft.ru/software/vendors/alarum/filecontrol-4/

and exposes users to MITM attacks until then. We have contacted the vendor about these

vulnerabilities and are waiting for an answer.

Preinstalled content filters. In Australia, we found a node that filtered all domains and

provided certificates issued by C=UK, CN=UBT (EU) Ltd., O=UBT (EU) Ltd. Searching for the

organization name led us to a company called Universal Business Team that sells electronic

devices to businesses, especially universities in various countries. Its help page6 indicates

that all their machines come with Streamline3 installed, a custom content filter software.

We were unable to obtain a copy of the software to evaluate its TLS proxy. However, similar

to Lenovo laptops installed with Superfish, there is a possibility that TLS connections on

UBT-provided machines are weakened.

Compensated traffic monitoring. We found two examples of traffic willingly inter-

cepted in exchange for money in the United States. Indeed, the two nodes have all

their traffic intercepted by Digital Reflection Panel (C=US, ST=Virginia, L=Reston, O=Digital

Reflection, OU=Digital Reflection Certificate Authority, CN=Digital Reflection, emailAddress=support-

team@digitalreflectionpanel.com), a market research company that pays users in exchange for

their traffic. To participate, users receive a middlebox to set up in their home network,

which is responsible for capturing the traffic and also intercepting TLS connections.

5.2.2.5 Country-wide Censorship and ISP-level Interception

We detail below two notable country-wide interception/censorship events.

Turkey. Among the numerous occurrences of mismatching certificates in Turkey, 81%

are due to the single self-signed certificate C=TR, ST=ANKARA, O=Bilgi Teknolojileri ve Iletisim

Kurumu, CN=erisimengellisayfa.7 Bilgi Teknolojileri ve Iletisim Kurumu (BTK) corresponds

to the Information and Communication Technologies Authority (ICTA), meaning that it is

6https://ubteam.com.au/streamline-faqs
7

SHA256: DA6DD6A9140795B116E509F092586CE70BEAA42DFEC648282AEE8FA9A7F6A579

100

https://ubteam.com.au/streamline-faqs

a government-enforced filter. We found 9,529 exit nodes impacted by this filter, affect-

ing 2,819 domains. Most of these domains appear to be adult websites. We confirmed

our observations by querying each domain through OpenDNS FamilyShield, a parental fil-

ter that blocks adult websites along with phishing and malware domains, which blocked

2,208 (78%) of them. Additionally, we could find domains related to gambling (e.g.,

poker, sport betting), drugs, and a series of other specific domains, e.g., torrents (thepi-

ratebay.se), pirated movies (rarbg.to), pastebin.com, an online community of expatriates

(expatriates.com), and a Chinese cloud provider (Baidu). Our results are consistent with

previous findings [118]. Turkey is also known to block Wikipedia. Indeed, most of the

connections to various Wikipedia domains were blocked and served with the certificate

mentioned above. However, among the 250 nodes that we used to visit these domains,

seven could see the original server certificate. Some of the node IPs clearly belong to Turk-

ish ISPs. Such an unexpected result could hint at corner cases in the censorship technology

in this country, or simply that some connections are willingly unfiltered as they could be

located at privileged points in the network.

Russia. Russian ISPs are legally bound to block a certain number of domains as imposed

by Roskomnadzor, the entity responsible for censorship in media and telecommunications

in Russia. These domains theoretically relate to drugs, hate and violence. In practice, we

found 8 ISPs that blocked various domains. 74 nodes under MTS PJSC (the largest mobile

operator in Russia) had 68 domains intercepted. Those domains relate to proxies, gambling,

adult, religion, and torrents. While these categories are known, notable cases include: a

Ukrainian news website (news.pn), various blackberry.com subdomains, an alternative chat

application (line.me), and an Italian job portal (impiego24.it). Similarly, 53 domains were

intercepted from 53 nodes that belong to CJCS TransTeleCom. We also found an instance

of City Telecom intercepting a Bitcoin-related and an adult websites. A forum user reports

seeing such interception on linkedin.com and contacted the ISP. In its response, the ISP

101

clearly indicates that they perform TLS interception to fulfill their legal requirements set

by Roskomnadzor. There were also two cases where VNET intercepted four domains that

correspond to technology (technofizi.net), political news (jollofnews.com, ajc.stats.com),

and torrent (zonetorrent.com) websites.

Moreover, three ISPs leveraged SkyDNS, a provider of “solutions for country wide

content filtering and network security”8 and effectively blocked websites related to mangas,

games, torrents, and the Korean blog brunch.co.kr. Finally, ZAO Teleconnect blocked an

adult website, as well as Photoshop tutorials and a 3D printer manufacturer website.

We also found one exit node in Uzbekistan that is shown certificates on nearly all its

traffic with a similar pattern as the City Telecom case. In both cases, the issuer contains

CN=Not trusted by "...", suggesting the use of a similar technology. For the Russian ISP, the

domain nadzor.filanco.ru is given between the quotes (note “nadzor” means control, as in

Roskomnadzor), while ATP_1 is mentioned in Uzbekistan.

Myanmar. One node’s traffic is intercepted by its ISP, as indicated by the issuer certifi-

cate C=MM, ST=Yangon, L=Yangon, O=Ooredoo Myanmar Limited, OU=IT, CN=BOTEWPOTHP1001.

Although not all domains were intercepted, we could not identify obvious intercepted cat-

egories. More importantly, this interception happened only on one node, even though we

also accessed some of the same domains at different nodes from the same ISP.

Hong Kong. In Hong Kong, we found several domains that belong to various large Chinese

tech giants being served with a unique certificate (whose issuer is C=cn, ST=fj, L=xm, O=cnc,

OU=sw, CN=all, emailAddress=cdn@chinanetcenter.com) from PCCW Limited (ASN4760).
8https://www.skydns.ru/en/

102

https://www.skydns.ru/en/

5.2.2.6 Likely Malware

GlobalSigns Root CA. This issuer (C=BE, O=Root CA, CN=GlobalSigns Root CA) seems to point

to a possible malware.9

TNS. Four nodes had all their connections intercepted and served with certificates issued

by e.g., C=RU, CN=TNS (12345) where the number between parentheses varies across nodes.

This pattern is found in various Komodia-based applications and suggests another use of

this SDK.

Generic Root CA 3. This issuer certificate seems to be generated by NetFilter; however,

its public key is not the SDK’s default one. We could not find where it comes from; how-

ever, Russian forum users report seeing unexpected interceptions of their traffic with this

certificate.10

5.2.2.7 False Positives

We found a number of certificates that were neither found in our baselines, trusted nor that

were the result of an interception. Due to the scale of our experiments, there were numerous

false positives that required manual investigation. We report notables ones below.

Dropcam. On nexus.dropcam.com, each new connection receives a different certifi-

cate issued by C=US, CN=Dropcam Certificate Authority, O=Dropcam, e.g., C=US, CN=oculus1147-

vir.dropcam.com, O=Dropcam. The number after oculus varies and is likely due to load balanc-

ing. The domain is used by an IoT camera and requires a client certificate [75].

NTP servers. The NTP Pool project gathers NTP servers around the globe and provides

geographically distributed and load-balanced domains that resolve to one of the nearest

NTP server, e.g., 2.android.pool.ntp.org reserved for Android applications to synchronize

their time. 81 such domains were found in our dataset due to being popular domain queries

9https://www.bleepingcomputer.com/forums/t/676550/need-help-removing-
malware-winverexe-infected/

10https://toster.ru/q/337905

103

nexus.dropcam.com
https://www.bleepingcomputer.com/forums/t/676550/need-help-removing-malware-winverexe-infected/
https://www.bleepingcomputer.com/forums/t/676550/need-help-removing-malware-winverexe-infected/
https://toster.ru/q/337905

in the Umbrella list. When resolving these domains through Luminati nodes, the destina-

tion server is often different than the ones we resolved from our University. These servers

may also run web servers and thus provide a certificate during our scans. Since these do-

mains are not intended to be web servers, we ignore all certificates obtained on domains in

*.pool.ntp.org.

Google. We found one instance of a certificate whose issuer DN clearly states: “This cert

should never been seen. Contact security@google.com.” We found several other cases of

this certificate from Censys’s IPv4 daily scans and contacted Google, which in turn reported

that this was not a security bug.

Other domains with changing certificates. The domain finglascelticfc.com serves ever-

changing certificates with the issuer C=US, O=Positive Software, CN=www.psoft.net, OU=self-signed

CA Certificate used in HS updater, apparently served by H-Sphere, a control panel for web

hosting platforms.

We found the domain cookiesoff.com serves intermittently a valid certificate from Let’s

Encrypt or a certificate for an HPE iLO Remote Management interface, which is normally

an out-of-band server and whose management interface is only accessible through a ded-

icated port. It is unclear why such certificate would be visible on the web; however, it

shows that intermittent server changes might be missed from our baselines and lead to false

positives.

Debian mirrors. Debian’s repository at security.debian.org can resolve to various mirrors

that serve certificates issued by an untrusted CA (Debian SMTP CA). It is difficult to detect

whether an interception occurs without obtaining a trusted copy of the root certificate in

the first place.

Corrupted certificates. We found 29 certificates obtained from 23 IPs that were corrupted

and either could not be parsed correctly or were simply invalid while the issuer DN seems

to indicate that they were issued by a trusted CA. When they could be parsed by OpenSSL

104

or by Python’s pyca/cryptography package, we consider that untrusted certificates

that shared the same RSA modulo or EC curve and points than certificates found in the

baselines for same domain, are false positives. We investigated these cases and found

that few bits were flipped or several bytes were replaced with a pattern that may resemble

memory pointers. It is unclear why we obtained such corrupted certificates, since TCP is

supposed to detect such corruptions. We are also unsure about the cause of the corruption,

especially what appears to be a memory leak. We could not bind them to specific domains,

countries or ISP, although we found more cases in Ethiopia than in the other 14 affected

countries.

Tor certificates. The Tor network relies on entry nodes (a.k.a. guard nodes) that behave like

HTTPS servers. In particular, they serve TLS certificates with seemingly random subjects

and issuers. According to Amann and Sommer [58], the subject and issuer follow specific

generation rules, i.e., both are generated independently and follow the regular expression

CN=www\.[a-z2-7]{8,20}\.(com|net). We found 16 such certificates in our dataset, and consider

them as false positives.

5.2.2.8 Remaining Unknown Certificates

After we analyzed the certificates, we are left with 633 unique unexplained certificates,

which comprise 259 unique issuers, of which 50 issuers and subjects were already seen in

baseline. They often come from single countries/IP and are thus mostly individual cases

that do not carry enough information for us to investigate.

We could find some obvious filters such as CN=mitmproxy, O=mitmproxy in Russia (from

the MITM tool of the same name), CN=SEB Firewall in Malaysia (unknown product),

CN=FWROOT in India (likely another firewall).

Most other certificates seem to be issued by untrusted roots or are simply default cer-

tificates in some products, e.g., 18 certificates with the issuer C=–, ST=SomeState, L=SomeCity,

105

O=SomeOrganization, OU=SomeOrganizationalUnit, CN=flexdefault, emailAddress=root@flexdefault on

megafile.co.kr. It is not possible to determine which are legitimate or are the result of

specific interception events.

Some certificates are seen on multiple domains from few or single IPs, and thus may

indicate a systematic filtering of the node’s network traffic. This happened for instance

in South Korea where certificates are issued by C=KR, ST=SEOUL, L=GURO, O=NETMARBLE

GAMES, OU=SECURITY TEAM, CN=Netmarble.com, emailAddress=NMG9101056@NETMARBLE.COM;

however, Netmarble is a Korean mobile gaming company. Therefore it is unclear why such

a certificate was seen.

More work would be required to investigate these remaining certificates.

5.2.3 Discussion on Network Errors

Domains not routed/blocked by Luminati. Luminati does not proxy requests through

an exit node for Google-related domains (with few exceptions), resulting in 33.7% of

all errors for 5,441 domains. We detect this behavior through debugging headers (i.e.,

“direct_route”). Luminati seeks to block Google domains due to complaints about high-

bandwidth activities originating from their network. This is an important limitation for

measuring interception of Google domains. In addition, Luminati blocks a number of do-

mains by returning an HTTP 403 “Forbidden Host” error before the tunnel is established

with the exit node. We found that they relate to controversial websites (e.g., 4chan.org,

rarbg.com) and high-throughput/low-latency services (e.g., digitalocean.com (VPS provider),

*.playstation.net, Office 365, mail.yahoo.com). Another list is also blocked with an HTTP

502 error, including only LinkedIn-related domains. These blacklists are responsible for

2.48% and 0.5% of all errors, respectively.

Timeouts. The second main reason for errors (22.8% of all errors) is due to timeouts that

occurred after a connection has been established. The vast majority of timeouts happened

106

while we were waiting a reply from Luminati. Our idle timeout was set to 30 seconds.

We could have waited longer at the expense of the duration of scans, especially when the

timeout is not due to poor network conditions at the exit node, e.g., request is being actively

discarded. In particular, half of all errors seen through Iran are due to timeouts.

Network errors while reaching Luminati. Another 11.7% of errors are due to our scan-

ner being unable to contact Luminati’s proxy node. Such errors are distributed evenly

throughout our scans and could be due to either transient networking errors on our side or

at Luminati’s super proxy.

Exit node errors. Nearly 16% of errors are due to a “502 Proxy Error” HTTP error. Such

errors originate from Luminati’s communication with the exit node, or failures at the exit

node itself. This type of error is particularly common when proxying through Yemen, as it

represents nearly 77% of errors in this country. In Syria with the Safari1031 profile, 38.5%

of all connections faced the “502 Proxy Error: server_error p2p conn failed” error, unique

to this profile in this country, indicating that the connection to the exit node was refused

or timed-out. We are unsure why Safari’s handshake led to such discrepancies. As no exit

node information was returned with this error, we cannot quantify whether this error has

been seen from particular exit nodes or networks.

Miscellaneous. Other errors include a TLS fatal alert 56 (“inappropriate fallback”, 1.6%

of all errors). This happens when an initial connection fails and we retry with a back-off

handshake that contains the TLS_FALLBACK_SCSV dummy ciphersuite. The server is

alerted that the client had to fallback to a less secure handshake, possibly due to a network

adversary. We also saw plaintext HTTP traffic as a response to our TLS ClientHello in

0.15% of errors. This can be identified when the TLS handshake version is 0x5454 in the

expected ServerHello, matching the “TT” in “HTTP” from a possible HTTP response. We

replicated this error to view the page content, which shows an HTTP 400 Bad Request error

107

for a different domain than the one requested. The TLS alert 31 (“access denied”) was ob-

served unequally across countries and was seen only in 2,031 cases (0.1% of errors). More

than a quarter of these cases were seen through Cuba. While the list of affected domains

contains software repositories and torrent websites, we are unable to draw a conclusion.

Similarly, the TLS alert 28 (“handshake failure”) was seen with various frequencies in all

countries; however, we were unable to tie it to a particular category of domain.

5.2.4 Trusted Certificates and CT logs

Although it is out-of-scope of our experiments, we briefly investigate our corpus of trusted

certificates to verify that no obvious interception is taking place with a valid yet unknown

(i.e., not logged) certificate. We consider 28 public CT logs including those from Google,

DigiCert, Comodo, WoSign, Symantec and a few others, aggregated at crt.sh. For each

of our trusted certificate, we verify whether its hash is included in at least one log, and

collect the earliest date of appearance in a log.

CAs can request a Signed Certificate Timestamp (SCT) for newly issued certificates as

a proof of inclusion in CT logs, and embed it in final certificates. For certificates that embed

an SCT (17.4% of all trusted certificates), we search for the presence of a pre-certificate

with the same serial number from the same issuer in any log and collect the earliest date

of logging. If found, we consider that the certificate we observed has been logged, even

though the final certificate may not appear in logs, which depends on the CA policies. The

ambiguous relationship between a pre- and final certificate complicated our search for a

matching pre-certificate given a final certificate with an SCT. Indeed, CAs may sign their

pre-certificate with a different intermediate certificate (e.g., Trustwave has a specific “Pre-

Certificate CA”). Also, domain masking to protect the confidentiality of domain names

could be an issue.

We verified that all trusted certificates including an SCT have been logged by at least

108

crt.sh

one CT. The reported time of inclusion always matched the time found in SCTs. For trusted

certificates that did not include an SCT, CT logs missed 1,121 certificates a month after the

end of our experiments, and still 537 five months later (including 204 seen only through

Luminati nodes). Notably, we found nine trusted certificates that were never logged and

belong to twitter.com and related subdomains. In particular, five of them were only seen

through Australia. These certificates indicate “SYD2 Point of Presence” as an organization

unit (OU), suggesting that the traffic was served from a datacenter in SYDney, Australia.

Similarly, the four others were seen through up to 13 countries, mostly from the Middle

East and Asia, indicating “FRA2 Point of Presence” as an OU. These results suggest that

Twitter dedicates certificates to different geographic regions.

Other domains whose certificates were not logged include update servers (e.g., F-

Secure, nVidia), Yandex.ru, adult websites, a Chinese CDN (cdnsvc.com), and various

miscellaneous domains. Note that CT logging was not mandated at the time of our L17

study. In addition, while Chrome requires newly issued certificates to be logged starting

from Apr. 2018, those used for purposes unrelated to web may not be affected, e.g., mobile

apps and software update servers.

5.3 Second Data Collection: L19

Our second experiment was conducted in 2019. We present below our updated data col-

lection methodology (Section 5.3.1), including a new choice of domains, countries, an

dupdated scanning methodology. Then, we present our findings in Section 5.3.2.

5.3.1 Data Collection Methodology

Overview. We improve our data collection methodology in the 2017 study. First, we in-

corporate the support for more recent browser handshake profiles that include the support

109

for TLS 1.3, which poses significant challenges to DummyTLS due to encrypted Certifi-

cate messages. Then, we expand and revisit the domain lists to account for recent work in

aggregating popular domain lists [155]. Also, to help understand the cause behind cryptic

untrusted certificates, we collect the index page over HTTPS in this case. Since Dum-

myTLS is not designed to support the full TLS handshake, we fallback to OpenSSL when

fetching the page content. Moreover, we no longer rely on a node’s IP address to distinguish

a node. Rather, we consider the unique ID assigned by Hola/Luminati SDK at install-time.

Furthermore, we improve the baseline collection to bring it inline with the certificate col-

lection through Luminati, significantly reducing the time gap between both datasets from

days to hours or minutes. Finally, due to the limited impact between browser profiles that

we could find in the L17 study, we rely solely on Chrome’s profile in this study.

5.3.1.1 Domain Datasets

Tranco. LePochat et al. [155] showed that individual popular domain lists such as Alexa

and Umbrella can significantly vary in time, and are prone to adversarial manipulations.

They propose a new list of popular domains, the Tranco list, that combines four popular

domain lists and smooths the ranking over time. We leverage this list as a replacement of

the Alexa list. We use the standard Tranco 1M list created on April 23, 2019.11

Umbrella. The standard Tranco list shares a common limitation with Alexa’s list in regard

to the absence of subdomain information. A custom list can be generated to include the

subdomains from Umbrella’s list with other lists; however the rankings are no longer re-

liable. Instead, we generate a custom list from Umbrella only, which is averaged over 30

days. This list of 1M domains was created on April 24, 2019.12

Twitter. Similar to the L17 study, we also leverage domains found in URLs shared on

Twitter. The collection period ranges from September 9, 2018 to February 14, 2019 (158

11Tranco list 2599
12Tranco list 5YQN

110

days). We obtained 43,454,651 URLs (34,930,241 unique). URLs obtained from Twitter

are sometimes invalid or shortened by various services (e.g., bit.ly, goo.gl). We filter invalid

URLs and those where the port number is neither 80 (HTTP) nor 443 (HTTPS). We replace

short URLs with the redirected URL obtained for 238 URL shortening services from the list

in [52] and few manual additions. Then, we resolve the domain names through OpenDNS

and remove URLs for unresolvable domains. Finally, we obtain 419,541 unique domains.

Combined list. We combine the three lists mentioned above instead of scanning them

separately. The three lists sum up to 2,163,486 unique domains, which we further validate

through OpenDNS, reducing the count to 1,895,686.

The resulting number of domains is still too high for our experiments. Therefore, to

reduce the number, we select the top 200K, bottom 50K and a random sample of 100K

domains from the middle of each list. The selected weights for each section favors more

popular domains while also considering less popular ones. We start from Tranco’s list, then

we discard any overlapping domains from Umbrella’s list before selecting the sub-lists. We

operate similarly with the remaining Twitter list and obtain 1,040,330 domains.

Since popular domain lists often contains domains that are backlisted in certain coun-

tries (e.g., adult websites), and given the further extent of this study, we take precautions to

minimize the number of such domains in our list. Indeed, if these domains are specifically

targeted for interception, we only evaluate censorship, which is not our focus. If not, then

we may detect interception on other domains. Therefore, we filter our list by removing any

domains that is either blocked by OpenDNS Family Shield or CleanBrowsing,13 found in

Citizen Lab’s testing list [89], in Université Toulouse 1 Capitole’s adult blacklist [197], or

in various other adult domain blacklists.14 This filter discards 24,209 domains.

Finally, we try to establish a TCP connection to the remaining domains on port 443 and

discard unresponsive ones. The final domain list contains 1,012,462 domains. The domains

13https://cleanbrowsing.org
14Block-IT! Project’s porn list (tspprs.com), and Block List Project’s porn list (blocklist.site)

111

https://cleanbrowsing.org
https://tspprs.com
https://blocklist.site

were scanned in a random order.

5.3.1.2 Country List

In this experiment, we set out to explore certificates from as many countries as possible.

Luminati allows to specify either a specific country or leave the choice to the superproxy.

To avoid biased selection by the superproxy (e.g., favoring countries with faster connec-

tions), we iterate over the list of countries/territories/islands advertised by Luminati’s API

documentation15 minus those for which we did not obtain any node during a prior test run.

For ethical reasons due to a recent law in Egypt, we discarded this country entirely, see

Section 5.5. In total, we scanned through 4,327,232 nodes in 203 countries. The complete

list of countries can be found in Appendix D.

5.3.1.3 Browser-like TLS Handshake Simulation for TLS 1.3

TLS 1.3. Since our previous experiment, TLS 1.3 has become a standard (RFC 8446 [136]).

Major browsers have started supporting the final draft of the protocol as early as Oct.

2018 [44]. TLS 1.3 is a major revision of the TLS protocol and partially defeats the goal of

DummyTLS to avoid performing a full handshake that involves cryptographic operations.

Indeed, while the server certificate chain is received in plaintext in previous versions of SS-

L/TLS, TLS 1.3 encrypts the server certificate chain with a negotiated key. It is therefore

impossible to simply send a ClientHello from a browser profile with only the server name

customized, and parse the server handshake messages.

To support this new version of TLS, DummyTLS first needs to send a key share along

with the ClientHello, i.e., an ephemeral public key chosen over a supported Elliptic Curve

(EC) group. Second, if the server accepts the selected EC group and provides its own key

15https://luminati-holanetworksltd.netdna-ssl.com/util/country.js

112

https://luminati-holanetworksltd.netdna-ssl.com/util/country.js

share, it can compute an EC Diffie-Hellman (ECDH) key exchange and derive the hand-

shake key and IV according to RFC 8446 [136]. Then, DummyTLS can decrypt subsequent

messages from the server until the HandshakeFinished message, including the encrypted

Certificate message; and finally close the connection. Figure 6 illustrates this interrupted

TLS 1.3 handshake.

TLS client TLS server

[TCP SYN] //

oo [TCP SYN/ACK]

[TCP ACK] //

ClientHello
Supported TLS versions, ciphersuites, groups, signature algorithms, client key share, etc.

//

oo ServerHello
Negotiated TLS version, ciphersuite, group, server key share, etc.

oo ChangeCipherSpec
Optional message in middlebox compatibility mode

oo {EncryptedExtensions}
Additional extensions

oo {CertificateRequest}
Optional request for the client certificate for client authentication

oo {Certificate}
Certificate chain and certificate extensions

oo {CertificateVerify}
Proof of ownership of the certificate’s private key

oo {HandshakeFinished}

[TCP FIN/ACK]
Close the connection

//

Figure 6: Illustration of a dummy TLS 1.3 handshake with a compatible server. Messages
between {} are encrypted with the negotiated symmetric cipher and the key/IV derived
from the negotiated hash function according to RFC 8446 [136].

Browser profiles. We did not find any significant difference between the various browser

profiles tested in L17, therefore, in L19, we only establish a profile for Chrome as the most

113

popular browser [40, 46]. We selected the most up-to-date version when implementing

DummyTLS, i.e., Chrome 71.0.3578.98 x64 for Windows (released Dec. 2018).

HelloRetryRequest. A novelty in TLS 1.3 that requires changes in DummyTLS is the

HelloRetryRequest mechanism by which a server indicates that it does not support the

selected EC group and therefore rejects the client’s key share. The client is then forced to

resend a ClientHello with the appropriate key share from the server’s selected EC group.

This mechanism is illustrated in Figure 7. Chrome v71 first sends a pair of points on the

x25519 elliptic curve. We fingerprint and replicate Chrome’s second ClientHello after the

server rejects the choice of curve and selects either secp256r1 or secp384r1, the two other

curves supported by Chrome.

Cryptographic support. Note that we only derive one key and IV to decrypt handshake

messages, and do not verify the server’s signature in the CertificateVerify message, nor

compute further keys. However, the key derivation and the symmetric cipher used are

dependent on the negotiated ciphersuite. While this could lead to a lengthy implementation

in previous versions of SSL/TLS, version 1.3 separates the negotiation of the key exchange

and signature algorithms, and also deprecates several dated symmetric ciphers and modes

of operation. Consequently, there exist only five TLS 1.3 ciphersuites, of which three are

supported by Chrome 71. DummyTLS parses the server’s chosen ciphersuite and thus

needs to support AES128-GCM, AES256-GCM, CHACHA20-POLY1305, SHA256, and

SHA384. We rely on Python’s pyca/cryptography package. Although most of its

features are considered “Hazardous Materials,” as of April 2019, we did not encounter

unexpected problems in our experiments.

5.3.1.4 Scanning Methodology

Overview. The baseline collection is done in parallel of the scans through Luminati in

the L19 study, and all countries are processed at the same time thanks to several instances

114

TLS client TLS server

ClientHello
Supported TLS versions, ciphersuites, signature algorithms, EC key share, etc.

//

oo HelloRetryRequest
Negotiated TLS version, ciphersuite, group, no key share

ClientHello
Original ClientHello with new EC key share

//

oo ServerHello
Negotiated TLS version, ciphersuite, group, server key share, etc.

...

Figure 7: Illustration of a retry when the server refuses the initial key share in TLS 1.3

running on our University systems and Amazon EC2. This ensures that the time gap be-

tween baseline and actual connections through the nodes remains minimal to avoid false

positives. As we scan the domain lists randomly and in different orders by country, estab-

lishing the baseline in a timely manner requires a direct interaction with the current state

of the scans. We also gain visibility about interception events where the given certificate

chain is uninformative by querying the index page of the intercepted domain and following

redirects. However, we do not rely on DummyTLS for this task as it is not designed to con-

duct a full TLS handshake. Since we establish a baseline for a domain after it is scanned

through Luminati, we need to validate certificates on-the-fly to detect the untrusted ones,

which could be part of an interception event. In turn, this slightly changes the certificate

validation design from the L17 study.

Figure 8 gives a high-level view of our scanning process.

Query pages. When a certificate chain obtained through DummyTLS is untrusted, we

re-establish a connection through the same exit node (if possible) with a different imple-

mentation that leverages OpenSSL through the ssl package. This is a best-effort solution

115

Popular domains

Handshake templates

Chrome

Tranco, Umbrella, Twitter

Scanner

Luminati nodes Central database

Local databaseUniversity/EC2
Baseline

dummyTLS

untrusted?
OpenSSL

certs

certs

certs

pagenode

redirect?

headers

Figure 8: Scanning process overview for L19

to query pages that might include injected content. However, it suffers from several limi-

tations. As we have less control over OpenSSL’s handshake, the fingerprint of the Clien-

tHello is different than the one used by Chrome. Nevertheless, we set OpenSSL to use the

ciphersuites used by Chrome.

When a connection is established, we also send the same HTTP request Chrome would

send from a US installation of Windows 10. We argue that the difference in treatment by

a potential network adversary due to the User-Agent we send should not be significant,

as it only shows Windows the Chrome version numbers. The preferred language in the

Accept-Language header depends on system settings or the browser configuration and

are generally not fingerprinted. We only support HTTP/1.1 and do not negotiate HTTP/2.0

as Chrome does.

We receive the server’s response and parse the headers to search for a Location

header that redirects us elsewhere. We follow the direct if we are redirected less than two

times, and if the URL port is 443 or if the scheme is HTTPS (as we are not interested in

plain HTTP interception).

Baselines. Each instance of our scanner runs a baseline scanner that continuously pulls the

local database to collect recently scanned domains. A new baseline is established if one

does not exist or is more than 15min old. We queried 1,013,678 domains an aggregated

total of 14,655,398 times, and collected 494,813 unique certificates (of which 13,941 are

untrusted). We scanned more domains than in our domain list as we also follow HTTP

116

redirects when a certificate is untrusted.

Scans. We collected certificates from 203 countries/territories through Luminati between

Apr. 27 to 30, 2019 (89 hours). We collected 47,632,060 observations (excluding con-

nection retrials) through 4,327,232 nodes (identified by their client ID, cid), 21,753,241

(45.7%) of which returned a certificate chain. The lower rate compared to L17 is mostly

explained by errors from newly considered countries where no node were available and

timeouts. To avoid stressing the network in countries with slow Internet, we limited our

experiments to a maximum of five concurrent threads by country and less threads for coun-

tries with fast response times. Similar to the L17 study, we also allowed a timeout of 30

seconds to receive a response from the exit node and retried once upon failure.

All countries were scanned in parallel up to exhaustion of our budget. Due to the

availability of nodes and varying connection speeds, not all countries were tested equally,

ranging from 30 to 450,212 successful connections per country (median 71,224), and from

28 to 438,447 domains scanned per country (median 67,937). Therefore, unlike with L17,

not all domains were attempted through all the countries.

5.3.1.5 Verifying Certificates

Since we establish baselines for domains after they are scanned through Luminati, at the

time of the first scan, the scanner has no information about the legitimacy of the received

certificate chain. To collect webpages where an interception is detected, we instead collect

webpages where an untrusted certificate is received, which includes interception cases.

Intermediate certificates can be missing from the certificate chain, which would prevent

the verification of the leaf certificate and in turn lead to false positives. Unlike in the L17

study in which certificates are verified afterwards, we need to collect trusted intermediate

certificates prior to the certificate verification. We collect all the intermediate certificates

117

found in known CT logs as available from crt.sh, resulting in 7,359 certificates. We con-

sider a certificate to be trusted if it can be linked to a trusted root certificate from Windows,

NSS, and Apple that were effective during Apr. 2018 to Apr. 2019. We enlarged the scope

of the root stores compared to the L17 study due to websites serving outdated certificates

that were once valid and could be issued by now-untrusted roots. The combined trust store

sums up to 365 certificates.

5.3.2 Findings

Compared to L17, the level of interception in L19 is significantly lower, likely due to the

design of the experiment and the change in the nature of the population in Luminati that

are allegedly more mobile-based. A breakdown of the categories of certificates is shown in

Figure 12.

Certificate subsets Size
(#certificates)

Size
(#affected

nodes)

products/
distinct events

Percentage
of successful
connections

All certificates collected through
Luminati 505,641 4,151,013 – 100%

All certificates collected through
Luminati not in baseline 12,441 55,123 – 0.30622%

Trusted certificates 4,392 47,177 – 0.21898%
Enterprise filters 4,736 3,271 19 vendors 0.03969%
Others 1,273 2,011 – 0.01862%
False positives 290 2,052 12 services 0.01715%
DNS filters 1,168 535 5 products 0.00676%
Adware/malware 224 63 6 products 0.00188%
Antivirus software 173 128 3 products 0.00151%
ISP censorship 110 37 4 countries 0.00097%

School filters 48 16 5 universities
/schools 0.00042%

Anti-ads software 27 10 2 products 0.00024%
Intercepted connections 6,486 4,052 – 0.05147%

Table 12: Breakdown of certificate categories in L19. “–” indicates that the number is
either inapplicable or irrelevant.

118

crt.sh

5.3.2.1 Enterprise Proxies and Home Filters

Enterprise proxies. Enterprise proxies remain as a significant cause of interception. We

update the fingerprints established in L17 to account for newer or edge-case certificates for

Cisco IronPort Web Security, ContentKeeper, CyberHound, Fortinet, SonicWall, Sophos,

Symantec Blue Coat, TitanHQ, WatchGuard, WebSense, and Zscaler. We also include

fingerprints for new products we found from Juniper, Mimecast, and Netasq. Certificate

fingerprints are given in Appendix E.

Among the certificates that includes nominative information, we found a hospital in

Columbia, the national police in Senegal, and a phishing filter in the European Organization

for Nuclear Research’s Grid network.

Antivirus. The number of distinct antivirus products dropped from seven in L17 to three

in L19, including Kaspersky, ESET and Dr.Web.

DNS filters. Beyond OpenDNS, we also found certificates from SafeDNS in South Africa,

Thunder DNS in Kenya, DNSFilter in Azerbaijan, and Whalebone in Czech Republic.

While OpenDNS could be used by residential users and enterprises alike, the other services

are branded for corporate users. We thus report such services separately from enterprise

proxies and home filters from L19.

Schools. We found schools and universities that were not part of the L17 findings, including

Curtin University (AU), the International School of Phnom Penh (KH), IMSciences (PK),

King Faisal Specialist Hospital & Research Centre (KPSH, SA), Nelson Mandela Univer-

sity (ZA). The latter one blocked 34 domains and presented a standard Fortinet warning

page with the reason for preventing access (e.g., “Illegal or Unethical”, “File Sharing and

Storage”, “Phishing”). KPSH intercepted the connection to lgtvonline.lge.com (apparently

related to the functioning of smart TVs), and only showed a network connection error in

the delivered page.

VPN. A node in Poland obtained certificates issued by CN=VPNGURU Cisco VPN, O=VPN

119

GURU LIMITED on a domain that was unreachable throughout our experiments. It seems to

belong to a now-defunct VPN Android application, suggesting that mobile phones are used

by Luminati beyond its dedicated mobile zone.

Product name # nodes Countries where seen
Fortinet FortiGate 2422 125 countries
OpenDNS 523 80 countries
Sophos XG Firewall 264 77 countries
NetSpark 159 IL
Cyberoam / Elitecore 146 59 countries
Kaspersky 115 64 countries

Sophos UTM 115
AE, AT, AU, BE, CA, CH, CL, CO, CZ, DE, DZ, EC, ES,
FJ, GY, HK, ID, IL, IN, IR, IT, KR, MA, MM, MY, MZ,
NG, NI, NL, NZ, PH, PK, PT, ZA

Zscaler 42 CH, FR, HK, IL, IN, NG, SG, ZA
Untangle NG Firewall 33 AO, CL, CO, GB, GH, IE, IN, IS, KE, MX, NO, TZ, ZA
Symantec Blue Coat ProxySG/ASG 23 ID, MY, SA, SG
McAfee Web Gateway 15 MA
ESET 12 FI, IR, MD, MZ, PE, SD, SK
TitanHQ WebTitan 11 AT, AU, CH, FR, GB, IL, IT, KY
WatchGuard Fireware 10 BE, BR, DO, HR, IL, IT, SE
Smoothwall 8 BM, CA
Cisco IronPort Web Security 4 CO, PL, SA
ContentKeeper 3 AU, IN
Netasq 3 FR
SonicWall 2 IE
Dr.Web 1 UA
Juniper EX Series Switches 1 HN
Mimecast 1 IE
Netbox Blue / CyberHound 1 AU
SafeDNS 1 ZA
Sophos Web Appliance 1 GB
Thunder DNS 1 KE

Table 13: Antivirus, enterprise middleboxes and home filters found in L19

5.3.2.2 ISP-level Injection

Israel. In Israel, the Rimon Internet ISP describes itself as “the leading Internet provider

in the field of safe browsing in Israel.” We found this ISP systematically intercepts connec-

tions and appends Javascript code to all webpages. The code contains a URL that points

to a warning page; however, it is not necessarily triggered. The injected code is shown in

Figure 9.

120

<script type="text/javascript">var netspark_charset = "utf8"; var
qJsHost = (("https:" == document.location.protocol) ? "https://" :
"http://");document.write(unescape("%3Cscript src=’/jsQuilting/
server/jsDict_utf8.js?v=1&k=23898278c1850f536d688db3614128a0’ type=
’text/javascript’%3E%3C/script%3E"));</script>

<script type="text/javascript">var ntsp_block_page = ’http://safepage.
neto.net.il/?a=block/block1&level=-30&url=http%3A%2F%2Fwww.
codespace.co.za%2F&cause=Quiltingjs&user_id=207088&startm=200805’;
var ntsp_url_level = 0;var ntsp_user_level = -30;</script>

Figure 9: Snippet of Javascript injected into webpages by Rimon Internet in Israel

Algeria. Algerie Telecom intercepted several but not all connections from a node in Algeria

and presented a certificate with the issuer C=DZ, ST=Algiers, L=Algiers, O=ALGERIE TELECOM,

CN=AT WEBSENSE. We found two reasons for this. First, when the remote server does not

respond, which we could verify since no baseline could be established for those domains, a

verbose 403 error page that specifies e.g., “Peer disconnected after first handshake message:

Possibly SSL/TLS Protocol level is too low or unsupported on the server.” The other reason

is that the domain is blocked, as evident from the 302 redirection to an internal IP address

with the URL that contains blockpage.cgi. This occurred for the Spanish domain

mentesadolescentes.com, a now-defunct teenager blog.

Belarus. Four nodes in Belarus saw a censorship message while the traffic to six domains

was intercepted by Atlant Telecom.

5.3.2.3 NetFilter-based Interceptions

We also found certificates issued by NetFilter’s default key. Wajam is still at the top of the

list, which warrants a more thorough investigation exposed in Chapter 6.

5.3.2.4 False Positives

A cryptocurrency mining pool exposes numerous self-signed certificates (C=IT, ST=Pool,

L=Daemon, O=Mining Pool, CN=mining.pool) on supportxmr.com, emergency.googel-dns.com

121

Common name # nodes Countries where seen

X Wajam: {some base64} 2 29 BR, CL, CR, FI, FR, ID, IN,
IR, MY, PH, PS, PY, VE, VN

X Wajam: [0-9a-f]{16} 2 4 AR, SI, UA, VN
× Generic Root CA 3 1 RU
X GlobalSignature Certificates CA 2 1 CN
X HttpAnalyzer CA 1 IT
X Sample CA 2 1 IN

X: all certificate signatures were verified against ProtocolFilters’ hardcoded key

Table 14: Certificates issued by ProtocolFilters in L19

and related domains. Ten of these certificates were captured in the baseline; however, 13

others were not. Since these ones do not show any distinctive element from the remaining

ones (i.e., same validity duration of 100 years, same key size), we consider them as false

positives.

Traefik is an HTTP reverse proxy and load balancer that generates a default self-signed

certificate with the issuer CN=TRAEFIK DEFAULT CERT. We found instances of this certificate

issuer at least intermittently on 22 domains in the baseline. Similarly, we consider such

certificates as false positives.

Network equipments from H3C display certificates following the pattern CN=H3C-HTTPS-

Self-Signed-Certificate-*. We found two domains that served such certificates, irrespective of

the country. These certificates are thus likely issued at the server side.

The domain dyndns.atlas.ripe.net and its subdomains are intended for network mea-

surements, and returns different predefined IP addresses when queried. As a result, we

sometimes obtain certificates on this domain that correspond to servers we did not visit in

our baseline. We discard this domain altogether.

Tor certificates were found on 17 domains, and account for 117 certificates seen by 146

Luminati nodes.

122

5.4 Insights

5.4.1 Interpretation of the Results

Antivirus. Antivirus solutions performing TLS traffic analysis are still prevalent, which

confirms previous studies [134, 192, 48, 112]. However, we only found seven products in

L17: Avast, AVG, Bitdefender, BullGuard, Dr.Web, ESET, Kaspersky, and three in L19.

False positives. The client-end view of the HTTPS ecosystem often triggers false positives

due to a variety of reasons: measurement domains, geographical locations, sporadic server

changes, mirrors, non-web applications, Tor guard node certificates and other edge cases.

Establishing a reliable baseline of expected certificates helps reduce the burden to filter out

these false positives, as evident from their reduction in L19 compared to L17 thanks to a

timelier certificate collection.

Middlebox types. Most of the interception events were due to at least 31 identifiable

enterprise proxies from 28 vendors. This list is more comprehensive than the six middle-

boxes tested for security weaknesses by Waked et al. [243] and the 13 middleboxes tested

for prevalence by Durumeric et al. [112]. In particular, we find examples of interception

by ContentKeeper, Smoothwall, and SonicWall (already fingerprinted in Chrome [124]), as

well as WatchGuard Fireware, DeviceLock, CyberHound RoamSafe, InfoWatch, Somansa,

Netasq, and Mimecast. We found that the role of these middleboxes is not always a fire-

wall, but could also be for Data Loss Prevention (DLP). We note that some vendors propose

distinct appliances for both uses, which could exhibit different interception behaviors.

Use of middleboxes. We found middleboxes used in a variety of contexts, ranging from

small/medium businesses and institutes to hospitals, hotels, resorts, insurance companies,

and government agencies. One interesting sector is the use of TLS interception from pri-

mary schools all the way to universities. Some products are particularly tailored for schools,

e.g., CyberHound.

123

Adware/malware/SDK. Cases of traffic interception by adware and malware is more di-

verse and widespread than previously reported. We found at least 19 examples of different

such ad/malware in 35 countries. The closest measurement work to ours only reported

one case of malware intercepting traffic on 14 nodes only among 115 countries [48], while

O’Neill et al. [192] found eight cases among 140+ countries. The top traffic-intercepting

adware we found in 32 countries is Wajam. Many of these applications rely on the NetFil-

ter+ProtocolFilters SDK, which appears to be used mostly for dubious purposes.

Regarding network interception SDKs, we did not find any case of application relying

on the Komodia SDK, brought to light by the Superfish and PrivDog incidents in 2015, and

on which several other applications are based.

Differences across counties. We found that Russia and India are more prone to TLS traffic

interception as suggested by the distribution of several NetFilter-based interceptions, and

ISP interception for the former.

Retailer-installed filters. Superfish was unique in that it was pre-installed by Lenovo on

certain of its laptop families. We found one case of a custom content filter pre-installed by

UBT in Australia on computers it sells to Australian university campuses according to its

registration page. Other such retailers could exist in other countries.

Students. Considering filters pre-installed on students laptops and school-specific middle-

boxes, the student population seems to be particularly prone to TLS interception. To our

knowledge, as of today, the technologies involved in students’ TLS traffic interception that

we found in our dataset have not received any particular scrutiny, and may pose a security

and privacy risk.

Compensation. While some users may find their traffic being intercepted as a nuisance,

others seek to sell their traffic to companies interested in studying user traffic.

Benefits of a multi-country view. The perspective we get from leveraging the Internet

connection of users across several countries helps identify threats that are usually unknown

124

from Western-based researchers, e.g., Russian or Chinese software, and helps identify

niches as mentioned above.

Leveraging invalid certificates. Future work that focuses on identifying the network

equipment technology of middleboxes may find it relevant to try to connect to domains

that serve invalid certificates. We found that middleboxes tend to respond with a more

verbose and uncustomized certificate as a result.

5.4.2 Comparison with Related Work

We observed that around 0.25% of the connections made in L17, and between 0.05–0.07%

of the connections in L19 were intercepted. First, the related work interested in measuring

HTTPS interception found varying levels of interception at par with our findings. Chung

et al. [85] report 0.05% of connections were intercepted; Huang et al. [134] report 0.2%;

O’Neil et al. [192] report 0.41%. One exception is Durumeric et al. [112] who finds that

between 5 to 10% of connections received at various servers and CDNs are intercepted;

however, they caution that the numbers may be inflated. Second, the number of intercepted

connections is reduced by up to one fifth from 2017 to 2019. We caution that a naive inter-

pretation of our results may wrongly conclude that the overall level of HTTPS interception

dropped during those years. There are indeed various reasons that can explain this result:

1. The population in the Luminati network significantly evolved according to Lumi-

nati’s staff, by moving from the Hola VPN that was mostly a desktop platform solu-

tion towards third-party applications that leverage the Luminati SDK and are mostly

intended for smartphones and smart TVs. As a result, several cases of client-end

interceptions due to installed software are no longer observable.

2. The design of our two studies is significantly different. It leverages a different num-

ber of domains from slightly different sources and not only the most popular ones,

125

all domains were not scanned through all countries in L19, and the list of countries

considered is significantly different.

Chung et al. [85] briefly looked at HTTPS interception through Luminati; however,

their results differ significantly from ours. Their measurement spanned across 807,910

nodes in 115 countries; yet, they only found 320 unique issuer CNs, and further investi-

gated only the 13 most common groups of issuers. Those were attributed to one instance

of malware, one DNS filter (OpenDNS), and 7 antivirus programs. We outline the dif-

ferences with our study that may explain this difference. First, their study was conducted

15 months before our first study. A change in the landscape of interception may partially

explain the difference in results. Second, their experiments also lasted for four days, while

our L17 study lasted 22 days. The duration and specific time of the study may influence

the selection of available nodes (see more discussion on this point in Section 5.6). Third,

the choice of the domain list and the scanning methodology is crucially different. For each

node, Chung et al. queried three randomly selected sites from different categories among

a list of 33 country-specific domains. If any was intercepted, they proceeded to query the

remaining domains. Their domain categories comprise the top 20 domains from Alexa’s

country-specific lists, 10 US university websites, and three domains serving various types

of invalid certificates. We showed that querying domains that serve invalid certificates is

useful to trigger TLS proxies to serve special certificates to reflect the error, which may ex-

pose their presence and the specific technology used. However, the choice of the remaining

30 domains seems to be a defining factor. Besides lacking subdomain information, their

number might simply be too limited to explore the many cases where HTTPS interception

could take place. For instance, any DNS filter or ad blocker that redirects the traffic or

changes the page content may do so for selected websites only, which are neither popu-

lar (e.g., malicious domains are unlikely present in Alexa top domain lists) nor shown in

Alexa’s list (e.g., ad-related domains are not considered websites, although they may be

126

frequently visited). Also, those domains could simply be too popular to be frequently or

widely intercepted.

5.5 Ethical Considerations

Our study involves user Internet connections in hundreds of countries, through which we

access up to hundred thousands of websites, and therefore it raises ethical issues. We

discuss them in details below. See also Chung et al. [85] for similar ethical considerations

in the use of Luminati.

User consent. We paid Luminati to use the connectivity of participants who opted-in the

related Hola service with a free subscription. Unlike a notoriously controversial measure-

ment study involving unaware participants (see [80]), we emphasize that in our study, users

clearly made the choice to use Hola and explicitly share their Internet connection with oth-

ers. This is indeed clearly indicated on the main webpage: “Hola is the first community

powered (Peer-to-Peer) VPN, where users help each other to make the web accessible for

all, by sharing their idle resources.”; the download page: “Use Hola and be a peer” with

a Free plan; the FAQ: “When your device is not in use, other packets of information from

other people may be routed through your device.”; and the EULA: “By using the Services

you consent to the use of your device in the described manner and agree that other Hola

devices may use your network connection and resources.” During our 2019 study, Luminati

claims that most of its nodes are users of applications that rely on the Luminati SDK for

monetization. The user’s consent is requested on a splash screen during the first launch

of the application, see e.g., Figure 10. Users could opt-out by paying premiums or unin-

stalling Hola at any time, disabling Luminati or uninstalling the application that contains

the SDK.

Claims by Mi et al. A recent study [173] shows that various residential proxies such as Lu-

minati leverage “suspiciously compromised residential hosts,” such as IoT devices, based

127

Figure 10: Consent splash screen displayed by the Luminati SDK in an application

on external and internal scans of the node’s network. While external scans are inconclu-

sive by nature due to the overwhelming use of NAT in residential networks (and are also

ethically questionable in this context), we argue that the authors could not further verify

the nature of the node using internal scans or accessing the localhost domain or IP address.

Indeed, Luminati prevents requests made to a direct IP, which prevents 127.0.0.1 from

being reached. Then, domain names such as localhost are also prohibited. Finally, we also

tested a DNS rebinding attack against Luminati whereby we try to query a public domain

name that resolves to 127.0.0.1. Such an attack equally failed. Therefore, and since

the authors note that Luminati is the brightest among other tested residential proxies, we

conclude that there is no reasonable doubt that Luminati nodes are exploited illegitimately.

Risk to users. We are aware that our domain lists include websites deemed illegal/illegit-

imate in certain countries we consider, which could potentially cause harm to users [104].

We resolve those domain names through the exit nodes, establish a TCP connection and

start a TLS handshake, which may indicate an intention to fetch content from such sources.

However, as we also do not finish TLS handshakes and do not request any webpage in L17,

no illegitimate web payload ever reaches the user’s device. Consequently, there is also no

128

incriminating evidence stored on the user’s device about such websites, mitigating the risk

to users. We only fetch pages in L19 for connections that serve an untrusted certificate,

which usually does not happen on regular websites in absence of interception. Moreover,

while accessing sensitive/illegal content could be punished, users already took the risk of

using Hola (if not already blocked), which is branded as a censorship circumvention tool

(main-page: “Hola gives you the freedom to browse the web without censorship”) and likely

to be illegal as well. We argue that we add very little risk to such users who already de-

cided to take this risk. Also, a few passive network requests made from each host normally

don’t trigger repercussions, although the risk is difficult to quantify. Indeed, Narayanan and

Zevenbergen [186] note that “[t]here is little information available on the likelihood and

severity of persecution for simply accessing (or attempting to access) blocked domains.”

Some countries have adopted laws that could lead to the imprisonment of individuals ac-

cessing websites related to terrorism; however, the access needs to be repeated and exemp-

tions exist including journalistic or research activities (e.g., France [117]). One exception

is Egypt, which passed a new law in 2018 that punishes the access to blocked websites with

imprisonment and fines [43]. Therefore, we removed Egypt from our country list entirely

in our 2019 study. Finally, we clarified this matter with the Research Ethics Unit of our

University, who responded with the following:

“If [you will respect the exact parameters users agreed to in the Terms and Condi-

tions section when they signed up on Luminati], then this is not an issue since they

are aware of the type of risk they potentially expose themselves to, such as their

connection being used by someone else in ways they have no control over.”

Personal information. By design, we did not interact directly with exit nodes, and did not

seek to collect personal information beyond the user IPs. The certificates we collect may

reflect some information about a node’s environment, e.g., choice of traffic monitoring

software, the presence of malware, or the name of the institution/enterprise at which the

129

node is hosted; however, no personal information about the user is expected to be included.

Also, we note that we do not actively fetch intranet-related resources, which could include

further private information as reported in [48]. Finally, since our requests only contain TLS

handshakes, we do not collect payloads that could reveal personal information either.

Bandwidth impact. As TLS handshakes are small in size, the overall impact on a user’s

bandwidth remains limited. We distribute the load of our scans so that a node is queried at

most 10 times in a row, and the node is randomly picked among other nodes available at

the time of scans in its country, reducing bandwidth requirements for each node.

Twitter URLs. When collecting URLs from Twitter, we legitimately accessed the public

Twitter API for two weeks in L17 and for less than six months in L19, giving us access

to a random 1% sample of all public tweets (containing location information, restricted by

Twitter). Users involved in these tweets registered to Twitter and agreed that their tweets

are public by default, as specified in Twitter’s Privacy Policy: “Twitter is public and Tweets

are immediately viewable and searchable by anyone around the world.” They have the

possibility to switch their account to private at any time to hide their tweets. We also

complied with Twitter’s Developer Agreement that restricts how Twitter Content can be

used. When we receive a tweet from the API, we scan it then extract and store only URLs.

All other text information, the user’s handle, attached media, and geographical locations

are discarded. When we finish collecting URLs, we identify short URLs from a list of

providers and resolve the full URL. We do not visit the full URLs and other non-shortened

URLs. Finally, we only keep an aggregated list of domains sorted by popularity, further

reducing any perceived harm to the users.

130

5.6 Limitations and Generalization

5.6.1 Threats to Internal Validity

Scanning methodology. We usually tested few domains per node, contributing to the

general picture but preventing exhaustive testing of each node, which may miss potential

interception if the right domain/node combination is not tested. Ideally, we would have

tested all considered domains through all nodes; however, this seems infeasible with a

comprehensive list of domains. In L19, we also could not finish testing all domains through

all countries, leaving many domains unexplored in some countries. Therefore, the absolute

number of interception cases is a lower bound on the potential number that could be reached

if we had exhaustively tested all domains through all the nodes we reached. The relative

percentage of intercepted connections would have differed as well, although we cannot

reliably estimate whether it would have increased or decreased.

Browser simulation. A typical browser launches several simultaneous connections to a

target server and proceeds to request the main intended resource on the first established

connection. Furthermore, multiple resources can be fetched across the established connec-

tions. An attacker may be interested to intercept only a single resource, and may resort to

selectively intercept only specific connections, but not necessarily the first one. In this case,

we would report that no interception took place as we only attempt to make one request per

domain (unless we obtain an invalid certificate in L19).

Also, if a TLS interception discriminates the browser used, it may not accurately detect

our traffic since we are unable to forge OS-specific TCP parameters through Luminati.

Indeed, the TCP packets that are seen between the exit node and the server are generated

by the exit node, which is dependent on its OS parameters, not ours.

This limitation is more relevant when we aim to simulate smartphone connections that

are effectively made by a node’s desktop OS, or conversely and more specifically in L19,

131

when we try to simulate a desktop browser and nodes appear to be mostly mobile devices.

Correctness of DummyTLS. DummyTLS is an experimental tool made of more than

1,600 SLOC and developed to mimic enough of a browser’s TLS handshake to retrieve

the server’s certificate chain. While it supports error-free handshakes, backoff and retries,

and few typical errors, it is not intended to deal with more specific behaviors. For in-

stance, there are several TLS alerts that a server could send that may lead a browser to

reattempt a connection differently. If we receive an alert we do not recognize, we simply

abort the connection. There might also be bugs that prevent us from collecting certificates

or from recording and associating them correctly to other records. This could cause inter-

ception cases to be missed or incorrect certificates to be recorded. We systematically tested

our implementations on sample servers before our experiments to verify that the record-

ing capability was functioning correctly. Regarding missing certificates, we can at least be

confident about the ones we collected, as it is not possible that our tool record a certificate

it has not received through Luminati.

Systematic interception. Throughout our study, we assumed that an interception would

systematically occur if a connection to a filtered domain is made. While this holds true

for content filers such as antivirus and enterprise proxies, there may be cases where a

middlebox/product or attacker waits for specific circumstances to occur and selectively

intercepts a connection. We would not necessarily identify these interceptions. Similarly,

since several unfinished TLS handshakes are made through the same exit node, our scans

may raise suspicion. We assume that a high volume of such handshakes do not lead to a

different filtering/interception behavior.

Country attribution. Luminati’s attribution of country to exit nodes may not be fully

reliable. We found at least a few cases of mis-attribution, e.g., two Turkish nodes under

the US. This could lead us to attribute certain cases to the wrong countries. However, in

practice, the certificates we obtained often offer clues about their country of origin, either in

132

the CN or other information shown in the DN, which corroborates with the node’s attributed

country.

Luminati’s infrastructure. All connections made through Luminati transited through Lu-

minati’s superproxy and the client application installed on the node. We did not investigate

how the connection between Luminati and a client application is secured. It might be pos-

sible for an adversary to tamper with this connection. We believe this would be unlikely,

due to the tool being used to bypass censorship in the first place, except the case when

the connection could simply be blocked, thus preventing the node from being part of the

Luminati network altogether.

Malicious node operators. A study related to ours by Winter et al. [245] found that Tor exit

node operators may tamper with the traffic they relay. Similarly, Luminati node operators

could try to tamper with the connections they proxy and trigger a higher volume of TLS

interception than would normally occur on the node. We acknowledge this bias; however,

we note that Tor has only about a thousand exit nodes at any time [58], while Luminati

advertises millions of nodes. We argue that the probability of encountering such a malicious

node is thus significantly lower with Luminati.

Malleable fingerprints. We detect interception cases by referring to the certificate we re-

ceive. This certificate is not publicly trusted, and since we rarely know of a legitimate root

certificate to check against (e.g., OpenDNS), we simply rely on the information found in

the certificate itself to attribute it to a certain middlebox or product. However, an adversary

could forge certificates so they look identical to ones that a known middlebox or product

could issue. We would then fingerprint the forged certificate according to the attacker’s

intend and we may not realize it by other means of verification. This limitation is shared

by other work that study HTTPS interception, e.g., Durumeric et al. [112] rely on finger-

printing the ClientHello of browsers, antivirus software and enterprise middleboxes. An

adversary that intercepts a connection may shape the ClientHello to the server in a way that

133

mimics a known browser. We acknowledge that such fingerprints are malleable; however,

middleboxes and filtering products do not generally try to mimic each other.

Non-web traffic. The Umbrella domain list contains domains that are unrelated to web

browsing activities. Software update servers and mail servers can also be found in the list.

Some non-web services may also run on port 443; however, the traffic they expect is not

coming from a browser. Similarly, if the traffic to such services is fingerprinted before it is

intercepted, then our browser profile —as realistic as it can be— will be detected as non-

legitimate traffic. In this way, we may also miss interception events. Further work would

be needed to identify domains that are not web-related and mimic the traffic they expect.

5.6.2 Threats to External Validity

Population bias. Our experiments only rely on a single network of peers whose users

either decided to install a specific VPN application (in L17), and/or agreed to share their

connection as part of a third-party application’s monetization options (in L19). The VPN

application is branded as both a censorship circumvention tool and to unblock geograph-

ically restricted content. Thus, the type of users that may install it does not represent the

general population. With third-party applications in L19, this bias may be reduced; how-

ever, we do not have enough information as to the type of applications that are used, and

hence the corresponding user profiles. Therefore, a simple extrapolation of our results is

unwise. Nonetheless, there are general conclusions that hold true, see Section 5.4.

Size of the study. Our dataset is relatively small in size with regard to global network

traffic. We expanded our experiments in L19 in terms of the number of domains, countries

and nodes; however, this is not sufficient to generalize our findings.

Churn. Luminati’s population evolves in time, and may also depend on the current wall

clock, calendar day, and specific calendar events. This prevents our relatively short studies,

especially L19 (89 hours), from capturing some interception events. Conversely, this may

134

have overemphasized some events.

Intercepted connections vs. interception cases. The number of intercepted connections

should be grouped by their nature rather than interpreted absolutely. For instance, one

node can help us discover a previously unreported insecure employee monitoring software

used in a specific country (FileControl in Russia), which could affect several businesses.

Conversely, several certificates can tell us little that we do not already know, e.g., ISP inter-

ception in Russia is done at the ISP level, leading to apparently several distinct interception

events that actually have a common root (i.e., government censorship).

Inference between L17 and L19. It would be incorrect to infer the observed trends in both

datasets as an evolution due to: 1) the different designs of our studies, including various

number of countries, domains, and duration of the experiment; and 2) differences in the

population as Luminati moved towards embedding an SDK into third-party applications.

5.7 Concluding Remarks

We explore the issue of HTTPS interception by investigating what users actually see in

terms of TLS certificates. This method is partially data-driven and allows new TLS proxies

to be identified based on the information collected. This feature is in contrast to finger-

printing TLS connections from the server side [112], which requires all fingerprints to be

established out of bound and offers limited perspective to characterize unknown signatures.

Incoming connections to the server may also look alike (i.e., share the same fingerprint);

however, they may have different root causes. For instance, when a TLS interception li-

brary is used such as NetFilter or Komodia, the fingerprint of the ClientHello will certainly

look identical for any program that leverages these libraries. We found that NetFilter has

been used in at least 18 distinct ad/mal-ware campaigns, including widespread and lo-

calized ones, and ad blocker applications. This level of precision cannot be reached by

fingerprinting ClientHello messages.

135

Then, if an unexpected signature is detected, it is likely that the connection is inter-

cepted. However, the incoming connection does not carry nominative information related

to the technology used. Durumeric et al. [112] note for instance that the top 1, 3 and 5 most

common sources of interception for connections reaching the e-commerce website they

monitor is unknown. We will see in Chapter 6 that traffic-intercepting adware particularly

targets search engine and online shopping websites, which may be responsible for one of

those unknown cases.

Similarly, the authors note that among the intercepted connections to Firefox update

servers, the top three culprit is an unknown proxy and is found predominately from India.

Our study shows that India is victim of several targeted malware campaigns that leverage

the NetFilter SDK. Our methodology allows the discovery of new intercepting middle-

boxes. Although we need to rely on the information contained in the certificate, it is possi-

ble to later verify that the certificate indeed seems like it has been issued by the product it

claims.

Finally, we acknowledge that our study leverages a single residential proxy provider

and therefore suffers from a number of biases. However, note that gaining visibility into

the client’s perspective is not simple. Other solutions include recruiting participants and in-

stalling a traffic monitor on their device, which could be challenging to scale, or leveraging

other/multiple reliable residential proxy providers. None of those options is optimal.

136

Chapter 6

Privacy and Security Risks of

“Not-a-Virus” Bundled Adware:

The Wajam Case

This chapter details our longitudinal analysis of Wajam, found to be the most prevalent

NetFilter-based interception event in our study in Chapter 5.

6.1 Introduction

The business of generating revenue through ads can be very intrusive for end users. Pop-

ular application download websites are known to bundle adware with their custom in-

stallers [132, 121]. Users can also be misled to install Potentially Unwanted Programs/Ap-

plications (PUP/PUA) that provide limited or deceptive services (e.g., toolbars, cleanup

utilities) along with invasive ads [214, 233]. The prevalence of adware is also increasing.

Recent studies [150, 233] show that Google Safe Browsing triggers 60 million warnings

per week for bundled installers, twice the rate of malware-related warnings.

However, adware applications are generally not considered as much of a threat as

137

malware—apparent from some antivirus labels, e.g., “not-a-virus”, “Unwanted-Program”,

“PUP.Optional”, which may not even trigger an alert [114, 144]. After all, displaying

ads is not considered a malicious activity, and users even provide some form of “con-

sent” to install these unwanted bundled applications [233]. However, prior to 2006, adware

was also labeled as “spyware” [30], due to its privacy-invasive nature. Since then, sev-

eral lawsuits succeeded in downgrading the terms used by AV companies to adware, then

to PUP/PUA [170, 214]. Consequently, adware has received less scrutiny from the mal-

ware research community in the past decade or so. Indeed, studies on PUPs tend to focus

mostly on the revenues, distribution and relationships between actors [232, 150, 233], and

the abuse of code signing certificates by PUPs to reduce suspicion [151]. Recent indus-

try reports are now only focused on more trendy threats, e.g., ransomware, supply chain

attacks [229].

Malware analysis has a long history in the academia—starting from the Morris Worm

report from 1989 [225]. Past malware case studies focused on regular botnets [226], IoT

botnets [60], prominent malware [217, 69], web exploit kits [142, 164], Advanced Per-

sistent Threats [228, 168], and ransomware [147]. Results of these analyses sometimes

lead to the identification, and even prosecution, of several malware authors [36, 37], and

in some reduction of exploit kits (at least temporarily, see, e.g., [38]). However, adware

campaigns remain unscathed. Previous cases of ad-related products received media atten-

tion as they severely downgrade HTTPS security [28, 29], but they generally do not adopt

techniques from malware (e.g., obfuscation and evasion). Therefore, security companies

may prioritize their effort on malware, while academic researchers may consider adware as

a non-problem, or simply a technically uninteresting one, enabling adware to survive and

thrive for a long time. Important questions remain unexplored about adware, including:

1) Are they all simply displaying untargeted advertisements? 2) Do they pose any serious

security and privacy threats? 3) Are all strains limited in complexity and reliably detected

138

by AVs?

On mobile platforms, applications are limited in their ability to display ads and steal

information. For instance, an app cannot display ads within another app, or systematically

intercept network traffic without adequate permissions and direct user consent. Apps found

misbehaving are evicted from app markets, limiting their impact. Unfortunately, there is

no such systematic equivalent on desktop platforms (except Windows 10 S mode), and

users must bear the consequences of agreeing to fine print terms of services, which may

include the installation of numerous bundled unwanted commercial pay-per-install appli-

cations [233].

We explore the case of Wajam, a seven-year old advertisement-supported social search

engine that progressively turned into sophisticated deceptive adware and spyware, origi-

nally developed by a Canadian company and later sold to China. We initially observed

TLS certificates from some user machines with seemingly random issuer names, e.g.,

b02669b9042c6a8f. Some of those indicated an email address that led us to Wajam,

and we collected 52 samples dated from 2013 to 2018. Historical samples are challenging

to obtain, since Wajam is often dynamically downloaded by other software installers, and

relies either on generic or randomized filenames and root certificates, limiting the number

of searchable fingerprints.

Wajam probably would not subsist for seven years without affecting many users, and

in turn generating enough revenue. To this end, we tracked 332 domain names used by

Wajam, as found e.g., in code signing certificates, and hardcoded URLs in samples, and

followed the evolution of these domains in top domain lists. In the past two years, we

found ranks as high as the top 29,427 in Umbrella’s list of top queried domains [87]. Com-

bined together using the Dowdall rule (cf. [155]), these domains could rank up to the top

5,246. Wajam’s domains are queried when ads are injected into webpages and while pulling

139

updates, suggesting that a substantial number of users remain continuously infected. In-

deed, during an investigation by the Office of the Privacy Commissioner (OPC) of Canada

in 2016 [191], the company behind Wajam reported to OPC that it had made “hundreds of

millions of installations” and collected “approximately 400 terabytes” of personal informa-

tion.

We study the technical evolution of content injection, and identify four major gener-

ations, including browser add-on, proxy settings changer, browser process injector, and

system-wide traffic interceptor. Browser process injection involves hooking into a browser

to modify the traffic after it is decrypted and before it is rendered, enabling man-in-the-

browser (MITB) attacks. Such attacks are new in the adware realm—known to be last used

by the Zeus malware for stealing banking information [59, 141].

Across generations, Wajam increasingly makes use of several anti-analysis and eva-

sion techniques including: a) daily release of metamorphic variants, b) steganography, c)

string and library call obfuscation, d) encrypted strings and files, e) deep and diversified

junk code, f) polymorphic resources, g) valid digital signatures, h) randomized filenames

and root certificate Common Names, i) and encrypted updates. Wajam also implements

anti-detection features ranging from disabling Windows Malicious Software Removal Tool

(MRT), self-excluding its installation paths from Windows Defender, and sometimes lever-

aging rootkit capabilities to hide its installation folder from users. We detail 23 such tech-

niques, which are still effective as of Apr. 2019 to prevent most AVs to even flag fresh daily

samples. For example, the sample from Apr. 29 is flagged only by 4 AVs out of 71; three

of them label it with “heuristic”, “suspicious” and “Trojan.Generic,” suggesting that they

merely detect some oddities.

We also found security flaws that have exposed (possibly) millions of users for the last

four years and counting to potential arbitrary content injection, man-in-the-middle (MITM)

attacks, and remote code execution (RCE). MITM attacks could make long-lasting effects

140

by changing Wajam’s update URL to an attack server. As the third generation of Wa-

jam leverages browser process injection, content can be injected in the webpage without

its HTTPS certificate being changed, preventing even a mindful user from detecting the

tampering. In addition, Wajam systematically downgrades the security of a number of

high-profile websites by removing their Content Security Policy, e.g., facebook.com, and

other security-related HTTP headers from the server’s response. Further, Wajam sends—in

plaintext—the browsing histories from four major browsers (if installed), and the list of

installed programs, to Wajam’s operators. Finally, search keywords input on 100 groups of

domains spanning millions of websites are also leaked. Hence, Wajam remains as a major

privacy and security threat to millions of users.

While the existence of traffic-injecting malware is known [59, 141], and TLS flaws are

reminiscent of Superfish and Privdog [28, 29], Wajam is unique in its sophistication, and

has a broader impact. Its anti-analysis techniques became more advanced and innovative

over time—posing as a significant barrier to study it. We also discovered a separate piece of

adware, OtherSearch, which reuses the same model and similar techniques as Wajam. This

indicates the existence of a common third-party obfuscation framework provider, which

perhaps serves other malware/adware businesses. We focus on Wajam only due to the

abundance of samples we could collect. Considering Wajam’s complexity and automation

of evasion techniques, we argue that adware mandates more serious analysis effort.

Contributions.

1. We collect and reverse-engineer 52 unique samples of Wajam spanning across six years

and identify four content injection techniques, one of which was previously used in a

well-known banking trojan. This analysis is a significant reverse-engineering effort to

characterize the technical and design evolution of a successful ad injector. We investi-

gate the chronological evolution for such an application over the years, shedding light

on the practices, history and techniques used by such software. Our analysis may help

141

advance reverse engineering of other malware as well.

2. We uncover the serious level of complexity used in Wajam across generations. These 52

samples used various combinations of 23 effective anti-analysis and evasion techniques,

and even rootkit-like features, which are even rarely found in a single piece of prominent

malware. Such adware samples are generally much less analyzed than malware. Our

revelations call for more concentrated reverse engineering efforts towards adware, and

more generally, on PUPs.

3. We track 332 domains used by Wajam to serve injected scripts and updates, and leverage

the Umbrella top 1M domain list to estimate Wajam’s prevalence over the last two years;

we estimate that if Wajam used a single domain, it would rank 5,246th. We also query

domains known to be targeted by Wajam through 5M peers from a residential proxy

network and find infected peers in 35 countries between 2017 and 2019.

4. We also highlight serious private information leakage and security risks (e.g., enabling

MITM with long-lasting effect and possibly RCE attacks) to users affected by Wajam.

As new variants remain largely undetected by malware engines during the first days,

users even with up-to-date AV/OS remain vulnerable.

6.2 Wajam’s History

Wajam Internet Technologies Inc. was originally headquartered in Montreal, Canada [200].

Their product (Wajam) aimed at enhancing the search results of a number of websites (e.g.,

Google, Yahoo, Ask.com, Expedia, Wikipedia, YouTube) with content extracted from a

user’s social media connections (e.g., Twitter, Facebook, LinkedIn). Wajam was first re-

leased in Oct. 2011, rebranded as Social2Search in May 2016 [191], then as SearchAwe-

some in Aug. 2017 (as we found). We use the name Wajam interchangeably to refer to the

company or the software they developed. To gain revenue, Wajam injects ads into browser

142

traffic [223]. The company progressively lost its connection with social media and became

purely ad/spyware in 2017.

The OPC Canada investigated the company between Oct. 2016 and July 2017 [191].

OPC found numerous violations of Canadian Personal Information Protection and Elec-

tronic Documents Act (PIPEDA), relative to the egregious collection and preservation of

personal data (“approximately 400 terabytes” by the company’s own admission), and prob-

lematic user consent/EULA, installation/uninstallation methods. OPC issued a list of 14

corrective measures. Instead, Wajam sold its activities to a newly created company called

Iron Mountain Technology Limited (IMTL) in Hong-Kong, and therefore declared itself

unaccountable to Canadian regulations. IMTL seems to have continued Wajam’s opera-

tions uninterrupted since then and continued to develop its capabilities towards ad injection

and AV evasion. We refer the readers interested in the discussion relative to the EULA and

user consent to the OPC report.

6.3 Related Work

Previous studies on worms and botnets mostly focused on the network aspect of such

threats, instead of particular software complexity or advanced obfuscation techniques; see

e.g., Conficker [217], Torpig [226] and Mirai [60]. While the largest known botnet reached

up to an estimated 50 million users [22], which could be comparable to the total distribution

of Wajam.

The Mirai botnet was studied across a thousand samples [60]. Authors tracked forks of

the original malware, and analyzed the newly added features, including e.g., self-deleting

binary, more hardcoded passwords to infect devices—all these changes are largely straight-

forward. Moreover, Mirai’s source code was leaked and readily available. In contrast, we

reverse-engineer Wajam from scratch to understand the full extent of its capabilities, and

bridge significant gaps across generations and major updates, including dealing with e.g.,

143

steganography-based installers, custom packers and multiple encryption layers.

The Zeus banking malware [141], a prominent strain reaching 3.6 million infections,

shares some traits with Wajam, including encrypted code sections (albeit done differently),

dynamic library loading, and encrypted payloads (for configuration files only) with XOR

or RC4 hardcoded keys. Zeus also performed MITB by injecting a DLL in browser pro-

cesses, similar to Wajam’s 3rd generation. However, Zeus source code became public in

2016, helping its analysis. Also, active variants of Zeus [39] no longer perform browser

injection, in contrast to Wajam’s well-maintained browser process injection.

Targeted Advanced Persistent Threats (APTs) are known for the extent of their opera-

tions, both in duration and complexity, e.g. [228, 168]. In contrast, our focus is an adware

application, which is not expected to use APT-related techniques, e.g., 0-day vulnerabili-

ties. Nevertheless, we found that Wajam leverages effective antivirus evasion techniques,

and significantly hinders reverse-engineering, over several years. These behaviors are rare

even in regular malware.

Adware can serve as a cover-up for hiding an APT, as it may slip through the hands of

an analyst [231]. This behavior is coined as Advanced Persistent Adware [74].

Similar to adware, ransomware is also heavily motivated by monetary gains. Kharraz

et al. [147] analyzed 1,359 ransomware samples and reported insights into their encryption

modules, file replacement and deletion mechanisms. Web exploit kits have also been ana-

lyzed [142, 164], including PHP and JavaScript components. The level of sophistication in

both cases was limited.

Wajam has been cited in broad analyses covering the distribution models of pay-per-

install PUPs [150, 233]; however, only little information about Wajam itself is revealed,

including an estimated user base (in the order of 107 during the period Jan. 2013–July

2014, much less than the total number of infections reported in the order of 108 by its

operators in 2017 [191]), and general features (e.g., Wajam is a browser-addon—incorrect

144

since the end of 2014).

In a 2005 report [30], Symantec shows that adware and spyware (without any distinc-

tion) exfiltrate sensitive and personally-identifiable data, e.g., extensive system informa-

tion, names, credit card numbers, username and passwords, or even entire webpages. The

use of rootkit techniques, code injection, and random filenames are also discussed. We not

only show that these behaviors are still topical, but we also point at larger security impli-

cations resulting from MITM and RCE vulnerabilities, likely due to the lack of incentives

from the adware vendor to ship secure code, and from researchers to study and report flaws

to such vendors. Privacy leakages such as browsing histories are also certainly more severe

today than they were 14 years ago. In addition, the Internet population, and thus the po-

tential number of victims, has seen a 4-fold increase during this period [140]. Apparently,

AV companies used to treat adware more seriously in the past, as evident from the lack of

comprehensive reports on recent adware.

The NetFilter/ProtocolFilters SDKs [218] were used in PrivDog [29], which was vul-

nerable to MITM attacks, as it did not use the certificate validation capabilities of the SDK.

Böck [73] extracted the hardcoded private keys from ProtocolFilters found in AdGuard

and PrivDog, and listed PUPs that may rely on this library (did not include Wajam). While

PrivDog received significant attention, only one version of the product was vulnerable,

affecting 57k users [29]. The MarketScore spyware also proxied HTTPS traffic [30]; how-

ever, encrypted traffic was marginal in 2005. In contrast, Wajam has exposed millions of

users to similar MITM attacks for about four years. Compared to Superfish, installed by

default on certain Lenovo laptops, Wajam is not bound to a specific hardware vendor.

Various malicious obfuscation techniques have been documented, including: en-

crypted code section [246], encrypted strings and downloaded configuration files [70], junk

145

code [213], polymorphic icons in Winwebsec, SecurityShield and zbot [185], inflated exe-

cutable file size in the XXMM toolkit [146], rootkit as found in the Komodia traffic inter-

ception SDK [92], the use of NSIS installers with decryption DLLs in Cerber, Gamarue,

Kovter and ZCrypt [31], and hiding encrypted payloads in BMP [65] and PNG files [145].

Wajam combines all these techniques from the malware realm, and enhances and layers

them. Notably, Wajam’s junk code introduces thousands of seemingly purposeful func-

tions interconnected in a dense call graph where the real program functions are hidden.

Also, the use of steganography is diversified to various file formats, and is combined with

layers of obfuscated encryption and compression in samples from 2018, making Wajam

variants highly metamorphic.

Concurrently to our work, a malware researcher from ESET analyzed Wajam’s evo-

lution over the years [195]. He also identified the same generations plus a recent one

targeting Mac OS, and came to similar conclusions, e.g., stating that “the self-protection

methods used by the software are increasing in complexity and sophistication.” Our analy-

sis is more systematic and in-depth. We also investigate the security risks posed by Wajam

introduced by its NetFilter-based TLS proxy and unauthenticated updates.

6.4 Sample Collection and Overview

We detail below our collection of 52 samples, and summarize their capabilities; for their

notable features (e.g., the use of code-signing, stealthy installation), see Table 15. Hashes

of the samples are available in Appendix G.

Legend for Table 15: The “Filename” is the most descriptive name we found from ei-

ther the source where we found the sample, HA [97] or VirusTotal. “Signed component”

indicates whether the installer or a component it installs is authenticode-signed, in which

case the Date column refers to the authenticode signature date, otherwise it shows the lat-

est file timestamp among all installed files. “Authenticode CN” reflects the corresponding

146

Common Name on the signing certificate. “Installed name” refers to the name of the ap-

plication that appears in the list of installed programs on Windows. “Autoinstall” reflects

the ability of the installer to automatically proceed with the installation without user in-

teraction (beyond launching the executable and agreeing to the UAC prompt), i.e., it does

not require clicking a button first or giving consent. “Open webpage” indicates whether a

Wajam website is opened at the end of the installation (typically to congratulate the user).

“Stealthy” indicates whether the installation process is totally transparent to the user. It re-

quires Autoinstall and not opening a webpage by the end of the setup, and also not showing

any setup window. “Rootkit” indicates the ability to hide the installed application folder

from the user. Finally, “Origin” indicates the provenance of the sample.

6.4.1 Sample Collection

We obtained our first sample with a known URL to wajam.com through the Internet Archive

as it is no longer available on the official website. This sample dates back from Dec.

2014, and appears to be a relatively early version of the product. We obtained 10 more

samples from an old malware database [166] by searching for “Wajam”, two of which were

only partial components (DLLs), which we discarded. After analyzing a few samples, we

learned about URLs fetched by the application, leading us to query keywords from another

malware database [97]. We also learned the URLs serving variants of the installer, and

downloaded a sample per month in 2018. At the end of this iterative process, we collected

48 standalone installers, two online installers, and two update packages.

The variants we fetched directly from Wajam servers are named Setup.exe; how-

ever, when submitting these samples to VirusTotal, they are sometimes already known by

other filenames, e.g., update.exe. We could not find obvious paths that include such

filenames on known Wajam servers, suggesting that Wajam is also hosted elsewhere, or

downloaded through different vectors. As most of the samples are digitally signed and

147

ID
In

st
al

le
r/

do
w

nl
oa

de
r/

pa
tc

h
fil

en
am

e

Sign
ed co

mpon
en

t?

D
at

e
(U

T
C

)
A

ut
he

nt
ic

od
e

C
N

In
st

al
le

d
na

m
e

Autoi
nsta

ll Open
sweb

pag
e

Stea
lth

y
Roo

tkit O
ri

gi
n

A
1

w
aj

am
_i

ns
ta

ll.
ex

e
X

20
13

-0
1-

03
W

aj
am

W
aj

am
X

H
yb

ri
d

A
na

ly
si

s
A

2
w

aj
am

_s
et

up
.e

xe
X

20
14

-0
1-

09
W

aj
am

In
te

rn
et

Te
ch

no
lo

gi
es

In
c

W
aj

am
H

yb
ri

d
A

na
ly

si
s

A
3

w
aj

am
_d

ow
nl

oa
d.

ex
e

X
20

14
-0

5-
21

In
st

a-
D

ow
nl

oa
d.

co
m

N
/A

N
/A

N
/A

N
/A

M
al

ek
al

M
al

w
ar

eD
B

A
4

w
aj

am
_d

ow
nl

oa
d_

v2
.e

xe
X

20
14

-0
7-

11
In

st
a-

D
ow

nl
oa

d.
co

m
N

/A
N

/A
N

/A
N

/A
M

al
ek

al
M

al
w

ar
eD

B
B

1
W

IE
_2

.1
5.

2.
5.

ex
e

X
20

14
-0

9-
25

Fa
st

Fr
ee

In
st

al
l.c

om
W

aj
am

X
M

al
ek

al
M

al
w

ar
eD

B
B

2
W

IE
_2

.1
6.

1.
90

.e
xe

X
20

14
-1

0-
03

Fa
st

Fr
ee

In
st

al
l.c

om
W

aj
am

X
M

al
ek

al
M

al
w

ar
eD

B
C

1
W

W
E

_1
.1

.0
.4

8.
ex

e
X

20
14

-1
0-

21
A

ut
oD

ow
nl

oa
d.

ne
t

W
aj

am
X

V
ir

us
Sh

ar
e

C
2

W
W

E
_1

.1
.0

.5
1.

ex
e

X
20

14
-1

1-
05

A
ut

oD
ow

nl
oa

d.
ne

t
W

aj
am

X
V

ir
us

Sh
ar

e
C

3
W

W
E

_1
.2

.0
.3

1.
ex

e
X

20
14

-1
2-

03
A

ut
oD

ow
nl

oa
d.

ne
t

W
aj

am
X

V
ir

us
Sh

ar
e

B
3

w
aj

am
_s

et
up

.e
xe

X
20

14
-1

2-
09

W
aj

am
In

te
rn

et
Te

ch
no

lo
gi

es
In

c
W

aj
am

X
A

rc
hi

ve
.o

rg
C

4
W

W
E

_1
.2

.0
.5

3.
ex

e
X

20
15

-0
1-

21
A

ut
oD

ow
nl

oa
d.

ne
t

W
aj

am
X

V
ir

us
Sh

ar
e

C
5

w
w

e_
1.

43
.5

.6
.e

xe
X

20
15

-0
4-

13
in

st
al

la
tio

n-
su

r-
ip

ho
ne

.c
om

W
aj

am
X

H
yb

ri
d

A
na

ly
si

s
C

6
W

W
E

_1
.5

2.
5.

3.
ex

e
X

20
15

-0
9-

17
ch

ab
an

el
te

ch
no

lo
gy

.c
om

W
aj

am
X

X
H

yb
ri

d
A

na
ly

si
s

C
7

W
W

E
_1

.5
3.

5.
19

.e
xe

X
20

15
-1

0-
16

tr
ud

ea
ut

ec
hn

ol
og

y.
co

m
W

aj
am

X
X

H
yb

ri
d

A
na

ly
si

s
B

4
W

IE
_2

.3
8.

2.
13

.e
xe

20
15

-1
0-

27
N

/A
W

aj
am

X
M

al
ek

al
M

al
w

ar
eD

B
B

5
w

ie
_2

.3
9.

2.
11

.e
xe

20
15

-1
1-

05
N

/A
W

aj
am

X
M

al
ek

al
M

al
w

ar
eD

B
C

8
w

aj
am

_i
ns

ta
ll.

ex
e

X
20

15
-1

1-
13

pr
ev

er
tte

ch
no

lo
gy

.c
om

W
aj

am
X

X
M

al
ek

al
M

al
w

ar
eD

B
C

9
W

W
E

_1
.5

5.
1.

20
.e

xe
X

20
15

-1
1-

16
pr

ev
er

tte
ch

no
lo

gy
.c

om
W

aj
am

X
X

H
yb

ri
d

A
na

ly
si

s
C

10
W

W
E

_1
.5

8.
10

1.
25

.e
xe

X
20

16
-0

1-
04

yv
on

lh
eu

re
ux

te
ch

no
lo

gy
.c

om
W

aj
am

X
X

H
yb

ri
d

A
na

ly
si

s
B

6
W

IE
_2

.4
0.

10
.5

.e
xe

20
16

-0
1-

19
N

/A
W

aj
am

X
X

H
yb

ri
d

A
na

ly
si

s
C

11
W

W
E

_1
.6

1.
80

.6
.e

xe
X

20
16

-0
2-

23
sa

in
td

om
in

iq
ue

te
ch

no
lo

gy
.c

om
(n

ot
hi

ng
)

X
X

X
H

yb
ri

d
A

na
ly

si
s

C
12

W
W

E
_1

.6
1.

80
.8

.e
xe

X
20

16
-0

2-
24

sa
in

td
om

in
iq

ue
te

ch
no

lo
gy

.c
om

W
aj

am
X

X
H

yb
ri

d
A

na
ly

si
s

C
13

W
W

E
_1

.6
3.

10
1.

27
.e

xe
X

20
16

-0
3-

25
ca

rm
en

bi
en

ve
nu

et
ec

hn
ol

og
y.

co
m

W
aj

am
X

X
H

yb
ri

d
A

na
ly

si
s

C
14

W
W

E
_1

.6
4.

10
5.

3.
ex

e
X

20
16

-0
4-

07
Te

le
ch

ar
ge

r-
In

st
al

le
r.c

om
W

aj
am

X
X

H
yb

ri
d

A
na

ly
si

s
D

1
W

B
E

_0
.1

.1
56

.1
2.

ex
e

X
20

16
-0

4-
11

te
ch

no
lo

gi
ea

dr
ie

np
ro

ve
nc

he
r.c

om
W

aj
am

X
X

V
ir

us
Sh

ar
e

C
15

W
W

E
_1

.6
5.

10
1.

8.
ex

e
X

20
16

-0
4-

14
si

rw
ilf

ri
dl

au
ri

er
te

ch
no

lo
gy

.c
om

W
aj

am
X

X
V

ir
us

Sh
ar

e
D

2
w

be
_0

.1
.1

56
.1

6.
ex

e
X

20
16

-0
4-

21
te

ch
no

lo
gi

ea
dr

ie
np

ro
ve

nc
he

r.c
om

W
aj

am
X

X
V

ir
us

Sh
ar

e
C

16
W

W
E

_1
.6

5.
10

1.
21

.e
xe

X
20

16
-0

4-
21

si
rw

ilf
ri

dl
au

ri
er

te
ch

no
lo

gy
.c

om
W

aj
am

X
X

V
ir

us
Sh

ar
e

D
3

W
B

E
_3

.5
.1

01
.4

.e
xe

X
20

16
-0

4-
28

te
ch

no
lo

gi
ea

dr
ie

np
ro

ve
nc

he
r.c

om
W

aj
am

X
X

H
yb

ri
d

A
na

ly
si

s
C

17
w

w
e_

9.
66

.1
01

.9
.e

xe
X

20
16

-0
5-

09
si

rw
ilf

ri
dl

au
ri

er
te

ch
no

lo
gy

.c
om

So
ci

al
2S

ea
rc

h
X

X
X

V
ir

us
Sh

ar
e

D
4

W
B

E
_1

1.
8.

1.
26

.e
xe

X
20

16
-0

8-
29

te
ch

no
lo

gi
ef

er
ro

nn
er

ie
.c

om
So

ci
al

2S
ea

rc
h

X
X

H
yb

ri
d

A
na

ly
si

s
C

18
pa

tc
h_

1.
68

.1
5.

18
.z

ip
X

20
16

-1
0-

18
be

au
bo

ur
gt

ec
hn

ol
og

y.
co

m
N

/A
N

/A
N

/A
N

/A
X

w
aj

am
-d

ow
nl

oa
d.

co
m

D
5

W
B

E
_c

ry
pt

ed
_b

un
dl

e_
11

.1
2.

1.
10

0.
re

le
as

e.
ex

e
X

20
16

-1
1-

22
em

er
so

nt
ec

hn
ol

og
y .

co
m

So
ci

al
2S

ea
rc

h
X

X
H

yb
ri

d
A

na
ly

si
s

D
6

W
B

E
_c

ry
pt

ed
_b

un
dl

e_
11

.1
2.

1.
30

1.
re

le
as

e.
ex

e
X

20
17

-0
1-

30
w

ot
to

nt
ec

hn
ol

og
y.

co
m

So
ci

al
2S

ea
rc

h
X

X
M

al
ek

al
M

al
w

ar
eD

B
D

7
W

B
E

_c
ry

pt
ed

_b
un

dl
e_

11
.1

2.
1.

31
0.

re
le

as
e.

ex
e

X
20

17
-0

2-
03

pi
dd

in
gt

on
te

ch
no

lo
gy

.c
om

So
ci

al
2S

ea
rc

h
X

X
H

yb
ri

d
A

na
ly

si
s

D
8

W
B

E
_c

ry
pt

ed
_b

un
dl

e_
11

.1
2.

1.
33

4.
re

le
as

e.
ex

e
X

20
17

-0
2-

10
qu

ai
nt

on
te

ch
no

lo
gy

.c
om

So
ci

al
2S

ea
rc

h
X

X
H

yb
ri

d
A

na
ly

si
s

D
9

W
B

E
_c

ry
pt

ed
_b

un
dl

e_
11

.1
3.

1.
52

.re
le

as
e.

ex
e

X
20

17
-0

3-
21

w
en

dl
eb

ur
yt

ec
hn

ol
og

y.
co

m
So

ci
al

2S
ea

rc
h

X
X

H
yb

ri
d

A
na

ly
si

s
C

19
pa

tc
h_

1.
77

.1
0.

1.
zi

p
20

17
-0

4-
01

N
/A

N
/A

N
/A

N
/A

N
/A

w
aj

am
-d

ow
nl

oa
d.

co
m

D
10

W
B

E
_c

ry
pt

ed
_b

un
dl

e_
11

.1
3.

1.
88

.re
le

as
e.

ex
e

X
20

17
-0

4-
13

te
ch

no
lo

gi
efl

ag
st

ic
k.

co
m

So
ci

al
2S

ea
rc

h
X

X
H

yb
ri

d
A

na
ly

si
s

D
11

Se
tu

p.
e x

e
X

20
17

-0
7-

11
te

ru
ss

et
ec

hn
ol

og
y .

co
m

So
ci

al
2S

ea
rc

h
X

H
yb

ri
d

A
na

ly
si

s
D

12
Se

tu
p.

e x
e

X
20

17
-0

8-
25

v a
no

is
et

ec
hn

ol
og

y.
co

m
Se

ar
ch

A
w

es
om

e
X

H
yb

ri
d

A
na

ly
si

s
D

13
Se

tu
p.

e x
e

X
20

17
-0

9-
18

te
ch

no
lo

gi
e v

an
oi

se
.c

om
Se

ar
ch

A
w

es
om

e
X

H
yb

ri
d

A
na

ly
si

s
D

14
s2

s_
in

st
al

l.e
xe

X
20

17
-1

1-
27

bo
is

se
le

au
te

ch
no

lo
gy

.c
om

Se
ar

ch
A

w
es

om
e

X
H

yb
ri

d
A

na
ly

si
s

D
15

up
da

te
.e

xe
X

20
17

-1
2-

25
ba

ra
ch

oi
st

ec
hn

ol
og

y .
co

m
Se

ar
ch

A
w

es
om

e
X

H
yb

ri
d

A
na

ly
si

s
D

16
Se

tu
p.

e x
e

X
20

18
-0

1-
02

te
ch

no
lo

gi
en

ou
ai

lla
c.

co
m

Se
ar

ch
A

w
es

om
e

X
H

yb
ri

d
A

na
ly

si
s

D
17

Se
tu

p.
e x

e
X

20
18

-0
2-

12
pi

lla
ct

ec
hn

ol
og

y .
co

m
Se

ar
ch

A
w

es
om

e
X

H
yb

ri
d

A
na

ly
si

s
D

18
Se

tu
p.

e x
e

X
20

18
-0

2-
19

pi
lla

ct
ec

hn
ol

og
y .

co
m

Se
ar

ch
A

w
es

om
e

X
H

yb
ri

d
A

na
ly

si
s

D
19

Se
tu

p.
e x

e
X

20
18

-0
3-

05
te

ch
no

lo
gi

ep
ill

ac
.c

om
Se

ar
ch

A
w

es
om

e
X

m
ile

en
ds

of
t.c

om
D

20
Se

tu
p.

e x
e

X
20

18
-0

4-
18

m
on

es
tie

rt
ec

hn
ol

og
y .

co
m

Se
ar

ch
A

w
es

om
e

X
te

ch
no

lo
gi

es
no

w
do

n.
co

m
D

21
Se

tu
p.

e x
e

X
20

18
-0

5-
30

bo
m

ba
rd

er
ie

te
ch

no
lo

gy
.c

om
Se

ar
ch

A
w

es
om

e
X

te
ch

no
lo

gi
es

no
w

do
n.

co
m

D
22

Se
tu

p.
e x

e
X

20
18

-0
6-

12
te

ch
no

lo
gi

eb
om

ba
rd

er
ie

.c
om

Se
ar

ch
A

w
es

om
e

X
te

ch
no

lo
gi

es
no

w
do

n.
co

m
D

23
Se

tu
p.

e x
e

X
20

18
-0

7-
16

te
ch

no
lo

gi
e v

ou
ill

on
.c

om
Se

ar
ch

A
w

es
om

e
X

te
ch

no
lo

gi
es

no
w

do
n.

co
m

Ta
bl

e
15

:S
am

pl
es

su
m

m
ar

y
(N

/A
m

ea
ns

no
ta

pp
lic

ab
le

,e
.g

.,
ex

pi
re

d
do

w
nl

oa
de

rs
am

pl
es

do
no

ti
ns

ta
ll

an
ap

pl
ic

at
io

n)

148

timestamped, or install a signed component, we could trace the history of Wajam over five

and a half years, from Jan. 2013 to July 2018.

6.4.2 Categories

We identified four injection techniques that were used mostly chronologically. Hence, we

refer to each group as a generation; see Table 16 for the distribution of samples among gen-

erations. We refer to a given sample by its generation letter followed by its chronological

index within its generation, e.g., C18. We keep a numerical reference when referring to an

entire generation, e.g., third generation.

Generation A: Browser add-on. The two oldest samples (Jan. 2013 and 2014) install

add-ons to Chrome, Firefox and IE. There was a Safari add-on as well according to the

“Uninstall” page on wajam.com. A Chrome add-on remains available as of Apr. 2019, but

with only 25 users. These add-ons were used to directly modify the content of selected

websites to insert ads and social-media content in search pages. In samples A1–2, the

injection engine, Priam, receives search queries and bookmark events.

Generation B: FiddlerCore. Samples from Sept. 2014 to Jan. 2016 have their own in-

terception component and leverage the FiddlerCore library [198] to proxy browser traffic.

Each detected browser has its proxy settings set to localhost with a port on which Wajam

is listening. HTTPS traffic is broken at the proxy, which certifies the connection by a cer-

tificate issued on-the-fly, and signed by a root certificate inserted into the Windows and

Firefox trust stores. Only selected domains are intercepted. The application is installed in

the Program Files folder with a meaningful name; however, core files have long random

names. Since no component strictly requires a signature by the OS, some samples do not

bear any signature. We rely either on a signature on the installer (as seen prior to 2015), or

the timestamp of the latest modified file installed (from 2015) to establish a release date for

those samples.

Generation C: Browser process injection. Installers dated between Oct. 2014 to May

149

Gen. Period covered # samples Injection technique
A 2013-01 – 2014-07 4 Browser add-on
B 2014-09 – 2016-01 6 FiddlerCore
C 2014-10 – 2017-03 19 Browser process injection
D 2016-01 – 2018-07 23 NetFilter+ProtocolFilters

Table 16: Distribution of samples among generations

2016 and two update packages up to Mar. 2017 inject a DLL into IE, Firefox and Chrome.

In turn, the DLL hooks specific functions to modify page contents after they are fetched

from the network (and decrypted in the case of HTTPS traffic), but before they are rendered.

Consequently, the injected traffic in encrypted pages is displayed while the browser shows

the original server certificate, making this generation more stealthy (cf. [141, 153, 221]).

We tested the latest versions of IE/Firefox/Chrome on an up-to-date Windows 7 32-bit and

confirmed that the injection method is still fully functional. We later found that browser

hooking parameters are actively maintained and kept updated hourly (Section 6.11.3).

Generation D: NetFilter SDK+ProtocolFilters. Starting from Apr. 2016, a fourth gen-

eration implements a NetFilter-based injection technique. Installers dated after May 2016

install a program called Social2Search instead of Wajam. Furthermore, samples dated from

Aug. 2017 (i.e., few months after the company was sold to IMTL) are again rebranded as

SearchAwesome. The NetFilter SDK enables traffic interception, combined with Proto-

colFilters that provides APIs for tampering with the traffic at the application layer. Instead

of explicitly configuring browser proxy settings, NetFilter installs a network driver that in-

tercepts all the network traffic irrespective of the application. In this generation, all HTTPS

traffic is intercepted and all TLS connections are broken at the proxy, except for the traffic

originating from blacklisted process names.

150

6.5 Analysis Methodology

Test environment and sample execution. We leverage VMware Workstation (WS) and

an up-to-date installation of Windows 7 Pro 32-bit with IE 11 and Firefox 61 to capture

Wajam’s installation process. For each sample, we instrument WS to start from a fresh VM

snapshot, transfer the sample on the guest’s desktop, start Process Monitor [45] to capture

I/O activities, and start Wireshark on the host OS to record the network traffic. We also take

a snapshot of the filesystem and registry before and after the sample is installed to detect

modifications made on the system.

We run the sample with UAC disabled to avoid answering the prompt, and complete the

installation, which usually requires clicking only one button at most. It could be possible to

instrument the UI to fully automate the process; however, we wanted to verify whether the

sample installs without asking for user consent, opens a webpage at the end of the setup,

or if the process is completely stealthy. We note that the UAC prompt is not a significant

barrier for Wajam, as it is found bundled (statically or downloaded at runtime) with other

installers, for which users already provided admin privileges.

We could have used existing malware analysis sandboxes; however, a local deployment

would have been required as we need control over certain registry keys (e.g., Machine

GUID). Furthermore, for consistency and ease of debugging, we used the same environ-

ment to capture runtime behaviors and selectively debug samples.

We also verify the functionality of selected samples on Windows 8.1 Pro 64-bit—some

samples lead to a denial of service for certain websites. To fully understand their function-

alities, we also conduct a more thorough analysis on selected samples from each generation,

by debugging the application and performing MITM attacks.

Studying NSIS installers. Wajam is always based on Nullsoft Scriptable Install System

(NSIS [230]), a popular open-source generator of Windows installers [224]. NSIS uses

LZMA as a preferred compression algorithm and as such, 7-Zip can extract packed files

151

from NSIS-generated installers, unless a modified NSIS is used [189]. We used 7-Zip for

unpacking when possible. NSIS also compiles an installer based on a configurable instal-

lation script written in its own language. Several NSIS-specific decompilers used to recon-

struct the script from installers but trivial modifications in the source code could thwart such

automated tools. 7-Zip stopped supporting the decompilation of installer scripts in version

15.06 (Aug. 2015) [26]. We use version 15.05 to successfully decompile these scripts.

Labeling OpenSSL functions. ProtocolFilters is statically linked with OpenSSL, as indi-

cated by hardcoded strings (e.g., “RSA part of OpenSSL 1.0.2h 3 May 2016”). However,

IDA FLIRT fails to fingerprint OpenSSL-related functions, even with the help of extra sig-

natures. Given the identified version number, we are able to label essential functions that

call ERR_put_error(). Indeed, such calls specify the source file path and line number

where an error is thrown, which uniquely identifies a function. By investigating the use of

several such functions, we can identify critical sections, e.g., root certificate generation (as

used in Section 6.10).

Debugging. We leverage IDA Pro and x64dbg [248] to debug all binaries to understand

some of their anti-analysis techniques. Due to the extensive use of junk code, identify-

ing meaningful instructions is challenging. In particular, when reverse-engineering en-

crypted payloads, we first set breakpoints on relevant Windows API calls to load files (e.g.,

CreateFile, ReadFile, WriteFile, LoadLibrary), then follow modifications

and copies of buffers of interest by setting memory breakpoints on them. We also rely on

interesting network I/O events as seen in Process Monitor to identify relevant functions

from the call stack at that time.

To understand the high-level behavior of decryption routines, we combine static analy-

sis and step-by-step debugging. We also leverage Hex-Rays to study the decompiled code,

unless Hex-Rays fails due to obfuscation. Static analysis is also often made difficult by

many dynamic calls resolving only at runtime.

152

Scope. We focus on reverse-engineering steps that lead to visible consequences on the

system and network activities, and document the challenges in doing so. This way, we dis-

cover a number of information leaks and several mechanisms to hinder static analysis and

evade early antivirus detection. However, since our analysis is primarily driven by dynamic

analysis, we are bound by common limitations of this approach, including incomplete code

coverage. As such, we do not claim that we found all anti-analysis and evasion techniques

nor that we understand all features of Wajam. Since we do not look at all samples ever

released, it is also likely that we missed intermittent features, making our findings a lower

bound on Wajam’s full potential. We note, however, that the total number of samples should

in the order of a thousand due to new samples released at most daily in the recent years.

Reproducibility. Since most of this work is a manual effort, we will release intermediate

artifacts in an effort to enable reproduction, including: the samples, network traces, file-

system and registry modifications during installation, procmon logs, payload decryption

scripts, and VT scan logs. The samples include the 52 reverse-engineered ones, the 36

more recent samples scanned with VT, and subsequent samples we kept collecting.

6.6 Technical Evolution Summary

We summarize below the inner workings of Wajam and track its changes made over the

years—mostly targeted at improving stealthiness and increasing private information leaks.

We also demonstrate the efficacy of its evasion techniques by collecting hourly AV detec-

tion rates on 36 samples fetched between Aug. to Nov. 2018.

Wajam modules. Wajam is composed of several modules, some of which are generation-

specific. Its installer is the first executable an AV gets to analyze, justifying a certain level

of obfuscation that constantly increased over time. The installer runs a payload (brh.dll,

called BRH hereafter) to retrieve system and browser information, e.g., browsing histories,

which is then leaked. The installed binaries comprise the main application, an updater, a

153

browser hooker called “goblin” in the 3rd generation, and a persistence module.

Typical installation workflow. A typical sample from 2018 is an NSIS installer with a

random icon that unpacks DLLs, which then locate, deobfuscate, decrypt and uncompress

a second-stage installer from a media file. In turn, this second installer executes a long

obfuscated NSIS script that first calls an unpacked DLL to decrypt and load its BRH com-

panion to perform a number of leaks. Then, it installs the main obfuscated Wajam files

under Program Files with random file and folder names. It also adds a persistence module

in the Windows directory along with the generated TLS certificate in an ‘SSL’ subdirectory,

and a signed network driver (in the System32\drivers folder). The installer creates

three Windows services: 1) the network driver, 2) the main application, 3) the persistence

module; and a scheduled task to start the second service at boot time if not already started.

The main application starts by reading the encrypted updater module, decrypting and exe-

cuting it. In turn, the module reads the encrypted injection rules, updates them and fetches

program updates. Note that we did not observe any program update being served, and

therefore our analysis indeed covers the version of the samples we installed rather than a

newer version.

Evolution of features. We provide a timeline with evolution milestones regarding the anti-

analysis and evasion techniques, privacy leaks (more in Section 6.9), and new prominent

features, in Figure 11. The timeline also shows the release time of the samples we analyze,

labeled on the left when space permits. Techniques are numbered and further discussed

in Section 6.9. This evolution illustrates the underlying design of Wajam over the years.

In particular, most changes relate to improving the anti-analysis and evasion techniques

and could not have been implemented over years had Wajam been stopped by better AV

detection. Also, between 2014 and early 2017, six types of information leaks were imple-

mented. For each new feature, the time presented corresponds to the earliest sample we

found implementing this feature. Note that all the features do not necessarily accumulate

154

in later samples. For instance, the rootkit capability is found in only three samples.

2014 Leaks list of installed programs

Inserts root cert. into Firefox trust store

Encrypted strings (T13), dynamic API calls (T14), disables Firefox SPDY ,
encrypted URL injection rules (T4), Chrome injection

Leaks browsing and download histories, encrypted browser hooker DLL
(T4), sends list of installed AVs, Opera injection

Random executable filenames (T19), .NET obfuscation

Nested installer (T3), Chromium-based browsers injection

Encrypted nested installer (T4)

Rootkit (T20), leaks list of browser add-ons/extensions

Random installer folder name (T19)

Encrypted injection updates (T4), random root certificate issuer CN (T19)

Persistence module (T21)

Inflated executables (T12)

Whitelist itself in Windows Defender (T10), leaks presence of hypervisor,
encrypted code section (T16), anti-IDA measures (T17)

Leaks hypervisor/motherboard vendor

Installers no longer signed (T23)

Random icons (T2), XOR-encrypted updater DLL (T4)

Disables monthly MRT scans and reports (T11)

Steganography to hide nested installer (T5), encrypted browser info leaking
DLL (T4), string literals from English texts as arguments to functions (T18)

RC4-encrypted updater (T4)

Nested installer under further layers of encryption (T4), custom compres-
sion algorithms info leaking DLL (T6), obfuscated key reconstruction (T7)

Sets Firefox settings to rely on OS trust store and no longer inserts a root
certificate into Firefox trust store, some updates over HTTPS

Some leaks are sent over HTTPS

2015

2016

2017

2018

A3

A4

B1
C1

C3

C4

C5

C6

B4
C8

C11

C13
D1

C17

D4

C18

D5

D6
D8

D9
D10

D11

D12
D13

D14

D17
D19

D20

D21

D23

Figure 11: Timeline of first appearance of key features (colors: black → anti-
analysis/evasion improvements, blue→ new functional features, red→ information leaks)

155

Antivirus detection rates. We submitted samples to VirusTotal that we obtained directly

from one of Wajam’s servers. We polled a known URL to retrieve daily samples as soon

as possible after they are released to observe early detection rates. In total, we collected

36 samples between Aug.—Nov. 2018; see Fig. 12 for the VirusTotal detection rates. The

rates are given relative to the release time as indicated by the “Last-Modified” HTTP header

provided by the server. We trigger a rescan on VirusTotal approximately every hour after

the first submission to observe the evolution for up to two weeks.

Fig. 12 illustrates the averaged rates, along with the overall lowest and highest rates

during each hour. The rates converge to about 37 detections out of about 69 AV engines at

the end of the two-week period. Note that the total number of AV engines slightly changes

over time, as reported by VT. Importantly, we notice that the rates start arguably low during

the first hours. The lowest detection ratio of 3/68 is found on the Aug. 8 sample, 19min

after its release. Only one AV labels Wajam correctly, another one identifies it as different

malware, and the third one simply labels it “ML.Attribute.HighConfidence.” Similarly,

the sample from Apr. 29 is flagged by 4/71 AVs, three of them label it with “heuristic”,

“suspicious” and “Trojan.Generic,” suggesting that they merely detect some oddities. The

average rate during the first hour is only about 9 AVs. The quick rise in the number of

detections in the first 2–3 days is hindered by new daily releases that restart the cycle from

a low detection rate. During an informal discussion with a security vendor, we were pointed

to the fact that AV products also perform other forms of detections (e.g., behavioral) that

are not represented in VirusTotal scores, and therefore more AVs may in fact identify new

releases of Wajam. However, due to Wajam’s continued prevalence, we believe its daily

variant strategy has helped continuing to spread for years despite the (late) detections.

Moreover, Wajam is rarely labeled as-is by AVs. Rather, they often output

156

generic names1 or mislabel samples.2 Certain AVs label Wajam as PUP/not-a-

virus/Riskware/Optional;3 however, we note that depending on the configuration of such

AVs, no alert or action may be triggered upon detection, or the alert may show differently

than for regular malware [132, 121]. Also, once installed, the detection rate of the installer

is irrelevant. Rather, the detection of individual critical files matter. For instance, while

D23’s detection rate is 35/66 AVs after 15 days, its installed files remain less detected:

26/66 for the uninstaller after 16 days, 16/67 for the main binary after 22 days, and 9/69

for the network driver after 26 days.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Days after release

0
3
6
9
12
15
18
21
24
27
30
33
36
39
42

D
et
ec
ti
o
n
s
(#

A
V
s)

Overall highest

Average

Overall lowest

Figure 12: VirusTotal detection rates of 36 samples starting from their release time

6.7 Prevalence

We illustrate the prevalence of Wajam through the popularity of its domains and a brief

overview of worldwide infections.
1“Win32.Adware-gen”, “heuristic”, “Trojan.Gen.2”, “Unsafe”
2“Adware.Zdengo”, “Gen:Variant.Nemesis.430”
3“Generic PUA PC (PUA)”, “PUP/Win32.Agent.C2840632”, “PUA:Win32/Wajam”, “not-

a-virus:HEUR:AdWare.Win32.Agent.gen”, “Pua.Wajam”, “Riskware.NSISmod!”, “Riskware”,
“PUP.Optional.Wajam”

157

6.7.1 Domains Popularity

First, we list the domain names used by Wajam, as found in code signing certificates, hard-

coded URLs in samples, ad injection rules we downloaded, and domains declared in legal

documents of the company [200]. We also gather domain names that were hosted simulta-

neously from the same IP address or subnet,4 then manually verify whether they resemble

other Wajam domains. We also rely on domains found in CT logs that follow the pat-

tern technologie*.com or *technology.com, as we found it is recurrent. We query all the

14,944 matching domains and keep the ones that serve a webpage referring to Wajam/So-

cial2Search/SearchAwesome (similar to wajam.com), share the same favicon as previously

identified, or distribute Wajam’s installer from a predefined URL. The complete list of 332

domains is provided in Appendix F, of which 182 are declared as part of the official com-

pany’s records [200]. Note that not all Wajam domains may follow these patterns, thus our

domain list is a lower bound on the total number of domains used.

This domain list rarely evolves over time, and most domains follow the common pattern

mentioned above. During our study, they were hosted in France (OVH, under the same /24

subnet) and the US (Secured Servers). Some served browser-trusted certificates issued by

RapidSSL until Mar. 2018, then by Let’s Encrypt. Many domains were never issued a

certificate.

We then search for the rank of these domains in Umbrella’s top 1M domain list from

2017 to 2019. Umbrella is the only public list that tracks domain popularity from DNS

queries, and thus, captures the popularity of domains polled for updates by Wajam, as well

as those serving ads after injection. Fig. 13 shows the number of Wajam domains per daily

list along with the highest ranking of these domains. Over the last two years, we found as

many as 53 domains with the top ranked one reaching the 29,427th position.

However, given the number of domains concurrently used, the highest rank is not the

4We leverage historical DNS data from DnsTrails.com.

158

best measure to represent the overall domains’ popularity. Borrowing the idea from Le

Pochat et al. [155], we consider that the popularity follows a Zipf distribution and combine

all Wajam domains into one rank by following the Dowdall rule. This rule attributes a

weight to each domain that is inversely proportional to its rank. The rank of a combination

of domains is the inverse of the sum of their weights. If all Wajam domain requests were

directed to only one domain, this domain would rank between 27,895th and 5,246th during

the past 28 months (ignoring the sudden drops in the first half of 2017). Such a rank

indirectly hints at a significant number of infections.

We note a slight decline in popularity over this period; however, it may not necessarily

correlate with a reduction of Wajam’s activities, i.e., the popularity is only relative. Also,

our domain list may miss newer popular domains, especially if they do not follow the iden-

tified naming scheme.

20
17
-0
1-
19

20
17
-0
3-
19

20
17
-0
5-
19

20
17
-0
7-
19

20
17
-0
9-
19

20
17
-1
1-
19

20
18
-0
1-
19

20
18
-0
3-
19

20
18
-0
5-
19

20
18
-0
7-
19

20
18
-0
9-
19

20
18
-1
1-
19

20
19
-0
1-
19

20
19
-0
3-
19

20
19
-0
5-
19

1

50K

100K

150K

200K

250K

R
a
n
k

Rank of combined domains

Highest rank

0

10

20

30

40

50

60

70

80

N
u
m
b
er

o
f
d
o
m
a
in
s

Domains among top 1M

Figure 13: Wajam domains in Umbrella’s top list (2017–2019)

159

6.7.2 Worldwide Infections

We leverage a residential proxy service (Luminati5) to query 89 domains where Wajam

injects ads. Each peer runs a client that allows other peers (i.e., us) to relay network traffic

through it. We found that Wajam only relies on a blacklist of processes (see Section 6.10),

which does not include the Luminati client process name. Therefore, if Wajam has infected

a peer, we expect that our traffic will be intercepted by the peer’s Wajam instance, and we

should obtain a Wajam-issued certificate for the domains queried.

We consider the domains found in the 101 injection rules fetched in Jan. 2019 (see

Section 6.10), then we remove Google- and LinkedIn-related domains since Luminati does

not permit querying them. We then establish TLS connections to these domains through

4.2M peers in all countries available. Note that the domains only relate to search engines

and shopping websites, thus no illegitimate or dangerous websites are accessed through

the peers. In addition, due to high bandwidth costs of Luminati, we only establish a TLS

connection and retrieve the certificate, then close the socket, i.e., no HTTP query is made.

Using this setup, we can only detect the second and fourth generations. Since the third

generation only modifies traffic by hooking selected browser processes, a Luminati peer

infected with this generation would not intercept our traffic.

To detect Wajam-issued certificates, we rely on fingerprints we established based on

the reverse-engineering of the certificate generation (see Section 6.12). We performed

our scans in Mar. 2019. We detected 52 cases in 25 countries: Indonesia (10 infected

peers), Malaysia (4); Argentina, India, Italy, Philippines (3); Brazil, Canada, Chile, France,

Honduras, Spain, Thailand, Vietnam (2); Australia, Côte d’Ivoire, Colombia, Denmark,

Ecuador, Mexico, Netherlands, Peru, Russia, the US, and Venezuela (1).

During a similar scan we conducted through Luminati in June 2017 through 911k peers

in only 33 countries from Reporters Without Borders’ list [203], we detected 214 cases in

5Advertised with 40M peers, https://luminati.io

160

https://luminati.io

19 countries: Vietnam (98 infected peers), India (42), Malaysia (16), Thailand (12), the UK

(7), Hong Kong (6), Belarus (5), Venezuela (5); Egypt, France, Libya, Pakistan (3); Iran,

Russia, Turkey, the US (2); South Korea, Sri Lanka, and Yemen (1).

Note that peers on the Luminati network are not necessarily representative of the gen-

eral population; therefore, the proportion of infections might not be informative. However,

Wajam was found in a total of 35 countries between 2017 and 2019, highlighting the scope

of its infections.

6.8 Private Information Leaks

Beyond installing the files onto the system, the installer also performs other core tasks,

including the generation of unique IDs, and leaking browsing and download histories. We

detect these leaks from the network captures and trace their origin into the binaries to better

understand them.

Unique IDs. Two unique identifiers are generated during installation based on a combina-

tion of the MAC address, user folder path, and disk serial number. These IDs are appended

to all requests made to Wajam’s servers and ads distributors. They are used for ad tracking,

and to detect repeated installations to identify pay-per-install frauds by Wajam distributors,

i.e., a distributor faking numerous installations to increase its revenue from Wajam [191].

The first one, called unique_id or uid is generated as the uppercased MD5 hash

of the combination of: 1) the MAC address of the main network adapter, 2) the path for

the temporary folder for applications (which contains the user account’s name), and 3) the

corresponding disk’s serial number. The calculation of second identifier, machine_id or

mid, appears to intend including the Machine GUID; however, a programming error fails

to achieve this goal, and instead includes some artifact of the string operations performed

on the MAC address. In our case, the mid was simply the MAC address prepended by a

“1”. This issue was never fixed.

161

From B1, the installer leaks the list of installed programs as found in the registry, minus

Microsoft-specific updates in some cases. The OS version and the date of the installation

obtained from Wajam’s own timestamping service, are also sent in each query.

From C6, the browsing history of IE, Firefox and Chrome is sent in plaintext to Wajam’s

servers, along with the history of Opera from D6. Only the newest sample we analyzed,

dated from July 2018, sends this information over HTTPS. This leak is the most privacy-

sensitive. For users who do not configure an expiration of their history, the leak could span

over several months’ worth of private data. In Chrome, the local history expires after three

months [27], mitigating the extent of the leak; however, other browsers do not expire their

history, which could last for years. In parallel, the download history, i.e., the URLs of

downloaded files, is also sent in plaintext except in the latest sample.

After the installation, Wajam continues to send the list of browser addons/extensions,

installed programs, and detected AVs whenever it fetches updates from the server.

Samples dated after the end of 2016 (from D5) check whether they are running on a

virtual machine by calling the CPUID instruction. The result is appended to all HTTP(S)

queries made by the installer, along with the BIOS manufacturer name, which could also

expose the hypervisor. We are unsure about the consequences of this reporting as we still

observed fully functional samples in our VMs (with complete updates and injected ads).

In A2, the installer sends a verbose installation log over plain HTTP to a script named

client_send_debug_info.php on wajam.com. The POST request contains full

paths including the user’s home directory, along with the network adapter’s MAC address,

the drive’s serial number, and the unique IDs mentioned above. This behavior occurred

only in this sample. Given the name of the target script and the single occurrence of such

installer, the sample could be a version intended for debugging purposes only.

162

6.9 Anti-analysis and Evasion

Wajam leverages at least 23 techniques to hinder static analysis, fingerprinting, reverse

engineering, and antivirus detection: 1) metamorphism, 2) changing static resources, 3)

nested executables, 4) payload compression and encryption, 5) steganography, 6) custom

encryption and encoding, 7) obfuscated key reconstruction, 8) obfuscated installer script,

9) obfuscated .NET and PowerShell, 10) auto-whitelisting in Windows Defender, 11) dis-

abling MRT, 12) inflated files, 13) string obfuscation and encryption, 14) dynamic API

calls, 15) junk and dead code, 16) encrypted code, 17) anti-IDA Pro measures, 18) unique

readable strings as function arguments, 19) randomized names, 20) rootkit, 21) persis-

tence/resurrection module, 22) detection of installed antiviruses (only leaks the result), and

23) digital signatures (or the lack thereof). We discuss these techniques below.

T1: Metamorphism. The main technique is to produce metamorphic variants, i.e., an ob-

fuscated packer that changes dynamically its logic around the same template and evolves

through generations. It unpacks varying payloads that perform similar actions. This trans-

lates into numerous variants, which are released daily, mostly around 3–5pm UTC since at

least 2018. Variants seems to be released automatically, hence it would be interesting to

identify the underlying generator. However, we could not find any name or fingerprint.

T5: Steganography. Starting from D14, the installer unpacks a handful of small DLL

files, and a large picture or audio file (MP3, WAV, BMP, GIF, PNG). At first, this media file

appears to contain only random audio noise or colors, and could be a simple dummy file

only useful to arbitrarily inflate the installer’s size (cf. [146]). The DLLs are, in fact, used

to reconstruct an encrypted compressed nested installer. The payload is simply stuffed into

data sections of the media file. For instance, in D14, an MP3 file is composed of MPEG

frames starting with a four-byte header and followed by 622 bytes of data. We found that

the DLL extracts and concatenates the data section from each frame to reconstruct a GZip

file, which in turn reveals a second NSIS installer. From D20, the payload starts from an

163

arbitrary offset, complicating automated deobfuscation.

To the best of our knowledge, only few cases of malware leveraging steganography are

known, and they relied on a single format and trivial encryption [65, 145]. Wajam thus

brings steganography to multiple formats, with added obfuscation.

ID Hidden in Payload reconstruction Encryption/
Compression

Stream encryption keys

D14–15 MP3 Concatenated MPEG
frame data

plaintext (GZip) Not applicable

D16 MP3 Concatenated MPEG
frame data

custom encryption Not applicable

D17 GIF In section after LSD +
custom offset

custom stream
cipher+compression

2njZEYFf, qsjmoRZ7FM

D18 BMP BitmapLine section +
custom offset

custom stream
cipher+encryption
+compression

ldXTyqwQ, ckXKI19jmC

D19 WAV First DataChunk samples
+ custom offset

custom stream
cipher+compression

47txnKuG, eyimwKIOBG

Table 17: Steganographic techniques to hide a nested installer in samples from end-2017
to 2018

T2: Changing static resources. Early versions of Wajam shared the same icon on their

installers. The icon is later changed between variants at few random pixel locations. The

color of these pixels is slightly altered to give a new icon while remaining visibly identical,

see Figure 14. As a result, the hash of the resource section varies, preventing easy re-

source fingerprinting. Starting from D11, Wajam picks random icons from third party icon

libraries for both the installer and installed binaries. An illustration is given in Figure 15.

∩ =

Figure 14: Icon polymorphism with slight pixel alteration

T3: Nested executables. From C8, Wajam’s main installer unpacks and runs a second

NSIS-based installer.

T4: Payload compression and encryption. The nested installer is encrypted starting

from C10, with the key appended at the end of the ciphertext. Similarly, the goblin DLL is

164

Figure 15: Icons used in the Wajam’s installers we collected

compressed and encrypted starting from C6 using RC4 and a hardcoded 16-byte key. From

D11, the updater is also encrypted with a hardcoded XOR key, then with RC4 in D16. The

injection rules and updates fetched by Wajam are also encrypted (see Section 6.10).

T6: Custom encryption and encoding. While payload encryption was usually done with

RC4 or XOR, a custom stream cipher is used starting from D17 for the nested installer,

outlined in Algorithm 1. We note that the construction of this cipher, reminiscent of shift

registers, is not necessarily justified from a security point of view. Rather, we believe its

convoluted form mostly serves obfuscation purposes. From D20, the encryption becomes

difficult to comprehend as it involves more than 2000 decompiled lines of C code, with

numerous branches and inter-dependent loops. The decryption seems to update an inter-

mediate state, and may likely be a stream cipher; however, we could not identify which

one. Alternatively, it could be a form of encoding since we could not find an associated key

either. Malware is known to modify encryption routines; however, the changes are small

enough and the underlying algorithm is still identifiable, e.g., modified RC4 in Citadel [70].

Decrypting payloads. Steganography-based samples D14–18 protect the BRH, by XOR-

ing it with a random string found in a stub DLL. Due to the challenges in understanding

the decryption routine to find the key, we found that it is easier to brute-force the decryp-

tion with all printable strings from that stub DLL until an executable format is decrypted.

Alternatively, since parts of the PE headers are predictable, it is possible to recover this key

165

Algorithm 1 Custom stream cipher in samples D17 and above
Input: ciphertext c, first key key1, second key key2
Output: plaintext p

p← []
for i from 0 to len(c)− 1 do

p[i]← c[i]⊕ key1[i mod len(key1)]
key1[i]← p[i]
p[i]← p[i]⊕ key2[i mod len(key2)]
key2[i]← p[i]

end for

using a known-plaintext attack. However, since D17, this attack is no longer possible as the

plaintext is further compressed using a custom method for which there is no known fixed

values. Table 18 lists the keys we recovered for the BRH.

ID XOR key Output
D14 NAF6TDWRR8H0E3 plaintext
D15 K3H20MKNH5UZKO plaintext
D16 AVBZALVDGSAQ2MXF1WHE3XU plaintext
D17 0BYRGU14TWHBNTQ0P custom compression
D18 RR5TQZ88AL6E7Z4NS8 custom compression
D19-23 (not fully RE’d) (not fully RE’d)

Table 18: Decryption keys for the DLL used to retrieve information about the system and
browsers (brh.dll) found encrypted in samples from end-2017 to 2018

Similarly, the goblin DLL is compressed and encrypted starting from C6 using RC4 and

a hardcoded 16-byte key. The key is located in the main executable and can be found by

extracting all strings and trying them to decrypt the DLL until a valid GZip header appears.

Table 19 lists the keys we recovered for the goblin module.

Finally, a separate updater runs a Windows service that relies on an encrypted payload

called service.dat. In D11–15, the encryption also simply relies on a 16-byte XORed

pattern; however, it is not found as plaintext in the main or updater file. Instead, by XORing

a known pattern from the PE header, we can recover the key. To fix this weakness, samples

starting from D16 switched to RC4, forcing the search of the key obfuscated in one of the

executables.

T12: Inflated files. Some malware scanners are known to discard large files [79, 160],

hence an obvious anti-analysis technique is to inflate the size of the executable. Seven

166

ID Key Type DLL name
C6 Q7P6ZTLWMLK6HTU3 RC4 wajam_goblin.dll
C7 TKOHVURJCWAXXINA RC4 wajam_goblin.dll
C8 CPAU7VKQRI7U8PEK RC4 md5(GUID+‘wajam_goblin.dll’)
C9 NT0DRJ1RJKIWSSA7 RC4 md5(GUID+‘wajam_goblin.dll’)
C10 3ZHLH3HJ4NOW1FVK RC4 md5(GUID+‘wajam_goblin.dll’)
C11 KVFB47HIYXRVNT4T RC4 md5(GUID+‘wajam_goblin.dll’)
C12 BQS1MUAW64ENNRF3 RC4 md5(GUID+‘wajam_goblin.dll’)
C13 HBS57M2BD1OHHK6S RC4 md5(GUID+‘wajam_goblin.dll’)
C14 5682VXAM34MFB5TK RC4 md5(GUID+‘wajam_goblin.dll’)
C15 56B38AXWW2YAAMMH RC4 md5(GUID+‘wajam_goblin.dll’)
C16 1M7O6L9LU4C2KMIK RC4 md5(GUID+‘wajam_goblin.dll’)
C17 T0R00V9B64TR7RKK RC4 md5(GUID+‘wajam_goblin.dll’)

Table 19: Decryption keys for the “goblin” DLL injected into browsers in samples from
the third generation

ID Nested installer
filename

RC4 key (64 bytes)

C10 wie.dat AXOD3MTRAXX9ISMKLRE401YOJCJOZZL7NOBDTBJ2033UWCNO9QA6JJFOMROLD5KI
C11 wie.dat 88D03624GQWEZUBFUJZ1PJHWB1UYU5COP8UU3FW4NV1ID85Q8M57PFNFTL4C3YMR
C12 wie.dat RT93UX0MIDZQVMXT2QBZFV5358F477KPLGX1ZCXV4UWPC0ZXZSOR7YF1MGJVLZOY
C13 wie.dat 6OE985384DJTMR44UD2P77BDEHMX03Q603KZT5H7KMTI18A76P6NOBEWGQ92CIED
C14 wie.dat NIFSDC8UDA9I1QZGVXA446WGWI7YC0RZTBYRX50SY57SI3W21U9LZHW3BNN2CZTF
D1 wie.dat R2SFHDEPTV3WGO8ZJUMJ4DW6PXEWDFXZYTX7FA6BA8EKFQVO7FC5X2GCEVKN3H0R
C15 wie.dat A56GE1T9P8EK6O8VFFR4RM6NNX4I1NWYT82EC39WLDBBDS6QMWVYZWTMK3D1NBQ4
D2 wie.dat K0BEB3V1JY0AA5HLWZKTTX95CTWZPM2N0KIWIB8XVZXQ9EM38EG27TOJXACPCGGX
C16 wie.dat 5CFRULZVADR6C05MOFL4IJH6V8UBJ81CID5AQNRS2XVDP2LI03PQ0GQG0HUI7ZTP
D3 wie.dat ZNSNBB99R8EQWIL7VB7NWC0S02ALWLB40RW1C9JDW346IGI81KMYESFMOA89YDO3
C17 wie.dat HA8K2LHUO8D08EQXQJ0IGL0XBBGWFNM0ROGQPNIB3J5WNKYS4TLOAJIBIPXEPYS6
D4 wie.dat SP347G50FVI0O32ESQIKYUDH94GTWI1VX0W56W858VKDFQROEOVN8ZDALVQRAT95
D5 wie.dat D54PD8AE7ZRCBG9HSEZW3IJ38OUNLKQTSGHU8OCL56L8CC6C0G0VA5P5IPN6Z5Y5
D6 chvfcNyhg AK7VBN4JF7LAGY4PO1VFZVV2TUKTOQWOEVOHKSWJB7KSV47WK452RWVDOKWE418P
D7 XUUw8ETr-

58EQQBUXE2W
3UI7IX2F3L5RKMQUSN5XSDZUOY7WMRWIH1XT3H0U1N4YLYXWRRV9QF87ED4682CW

D8 WrTQxzGTW 090C0U9PUC287RXILDXJ7Y8J0ZMTBMLOB9WJ3E3XV5OLOYF00N1S1RP97OMYGPG5
D9 sGC6_x HNSOWVL1V9SO9W6JA7BTEUOGYR7YPPL3HC5D5SZF51GN90A5OHTCFDT1F5F82EW0
D10 g044B2e 9VMW325WML3F0JBTKIW492R8IQVVYF8THXKPRLGZAFHG5BDSV1GBGQZM1T6ZE0HH

Table 20: Nested installer’s decryption keys for samples from 2016 to mid-2017

samples rely on enlarged .rdata (C17, D4) or code sections (D6–10), resulting in binaries

ranging from 9 to 26MiB in size. The first type consists of a large .rdata section that

contains strings duplicated hundreds of times. However, this section contains actual strings

used in the unobfuscated application. Given that such strings are meant to be decrypted

at runtime, it is unclear why the developers left plaintext strings in the binary, or if large

.rdata sections are at all meant for evasion. Large code sections tend to slow IDA Pro’s

analysis, possibly due to gibberish instructions parsed.

The goblin DLL is also sometimes decrypted at runtime and written back to disk, at

167

which point it is inflated by appending 10MiB of apparently random data. In addition,

the size of the installer increases over time and heavily fluctuates in the fourth generation,

between 4–10MiB, depending on the size of the installed files. In turn, the unpacked file

sizes depend on T15.

T7: Obfuscated key reconstruction. In D17–19, up to two keys are combined and recon-

structed from arbitrary string manipulations over the key found in the ciphertext.

T8: Obfuscated installer script. The NSIS scripts, which can be decompiled from in-

stallers, are obfuscated with thousands of variables and string manipulation operations. We

could not find a description of such behavior in the literature. Note that techniques to

prevent the identification and recovery of NSIS installers are not used [189]. Unlike the

nested installer, the outer one remains unobfuscated. This could be done to avoid simple

heuristics.

T9: .NET and Powershell obfuscation. In the FiddlerCore generation, the Windows ser-

vice is responsible for adjusting the browser proxy settings and launching the FiddlerCore-

based network proxy written in C#. Samples from 2014 are not obfuscated and the C#/.NET

components are decompilable. Starting from sample B4, the method and variable names

of C# components are randomized. The deobfuscator de4dot [47] detects that Dotfusca-

tor [196] was used to obfuscate the program; however, only generic method and variable

names were reconstructed. Also, de4dot does not remove obvious dead code. Indeed,

useful lines of code are interleaved with string declarations made of concatenated random

strings. Since such strings are never used, except possibly in the declaration of other such

strings, they are easy to remove automatically.

The Powershell persistence module consists of a long encrypted standard string, using

a user-specific key. As the script runs with SYSTEM privileges, only this account can suc-

cessfully decrypt the string, revealing another Powershell script that is then invoked. Since

decrypting such strings is not directly allowed, the script converts the standard string to a

168

SecureString, creates a PSCredential object, and sets the SecureString as the password.

Then, it obtains the plaintext password from this object.

T10: Auto-whitelisting. From D5, the installer whitelists the installed program paths

in Windows Defender. Wajam inserts the paths of its main components under HKLM\

Software\Microsoft\Windows Defender\Exclusions\Paths. Figure 16

shows the NSIS script responsible for changing MRT’s settings, with support for 32-bit

and 64-bit systems.

Function func_3030
SetRegView 64
WriteRegDWORD HKLM SOFTWARE\Policies\Microsoft\MRT

DontReportInfectionInformation 0x00000001
WriteRegDWORD HKLM SOFTWARE\Policies\Microsoft\MRT

DontOfferThroughWUAU 0x00000001
SetRegView 32
WriteRegDWORD HKLM SOFTWARE\Policies\Microsoft\MRT

DontReportInfectionInformation 0x00000001
WriteRegDWORD HKLM SOFTWARE\Policies\Microsoft\MRT

DontOfferThroughWUAU 0x00000001
FunctionEnd

Figure 16: NSIS script to modify Microsoft MRT settings

T11: Disabling MRT. From D12, the installer also disables the monthly scans by Win-

dows Malicious Software Removal Tool (MRT) along with the reporting of any detected

infections.

T13: String obfuscation and encryption. Since C1, string literals in the installed binaries

are all XORed with a per-string key.

T14: Dynamic API calls. External library calls are made dynamically by calling the

LoadLibrary API function provided with a DLL name as argument (obfuscated with

T13).

T15: Junk and dead code. Junk/dead code usually involves adding, replacing, or reorder-

ing instructions [202, 120]. Wajam’s junk code is quite distinct from what can be found in

the literature. It involves: 1) string manipulation on large random strings, 2) inter-register

169

operations, 3) calls to Windows library functions that only swap or return some fixed val-

ues, 4) tests on the result of such dummy functions, 5) large never-executed conditional

branches, and 6) dependence on global variables. Useful operations are thus interleaved

with such junk code. Due to modifications that are sometimes made to global variables

common to many functions, these functions are not deterministic from their inputs, thus

junk code removal is challenging. For instance, in D17, the DLLs that read and decode

media files (T5), contain more than 2000 and 400 junk functions, respectively, that can be

called up to a dozen times each. The resulting call graph is also useless.

T16: Encrypted code. The main executable’s code section is encrypted in D5–10 with a

custom algorithm based on several byte-wise XOR and subtraction operations. Chunks of

456KiB are decoded with the same logic, while each chunk is decoded differently. Such

samples correlate with installers where the file name is prefixed with “WBE_crypted_bundle_”,

suggesting that the encryption layer was added after compilation, possibly by a third-party

toolkit.

T17: Anti-IDA Pro measures. Encrypted code (T16) involves multi-MiB placeholders in

the code section to receive decrypted instructions (the decryption is not in-place). They are

pre-filled with a single byte padding. As a byproduct of this technique, both the padding

and encrypted instructions are difficult to analyze by a disassembler. For instance, IDA Pro

hangs for over two hours on sample D9, containing 4MiB of the byte B9 (interpreted as a

jump instruction), followed by another 3MiB of encrypted instructions.

T18: Unique readable strings as function arguments. Often, functions are called with

an argument that is a unique random string, or a brief extract from public texts; e.g., we

found strings from the Polish version of Romeo and Juliet in D14–16, and from The Art of

War by Sun Tzu in D17,19,23. This technique could be used to thwart heuristics (based on

entropy or human-readable text); however, we are unsure about its intended target.

T19: Randomized names. From B4, installed executable filenames appear random. The

170

installation folder itself becomes randomized from C14 and D3. The names are actually

derived from the original name (e.g., wajam.exe), combined with the Machine GUID ob-

tained from registry, and hashed, i.e., md5(GUID+filename).6 This pattern is also used

in the common name of root certificates from the fourth generation (see Appendix 6.12.1).

T20: Rootkit. C11,17,18 rely on a kernel-mode driver to hide the installation folder from

the user space, effectively turning Wajam into a rootkit. C11 also remains even more

stealthy as it does not register itself as an installed program and hence does not appear

in the list for users to uninstall it. The file system driver responsible for hiding Wajam’s

files is called Lacuna and is either named pcwtata.sys or similar, and is signed by

DigiCert.

T21: Persistence module. Wajam establishes persistence through executables or scripts

that are left in the C:\Windows folder and not removed by uninstalling the product.

While executables could be detected by antiviruses, Wajam leverages (obfuscated) Pow-

ershell scripts in samples C17, D3 and D12–13. A scheduled task is left on the system to

trigger the persistence module at user logon. From D14 onward, the persistence module is

a regular executable, inheriting some anti-analysis techniques previously mentioned, and

set up as a Windows service that starts at boot-time. The module checks for the presence

of the installation directory and main executable. If they do not exist, the module follows

the process of updating the application by querying a hardcoded URL to download a fresh

variant. This behavior is mostly intended for reinstalling the application after it has been

uninstalled, or removed by an antivirus. However, we found that the hardcoded URL is

not updated throughout the lifetime of the module on the system, and could be inaccessible

when necessary.

T22: Detection of installed antiviruses. In every sample since C6, Wajam looks for

6For instance, C:\Program Files\WaNetworkEn\wajam.exe becomes C:\Program
Files\b686d944556d5de03afc6aa639bff9c7\06ca8c13762fca02c5dae8e502fd91c9.
exe, with the folder name corresponding to md5(MachineGUID+‘WaNetworkEn’) and the filename
taken from md5(MachineGUID+‘wajam.exe’).

171

the presence of a series of 22 major antiviruses and other endpoint security software, then

attaches the list of detected products to almost every query it makes to Wajam’s server. This

might be used to evaluate the distribution of AVs among victims and tailor efforts to evade

the most popular ones. Notably, some of the listed products are intended for business use

only, e.g., AhnLab and McAfee Endpoint, raising concerns that Wajam might also targets

enterprises specifically. The list of security product and/or vendors that Wajam searches

for are listed in Table 21.

AVAST Software Microsoft Antimalware
AVG Norman Data Defense Systems
AhnLab Norton
Avira Panda Security
BitDefender Safer Networking Limited
BullGuard Ltd. SUPERAntiSpyware.com
ESET TrendMicro
KasperskyLab UnThreat
Malwarebytes Anti-Malware VIPRE Internet Security
McAfee Endpoint WRData
McAfee MSC Zone Labs

Table 21: Security solutions checked by Wajam in registry

T23: Digital signatures. Before D9, samples are digitally signed, which could help the in-

staller appear legitimate to users when prompted for administrative rights (when distributed

as a standalone app), and lower detection by AVs [151]. From D9 (i.e., shortly after Wa-

jam was sold to IMTL), only the network drivers are still signed, as required by Windows.

Presumably, since the signing certificates are issued to Wajam’s domains, which could help

AVs to fingerprint the installer, signatures were removed. Also, Wajam already inherits

admin privileges from the bundled software installer that runs it and no longer triggers

Windows UAC prompts. From D20, the main installed binaries are also signed.

172

6.10 Security Threats

In this section, we discuss the security flaws we identified in Wajam’s TLS proxy certificate

validation, along with vulnerabilities of its auto-update mechanisms that lead to arbitrary

content injection (with possible persistence) and privileged remote code execution.

Certificate validation issues. In the 2nd and 4th generations, Wajam acts as a TLS proxy,

and therefore is expected to validate server certificates. FiddlerCore-based samples (2nd

gen.) properly do so. However, in ProtocolFilters-based samples (4th gen.), Wajam fails

to validate the hostname, since at least Apr. 2016 (D1). Thus, a valid certificate for ex-

ample.com is accepted by Wajam for any other domain. Worse, Wajam even replaces the

Common Name (CN) from the server certificate with the domain requested by the client.

In turn, the browser accepts the certificate for the requested domain as it trusts Wajam’s

root certificate.

Swapping the CN with the requested domain is somewhat mitigated, since 1) CAs

should include a Subject Alternate Name (SAN) extension in their certificates, which is

copied from the original certificate by ProtocolFilters, and 2) browsers may ignore the CN

field in a certificate if a SAN extension is present. In particular, Chrome rejects certifi-

cates without SAN [209]. Consequently, if an attacker obtains a valid certificate for any

domain without a SAN extension, they are still able to perform a MITM attack against IE

and Firefox when Wajam is installed.

Despite the deprecation of CN as a way of binding a certificate to a domain [204] in

2000, Kumar et al. [154] recently showed that one of the most common errors in certificate

issuance by publicly trusted CAs is the lack of a SAN extension. For the sake of our experi-

ment, we inserted our own root certificate in the Windows trust store and issued a certificate

without SAN for evil.com. Wajam successfully accepted it when visiting google.com, and

the Wajam-generated certificate in turn was accepted by IE.

Shared root private key. We located the code in ProtocolFilters responsible to create the

173

Sample Root certificate’s Common Name
B1–B3 Wajam_root_cer
B4–B5 WNetEnhancer_root_cer
B6 WaNetworkEnhancer_root_cer
D1–D2 md5(GUID+‘WajaInterEn’)[0:16]
D3 md5(GUID+‘WNEn’)[0:16]
D4 md5(GUID+‘Social2Se’)[0:16]
D5–D8 md5(GUID+‘Socia2Sear’)[0:16]
D9 md5(GUID+‘Socia2Se’)[0:16]
D10 md5(GUID+‘Socia2S’)[0:16]
D11 md5(GUID+‘Soci2Sear’)[0:16]+‘ 2’
D12–D21 md5(GUID+‘SrcAAAesom’)[0:16]+‘ 2’
D22–D23 base64(md5(GUID+‘SrcAAAesom’)[0:12])+‘ 2’

Table 22: TLS root certificates in 2nd and 4th generations

root certificate used for interception. The code either generates an RSA-2048 private key

(using OpenSSL), or use a default hardcoded one. Unfortunately, the default settings are

used and all 4th generation samples share the same key. We performed a successful MITM

attack on our test system using a test domain. Consequently, an attacker could impersonate

any HTTPS websites to a machine running Wajam’s fourth generation by knowing the root

certificate’s CN to properly chain the generated certificates. However, the CN is based on

the Machine GUID, as illustrated in Table 22 (more details in Section 6.12.1).

Since the Machine GUID is unpredictable and generally unknown to an attacker, and

since the resulting CN carries at least 48 bits of entropy in our dataset (starting from D22,

64 bits in prior samples), crafting certificates signed by a target Wajam’s root certificate

is generally impractical. Indeed, an attacker would need to serve an expected number of

247 certificates to a victim before one is accepted. We note that environments with cloned

Windows installations across hosts could be more vulnerable if the Machine GUID is not

properly regenerated on each host, as it is possible to obtain it from a single host with few

privileges.

Nevertheless, during our scans through residential proxies (see Section 6.7), we also

found cases of injected scripts pointing to Wajam domains with much shorter issuer CNs,

e.g., “MDM5Z 2” providing under 15 bits of entropy (see Section 6.12.1). This could

174

indicate more recent variants are at higher risk of MITM attacks.

The FiddlerCore-based generation is immune to this issue as keys are randomly gener-

ated at install-time using MakeCert.

Auto-update mechanism. Wajam periodically fetches traffic injection rules, browser hook-

ing configurations, and program updates. Updates are fetched upon first launch, then Wa-

jam waits for a duration indicated in the last update (from 50 to 80 minutes in our tests),

before it updates again. While early samples fetched plaintext files, all recent samples and

the whole 4th generation download encrypted files. The decryption is handled in an en-

crypted DLL loaded at runtime. We found that Wajam uses the MCrypt library to decrypt

updates with a hardcoded key and IV using the Rijndael-256 cipher (256-bit block, key and

IV) in CFB-8 mode. The key and IV are the same across all versions. The content of such

updates and the implications of lacking the proper protection are discussed below.

Downgraded website security. From the 2nd generation, Wajam fetches traffic injection

rules, containing a list of domains and instructions to inject scripts. The injection file

is a JSON structure containing “supported websites.” For each website, a list of regular

expressions is provided to match URLs of interest, often specifically about search or item

description pages, along with specific JavaScript and CSS URLs to be injected from one

of Wajam’s several possible domains. The rules also include HTTP headers or tags to be

added or removed.

Since the content injection relies on loading a remote third-party script, browsers may

refuse to load the content due to mixed-content policies, or the Content Security Policy

(CSP) configured by the website. Mixed-content is addressed by loading the script over

the same protocol as the current website. For websites that specify a CSP HTTP header

or HTML tag, Wajam removes this CSP from the server’s response before it reaches the

browser, to ensure their script is properly loaded. Wajam removes the CSP from Facebook,

mail.ru, Yandex, flipkart.com, and Yahoo Search; see Fig. 17 where the CSP header is

175

dropped from facebook.com.

Other response headers are also removed in some cases, including Access-Control-

Allow-Origin, which would allow the given website’s resources to be fetched from dif-

ferent origins than those explicitly allowed by the website, and X-Frame-Options (e.g.,

on rambler.ru), enabling the website to be loaded in a frame.

Such behaviors not only allow injected scripts to be successfully loaded and fetch in-

formation, but also effectively downgrade website security (e.g., XSS vulnerabilities may

become exploitable).

[facebook]
[domains]
[0] => facebook

[patterns]
[0] =>
^https?:\/\/(www\.)?facebook.com(?!(\/xti\.php))

[js]
[0] =>
se_js.php?se=facebook&integration=searchenginev2

[css]
[headers]
[remove]
[response]
[0] => content-security-policy

Figure 17: Example of traffic injection rule for facebook.com that matches all pages
except xti.php

Arbitrary content injection. Traffic injection rules are always fetched over plain HTTP.

Although updates are encrypted, an attacker can learn the encryption algorithm and extract

the hardcoded key/IV from any Wajam sample in the last few years, to easily forge updates

and serve them to a victim through a simple MITM attack.

As a proof-of-concept, we suppose that bank.com is a banking website with its login

page at https://login.bank.com. We craft an update file that instructs Wajam to

insert a JavaScript file of our choice, hosted on our own server, and encrypt it using the

key that we recovered. The plaintext traffic injection rule is provided in Fig. 18. Once the

176

https://login.bank.com

{"version":"1",
"update_interval":60,
"base_url":"\/\/attacker.evil\/",
"supported_sites":
{"bank":
{"domains":["bank"],
"patterns":["^https?:\\\/\\\/login\\.bank\\.com"],
"js":["bank.js"],
"css":[],"version":"1"}},

"process_blacklist":[],
"process_whitelist":[],
"update_url":"https:\/\/attacker.evil\/mapping",
"css_base_url":"\/\/attacker.evil\/css\/",
"url_filtering":[],
"bi_events":[],
"url_tracking":[],
"protocols_support":

{"quic_udp_block":1}}

Figure 18: Traffic injection rule to insert a malicious script on login.bank.com lo-
cated at //attacker.evil/bank.js, and redirect future update queries to https:
//attacker.evil/mapping

update is fetched by Wajam (i.e., after around an hour, or at boot time), and upon visiting

the bank’s login page, our malicious script is loaded on the bank’s page and is able to

manipulate the page’s objects, including listening to keystroke events in the username and

password fields. No default cross-origin policy would prevent our attack. If the bank’s

website implemented a CSP, it could be easily removed from the server’s HTTP response.

We note that Wajam already has the infrastructure in place for maliciously injecting

any script into any website at will, by simply distributing malicious updates. Such updates

could be short-lived for stealthiness, yet affect a large number of victims.

Moreover, updates systematically contain the URL of the next update to fetch. Once

Wajam downloads an update and caches it to disk, it does not use its hardcoded URL

anymore. Hence, the effect of a compromised update is persistent. Our malicious update

(Fig. 18) instructs Wajam to fetch further updates from our own server, alleviating the need

to repeatedly perform MITM attacks.

Privileged remote code execution. Wajam also queries for program updates and retrieves

the manifest of potential new versions. Several parameters are passed, including Wajam’s

177

login.bank.com
//attacker.evil/bank.js
https://attacker.evil/mapping
https://attacker.evil/mapping

current version, and the list of detected security solutions, possibly influencing which up-

date is served. If an update is available, the URL where to fetch a ZIP package is provided,

which is downloaded and uncompressed into the installation directory.

Similar to the attack on traffic injection rules, it is possible to serve a fake update mani-

fest to trigger an update from a malicious URL before mid-Feb. 2018 (D18), while software

updates were fetched over HTTP. This would enable an attacker to inject its own binary

that will be run with SYSTEM privileges; however, we have not tested this attack. Starting

from D18, software updates are fetched over HTTPS and it appears that Wajam properly

validates the server certificate, mitigating this attack.

6.11 Content Injection

We discuss below the domains targeted for injection, and the content injected into web-

pages. We also summarize the specificities of the 3rd generation that conducts MITB at-

tacks.

6.11.1 Targeted Domains

The injection rules fetched between Feb. to July 2018 always include 100 regular expres-

sions to match the domains of major websites, with only one change during this period. The

injected domains include popular search engines, social networks, blogging platforms, and

various other localized businesses in North America, Western Europe, Russia, and Asia.

The list contains notable websites, e.g., Google, Yahoo, Bing, TripAdvisor, eBay, BestBuy,

Ask, YouTube, Twitter, Facebook, Kijiji, Reddit, as well as country-specific websites, e.g.,

rakuten.co.jp, alibaba.com, baidu.com, leboncoin.fr, willhaben.at, mail.ru. The total num-

ber of websites that are subject to content injection is not easy to quantify due to the nature

of some URL matching rules, e.g., in the case of the blogging platform Wordpress, blogs

178

are hosted as a subdomain of wordpress.com and Wajam’s rules match any subdomain,

which could be several millions [247].

<script data-type="injected" src="//technologietravassac.com/addon/
script/google?integration=searchenginev2&har=2&v=n11.14.1.86&
os_mj=6&os_mn=1&os_bitness=32&
mid=b8230ac083f9fb5067a66e03b4882491&
uid=B77FCD732C2E5337FF907BFAA44758D1&aid=3673&aid2=none&
ts=1531782569&ts2="></script>

<link rel="stylesheet" type="text/css" href="//main-social2search.
netdna-ssl.com/css/cdn/min_search_engine_v2.css?wv=1.00434"/>

Figure 19: Example of injected content on google.com

6.11.2 Injected Content

On URLs matching the injection rules, Wajam injects a JavaScript and CSS right before the

</head> tag, a feature provided by ProtocolFilters. The scripts are either self-contained

in early samples, or they insert remote scripts with parameters including Wajam’s version,

the OS version/architecture, the two unique IDs (see Section 6.8), an advertiser ID, and

the installation timestamp; see Fig. 19. The remote JavaScript URL script injected into

the page is dependent on the visited website. Two categories of websites are distinguished

here: search engines, and shopping websites. We give below an example for each case.

Search engines. There are three possible behaviors that we observed when visiting a search

engine website. For instance, when searching on google.com, Wajam can change the ac-

tion on the first few results’ links returned by Google. In effect, when a user clicks on

these results, the original link opens in a new browser tab while the original tab loads

a series of ad trackers (including Yahoo and Bing) provided with the keywords searched

by the user, and eventually lands on an undesirable page, e.g., a search result page from

informationvine.com about foreign exchange. Alternatively, the script may just redirect

the user to searchpage.com, a domain that belongs to Wajam, which in turn redirects to

a Yahoo search result page with the user’s original search keywords. A user may not

179

google.com

notice that her original search on Google is eventually served by Yahoo. In the mean-

time, her keyword searches are sent to Wajam’s server. Also, the Yahoo result URL con-

tains parameters that may indicate an affiliation with Wajam, i.e., hspart=wajam and

type=wjsearchpage_ya_3673_fja6rh1. Finally, Wajam may simply insert sev-

eral search results that it fetched from its servers, as the top results. Wajam performs a

seamless integration of those results in the page, breaching the trust that a user has in the

search engine results. This behavior is part of a patent owned by Wajam Internet Technolo-

gies Inc [61].

Shopping websites. When searching on ebay.com, Wajam loads a 180KiB JavaScript file

(more than 7700 SLOC) containing the Priam engine intended to retrieve search keywords,

fetch related ads, and integrate them on the page. This engine seems self-contained and

embeds several libraries. It has numerous methods to manipulate page elements and cook-

ies. Inserted ads are shown at the top of the result list in a large format, also seamlessly

integrated, thanks to injected CSS. When the user clicks one of the ads, she is redirected to

a third party website selling products related to her search.

In both cases, one of the unique IDs generated by Wajam’s installer accompanies each

URL pointing to Wajam’s domains. In the end, both Wajam and the advertisers can build a

profile of the user based on her searches.

6.11.3 Browser Hooking Rules

The third generation specifically retrieves a browser hooking configuration file with offsets

of functions to be hooked in a number of browsers and versions. Unlike the traffic injection

rules, the browser hooking rules are preloaded in the installer. Hence, it is possible to study

their evolution in time.

The earliest third generation sample (Nov. 2014, C1) only includes addresses of func-

tions to be hooked for 47 versions of Chrome, from version 18 to 39. The file also lists

180

supported versions of IE and Firefox, although old and without specific function addresses.

In Sept. 2015 (C6), Wajam introduces the support for seven versions of the Opera browser.

Two months later, five other Chromium-based browsers are introduced, of which four are

adware, i.e., BrowserAir, BoBrowser, CrossBrowser, MyBrowser; and one is a legitimate

browser intended for Vietnamese users, i.e., Coc Coc. By Jan. 2016 (C10), 200 versions

of Chrome are supported, up to version 49.0.2610.0 with finer granularity for intermediate

versions.

Wajam’s browser hooking DLL name was blacklisted in Chrome in Nov. 2014 [215]

because it could cause crashes. Other blacklisted DLLs are labeled in the comments as

adware, malware or keylogger, but Wajam is not. One month later (in C3), Wajam random-

ized this DLL name, making the blacklist ineffective.

Although we did not capture any new sample from the third generation after Jan. 2016,

we noticed that the browser hooking rules are kept up-to-date, suggesting that this gener-

ation is still actively maintained and possibly distributed. In an update from July 2018,

we count 1176 supported Chrome versions including the latest Canary build, and addi-

tional Chromium-based browsers, e.g., Torch, UC Browser, and Amigo Browser. Versions

of Opera are outdated by more than a year. Other Chromium-based browsers only have

entries for a limited number of selected versions.

Wajam avoids intercepting non-browser applications as evident from a blacklist of pro-

cess names in the update file, e.g., dropbox.exe, skype.exe, bittorrent.exe. Additionally, a

whitelist is also present, including the name of supported browser processes; however, it

appears not to be used. Furthermore, Wajam seems to have had difficulties handling certain

protocols and compression algorithms in the past. It disables SPDY in Firefox and SDCH

compression in Chrome before v46.

181

6.11.4 Updates and Injections

Program updates are found in an update or manifest file, generally located at

/webenhancer/update, /browserenhancer/update or /proxy/manifest

on the remote server. Similarly, traffic injection rules are called injections or

mapping (located at /addon/mapping or /webenhancer/injections). Finally,

the third generation specifically retrieves a config file (/webenhancer/config).

Bootstrap and cache. The first update is fetched from a hardcoded URL. Later updates

are made based on the “update_url” parameter found in the previously fetched file. Once

the injection rules are downloaded, they are stored in the program’s folder in plaintext in

a file named WJManifest for early samples (i.e., B2 and earlier), or encrypted as is in a

file named waaaghs or its obfuscated name. Browser hooking rules are cached similarly,

under a file named snotlings or its obfuscated version.

Injection methods. The third generation of Wajam injects a DLL into browser processes,

which further hooks a number of functions to manipulate the traffic. While the offsets of the

functions are available in the hourly update for Chromium-based browsers, IE and Firefox

do not require additional information since the functions to be hooked are readily exported

by wininet.dll (in the case of IE) and nss3.dll (for Firefox), and hence can be

found easily at runtime. Given the names corresponding to the addresses found in this up-

date file, e.g., PR_Write, SSL_read_impl, Wajam seems to follow the same function

hooking strategy to inject content in the network traffic as the Citadel malware [221].

Wajam avoids intercepting non-browser applications as evident from a blacklistlist of

process names in the update file, e.g., dropbox.exe, skype.exe, bittorrent.exe. Additionally,

a whitelist is also present, including the name of supported browser processes; however, it

appears not to be used.

Furthermore, Wajam seems to have had difficulties handling certain protocols and com-

pression algorithms in the past. It disables SPDY in Firefox. Before Chrome version 46,

182

Wajam also modifies the value located at a given offset that represents whether SPDY is en-

abled to disable this feature. Similarly, the SDCH compression algorithm is disabled. The

number of functions to be hooked evolves from one version of the browser to another, with

a different set for 32 and 64-bit versions, sometimes including only PR_(Read, Write,

Write_App, SetError, Close), or also SSL_read_impl.

[hooks]
[chrome]
[...]
[66_0_3353_2]
[32bits]
[PR_Close] => 0x0181C296
[PR_Write_App] => 0x01824532
[SSL_read_impl] => 0x01817684

[64bits]
[PR_Close] => 0x02318A7C
[PR_Read] => 0x02312A0C
[PR_Write] => 0x0232307C
[PR_Write_App] => 0x0232307C
[SSL_read_impl] => 0x02312A0C

Figure 20: Browser injection rule for Chrome 66.0.3353.2

6.12 Directions for Better Detection

Security solutions overall fail to statically analyze Wajam’s installers and binaries. Unless

such binaries look suspicious and endpoint solutions may decide to upload them to the

vendor’s cloud for dynamic and more thorough analysis, Wajam can still be installed on

most user systems due to its daily metamorphic installer. The delay incurred by this process

could be reduced by detecting obvious signs of infection.

We identified simple fingerprints that could hint at an infection, either from the host

or network activities. Those fingerprints could be used by security solutions, operating

systems and web browsers as relevant. We first describe the possibility of fingerprinting

Wajam’s root certificates, then discuss other simple approaches.

183

6.12.1 Root Certificate Fingerprints

We were able to build fingerprints for Wajam-issued certificates. It is possible to match a

leaf certificate’s distinguished name (DN) with our patterns to confirm whether it has been

issued by Wajam. They may be particularly relevant if integrated into browsers to warn

users. Chrome already detects well-known software performing MITM to alert users of

possible misconfigurations and a couple of vulnerable interception applications [124].

Common Name generation. Recovering this algorithm is not straightforward as several

intermediate functions separate the CN generation from the certificate generation. We first

identify the function in charge of retrieving the Machine GUID from the registry, and label

the parent responsible for concatenating a given string to it and applying the MD5 hash.

Then, we identify the function that writes the certificate to a file named after the CN, and

trace the origin of the filename to a function that calls the previously labeled function. The

argument passed in the call corresponds to the concatenated string. After observing in a few

samples that the concatenated string matches the registry key of the installed application,

we simply proceed to try this key to match the generated certificates in other samples. The

various application names can be found in Table 22.

In the last two samples (D22–23), the process is similar; however, only the 12 first

hexadecimal characters of the MD5 hash are taken into account, which are further encoded

using base64 giving e.g., ZmJiYmRiODYxNTZi. We also found that samples branded as

SearchAwesome install a certificate with a CN appended with the digit “2”, corresponding

to a new feature in ProtocolFilters that appeared in May 2015 [219].

Fingerprints. Table 23 shows the regular expressions to match Wajam’s 2nd and 4th gen-

eration root certificate Distinguished Names (DN) based on our observations.

While the first 3 DNs are static, others capture all possible combinations which we

reverse-engineered from Wajam’s binaries. In particular, patterns 4–5 match a CN that

represents 16 hexadecimal characters, thus this type of CN carries log2(1616) = 64 bits of

184

entropy. Patterns 6–9 correspond to samples where the hexadecimal CN is base64-encoded

and truncated at various lengths. Due to the limited space of hexadecimal characters to

encode, the resulting CN follows a repeated pattern of 4 letters from different sets, e.g., the

first encoded letter can only be a Y, Z, M, N or O. Not all combinations of letters from the

sets are possible, thus these patterns are overestimating possible fingerprints. Pattern 6 can

match up to 16 characters, which translates into 12 hexadecimal characters and thus 48 bits

of entropy.

During our scans in Mar. 2019, we also found certificates with similar fingerprints as

produced by D22 and D23; however, their issuer CNs were shorter. When we detected

such cases, we also fetched the web page and found that the injected content also points

to Wajam domains. Since samples from Mar. 2019 we could obtain from the known dis-

tribution URL do not generate such certificates, it could be possible that we are missing

another “branch” of Wajam. For instance, the shortened CN “MDM5Z 2” caries 12 bits for

the first four letters + 2.28 bits for the 5th character (i.e., about one out of five, considering

the actual bias), resulting in an overall entropy of 14.28 bits, easily exploitable in practice.

6.12.2 Other Approaches

First, Wajam registers an installed product on the system using either a known registry key

or known names (e.g., SearchAwesome), which could be blacklisted by security solutions.

Then, it tries to add its installation folder and network driver as exceptions for Windows

Defender, which could help locate Wajam’s binaries. Moreover, we believe that the in-

stallation of a network driver should warrant a more informed consent from the user, as

this operation is seldom performed on user devices and bears potentially significant conse-

quences.

Furthermore, Wajam uses a long but bounded list of domains so far. A simple domain

blacklist enforced by security solutions would prevent Wajam from communicating with its

185

#
M

at
ch

es
sa

m
pl

es
O

pe
ra

to
r

Is
su

er
D

is
tin

gu
is

he
d

N
am

e

1
B

1–
B

3
=

em
ai

lA
dd

re
ss

=i
nf

o@
w

aj
am

.c
om

,O
U

=C
re

at
ed

by
ht

tp
://

w
w

w
.w

aj
am

.c
om

,O
=W

aj
am

In
te

rn
et

E
nh

an
ce

r,
C

N
=W

aj
am

_r
oo

t_
ce

r
2

B
4–

B
5

=
em

ai
lA

dd
re

ss
=i

nf
o@

te
ch

no
lo

gi
es

ai
nt

ur
ba

in
.c

om
,O

U
=C

re
at

ed
by

ht
tp

://
w

w
w

.te
ch

no
lo

gi
es

ai
nt

ur
ba

in
.c

om
,O

=W
aj

am
In

te
rn

et
E

nh
an

ce
r,

C
N

=W
N

et
E

nh
an

ce
r_

ro
ot

_c
er

3
B

6
=

em
ai

lA
dd

re
ss

=i
nf

o@
te

ch
no

lo
gi

ev
an

ho
rn

e.
co

m
,O

U
=C

re
at

ed
by

ht
tp

://
w

w
w

.te
ch

no
lo

gi
ev

an
ho

rn
e.

co
m

,O
=W

aj
am

In
te

rn
et

E
nh

an
ce

r,
C

N
=W

aN
et

w
or

kE
nh

an
ce

r_
ro

ot
_c

er
4

D
1–

D
10

R
E

G
E

X
P

^e
m

ai
lA

dd
re

ss
=i

nf
o@

te
ch

no
lo

gi
e.

+\
.c

om
,C

=E
N

,C
N

=[
0-

9a
-f

]{
16

}$
5

D
11

–D
21

R
E

G
E

X
P

^C
=E

N
,C

N
=[

0-
9a

-f
]{

16
}

2$
6

Fr
om

D
22

R
E

G
E

X
P

^C
=E

N
,C

N
=(

[Y
Z

M
N

O
][

W
T

m
j2

zG
D

][
FE

JI
N

M
R

Q
V

U
Z

Y
B

A
dc

hg
lk

][
h-

m
w

-z
0-

5]
){

1,
4}

2$
7

M
or

e
re

ce
nt

R
E

G
E

X
P

^C
=E

N
,C

N
=(

[Y
Z

M
N

O
][

W
T

m
j2

zG
D

][
FE

JI
N

M
R

Q
V

U
Z

Y
B

A
dc

hg
lk

][
h-

m
w

-z
0-

5]
){

1,
3}

[Y
Z

M
N

O
][

W
T

m
j2

zG
D

][
FE

JI
N

M
R

Q
V

U
Z

Y
B

A
dc

hg
lk

]2
$

8
M

or
e

re
ce

nt
R

E
G

E
X

P
^C

=E
N

,C
N

=(
[Y

Z
M

N
O

][
W

T
m

j2
zG

D
][

FE
JI

N
M

R
Q

V
U

Z
Y

B
A

dc
hg

lk
][

h-
m

w
-z

0-
5]

){
1,

3}
[Y

Z
M

N
O

][
W

T
m

j2
zG

D
]2

$
9

M
or

e
re

ce
nt

R
E

G
E

X
P

^C
=E

N
,C

N
=(

[Y
Z

M
N

O
][

W
T

m
j2

zG
D

][
FE

JI
N

M
R

Q
V

U
Z

Y
B

A
dc

hg
lk

][
h-

m
w

-z
0-

5]
){

1,
3}

[Y
Z

M
N

O
]2

$

Ta
bl

e
23

:F
in

ge
rp

ri
nt

s
fo

rW
aj

am
-i

ss
ue

d
le

af
ce

rt
ifi

ca
te

s
(S

Q
L

re
gu

la
re

xp
re

ss
io

n
sy

nt
ax

)

186

servers and leaking private information. Samples communicating in plaintext can further be

fingerprinted due to the URL patterns and type of data sent, i.e., list of installed programs.

Later samples that leverage HTTPS at install-time and later to fetch updates could still

be fingerprinted due to known domains present in the TLS SNI extension, or simply by

blacklisting corresponding IP addresses. Since daily variants of Wajam are served from

known domains at known directories, it is possible for security solutions to constantly

monitor these servers for new samples and create corresponding signatures earlier. When a

new system driver is installed, additional verifications by security solutions could quickly

find out Wajam’s driver as it is signed with a certificate for one of the known domains.

The use of ProtocolFilters can also be fingerprinted by the files and folder structure it

sets up. This could help researches to identify other software interceptors for further anal-

ysis. Online searches for malware “2.cer” and “SSL” “cert.db” “*.cer” yield several fo-

rum discussions about infections, e.g., Win.Dropper.Mikey, iTranslator, ContentProtector,

SearchProtectToolbar, GSafe, OtherSearch, and even a security solution (Protegent Total

Security, from India). Most of these applications likely use ProtocolFilters’ default key, as

we could verify for Protegent, and hence make end users vulnerable to MITM attacks, in

addition to being a nuisance. More work is needed to understand the extent of the use of

this interception SDK.

6.13 Wajam Clones

While searching for other ProtocolFilters-enabled applications, we also stumbled upon

OtherSearch (also known as FlowSurf/CleverAdds). This adware application shares very

similar obfuscation, evasion and steganography techniques with Wajam, sometimes in a

more or less advanced way, to the point that it is mislabeled as Wajam when detected by

AVs. For instance, it disables MRT (T11) and also SmartScreen, and randomizes file paths

as done in Wajam (T19). The installer also leverages steganography (T5) to run a second

187

installer hidden in media files; however, it uses a custom ZIP extractor instead of NSIS.

Moreover, OtherSearch also embeds ProtocolFilters’ default key in its root certificate, but

does not randomize the issuer names (T19), thus exposing all its victims to trivial MITM at-

tacks on HTTPS traffic. However, OtherSearch does not leak the browser histories. We did

not observe variants served daily at known URLs, thus we are unsure whether OtherSearch

leverages such a poly/metamorphism technique (T1).

We could not find an organizational connection between Wajam and OtherSearch, thus

suggesting that both may leverage a common third-party obfuscation framework, or simply

share similar ideas. A recent report by McAfee suggests that adware vendors delegate the

obfuscation job to “freelancers” [102]. Hence, the same third party could have been hired

by both businesses.

We also note that one network request, made during the installation of OtherSearch

to report a successful installation, triggers a non-interpreted PHP script on the server side,

which is then recorded in a file on the user’s device; this leaks the credentials for an Internet-

facing MySQL database. To understand the importance of this database and take appropri-

ate actions, we responsibly queried simple statistics (without dumping the data) and found

that it contains over 100 million Google searches and associated clicked results from the

past 1.5 years, 6.54M records are associated with unique IDs, indicating a large number of

potential victims. Two third of the searches seem to originate from France, as hinted by

the domain google.fr in the search queries. Given the database size, similar to how secu-

rity researchers proceed with the many recent discoveries of open MongoDB instances on

the Internet (e.g., [103]), we immediately reported the whereabouts of this database to the

hosting provider (OVH) and on the French Ministry of Interior’s report platform on Apr.

17, 2019. As of July 31, 2019, this database is no longer accessible.

188

6.14 Concluding Remarks

Apparently, the adware business is a Pandora’s Box that does not receive the attention it

deserves, and which leverages interesting known and newer anti-analysis techniques for

successful evasion, and results in disastrous security and privacy violations. If such threats

were taken more seriously, the bar could easily be raised to thwart the most ludicrous of

them. For instance, the 332 domains that belong to Wajam could be tracked and black-

listed. The daily released samples issued from some of these domains could be monitored

and blacklisted within minutes. Fixed registry keys created during installation that have

not changed in years are enough to kill all related processes and quarantine them. Unfortu-

nately, this is not the case as of today.

Compared to previous recent studies on adware, we provide an in-depth look into a

widespread strain in particular, and provide insights into the business and technical evolu-

tions. We uncovered several anti-analysis and antivirus evasion techniques. We also identi-

fied important security risks and privacy leakages. Considering the huge amount of private

data collected by its operators, and the number of installations it made, it is surprising that

it remained virtually overlooked and fully functional for many years. Perhaps, “adware”

applications do not present themselves as very attractive targets for analysis. However, we

hope that the security community will recognize the need for better scrutiny of such ap-

plications, and more generally PUPs, as they tend to survive and evolve into more robust

variants.

189

Chapter 7

Conclusion and future work

In this thesis, we have attempted to measure TLS interception from the vantage point of

end users around the globe. We complement the effort made to secure and monitor HTTPS

deployments, by focusing on what users actually see from their device. We improved on

previous TLS interception studies and brought a clearer picture of interception actors and

contexts. We recorded and identified interception performed by 31 enterprise middleboxes,

16 ad/mal-ware applications based on the NetFilter SDK, 7 antivirus applications, 6 DNS

filters, 3 ad blockers, 1 VPN application, 1 employee monitoring tool, as well as ISP in-

terception in 8 countries, computer equipments provided to university students with an

HTTPS filter, and we uncovered the practice of compensating users in exchange for their

(decrypted) traffic. As such, we shed some light on the ecosystem of publicly untrusted yet

browser-accepted certificates.

We built a comprehensive analysis framework to evaluate client-end TLS proxies, and

applied it on 12 antivirus and parental control applications. We found that security prod-

ucts were not securely dealing with interception and in fact reduced the level of security

provided by modern browsers while misleading said browsers. We also looked at the other

end of the spectrum by studying a prominent traffic-intercepting ad/mal-ware found in 44

190

countries between 2017 and 2019. We found vulnerabilities in its TLS proxy that are con-

cerning, even more so when it has existed for many years, before popular antivirus appli-

cations started inspecting HTTPS traffic, and when the authors might not be as mindful as

security companies towards securing their product. Overall, we conclude that the state of

TLS interception as we evaluated over the period 2015–2019 is often performed insecurely

by default by antivirus, parental control and malware applications alike.

During the course of this dissertation, the deployment of HTTPS on web servers has

more than doubled. Our results come at a critical time to raise awareness on the impact

and scale of insecure TLS interception, and contributed to make security solutions safer.

We have made a number of recommendations targeted at browser, security solution and

OS vendors to improve the state of TLS interception. Also, we tried to revive the topic

of privacy-invasive adware, forgotten since legal battles from the last decade, which also

happen to pose a significant risk to TLS security for end users.

This work required extensive manual effort, especially in the reverse-engineering of

antivirus and adware products, which is difficult to automate, and in the analysis of cer-

tificates. While research on reverse-engineering is ongoing, we believe that the analysis

of large corpus of certificates would benefit from efficient data visualization techniques

to quickly investigate connections and similarities. In the future, machine learning tech-

niques could be applied to cluster certificates more easily and identify patterns faster. Due

to several bias introduced by the network of peers we used in our work, future studies may

want to investigate other user communities to extend the view of the HTTPS certificate

ecosystem.

Although mobile users on WiFi connections are included in our study through Luminati

in 2019, we mostly focused on non-mobile devices. Our preliminary tests through mobile

connections show much less interceptions events, possibly due to the nature of traffic mon-

itoring on mobile devices. For instance, it is not possible to inject content into another

191

mobile application’s traffic, unless acting as a VPN, which is impractical. Also, custom

browser apps could easily monitor content for parental control purposes rather than per-

form interception at the TLS level. Future work may focus on the specific scenarios of

content monitoring on mobile devices.

While the debate over the acceptability of secure traffic interception is not settled, end

users would benefit from software that leverage a sound TLS proxy implementation, and

therefore, the security community should focus on filling this gap. There exists no stan-

dard to define what a TLS proxy should or should not do when breaking a TLS connec-

tion. Whether this should become a “standard” is open for debate. However, like miTL-

S/FlexTLS, a formally verified reference implementation of a TLS proxy implementation

could be an interesting area. For now, proxies are still ad-hoc implementations, and inter-

ception libraries such as NetFilter are insecure by default.

Finally, one of our motivating goal was to detect cases of targeted government and ISP

interception, as reported by, e.g., Citizen Lab. We could not observe such cases and believe

that these events are too sporadic and precisely targeted for our scanning methodology to

catch. Future work is required to improve on the detection of individually targeted events.

192

Bibliography

[1] Apache SNI browser support. https://www.digicert.com/ssl-
support/apache-secure-multiple-sites-sni.htm.

[2] Browserstack. https://browserstack.com.

[3] Caddy - detecting HTTPS interception. https://caddyserver.com/docs/
mitm-detection.

[4] Certificate transparency. http://certificate-transparency.org.

[5] Certificate Transparency - known logs. https://www.certificate-
transparency.org/known-logs.

[6] Chrome 39 disables SSLv3 fallback. News article (Nov. 19, 2014). http:
//news.softpedia.com/news/Chrome-39-Disables-SSLv3-
Fallback-Awards-41-500-33-000-In-Bounties-465363.shtml.

[7] Comodo SSL affiliate the recent RA compromise. Blog article (Mar. 23, 2011).
https://blog.comodo.com/other/the-recent-ra-compromise/.

[8] Convergence. https://web.archive.org/web/20160803195327/
http://convergence.io/.

[9] Google Chrome will banish Chinese certificate authority for breach of trust.
News article (Apr. 1, 2015). http://arstechnica.com/security/
2015/04/google-chrome-will-banish-chinese-certificate-
authority-for-breach-of-trust/.

[10] Governments and banks still using weak MD5-signed SSL certificates. News article
(Aug. 31, 2012). http://news.netcraft.com/archives/2012/08/
31/governments-and-banks-still-using-weak-md5-signed-
ssl-certificates.html.

[11] Gradually sunsetting SHA-1. Blog article (Sept. 5, 2014). http:
//googleonlinesecurity.blogspot.ca/2014/09/gradually-
sunsetting-sha-1.html.

193

https://www.digicert.com/ssl-support/apache-secure-multiple-sites-sni.htm
https://www.digicert.com/ssl-support/apache-secure-multiple-sites-sni.htm
https://browserstack.com
https://caddyserver.com/docs/mitm-detection
https://caddyserver.com/docs/mitm-detection
http://certificate-transparency.org
https://www.certificate-transparency.org/known-logs
https://www.certificate-transparency.org/known-logs
http://news.softpedia.com/news/Chrome-39-Disables-SSLv3-Fallback-Awards-41-500-33-000-In-Bounties-465363.shtml
http://news.softpedia.com/news/Chrome-39-Disables-SSLv3-Fallback-Awards-41-500-33-000-In-Bounties-465363.shtml
http://news.softpedia.com/news/Chrome-39-Disables-SSLv3-Fallback-Awards-41-500-33-000-In-Bounties-465363.shtml
https://blog.comodo.com/other/the-recent-ra-compromise/
https://web.archive.org/web/20160803195327/http://convergence.io/
https://web.archive.org/web/20160803195327/http://convergence.io/
http://arstechnica.com/security/2015/04/google-chrome-will-banish-chinese-certificate-authority-for-breach-of-trust/
http://arstechnica.com/security/2015/04/google-chrome-will-banish-chinese-certificate-authority-for-breach-of-trust/
http://arstechnica.com/security/2015/04/google-chrome-will-banish-chinese-certificate-authority-for-breach-of-trust/
http://news.netcraft.com/archives/2012/08/31/governments-and-banks-still-using-weak-md5-signed-ssl-certificates.html
http://news.netcraft.com/archives/2012/08/31/governments-and-banks-still-using-weak-md5-signed-ssl-certificates.html
http://news.netcraft.com/archives/2012/08/31/governments-and-banks-still-using-weak-md5-signed-ssl-certificates.html
http://googleonlinesecurity.blogspot.ca/2014/09/gradually-sunsetting-sha-1.html
http://googleonlinesecurity.blogspot.ca/2014/09/gradually-sunsetting-sha-1.html
http://googleonlinesecurity.blogspot.ca/2014/09/gradually-sunsetting-sha-1.html

[12] Hackers break SSL encryption used by millions of sites. News arti-
cle (Sept. 19, 2011). http://www.theregister.co.uk/2011/09/19/
beast_exploits_paypal_ssl/.

[13] Half the web is now encrypted. that makes everyone safer. News article
(Jan. 30, 2017). https://www.wired.com/2017/01/half-web-now-
encrypted-makes-everyone-safer/.

[14] Hiding in plain sight: Malware’s use of TLS and encryption. Cisco blog arti-
cle (Jan. 25, 2016). https://blogs.cisco.com/security/malwares-
use-of-tls-and-encryption.

[15] How Certificate Transparency works. https://www.certificate-
transparency.org/how-ct-works.

[16] Internet Census 2012 – port scanning /0 using insecure embedded devices. http:
//internetcensus2012.bitbucket.org/paper.html.

[17] Malaysian CA Digicert revokes certs with weak keys, Mozilla moves to revoke trust.
News article (Nov. 3, 2011). https://threatpost.com/malaysian-ca-
digicert-revokes-certs-weak-keys-mozilla-moves-revoke-
trust-110311/75847.

[18] Revoking trust in two TurkTrust certificates. News article (Feb. 14, 2012). http:
//www.theregister.co.uk/2012/02/14/trustwave_analysis/.

[19] SSL/TLS-based malware attacks. ZScaler blog article (Aug. 02, 2017).
https://www.zscaler.com/blogs/research/ssltls-based-
malware-attacks.

[20] Three years later, Let’s Encrypt has issued over 380 million HTTPS certificates.
News article (Sep. 14, 2018). https://techcrunch.com/2018/09/14/
three-years-later-lets-encrypt-now-secures-75-of-the-
web/.

[21] U.S., British intelligence mining data from nine U.S. Internet companies
in broad secret program. News article (June 7, 2013). https://www.
washingtonpost.com/investigations/us-intelligence-
mining-data-from-nine-us-internet-companies-in-broad-
secret-program/2013/06/06/3a0c0da8-cebf-11e2-8845-
d970ccb04497_story.html.

[22] In millions of Windows, the perfect Storm is gathering, 2007. News article (Oct. 21,
2007). https://www.theguardian.com/business/2007/oct/21/1.

[23] The EFF SSL Observatory, 2010. https://www.eff.org/observatory.

[24] Project Sonar, 2013. https://sonar.labs.rapid7.com/.

194

http://www.theregister.co.uk/2011/09/19/beast_exploits_paypal_ssl/
http://www.theregister.co.uk/2011/09/19/beast_exploits_paypal_ssl/
https://www.wired.com/2017/01/half-web-now-encrypted-makes-everyone-safer/
https://www.wired.com/2017/01/half-web-now-encrypted-makes-everyone-safer/
https://blogs.cisco.com/security/malwares-use-of-tls-and-encryption
https://blogs.cisco.com/security/malwares-use-of-tls-and-encryption
https://www.certificate-transparency.org/how-ct-works
https://www.certificate-transparency.org/how-ct-works
http://internetcensus2012.bitbucket.org/paper.html
http://internetcensus2012.bitbucket.org/paper.html
https://threatpost.com/malaysian-ca-digicert-revokes-certs-weak-keys-mozilla-moves-revoke-trust-110311/75847
https://threatpost.com/malaysian-ca-digicert-revokes-certs-weak-keys-mozilla-moves-revoke-trust-110311/75847
https://threatpost.com/malaysian-ca-digicert-revokes-certs-weak-keys-mozilla-moves-revoke-trust-110311/75847
http://www.theregister.co.uk/2012/02/14/trustwave_analysis/
http://www.theregister.co.uk/2012/02/14/trustwave_analysis/
https://www.zscaler.com/blogs/research/ssltls-based-malware-attacks
https://www.zscaler.com/blogs/research/ssltls-based-malware-attacks
https://techcrunch.com/2018/09/14/three-years-later-lets-encrypt-now-secures-75-of-the-web/
https://techcrunch.com/2018/09/14/three-years-later-lets-encrypt-now-secures-75-of-the-web/
https://techcrunch.com/2018/09/14/three-years-later-lets-encrypt-now-secures-75-of-the-web/
https://www.washingtonpost.com/investigations/us-intelligence-mining-data-from-nine-us-internet-companies-in-broad-secret-program/2013/06/06/3a0c0da8-cebf-11e2-8845-d970ccb04497_story.html
https://www.washingtonpost.com/investigations/us-intelligence-mining-data-from-nine-us-internet-companies-in-broad-secret-program/2013/06/06/3a0c0da8-cebf-11e2-8845-d970ccb04497_story.html
https://www.washingtonpost.com/investigations/us-intelligence-mining-data-from-nine-us-internet-companies-in-broad-secret-program/2013/06/06/3a0c0da8-cebf-11e2-8845-d970ccb04497_story.html
https://www.washingtonpost.com/investigations/us-intelligence-mining-data-from-nine-us-internet-companies-in-broad-secret-program/2013/06/06/3a0c0da8-cebf-11e2-8845-d970ccb04497_story.html
https://www.washingtonpost.com/investigations/us-intelligence-mining-data-from-nine-us-internet-companies-in-broad-secret-program/2013/06/06/3a0c0da8-cebf-11e2-8845-d970ccb04497_story.html
https://www.theguardian.com/business/2007/oct/21/1
https://www.eff.org/observatory
https://sonar.labs.rapid7.com/

[25] Extended Validation in Chrome, 2014. https://www.certificate-
transparency.org/ev-ct-plan.

[26] 7-zip 15.10 no longer decompiles NSIS script, 2015. Reply to fo-
rum post (Dec. 7, 2015). https://sourceforge.net/p/sevenzip/
discussion/45797/thread/5d10a376/#6e1d/3fa3/6840/fe9c.

[27] Keeping history saved for longer than 3 months, 2015. Chrome issue 500239.
https://bugs.chromium.org/p/chromium/issues/detail?id=
500239.

[28] Lenovo PCs ship with man-in-the-middle adware that breaks HTTPS connections,
2015. News article (Feb. 19, 2015). http://arstechnica.com/security/
2015/02/lenovo-pcs-ship-with-man-in-the-middle-adware-
that-breaks-https-connections/.

[29] PrivDog SSL compromise potentially worse than Superfish, 2015. News
article (Apr. 24, 2015). http://www.computerweekly.com/news/
2240241126/PrivDog-SSL-compromise-potentially-worse-
than-Superfish.

[30] Techniques of adware and spyware, 2015. Symantec white paper (Nov. 2005).
https://www.symantec.com/avcenter/reference/techniques.
of.adware.and.spyware.pdf.

[31] Malware hides in installer to avoid detection, 2016. McAfee blug ar-
ticle (Aug. 25, 2016). https://blogs.mcafee.com/mcafee-labs/
malware-hides-in-installer-to-avoid-detection/.

[32] Project Wycheproof, 2016. Google Security blog post (Dec. 19, 2016). https://
security.googleblog.com/2016/12/project-wycheproof.html.

[33] Adobe will finally kill Flash in 2020, July 2017. News article (July 25,
2017). https://www.theverge.com/2017/7/25/16026236/adobe-
flash-end-of-support-2020.

[34] Browserscope - Network, 2017. https://www.browserscope.org/
?category=network.

[35] Certificate Transparency in Chrome - change to enforcement date, 2017.
Google Groups Certificate Transparency Policy list (Apr. 21, 2017). https:
//groups.google.com/a/chromium.org/forum/#!topic/ct-
policy/sz_3W_xKBNY.

[36] Inside the hunt for Russia’s most notorious hacker, 2017. News ar-
ticle (Mar. 21, 2017). https://www.wired.com/2017/03/russian-
hacker-spy-botnet/.

195

https://www.certificate-transparency.org/ev-ct-plan
https://www.certificate-transparency.org/ev-ct-plan
https://sourceforge.net/p/sevenzip/discussion/45797/thread/5d10a376/#6e1d/3fa3/6840/fe9c
https://sourceforge.net/p/sevenzip/discussion/45797/thread/5d10a376/#6e1d/3fa3/6840/fe9c
https://bugs.chromium.org/p/chromium/issues/detail?id=500239
https://bugs.chromium.org/p/chromium/issues/detail?id=500239
http://arstechnica.com/security/2015/02/lenovo-pcs-ship-with-man-in-the-middle-adware-that-breaks-https-connections/
http://arstechnica.com/security/2015/02/lenovo-pcs-ship-with-man-in-the-middle-adware-that-breaks-https-connections/
http://arstechnica.com/security/2015/02/lenovo-pcs-ship-with-man-in-the-middle-adware-that-breaks-https-connections/
http://www.computerweekly.com/news/2240241126/PrivDog-SSL-compromise-potentially-worse-than-Superfish
http://www.computerweekly.com/news/2240241126/PrivDog-SSL-compromise-potentially-worse-than-Superfish
http://www.computerweekly.com/news/2240241126/PrivDog-SSL-compromise-potentially-worse-than-Superfish
https://www.symantec.com/avcenter/reference/techniques.of.adware.and.spyware.pdf
https://www.symantec.com/avcenter/reference/techniques.of.adware.and.spyware.pdf
https://blogs.mcafee.com/mcafee-labs/malware-hides-in-installer-to-avoid-detection/
https://blogs.mcafee.com/mcafee-labs/malware-hides-in-installer-to-avoid-detection/
https://security.googleblog.com/2016/12/project-wycheproof.html
https://security.googleblog.com/2016/12/project-wycheproof.html
https://www.theverge.com/2017/7/25/16026236/adobe-flash-end-of-support-2020
https://www.theverge.com/2017/7/25/16026236/adobe-flash-end-of-support-2020
https://www.browserscope.org/?category=network
https://www.browserscope.org/?category=network
https://groups.google.com/a/chromium.org/forum/#!topic/ct-policy/sz_3W_xKBNY
https://groups.google.com/a/chromium.org/forum/#!topic/ct-policy/sz_3W_xKBNY
https://groups.google.com/a/chromium.org/forum/#!topic/ct-policy/sz_3W_xKBNY
https://www.wired.com/2017/03/russian-hacker-spy-botnet/
https://www.wired.com/2017/03/russian-hacker-spy-botnet/

[37] Mirai IoT botnet co-authors plead guilty, 2017. News article (Dec. 14,
2017). https://digitalguardian.com/blog/mirai-iot-botnet-
co-authors-plead-guilty.

[38] Where have all the exploit kits gone?, 2017. News article (Mar. 15,
2017). https://threatpost.com/where-have-all-the-exploit-
kits-gone/124241/.

[39] Zeus banking trojan spawn: Alive and kicking, 2017. News article (Nov.
24, 2017). https://www.bankinfosecurity.com/zeus-banking-
trojan-spawn-alive-kicking-a-10471.

[40] Browser & platform market share December 2018, 2018. https://www.
w3counter.com/globalstats.php?year=2018&month=12.

[41] Certificate Transparency enforcement in Google Chrome, 2018. Google Groups
Certificate Transparency Policy list (Feb. 6, 2018). https://groups.google.
com/a/chromium.org/forum/#!topic/ct-policy/wHILiYf31DE.

[42] Deep analysis of a driver-based MITM malware: iTranslator, 2018. Blog ar-
ticle (Sept. 21, 2018). https://www.fortinet.com/blog/threat-
research/deep-analysis-of-driver-based-mitm-malware-
itranslator.html.

[43] Egypt president ratifies law imposing internet controls, 2018.
News article (Aug. 18, 2018). https://apnews.com/
b0a950226281406db0d66548978bc277.

[44] Modernizing Transport Security, 2018. Google blog article (Oct. 15, 2018).
https://security.googleblog.com/2018/10/modernizing-
transport-security.html.

[45] Process Monitor v3.50, 2018. https://docs.microsoft.com/en-us/
sysinternals/downloads/procmon.

[46] Global market share held by leading desktop internet browsers from january 2015 to
march 2019, 2019. https://www.statista.com/statistics/544400/
market-share-of-internet-browsers-desktop/.

[47] 0xd4d. de4dot, 2018. https://github.com/0xd4d/de4dot.

[48] M. E. Acer, E. Stark, A. P. Felt, S. Fahl, R. Bhargava, B. Dev, M. Braithwaite,
R. Sleevi, and P. Tabriz. Where the wild warnings are: Root causes of Chrome
HTTPS certificate errors. In CCS’17, Dallas, TX, USA, Oct. 2017.

[49] Adguard Software Ltd. Important update: Adguard for Windows 5.10.2025,
2015. Blog article (May 24, 2015). https://adguard.com/en/blog/
important-update-adguard-for-windows-5-10-2024/.

196

https://digitalguardian.com/blog/mirai-iot-botnet-co-authors-plead-guilty
https://digitalguardian.com/blog/mirai-iot-botnet-co-authors-plead-guilty
https://threatpost.com/where-have-all-the-exploit-kits-gone/124241/
https://threatpost.com/where-have-all-the-exploit-kits-gone/124241/
https://www.bankinfosecurity.com/zeus-banking-trojan-spawn-alive-kicking-a-10471
https://www.bankinfosecurity.com/zeus-banking-trojan-spawn-alive-kicking-a-10471
https://www.w3counter.com/globalstats.php?year=2018&month=12
https://www.w3counter.com/globalstats.php?year=2018&month=12
https://groups.google.com/a/chromium.org/forum/#!topic/ct-policy/wHILiYf31DE
https://groups.google.com/a/chromium.org/forum/#!topic/ct-policy/wHILiYf31DE
https://www.fortinet.com/blog/threat-research/deep-analysis-of-driver-based-mitm-malware-itranslator.html
https://www.fortinet.com/blog/threat-research/deep-analysis-of-driver-based-mitm-malware-itranslator.html
https://www.fortinet.com/blog/threat-research/deep-analysis-of-driver-based-mitm-malware-itranslator.html
https://apnews.com/b0a950226281406db0d66548978bc277
https://apnews.com/b0a950226281406db0d66548978bc277
https://security.googleblog.com/2018/10/modernizing-transport-security.html
https://security.googleblog.com/2018/10/modernizing-transport-security.html
https://docs.microsoft.com/en-us/sysinternals/downloads/procmon
https://docs.microsoft.com/en-us/sysinternals/downloads/procmon
https://www.statista.com/statistics/544400/market-share-of-internet-browsers-desktop/
https://www.statista.com/statistics/544400/market-share-of-internet-browsers-desktop/
https://github.com/0xd4d/de4dot
https://adguard.com/en/blog/important-update-adguard-for-windows-5-10-2024/
https://adguard.com/en/blog/important-update-adguard-for-windows-5-10-2024/

[50] D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry, M. Green, J. A. Halderman,
N. Heninger, D. Springall, E. Thomé, L. Valenta, B. VanderSloot, E. Wustrow,
S. Zanella-Béguelink, and P. Zimmermann. Imperfect forward secrecy: How Diffie-
Hellman fails in practice. In CCS’15, Denver, CO, USA, Oct. 2015.

[51] M. Aertsen, M. Korczynski, G. C. M. Moura, S. Tajalizadehkhoob, and J. van den
Berg. No domain left behind: is let’s encrypt democratizing encryption? In Applied
Networking Research Workshop (ANRW’17), Prague, Czech Republic, July 2017.

[52] B. Ahmad. List of 230 free URL shorteners services. TechMaish blog article
(Dec. 28, 2015). https://www.techmaish.com/list-of-230-free-
url-shorteners-services/.

[53] D. Akhawe, B. Amann, M. Vallentin, and R. Sommer. Here’s my cert, so trust me,
maybe? understanding TLS errors on the web. In WWW’13, Rio de Janeiro, Brazil,
May 2013.

[54] D. Akhawe and A. P. Felt. Alice in warningland: A large-scale field study of browser
security warning effectiveness. In USENIX Security Symposium, Washington, DC,
USA, Aug. 2013.

[55] N. J. AlFardan, D. J. Bernstein, K. G. Paterson, B. Poettering, and J. C. Schuldt.
On the security of RC4 in TLS. In USENIX Security Symposium, Washington, DC,
USA, Aug. 2013.

[56] B. Amann, M. Vallentin, S. Hall, and R. Sommer. Extracting certificates from live
traffic: A near real-time SSL notary service. Technical Report TR-12-014, ICSI,
Nov. 2012.

[57] J. Amann, O. Gasser, Q. Scheitle, L. Brent, G. Carle, and R. Holz. Mission accom-
plished? HTTPS security after DigiNotar. In IMC’17, London, United Kingdom,
Nov. 2017.

[58] J. Amann and R. Sommer. Exploring tor’s activity through long-term passive TLS
traffic measurement. In Passive and Active Measurement (PAM’16), 2016.

[59] D. Andriesse, C. Rossow, B. Stone-Gross, D. Plohmann, and H. Bos. Highly resilient
peer-to-peer botnets are here: An analysis of gameover Zeus. In MALWARE’13,
Fajardo, PR, USA, Oct. 2013.

[60] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein, J. Cochran, Z. Du-
rumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis, D. Kumar, C. Lever, Z. Ma,
J. Mason, D. Menscher, C. Seaman, N. Sullivan, K. Thomas, and Y. Zhou. Under-
standing the Mirai botnet. In USENIX Security Symposium, Vancouver, BC, Canada,
Aug. 2017.

197

https://www.techmaish.com/list-of-230-free-url-shorteners-services/
https://www.techmaish.com/list-of-230-free-url-shorteners-services/

[61] M.-L. Archambault, S. Giroux, and A.-P. Paquet. Method and system for aggregating
searchable web content from a plurality of social networks and presenting search
results, July 2013. US Patent 2013/0179427 A1.

[62] AV-comparatives.org. Independent tests of anti-virus software - summary reports.
http://www.av-comparatives.org/summary-reports/.

[63] AV-comparatives.org. Parental control reviews. http://www.av-
comparatives.org/parental-control/.

[64] M. Benham. IE SSL vulnerability. Bugtraq mailing list (Aug. 5, 2002). http:
//seclists.org/bugtraq/2002/Aug/111.

[65] D. Bestuzhev. Steganography or encryption in bankers?, 2011. Kaspersky Labs blog
article (Nov. 10, 2011). https://securelist.com/steganography-or-
encryption-in-bankers-11/31650/.

[66] B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud, C. Fournet, M. Kohlweiss,
A. Pironti, P.-Y. Strub, and J. K. Zinzindohoue. A messy state of the union: Taming
the composite state machines of TLS. In IEEE S&P, San Jose, CA, USA, May 2015.

[67] B. Beurdouche, A. Delignat-Lavaud, N. Kobeissi, A. Pironti, and K. Bhargavan.
FlexTLS: A tool for testing TLS implementations. In WOOT’15, Austin, TX, USA,
Aug. 2015.

[68] K. Bhargavan, C. Fournet, and M. Kohlweiss. miTLS: Verifying protocol implemen-
tations against real-world attacks. In IEEE S&P, San Jose, CA, USA, May 2016.

[69] H. Binsalleeh, T. Ormerod, A. Boukhtouta, P. Sinha, A. M. Youssef, M. Debbabi,
and L. Wang. On the analysis of the Zeus botnet crimeware toolkit. In PST’10,
Ottawa, ON, Canada, Dec. 2010.

[70] P. Black and J. Opacki. Anti-analysis trends in banking malware. In MALWARE’16,
Fajardo, PR, USA, Oct. 2016.

[71] H. Böck. Check for bad certs from Komodia/Superfish. https://superfish.
tlsfun.de/.

[72] H. Böck. How Kaspersky makes you vulnerable to the FREAK attack
and other ways antivirus software lowers your HTTPS security. https:
//blog.hboeck.de/archives/869-How-Kaspersky-makes-
you-vulnerable-to-the-FREAK-attack-and-other-ways-
Antivirus-software-lowers-your-HTTPS-security.html.

[73] H. Böck. More TLS Man-in-the-Middle failures - Adguard, Privdog again and Pro-
tocolFilters.dll, 2015. Blog article (Aug. 13, 2015). https://blog.hboeck.
de/archives/874-More-TLS-Man-in-the-Middle-failures-
Adguard,-Privdog-again-and-ProtocolFilters.dll.html.

198

http://www.av-comparatives.org/summary-reports/
http://www.av-comparatives.org/parental-control/
http://www.av-comparatives.org/parental-control/
http://seclists.org/bugtraq/2002/Aug/111
http://seclists.org/bugtraq/2002/Aug/111
https://securelist.com/steganography-or-encryption-in-bankers-11/31650/
https://securelist.com/steganography-or-encryption-in-bankers-11/31650/
https://superfish.tlsfun.de/
https://superfish.tlsfun.de/
https://blog.hboeck.de/archives/869-How-Kaspersky-makes-you-vulnerable-to-the-FREAK-attack-and-other-ways-Antivirus-software-lowers-your-HTTPS-security.html
https://blog.hboeck.de/archives/869-How-Kaspersky-makes-you-vulnerable-to-the-FREAK-attack-and-other-ways-Antivirus-software-lowers-your-HTTPS-security.html
https://blog.hboeck.de/archives/869-How-Kaspersky-makes-you-vulnerable-to-the-FREAK-attack-and-other-ways-Antivirus-software-lowers-your-HTTPS-security.html
https://blog.hboeck.de/archives/869-How-Kaspersky-makes-you-vulnerable-to-the-FREAK-attack-and-other-ways-Antivirus-software-lowers-your-HTTPS-security.html
https://blog.hboeck.de/archives/874-More-TLS-Man-in-the-Middle-failures-Adguard,-Privdog-again-and-ProtocolFilters.dll.html
https://blog.hboeck.de/archives/874-More-TLS-Man-in-the-Middle-failures-Adguard,-Privdog-again-and-ProtocolFilters.dll.html
https://blog.hboeck.de/archives/874-More-TLS-Man-in-the-Middle-failures-Adguard,-Privdog-again-and-ProtocolFilters.dll.html

[74] Booz Allen Dark Labs’ Advanced Threat Hunt. Advanced persistent adware: Anal-
ysis of nation-state level tactics, 2017. https://www.boozallen.com/s/
insight/blog/advanced-persistent-adware.html.

[75] K. Brosch. Reversing the Dropcam part 2: Rooting your Dropcam, 2014.
Blog article (Apr. 2014). http://blog.includesecurity.com/2014/
04/reverse-engineering-dropcam-rooting-the-device.html.

[76] L. Brotherston. TLS fingerprinting, Sept. 2015. https://github.com/
LeeBrotherston/tls-fingerprinting.

[77] L. Brotherston. TLS fingerprinting - stealthier attacking & smarter defending. In
DerbyCon’15, Louisville, KY, USA, Sept. 2015.

[78] C. Brubaker, S. Jana, B. Ray, S. Khurshid, and V. Shmatikov. Using frankencerts for
automated adversarial testing of certificate validation in SSL/TLS implementations.
In IEEE S&P, San Jose, CA, USA, May 2014.

[79] BullGuard. Antivirus settings, 2019. https://www.bullguard.com/
support/product-guides/internet-security/guides-for-
current-version/main/antivirus-settings.aspx.

[80] S. Burnett and N. Feamster. Encore: Lightweight measurement of web censorship
with cross-origin requests. In SIGCOMM’15, London, United Kingdom, Aug. 2015.

[81] F. Cangialosi, T. Chung, D. Choffnes, D. Levin, B. M. Maggs, A. Mislove, and
C. Wilson. Measurement and analysis of private key sharing in the HTTPS ecosys-
tem. In CCS’16, Vienna, Austria, Oct. 2016.

[82] CERT-US. Vulnerability note VU#529496, 2015. https://www.kb.cert.
org/vuls/id/529496.

[83] S. Y. Chau, O. Chowdhury, M. E. Hoque, H. Ge, A. Kate, C. Nita-Rotaru, and N. Li.
SymCerts: Practical symbolic execution for exposing noncompliance in X.509 cer-
tificate validation implementations. In IEEE S&P, San Jose, CA, USA, May 2017.

[84] Y. Chen and Z. Su. Guided differential testing of certificate validation in SSL/TLS
implementations. In European Software Engineering Conference and ACM SIG-
SOFT Symposium on the Foundations of Software Engineering, Bergamo, Italy,
2015.

[85] T. Chung, D. Choffnes, and A. Mislove. Tunneling for transparency: A large-scale
analysis of end-to-end violations in the Internet. In IMC’16, Santa Monica, Califor-
nia, USA, Nov. 2016.

[86] T. Chung, Y. Liu, D. Choffnes, D. Levin, B. M. Maggs, A. Mislove, and C. Wilson.
Measuring and applying invalid SSL certificates: The silent majority. In IMC’16,
Santa Monica, California, USA, Nov. 2016.

199

https://www.boozallen.com/s/insight/blog/advanced-persistent-adware.html
https://www.boozallen.com/s/insight/blog/advanced-persistent-adware.html
http://blog.includesecurity.com/2014/04/reverse-engineering-dropcam-rooting-the-device.html
http://blog.includesecurity.com/2014/04/reverse-engineering-dropcam-rooting-the-device.html
https://github.com/LeeBrotherston/tls-fingerprinting
https://github.com/LeeBrotherston/tls-fingerprinting
https://www.bullguard.com/support/product-guides/internet-security/guides-for-current-version/main/antivirus-settings.aspx
https://www.bullguard.com/support/product-guides/internet-security/guides-for-current-version/main/antivirus-settings.aspx
https://www.bullguard.com/support/product-guides/internet-security/guides-for-current-version/main/antivirus-settings.aspx
https://www.kb.cert.org/vuls/id/529496
https://www.kb.cert.org/vuls/id/529496

[87] Cisco Umbrella. 1 million, 2016. Blog article (Dec. 14, 2016). https://blog.
opendns.com/2016/12/14/cisco-umbrella-1-million/.

[88] Cisco Umbrella. Installing the Cisco Root Certificate before Novem-
ber 1st, 2016, 2016. https://support.umbrella.com/hc/en-
us/articles/232309428-Installing-the-Cisco-Root-
Certificate-before-November-1st-2016.

[89] Citizen Lab. Url testing lists intended for discovering website censorship, 2014.
https://github.com/citizenlab/test-lists.

[90] J. Clark and P. C. van Oorschot. SSL and HTTPS: Revisiting past challenges and
evaluating certificate trust model enhancements. In IEEE S&P, San Francisco, CA,
USA, May 2013.

[91] Z. Clark. It’s not just superfish that’s the problem, 2015. https://gist.
github.com/Wack0/17c56b77a90073be81d3.

[92] Z. Clark. Komodia rootkit findings, 2015. https://gist.github.com/
Wack0/f865ef369eb8c23ee028.

[93] CloudFlare. Overview of Keyless SSL. https://www.cloudflare.com/
ssl/keyless-ssl/.

[94] ClouFlare. MALCOLM: Measuring active listeners, connection observers, and le-
gitimate monitors. https://malcolm.cloudflare.com.

[95] ClouFlare. mitmengine – A MITM (monster-in-the-middle) detection tool. https:
//github.com/cloudflare/mitmengine.

[96] Common Crawl. Dataset, 2017. https://commoncrawl.org/the-data/
get-started/.

[97] CrowdStrike. Hybrid Analysis, 2018. https://www.hybrid-analysis.
com/.

[98] A. Dainotti, A. King, k. Claffy, F. Papale, and A. Pescapè. Analysis of a "/0" stealth
scan from a botnet. In IMC’12, Boston, MA, USA, Nov. 2012.

[99] X. de Carné de Carnavalet and M. Mannan. Killed by proxy: Analyzing client-end
TLS interception software. In NDSS’16, San Diego, CA, USA, Feb. 2016.

[100] Dell.com. SSL/TLS interception proxies and transitive trust. http:
//secureworks.com/cyber-threat-intelligence/threats/
transitive-trust/.

[101] B. Delpy. mimikatz. http://blog.gentilkiwi.com/.

200

https://blog.opendns.com/2016/12/14/cisco-umbrella-1-million/
https://blog.opendns.com/2016/12/14/cisco-umbrella-1-million/
https://support.umbrella.com/hc/en-us/articles/232309428-Installing-the-Cisco-Root-Certificate-before-November-1st-2016
https://support.umbrella.com/hc/en-us/articles/232309428-Installing-the-Cisco-Root-Certificate-before-November-1st-2016
https://support.umbrella.com/hc/en-us/articles/232309428-Installing-the-Cisco-Root-Certificate-before-November-1st-2016
https://github.com/citizenlab/test-lists
https://gist.github.com/Wack0/17c56b77a90073be81d3
https://gist.github.com/Wack0/17c56b77a90073be81d3
https://gist.github.com/Wack0/f865ef369eb8c23ee028
https://gist.github.com/Wack0/f865ef369eb8c23ee028
https://www.cloudflare.com/ssl/keyless-ssl/
https://www.cloudflare.com/ssl/keyless-ssl/
https://malcolm.cloudflare.com
https://github.com/cloudflare/mitmengine
https://github.com/cloudflare/mitmengine
https://commoncrawl.org/the-data/get-started/
https://commoncrawl.org/the-data/get-started/
https://www.hybrid-analysis.com/
https://www.hybrid-analysis.com/
http://secureworks.com/cyber-threat-intelligence/threats/transitive-trust/
http://secureworks.com/cyber-threat-intelligence/threats/transitive-trust/
http://secureworks.com/cyber-threat-intelligence/threats/transitive-trust/
http://blog.gentilkiwi.com/

[102] O. Devane and C. Crofford. Pay-per-install company deceptively floods market with
unwanted programs the history of WakeNet AB, a major PPI player, 2018. Tech re-
port (Dec. 3, 2018). https://securingtomorrow.mcafee.com/other-
blogs/mcafee-labs/pay-per-install-company-deceptively-
floods-market-with-unwanted-programs/.

[103] B. Diachenko. Another e-marketing database with 11 million records exposed. Blog
article (Sept. 18, 2018). https://www.linkedin.com/pulse/another-
e-marketing-database-11-million-records-bob-diachenko/.

[104] D. Dittrich and E. Kenneally. The Menlo Report: Ethical Principles Guiding Infor-
mation and Communication Technology Research. Technical report, U.S. Depart-
ment of Homeland Security, Aug 2012.

[105] Z. Dong, K. Kane, and L. J. Camp. Detection of rogue certificates from trusted
Certificate Authorities using deep neural networks. ACM Transactions on Privacy
and Security (TOPS), 19(2):5:1–5:31, Sept. 2016.

[106] W. Dormann. The risks of SSL inspection. Online article (Mar. 13, 2015). https:
//www.cert.org/blogs/certcc/post.cfm?EntryID=221.

[107] T. Duong and J. Rizzo. Here come the ⊕ ninjas. Technical report (May
2011). http://www.hpcc.ecs.soton.ac.uk/~dan/talks/bullrun/
Beast.pdf.

[108] DuoSecurity.com. Dude, you got Dell’d. Technical report (Nov. 24, 2015). https:
//duosecurity.com/static/pdf/Dude,_You_Got_Dell_d.pdf.

[109] Z. Durumeric, D. Adrian, A. Mirian, M. Bailey, and J. A. Halderman. A search
engine backed by internet-wide scanning. In CCS’15, Denver, Colorado, USA, Oct.
2015.

[110] Z. Durumeric, J. Kasten, D. Adrian, J. A. Halderman, M. Bailey, F. Li, N. Weaver,
J. Amann, J. Beekman, M. Payer, and V. Paxson. The matter of Heartbleed. In
IMC’14, Vancouver, BC, Canada, Nov. 2014.

[111] Z. Durumeric, J. Kasten, M. Bailey, and J. A. Halderman. Analysis of the HTTPS
certificate ecosystem. In IMC’13, Barcelona, Spain, Oct. 2013.

[112] Z. Durumeric, Z. Ma, D. Springall, R. Barnes, N. Sullivan, E. Bursztein, M. Bailey,
J. A. Halderman, and V. Paxson. The security impact of HTTPS interception. In
NDSS’17, San Diego, CA, USA, Feb. 2017.

[113] Z. Durumeric, E. Wustrow, and J. A. Halderman. ZMap: Fast internet-wide scanning
and its security applications. In USENIX Security Symposium, Washington, D.C.,
USA, Aug. 2013.

201

https://securingtomorrow.mcafee.com/other-blogs/mcafee-labs/pay-per-install-company-deceptively-floods-market-with-unwanted-programs/
https://securingtomorrow.mcafee.com/other-blogs/mcafee-labs/pay-per-install-company-deceptively-floods-market-with-unwanted-programs/
https://securingtomorrow.mcafee.com/other-blogs/mcafee-labs/pay-per-install-company-deceptively-floods-market-with-unwanted-programs/
https://www.linkedin.com/pulse/another-e-marketing-database-11-million-records-bob-diachenko/
https://www.linkedin.com/pulse/another-e-marketing-database-11-million-records-bob-diachenko/
https://www.cert.org/blogs/certcc/post.cfm?EntryID=221
https://www.cert.org/blogs/certcc/post.cfm?EntryID=221
http://www.hpcc.ecs.soton.ac.uk/~dan/talks/bullrun/Beast.pdf
http://www.hpcc.ecs.soton.ac.uk/~dan/talks/bullrun/Beast.pdf
https://duosecurity.com/static/pdf/Dude,_You_Got_Dell_d.pdf
https://duosecurity.com/static/pdf/Dude,_You_Got_Dell_d.pdf

[114] ESET. What is a potentially unwanted application or potentially unwanted content?,
2018. ESET Knowledge Base ID: KB2629. https://support.eset.com/
kb2629/.

[115] S. Farrell. tinfoil: TLS Is Not For Obligatory (Or Ostensibly Optional) Intercep-
tion, Luckily. Report from the IETF TLS Workgroup. (Mar. 19, 2018). https:
//github.com/sftcd/tinfoil.

[116] A. P. Felt, R. Barnes, A. King, C. Palmer, C. Bentzel, and P. Tabriz. Measuring
HTTPS adoption on the web. In USENIX Security Symposium2017, Vancouver, BC,
Canada, Aug. 2017.

[117] FreedomHouse.org. France country report | Freedom on the Net 2017, 2017.
https://freedomhouse.org/report/freedom-net/2017/france.

[118] FreedomHouse.org. Turkey country report | Freedom on the Net 2017, 2017.
https://freedomhouse.org/report/freedom-net/2017/turkey.

[119] S. Frolov and E. Wustrow. The use of TLS in censorship circumvention. In NDSS’19,
San Diego, CA, USA, Feb. 2019.

[120] Y. Gao, Z. Lu, and Y. Luo. Survey on malware anti-analysis. In Fifth Interna-
tional Conference on Intelligent Control and Information Processing, pages 270–
275. IEEE, 2014.

[121] B. N. Giri, P. P. Ramagopal, and V. Thomas. Alerting the presence of bundled
software during an installation, Nov. 2016. US Patent 2016/0328223 A1.

[122] Google. HTTPS as a ranking signal. Google blog article (Aug. 06,
2014). https://webmasters.googleblog.com/2014/08/https-as-
ranking-signal.html.

[123] Google. A milestone for chrome security: marking http as “not secure”. Google blog
article (Jul. 24, 2018). https://www.blog.google/products/chrome/
milestone-chrome-security-marking-http-not-secure/.

[124] Google. SSL error assistant, 2018. Chromium source code. https://cs.
chromium.org/chromium/src/chrome/browser/resources/ssl/
ssl_error_assistant/ssl_error_assistant.asciipb.

[125] R. D. Graham. Extracting the SuperFish certificate. http://blog.
erratasec.com/2015/02/extracting-superfish-certificate.
html.

[126] R. D. Graham. Heartleech. https://github.com/robertdavidgraham/
heartleech.

202

https://support.eset.com/kb2629/
https://support.eset.com/kb2629/
https://github.com/sftcd/tinfoil
https://github.com/sftcd/tinfoil
https://freedomhouse.org/report/freedom-net/2017/france
https://freedomhouse.org/report/freedom-net/2017/turkey
https://webmasters.googleblog.com/2014/08/https-as-ranking-signal.html
https://webmasters.googleblog.com/2014/08/https-as-ranking-signal.html
https://www.blog.google/products/chrome/milestone-chrome-security-marking-http-not-secure/
https://www.blog.google/products/chrome/milestone-chrome-security-marking-http-not-secure/
https://cs.chromium.org/chromium/src/chrome/browser/resources/ssl/ssl_error_assistant/ssl_error_assistant.asciipb
https://cs.chromium.org/chromium/src/chrome/browser/resources/ssl/ssl_error_assistant/ssl_error_assistant.asciipb
https://cs.chromium.org/chromium/src/chrome/browser/resources/ssl/ssl_error_assistant/ssl_error_assistant.asciipb
http://blog.erratasec.com/2015/02/extracting-superfish-certificate.html
http://blog.erratasec.com/2015/02/extracting-superfish-certificate.html
http://blog.erratasec.com/2015/02/extracting-superfish-certificate.html
https://github.com/robertdavidgraham/heartleech
https://github.com/robertdavidgraham/heartleech

[127] R. D. Graham. MASSCAN: Mass IP port scanner, 2013. https://github.
com/robertdavidgraham/masscan.

[128] C. Hassold. A quarter of phishing attacks are now hosted on HTTPS domains:
Why? PhishLabs blog article (Dec. 5, 2017). https://info.phishlabs.
com/blog/quarter-phishing-attacks-hosted-https-domains.

[129] B. He, V. Rastogi, Y. Cao, Y. Chen, V. N. Venkatakrishnan, R. Yang, and Z. Zhang.
Vetting SSL usage in applications with SSLINT. In IEEE S&P, San Jose, CA, USA,
May 2015.

[130] J. Hodges. howsmyssl. https://github.com/jmhodges/howsmyssl.

[131] R. Holz, L. Braun, N. Kammenhuber, and G. Carle. The SSL landscape: A thorough
analysis of the x.509 PKI using active and passive measurements. In IMC’11, Berlin,
Germany, Nov. 2011.

[132] HowToGeek.com. Here’s what happens when you install the top 10 Download.com
apps, 2017. Tech. article (Apr. 3, 2017. https://www.howtogeek.com/
198622/heres-what-happens-when-you-install-the-top-10-
download.com-apps/).

[133] L. S. Huang, S. Adhikarla, D. Boneh, and C. Jackson. An experimental study of
TLS forward secrecy deployments. Internet Computing, IEEE, 18(6):43–51, 2014.

[134] L. S. Huang, A. Rice, E. Ellingsen, and C. Jackson. Analyzing forged SSL certifi-
cates in the wild. In IEEE S&P, San Jose, CA, USA, May 2014.

[135] IETF. The Transport Layer Security (TLS) Protocol Version 1.2, 2008. RFC 5246
(Standards Track).

[136] IETF. The Transport Layer Security (TLS) Protocol Version 1.3, 2008. RFC 8446
(Standards Track).

[137] IETF. HTTP strict transport security (HSTS), 2012. RFC 6797 (Standards Track).

[138] IETF. Internet-Draft: Certificate Transparency version 2.0, 2017. RFC 6962-bis-26
(Standards Track draft).

[139] International Computer Science Institute (ICSI). The ICSI certificate notary.
https://notary.icsi.berkeley.edu/.

[140] Internet World Stats. Internet growth statistics, 2019. https://www.
internetworldstats.com/emarketing.htm.

[141] IOActive. Reversal and analysis of Zeus and SpyEye banking tro-
jans, 2012. Technical White Paper. https://ioactive.com/pdfs/
ZeusSpyEyeBankingTrojanAnalysis.pdf.

203

https://github.com/robertdavidgraham/masscan
https://github.com/robertdavidgraham/masscan
https://info.phishlabs.com/blog/quarter-phishing-attacks-hosted-https-domains
https://info.phishlabs.com/blog/quarter-phishing-attacks-hosted-https-domains
https://github.com/jmhodges/howsmyssl
https://www.howtogeek.com/198622/heres-what-happens-when-you-install-the-top-10-download.com-apps/
https://www.howtogeek.com/198622/heres-what-happens-when-you-install-the-top-10-download.com-apps/
https://www.howtogeek.com/198622/heres-what-happens-when-you-install-the-top-10-download.com-apps/
https://notary.icsi.berkeley.edu/
https://www.internetworldstats.com/emarketing.htm
https://www.internetworldstats.com/emarketing.htm
https://ioactive.com/pdfs/ZeusSpyEyeBankingTrojanAnalysis.pdf
https://ioactive.com/pdfs/ZeusSpyEyeBankingTrojanAnalysis.pdf

[142] J. Jones. The state of web exploit kits. In BlackHat’12, Las Vegas, NV, USA, July
2012.

[143] A. Junestam, C. Clark, and J. Copenhaver. Jailbreak 4.0. https://github.
com/iSECPartners/jailbreak.

[144] Kaspersky. Not-a-virus: What is it?, 2017. Blog article (Aug. 21, 2017). https:
//www.kaspersky.com/blog/not-a-virus/18015/.

[145] Kaspersky Labs. PNG embedded - malicious payload hidden in a PNG file, 2016.
Blog article (Mar. 24, 2016). https://securelist.com/png-embedded-
malicious-payload-hidden-in-a-png-file/74297/.

[146] Kaspersky Labs. Old malware tricks to bypass detection in the age of big data,
2017. Blog article (Apr. 13, 2017). https://securelist.com/old-
malware-tricks-to-bypass-detection-in-the-age-of-big-
data/78010/.

[147] A. Kharraz, W. K. Robertson, D. Balzarotti, L. Bilge, and E. Kirda. Cutting the
gordian knot: A look under the hood of ransomware attacks. In DIMVA’15, Milan,
Italy, July 2015.

[148] S. Khattak, D. Fifield, S. Afroz, M. Javed, S. Sundaresan, D. McCoy, V. Paxson, and
S. J. Murdoch. Do you see what I see? differential treatment of anonymous users.
In NDSS’16, San Diego, CA, USA, Feb. 2016.

[149] G. Kopf and P. Kehrer. CVE-2011-0228 – iOS certificate chain validation issue in
handling of X.509 certificates.

[150] P. Kotzias, L. Bilge, and J. Caballero. Measuring PUP prevalence and PUP distribu-
tion through pay-per-install services. In USENIX Security Symposium, Austin, TX,
USA, Aug. 2016.

[151] P. Kotzias, S. Matic, R. Rivera, and J. Caballero. Certified PUP: abuse in authenti-
code code signing. In CCS’15, Denver, CO, USA, Oct. 2015.

[152] M. Kranch and J. Bonneau. Upgrading HTTPS in mid-air: An empirical study of
strict transport security and key pinning. In NDSS’15, San Diego, CA, USA, Feb.
2015.

[153] B. Krebs. SpyEye Targets Opera, Google Chrome Users, Apr. 2011. Blog arti-
cle (Apr. 26 2011). https://krebsonsecurity.com/2011/04/spyeye-
targets-opera-google-chrome-users/.

[154] D. Kumar, M. Bailey, Z. Wang, M. Hyder, J. Dickinson, G. Beck, D. Adrian, J. Ma-
son, Z. Durumeric, and J. A. Halderman. Tracking certificate misissuance in the
wild. In IEEE S&P, San Francisco, CA, US, May 2018.

204

https://github.com/iSECPartners/jailbreak
https://github.com/iSECPartners/jailbreak
https://www.kaspersky.com/blog/not-a-virus/18015/
https://www.kaspersky.com/blog/not-a-virus/18015/
https://securelist.com/png-embedded-malicious-payload-hidden-in-a-png-file/74297/
https://securelist.com/png-embedded-malicious-payload-hidden-in-a-png-file/74297/
https://securelist.com/old-malware-tricks-to-bypass-detection-in-the-age-of-big-data/78010/
https://securelist.com/old-malware-tricks-to-bypass-detection-in-the-age-of-big-data/78010/
https://securelist.com/old-malware-tricks-to-bypass-detection-in-the-age-of-big-data/78010/
https://krebsonsecurity.com/2011/04/spyeye-targets-opera-google-chrome-users/
https://krebsonsecurity.com/2011/04/spyeye-targets-opera-google-chrome-users/

[155] V. Le Pochat, T. Van Goethem, S. Tajalizadehkhoob, M. Korczyński, and W. Joosen.
Tranco: A research-oriented top sites ranking hardened against manipulation. In
NDSS’19, Feb. 2019.

[156] H. Lee, Z. Smith, J. Lim, G. Choi, S. Chun, T. Chung, and T. T. Kwon. maTLS: How
to make TLS middlebox-aware? In NDSS’19, San Diego, CA, USA, Feb. 2019.

[157] Let’s Encrypt. Let’s Encrypt stats, 2019. https://letsencrypt.org/
stats/.

[158] O. Levillain. A study of the TLS ecosystem. PhD thesis, Télécom SudParis, 9 2016.
https://tel.archives-ouvertes.fr/tel-01454976/.

[159] J. Liang, J. Jiang, H. Duan, K. Li, T. Wan, and J. Wu. When HTTPS meets CDN:
A case of authentication in delegated service. In USENIX Security Symposium, San
Diego, CA, USA, Aug. 2014.

[160] Linux man page. clamd.conf(5), 2019.

[161] Y. Liu, W. Tome, L. Zhang, D. R. Choffnes, D. Levin, B. M. Maggs, A. Mislove,
A. Schulman, and C. Wilson. An end-to-end measurement of certificate revocation
in the web’s PKI. In IMC’15, Tokyo, Japan, Oct. 2015.

[162] S. Loreto, J. Mattsson, R. Skog, H. Spaak, Ericsson, G. Gus, D. Drutan, M. Hafeez,
and AT&T. Explicit Trusted Proxy in HTTP/2.0, 2014. Internet-Draft.

[163] A. Magnúsardóttir. Malware is moving heavily to HTTPS. Cyren blog article
(June 7, 2017). https://www.cyren.com/blog/articles/over-one-
third-of-malware-uses-https.

[164] G. D. Maio, A. Kapravelos, Y. Shoshitaishvili, C. Kruegel, and G. Vigna. Pexy: The
other side of exploit kits. In DIMVA’14, Egham, UK, July 2014.

[165] M. Majkowski. SSL fingerprinting for p0f, 2012. Blog article (June
17, 2012). https://idea.popcount.org/2012-06-17-ssl-
fingerprinting-for-p0f/.

[166] Malekal. Liste Malware, 2018. http://malwaredb.malekal.com/index.
php?malware=wajam.

[167] A. Malhotra, I. E. Cohen, E. Brakke, and S. Goldberg. Attacking the Network Time
Protocol. In NDSS’16, San Diego, CA, USA, Feb. 2016.

[168] Mandiant. APT1 – Exposing one of China’s cyber espionage units,
2013. https://www.fireeye.com/content/dam/fireeye-www/
services/pdfs/mandiant-apt1-report.pdf.

205

https://letsencrypt.org/stats/
https://letsencrypt.org/stats/
https://tel.archives-ouvertes.fr/tel-01454976/
https://www.cyren.com/blog/articles/over-one-third-of-malware-uses-https
https://www.cyren.com/blog/articles/over-one-third-of-malware-uses-https
https://idea.popcount.org/2012-06-17-ssl-fingerprinting-for-p0f/
https://idea.popcount.org/2012-06-17-ssl-fingerprinting-for-p0f/
http://malwaredb.malekal.com/index.php?malware=wajam
http://malwaredb.malekal.com/index.php?malware=wajam
https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf
https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf

[169] W. Mayer, A. Zauner, M. Schmiedecker, and M. Huber. No need for black chambers:
Testing TLS in the e-mail ecosystem at large. In ARES’16, Salzburg, Austria, Sept.
2016.

[170] P. McFedries. Technically speaking: the spyware nightmare. IEEE Spectrum,
42(8):72–72, 2005.

[171] D. McGrew, D. Wing, Cisco, Y. Nir, Checkpoint, and P. Gladstone. TLS Proxy
Server Extension, 2012. Internet-Draft.

[172] C. Meyer and J. Schwenk. SoK: Lessons learned from SSL/TLS attacks. In
WISA’13, Jeju Island, Korea, Aug. 2013.

[173] X. Mi, Y. Liu, X. Feng, X. Liao, B. Liu, X. Wang, F. Qian, Z. Li, S. Alrwais, and
L. Sun. Resident evil: Understanding residential IP proxy as a dark service. In IEEE
S&P, 2019.

[174] Microsoft. CA certificates tools and settings. https://technet.microsoft.
com/en-us/library/cc783813%28v=ws.10%29.aspx.

[175] Microsoft. Key storage and retrieval. https://msdn.microsoft.com/en-
us/library/windows/desktop/bb204778%28v=vs.85%29.aspx.

[176] Microsoft. System store locations. https://msdn.microsoft.com/en-
us/library/windows/desktop/aa388136%28v=vs.85%29.aspx.

[177] B. Moeller, T. Duong, and K. Kotowicz. This POODLE bites: Exploiting the
SSL 3.0 fallback. Technical report (Sept. 2014). https://www.openssl.org/
~bodo/ssl-poodle.pdf.

[178] Mozilla. Dates for phasing out MD5-based signatures and 1024-bit moduli. Wiki
article (Oct. 3, 2013). https://wiki.mozilla.org/CA:MD5and1024.

[179] Mozilla. Mozilla CA certificate policy. https://www.mozilla.org/en-
US/about/governance/policies/security-group/certs/
policy/.

[180] Mozilla. NSS key log format. https://developer.mozilla.org/en-
US/docs/Mozilla/Projects/NSS/Key_Log_Format.

[181] Mozilla. Phasing out certificates with 1024-bit RSA keys. Blog article
(Sept. 8, 2014). https://blog.mozilla.org/security/2014/09/08/
phasing-out-certificates-with-1024-bit-rsa-keys/.

[182] Mozilla. The POODLE attack and the end of SSL 3.0. Blog article
(Oct. 14, 2014). https://blog.mozilla.org/security/2014/10/14/
the-poodle-attack-and-the-end-of-ssl-3-0/.

206

https://technet.microsoft.com/en-us/library/cc783813%28v=ws.10%29.aspx
https://technet.microsoft.com/en-us/library/cc783813%28v=ws.10%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/bb204778%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/bb204778%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa388136%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa388136%28v=vs.85%29.aspx
https://www.openssl.org/~bodo/ssl-poodle.pdf
https://www.openssl.org/~bodo/ssl-poodle.pdf
https://wiki.mozilla.org/CA:MD5and1024
https://www.mozilla.org/en-US/about/governance/policies/security-group/certs/policy/
https://www.mozilla.org/en-US/about/governance/policies/security-group/certs/policy/
https://www.mozilla.org/en-US/about/governance/policies/security-group/certs/policy/
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS/Key_Log_Format
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS/Key_Log_Format
https://blog.mozilla.org/security/2014/09/08/phasing-out-certificates-with-1024-bit-rsa-keys/
https://blog.mozilla.org/security/2014/09/08/phasing-out-certificates-with-1024-bit-rsa-keys/
https://blog.mozilla.org/security/2014/10/14/the-poodle-attack-and-the-end-of-ssl-3-0/
https://blog.mozilla.org/security/2014/10/14/the-poodle-attack-and-the-end-of-ssl-3-0/

[183] Mozilla. Revoking trust in one ANSSI certificate. Blog article (Dec. 13, 2013).
https://blog.mozilla.org/security/2013/12/09/revoking-
trust-in-one-anssi-certificate/.

[184] Mozilla. Revoking trust in two TurkTrust certificates. Blog article
(Jan. 3, 2013). https://blog.mozilla.org/security/2013/01/03/
revoking-trust-in-two-turktrust-certficates/.

[185] A. Nappa, M. Z. Rafique, and J. Caballero. Driving in the cloud: An analysis of
drive-by download operations and abuse reporting. In DIMVA’2013, Berlin, Ger-
many, July 2013.

[186] A. Narayanan and B. Zevenbergen. No encore for encore? ethical questions for web-
based censorship measurement, 2015. Technical Report (Sept. 24, 2015). Available
at SSRN: https://ssrn.com/abstract=2665148.

[187] D. Naylor, R. Li, C. Gkantsidis, T. Karagiannis, and P. Steenkiste. And then there
were more: Secure communication for more than two parties. In Conference on
Emerging Networking EXperiments and Technologies, CoNEXT’17, Incheon, Re-
public of Korea, Dec. 2017.

[188] D. Naylor, K. Schomp, M. Varvello, I. Leontiadis, J. Blackburn, D. R. López,
K. Papagiannaki, P. Rodriguez Rodriguez, and P. Steenkiste. Multi-Context TLS
(mcTLS): Enabling secure in-network functionality in TLS. In SIGCOMM’15, Lon-
don, UK, Aug. 2015.

[189] NSIS Wiki. Can I decompile an existing installer?, 2019. http://nsis.
sourceforge.net/Can_I_decompile_an_existing_installer.

[190] E. Oakes, J. Kline, A. Cahn, K. Funkhouser, and P. Barford. A residential client-
side perspective on SSL certificates. In Network Traffic Measurement and Analysis
Conference (TMA’19), 2019.

[191] Office of the Privacy Commissioner of Canada. Canadian adware developer Wajam
Internet Technologies Inc. breaches multiple provisions of PIPEDA. Technical
Report #2017-002, OPC, Aug. 2017. https://www.priv.gc.ca/en/opc-
actions-and-decisions/investigations/investigations-
into-businesses/2017/pipeda-2017-002/.

[192] M. O’Neill, S. Ruoti, K. Seamons, and D. Zappala. TLS proxies: Friend or foe? In
IMC’16, Santa Monica, CA, USA, Nov. 2016.

[193] A. Panchenko, F. Lanze, J. Pennekamp, T. Engel, A. Zinnen, M. Henze, and
K. Wehrle. Website fingerprinting at Internet scale. In NDSS’16, San Diego, CA,
USA, Feb. 2016.

[194] R. Pion and H. Mezani. CheckMyHTTPS, 2016. https://checkmyhttps.
net.

207

https://blog.mozilla.org/security/2013/12/09/revoking-trust-in-one-anssi-certificate/
https://blog.mozilla.org/security/2013/12/09/revoking-trust-in-one-anssi-certificate/
https://blog.mozilla.org/security/2013/01/03/revoking-trust-in-two-turktrust-certficates/
https://blog.mozilla.org/security/2013/01/03/revoking-trust-in-two-turktrust-certficates/
https://ssrn.com/abstract=2665148
http://nsis.sourceforge.net/Can_I_decompile_an_existing_installer
http://nsis.sourceforge.net/Can_I_decompile_an_existing_installer
https://www.priv.gc.ca/en/opc-actions-and-decisions/investigations/investigations-into-businesses/2017/pipeda-2017-002/
https://www.priv.gc.ca/en/opc-actions-and-decisions/investigations/investigations-into-businesses/2017/pipeda-2017-002/
https://www.priv.gc.ca/en/opc-actions-and-decisions/investigations/investigations-into-businesses/2017/pipeda-2017-002/
https://checkmyhttps.net
https://checkmyhttps.net

[195] H. Porcher. Wajam: From a start-up to massive spread adware. In NorthSec’19,
Montreal, QC, Canada, May 2019. https://www.nsec.io/session/2019-wajam-from-
a-start-up-to-massive-spread-adware.html.

[196] PreEmptive Solutions. Dotfuscator | .NET Obfuscator & much more, 2019. https:
//www.preemptive.com/products/dotfuscator/overview.

[197] F. Prigent. Blacklists UT1, 2017. http://dsi.ut-capitole.fr/
blacklists/index_en.php.

[198] Progress Software. What is Telerik FiddlerCore?, 2019. https://www.
telerik.com/fiddler/fiddlercore.

[199] Qualys, Inc. SSL/TLS capabilities of your browser. https://ssllabs.com/
ssltest/viewMyClient.html.

[200] Quebec Government. Registraire des entreprises, 2015. http://www.
registreentreprises.gouv.qc.ca.

[201] M. Qureshi. April 2015 security updates for Internet Explorer. Blog article (Apr.
14, 2015).

[202] B. B. Rad, M. Masrom, and S. Ibrahim. Camouflage in malware: from encryption to
metamorphism. International Journal of Computer Science and Network Security,
12(8):74–83, 2012.

[203] Reporters Without Borders. Enemies of the Internet 2014: entities
at the heart of censorship and surveillance, 2014. Report (Mar. 11,
2014). https://web.archive.org/web/20171110033534/http://
12mars.rsf.org/2014-en/.

[204] E. Rescorla and RTFM, Inc. RFC 2818: HTTP Over TLS, 2000. RFC 2818 (Infor-
mational Track).

[205] I. Ristić. HTTP client fingerprinting using SSL handshake analysis. Blog arti-
cle (June 17, 2009). https://blog.ivanristic.com/2009/06/http-
client-fingerprinting-using-ssl-handshake-analysis.html.

[206] I. Ristić. Is BEAST still a threat? Blog article (Sept. 10, 2013).
https://community.qualys.com/blogs/securitylabs/2013/
09/10/is-beast-still-a-threat.

[207] I. Ristić. sslhaf, 2009. https://github.com/ssllabs/sslhaf.

[208] J. Rizzo and T. Duong. The crime attack. In Ekoparty, 2012. http://netifera.
com/research/crime/CRIME_ekoparty2012.pdf.

208

https://www.preemptive.com/products/dotfuscator/overview
https://www.preemptive.com/products/dotfuscator/overview
http://dsi.ut-capitole.fr/blacklists/index_en.php
http://dsi.ut-capitole.fr/blacklists/index_en.php
https://www.telerik.com/fiddler/fiddlercore
https://www.telerik.com/fiddler/fiddlercore
https://ssllabs.com/ssltest/viewMyClient.html
https://ssllabs.com/ssltest/viewMyClient.html
http://www.registreentreprises.gouv.qc.ca
http://www.registreentreprises.gouv.qc.ca
https://web.archive.org/web/20171110033534/http://12mars.rsf.org/2014-en/
https://web.archive.org/web/20171110033534/http://12mars.rsf.org/2014-en/
https://blog.ivanristic.com/2009/06/http-client-fingerprinting-using-ssl-handshake-analysis.html
https://blog.ivanristic.com/2009/06/http-client-fingerprinting-using-ssl-handshake-analysis.html
https://community.qualys.com/blogs/securitylabs/2013/09/10/is-beast-still-a-threat
https://community.qualys.com/blogs/securitylabs/2013/09/10/is-beast-still-a-threat
https://github.com/ssllabs/sslhaf
http://netifera.com/research/crime/CRIME_ekoparty2012.pdf
http://netifera.com/research/crime/CRIME_ekoparty2012.pdf

[209] E. Roman. Chrome no longer accepts certificates that fallback to common name,
2017. Chromium issue 700595 (Mar. 11, 2017). https://bugs.chromium.
org/p/chromium/issues/detail?id=700595&desc=2.

[210] A. N. Rüegg. Analysis of the SSL-certificate landscape and proposal for an extended
validation method. Master’s thesis, ETH Zürich, Switzerland, Apr. 2013.

[211] S. Ruoti, M. O’Neil, D. Zappala, and K. Seamons. At least tell me: User attitudes
toward the inspection of encrypted traffic. https://isrl.byu.edu/pubs/
ruoti2016at.pdf.

[212] M. Russinovich. Inside Windows 7 User Account Control, 2009. Magazine arti-
cle. https://technet.microsoft.com/en-us/magazine/2009.07.
uac.aspx?rss_fdn=TNTopNewInfo.

[213] M. Schiffman. A brief history of malware obfuscation: Part 2 of 2, 2010. Cisco
blog article (Fev. 22, 2010). https://blogs.cisco.com/security/a_
brief_history_of_malware_obfuscation_part_2_of_2.

[214] S. Shah and D. Cole. Spyware/Adware – The quest for consumer desktops & how it
went wrong. In BlackHat’05 Japan, Tokyo, Japan, Oct. 2015.

[215] C. Sharp. Add wajam_goblin.dll and wajam_goblin_64.dll to Chrome’s black-
list, 2014. https://chromium.googlesource.com/chromium/src/
+/8d53428549c4cdf3e335e92041b1541d2ee4f065.

[216] J. Sherry, C. Lan, R. A. Popa, and S. Ratnasamy. BlindBox: Deep packet inspection
over encrypted traffic. In SIGCOMM’15, London, UK, Aug. 2015.

[217] S. Shin and G. Gu. Conficker and beyond: a large-scale empirical study. In AC-
SAC’10, Austin, TX, USA, Dec. 2010.

[218] V. Sidorov. Network filtering toolkit, 2019. http://netfiltersdk.com/.

[219] V. Sidorov. ProtocolFilters history, 2019. http://netfiltersdk.com/
protocolfilters_history.html.

[220] J. Somorovsky. Systematic fuzzing and testing of tls libraries. In CCS’16, Vienna,
Austria, Oct. 2016.

[221] A. K. Sood and R. Bansal. Prosecting the Citadel botnet - revealing
the dominance of the Zeus descendent, Sept. 2014. White paper (Sep. 8
2014). https://www.virusbulletin.com/uploads/pdf/magazine/
2014/vb201409-Citadel.pdf.

[222] A. Sotirov, M. Stevens, J. Appelbaum, A. Lenstra, D. Molnar, D. A. Osvik, and
B. de Weger. MD5 considered harmful today. Blog article (Dec. 30, 2008). https:
//www.win.tue.nl/hashclash/rogue-ca/.

209

https://bugs.chromium.org/p/chromium/issues/detail?id=700595&desc=2
https://bugs.chromium.org/p/chromium/issues/detail?id=700595&desc=2
https://isrl.byu.edu/pubs/ruoti2016at.pdf
https://isrl.byu.edu/pubs/ruoti2016at.pdf
https://technet.microsoft.com/en-us/magazine/2009.07.uac.aspx?rss_fdn=TNTopNewInfo
https://technet.microsoft.com/en-us/magazine/2009.07.uac.aspx?rss_fdn=TNTopNewInfo
https://blogs.cisco.com/security/a_brief_history_of_malware_obfuscation_part_2_of_2
https://blogs.cisco.com/security/a_brief_history_of_malware_obfuscation_part_2_of_2
https://chromium.googlesource.com/chromium/src/+/8d53428549c4cdf3e335e92041b1541d2ee4f065
https://chromium.googlesource.com/chromium/src/+/8d53428549c4cdf3e335e92041b1541d2ee4f065
http://netfiltersdk.com/
http://netfiltersdk.com/protocolfilters_history.html
http://netfiltersdk.com/protocolfilters_history.html
https://www.virusbulletin.com/uploads/pdf/magazine/2014/vb201409-Citadel.pdf
https://www.virusbulletin.com/uploads/pdf/magazine/2014/vb201409-Citadel.pdf
https://www.win.tue.nl/hashclash/rogue-ca/
https://www.win.tue.nl/hashclash/rogue-ca/

[223] P. Soucy. Wajam, 2015. Blog post (Aug. 21, 2015). http://dev-smart.com/
wajam/.

[224] SourceForge.net. NSIS download statistics, 2018. https://sourceforge.
net/projects/nsis/files/NSIS%203/stats/timeline.

[225] E. H. Spafford. The Internet worm program: An analysis. SIGCOMM Comput.
Commun. Rev., 19(1):17–57, Jan. 1989.

[226] B. Stone-Gross, M. Cova, L. Cavallaro, B. Gilbert, M. Szydlowski, R. A. Kemmerer,
C. Kruegel, and G. Vigna. Your botnet is my botnet: analysis of a botnet takeover.
In CCS’09, Chicago, IL, USA, Nov. 2009.

[227] X. Su. (CVE-2011-3389) Rizzo/Duong chosen plaintext attack (BEAST) on SS-
L/TLS 1.0 (facilitated by websockets -76). https://bugzilla.mozilla.
org/show_bug.cgi?id=665814#c59.

[228] Symantec. W32.Stuxnet Dossier, 2011. White paper (Feb. 2011). https:
//www.symantec.com/content/en/us/enterprise/media/
security_response/whitepapers/w32_stuxnet_dossier.pdf.

[229] Symantec. Internet Security Threat Report volume 23, Mar. 2018. https:
//www.symantec.com/blogs/threat-intelligence/istr-23-
cyber-security-threat-landscape.

[230] A. Szekely. NSIS (Nullsoft Scriptable Install System), 2019. http://nsis.
sourceforge.net/Main_Page.

[231] B. Tedesco. Security advisory: Adware uses advanced nation-state ob-
fuscation techniques to deliver ransomware, 2016. Carbon Black blog
article (Sep. 23, 2016). https://www.carbonblack.com/2016/
09/23/security-advisory-variants-well-known-adware-
families-discovered-include-sophisticated-obfuscation-
techniques-previously-associated-nation-state-attacks/.

[232] K. Thomas, E. Bursztein, C. Grier, G. Ho, N. Jagpal, A. Kapravelos, D. McCoy,
A. Nappa, V. Paxson, P. Pearce, N. Provos, and M. A. Rajab. Ad injection at
scale: Assessing deceptive advertisement modifications. In IEEE S&P, San Jose,
CA, USA, May 2015.

[233] K. Thomas, J. A. E. Crespo, R. Rasti, J.-M. Picod, C. Phillips, M.-A. Decoste,
C. Sharp, F. Tirelo, A. Tofigh, M.-A. Courteau, L. Ballard, R. Shield, N. Jagpal,
M. A. Rajab, P. Mavrommatis, N. Provos, E. Bursztein, and D. McCoy. Investigating
commercial pay-per-install and the distribution of unwanted software. In USENIX
Security Symposium, Austin, TX, USA, Aug. 2016.

[234] TLS-O-Matic.com. Self testing for web and application developers. https://
www.tls-o-matic.com/.

210

http://dev-smart.com/wajam/
http://dev-smart.com/wajam/
https://sourceforge.net/projects/nsis/files/NSIS%203/stats/timeline
https://sourceforge.net/projects/nsis/files/NSIS%203/stats/timeline
https://bugzilla.mozilla.org/show_bug.cgi?id=665814#c59
https://bugzilla.mozilla.org/show_bug.cgi?id=665814#c59
https://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf
https://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf
https://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf
https://www.symantec.com/blogs/threat-intelligence/istr-23-cyber-security-threat-landscape
https://www.symantec.com/blogs/threat-intelligence/istr-23-cyber-security-threat-landscape
https://www.symantec.com/blogs/threat-intelligence/istr-23-cyber-security-threat-landscape
http://nsis.sourceforge.net/Main_Page
http://nsis.sourceforge.net/Main_Page
https://www.carbonblack.com/2016/09/23/security-advisory-variants-well-known-adware-families-discovered-include-sophisticated-obfuscation-techniques-previously-associated-nation-state-attacks/
https://www.carbonblack.com/2016/09/23/security-advisory-variants-well-known-adware-families-discovered-include-sophisticated-obfuscation-techniques-previously-associated-nation-state-attacks/
https://www.carbonblack.com/2016/09/23/security-advisory-variants-well-known-adware-families-discovered-include-sophisticated-obfuscation-techniques-previously-associated-nation-state-attacks/
https://www.carbonblack.com/2016/09/23/security-advisory-variants-well-known-adware-families-discovered-include-sophisticated-obfuscation-techniques-previously-associated-nation-state-attacks/
https://www.tls-o-matic.com/
https://www.tls-o-matic.com/

[235] TopTenReviews.com. Parental software review. http://parental-
software-review.toptenreviews.com/.

[236] Trustworthy Internet Movement. SSL Pulse. Survey (retrieved on Aug. 3, 2015).
https://www.trustworthyinternet.org/ssl-pulse/.

[237] F. Valsorda. Superfish, Komodia, PrivDog vulnerability test. https://
filippo.io/Badfish/.

[238] B. VanderSloot, J. Amann, M. Bernhard, Z. Durumeric, M. Bailey, and J. A. Hal-
derman. Towards a complete view of the certificate ecosystem. In IMC’16, Santa
Monica, CA, USA, Nov. 2016.

[239] M. Vanhoef and F. Piessens. All your biases belong to us: Breaking RC4 in WPA-
TKIP and TLS. In USENIX Security Symposium, Washington, DC, USA, Aug. 2015.

[240] Verisign. Zone File Information. https://www.verisign.com/en_
US/channel-resources/domain-registry-products/zone-
file/index.xhtml.

[241] N. Vratonjic, J. Freudiger, V. Bindschaedler, and J. Hubaux. The inconvenient
truth about web certificates. In Workshop on the Economics of Information Secu-
rity (WEI’11), Fairfax, VA, USA, June 2011.

[242] L. Waked, M. Mannan, and A. Youssef. The sorry state of TLS security in enter-
prise interception appliances, Sept. 2018. https://arxiv.org/abs/1809.
08729.

[243] L. Waked, M. Mannan, and A. M. Youssef. To intercept or not to intercept: Analyz-
ing TLS interception in network appliances. In ASIACCS’18, Songdo, Korea, June
2018.

[244] D. Wendlandt, D. G. Andersen, and A. Perrig. Perspectives: Improving SSH-
style host authentication with multi-path probing. In USENIX Annual Technical
Conference, San Diego, CA, USA, June 2008. https://perspectives-
project.org/.

[245] P. Winter, R. Köwer, M. Mulazzani, M. Huber, S. Schrittwieser, S. Lindskog, and
E. Weippl. Spoiled onions: Exposing malicious tor exit relays. In PETS’14, Ams-
terdam, Netherlands, July 2014.

[246] W. Wong and M. Stamp. Hunting for metamorphic engines. Journal in Computer
Virology, 2(3):211–229, 2006.

[247] WordPress. A live look at activity across WordPress.com, 2019. https://
wordpress.com/activity/.

211

http://parental-software-review.toptenreviews.com/
http://parental-software-review.toptenreviews.com/
https://www.trustworthyinternet.org/ssl-pulse/
https://filippo.io/Badfish/
https://filippo.io/Badfish/
https://www.verisign.com/en_US/channel-resources/domain-registry-products/zone-file/index.xhtml
https://www.verisign.com/en_US/channel-resources/domain-registry-products/zone-file/index.xhtml
https://www.verisign.com/en_US/channel-resources/domain-registry-products/zone-file/index.xhtml
https://arxiv.org/abs/1809.08729
https://arxiv.org/abs/1809.08729
https://perspectives-project.org/
https://perspectives-project.org/
https://wordpress.com/activity/
https://wordpress.com/activity/

[248] x64dbg. An open-source x64/x32 debugger for windows, 2019. https://
x64dbg.com/.

[249] M. Zalewski. p0f v3: passive fingerprinter, 2012. http://lcamtuf.
coredump.cx/p0f3/.

[250] L. Zhang, D. R. Choffnes, D. Levin, T. Dumitras, A. Mislove, A. Schulman, and
C. Wilson. Analysis of SSL certificate reissues and revocations in the wake of heart-
bleed. In IMC’14, Vancouver, BC, Canada, Nov. 2014.

212

https://x64dbg.com/
https://x64dbg.com/
http://lcamtuf.coredump.cx/p0f3/
http://lcamtuf.coredump.cx/p0f3/

Appendix A

Glossary

AIA Authority Information Access
API Application Programming Interface
APT Advanced Persistent Threat
AS Autonomous Systems
AV Antivirus
CA Certificate Authority
CAPI Microsoft CryptoAPI
CBC Cipher Block Chaining
CCA Content-Control Application
CDN Content Delivery Network
CN Certificate’s Common Name field
CNG Cryptography API: Next Generation
CRL Certificate Revocation List
CSP Content Security Policy
CSP Cryptographic Service Provider
CT Certificate Transparency
DLL Dynamic-Link Library
DLP Data Loss Prevention
DN Certificate’s Distinguished Name
EC Elliptic Curve
ECDH EC Diffie-Hellman
EV Extended validation
HPKP HTTP Public Key Pinning
HSTS HTTP Strict Transport Security
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
IE Microsoft Internet Explorer
IV Initialization Vector
IMAP Internet Message Access Protocol
ISP Internet Service Provider
KSP CNG Key Storage Provider

213

MITB Man-in-the-browser
MITM Man-in-the-middle
MRT Windows Malicious Software Removal Tool
NSIS Nullsoft Scriptable Install System
OCSP Online Certificate Status Protocol
OPC Office of the Privacy Commissioner
OS Operating System
PC Parental Control
PKI Public Key Infrastructure
POP3 Post Office Protocol 3
RCE Remote Code Execution
RSA Rivest-Shamir-Adleman cryptosystem
RWB Reporters Without Borders
SAN Subject Alternate Name
SCT Signed Certificate Timestamp
SDK Software Development Kit
SHA Secure Hash Algorithm
SLOC Source Lines Of Code
SMTP Simple Mail Transfer Protocol
SNI TLS Server Name Indication extension
SOP Same-Origin Policy
SSH Secure Shell
SSL Secure Socket Layer, a.k.a. TLS
TLS Transport Layer Security, a.k.a. SSL
UAC User Account Control
UI User Interface
VPN Virtual Private Network

214

Appendix B

Recovering private keys from antivirus
and parental control applications

We detail below a few typical cases of recovering the root certificate’s private key from
antivirus or parental control applications.

B.1 BitDefender

Figure B.1: CA certificate inserted into Windows’ trust store

215

Figure B.2: Obtain the SHA1 fingerprint of the A certificate

Figure B.3: Monitor file activities with Procmon and explore events around the manipula-
tion of the certificate in registry (identified by its SHA1 hash)

216

Figure B.4: Explore the program’s folder where a certificate was identified

Figure B.5: Find an encrypted private key

Figure B.6: Dump all processes

217

Figure B.7: Find the process handling the private key

Figure B.8: Find interesting DLL components of that process

218

Figure B.9: Search for key functions in the DLL components, e.g., OpenSSL
PEM_write_RSAPrivateKey

Figure B.10: Analyze calls to key functions and locate the passphrase

219

B.2 Net Nanny

Figure B.11: Original (above) and patched (below) db.dll to decrypt the database upon
opening, then close and crash

Figure B.12: Original db.dll, decompiled

Figure B.13: Patched db.dll, decompiled

220

Figure B.14: Net Nanny’s decrypted framework.db database containing an encrypted
private key and its corresponding passphrase

221

B.3 Avast

Figure B.15: Recovering Avast’s private key with Mimikatz (not associated with certificate)

222

B.4 ESET

Figure B.16: ESET’s private key is associated with a certificate but marked unexportable

Figure B.17: ESET protects the CNG service

223

Figure B.18: Disabling ESET self-defense feature

Figure B.19: Exporting ESET’s private key

224

Appendix C

Sample email notification sent to AV/PC
companies

Hello,

I am a Ph.D. student in Computer Science at Concordia University, Montreal,
Canada. As part of a study on SSL/TLS proxies, I analyzed your parental control
application Net Nanny 7.2.4.2 and 7.2.6.0. The following message is technical and
reveals security flaws in your software.

Net Nanny imports its own root certificate in the Windows Trusted Root Cer-
tification Authorities store, however, the certificate is the same on any machine
where v7.2.4.2 and lower is installed (the public/private key pair remains the
same). It is possible to retrieve the private key for this certificate, which can
be used by an attacker to forge valid site certificates (e.g., for google.com),
since Net Nanny accepts its own root certificate on externally-delivered HTTPS
content. In turn, this can be used by an attacker to impersonate any websites
to all the customers of this application in a man-in-the-middle attack. You may
want to read a piece of news related to the SuperFish software from Lenovo
at http://arstechnica.com/security/2015/02/lenovo-pcs-
ship-with-man-in-the-middle-adware-that-breaks-https-
connections/.

In both versions I analyzed, Net Nanny relies on its own trusted Certificate
Authorities (CAs) store, which contains a test root certificate with a 512-bit
public key. The key could be factored in a reasonable amount of time (cf. the
FREAK attack) and allow an attacker to forge valid certificates that Net Nanny will
accept as being issued by this authority ("Root Agency"), in a man-in-the-middle
attack. Furthermore, Net Nanny’s hardcoded list of CAs includes the CNNIC root
certificate, untrusted by major browsers following a breach in March 2015.

225

http://arstechnica.com/security/2015/02/lenovo-pcs-ship-with-man-in-the-middle-adware-that-breaks-https-connections/
http://arstechnica.com/security/2015/02/lenovo-pcs-ship-with-man-in-the-middle-adware-that-breaks-https-connections/
http://arstechnica.com/security/2015/02/lenovo-pcs-ship-with-man-in-the-middle-adware-that-breaks-https-connections/

Also, 27 root certificates are still relying on 1024-bit keys, which is progressively
being deprecated by major browsers. Net Nanny hence breaks the security guaran-
tees offered by SSL, and exposes all customers to server impersonation under an
active man-in-the-middle attack.

Additionally, Net Nanny supports at most TLS 1.0 and is vulnerable to the
BEAST attack against CBC-mode ciphers. It also uses a cipher suite that contains
weak ciphers instead of using the cipher suite presented by the browser. Such
vulnerabilities could lead an attacker to steal authentication cookies from a user
to a target website. Net Nanny still supports SSL 3.0 that has been deprecated by
major browsers following the POODLE attack last year. Although Net Nanny is
not vulnerable to the downgrade attack described in the POODLE attack, SSL 3.0
remains vulnerable to the practical padding oracle attack described in POODLE that
allows for traffic decryption. Also, Net Nanny mislead browsers that the connection
is more secure than it actually is, by presenting HTTPS connections to the browsers
as TLS 1.2, even when Net Nanny is actually connecting using SSL 3.0. Browsers
do not have knowledge that an SSL 3.0 connection is used, which they would
otherwise block for security reasons.

Moreover, Net Nanny is vulnerable to the FREAK and Logjam attacks; both
could allow server impersonation against vulnerable servers.

Finally, Net Nanny fails to properly protect the private key associated to its
root certificate used for HTTPS interception. The private key is stored in an en-
crypted database with the hardcoded passphrase ***************. As the database
is readable from unprivileged processes, this obfuscation does not prevent a userland
malware to simply read the private key and exfiltrate it for later server impersonation
in a man-in-the-middle attack. Better storage protections are available using the MS
CryptoAPI/CNG.

These findings are part of a scientific publication currently undergoing peer-
review to be presented at a security conference.

I remain available for further details and would be glad to hear back from
you on this issue.

–
Xavier de Carné de Carnavalet
Ph.D. student in Information Systems Security
Concordia University, Montréal, Canada
http://users.encs.concordia.ca/~x_decarn/

226

http://users.encs.concordia.ca/~x_decarn/

Appendix D

List of Luminati countries

Table D.1 shows the country codes supported in the Luminati network and the countries
we selected during our respective scans.

227

L
17

L
19

IS
O

C
ou

nt
ry

/te
rr

ito
ry

/is
la

nd
na

m
e

L
17

L
19

IS
O

C
ou

nt
ry

/te
rr

ito
ry

/is
la

nd
na

m
e

L
17

L
19

IS
O

C
ou

nt
ry

/te
rr

ito
ry

/is
la

nd
na

m
e

L
17

L
19

IS
O

C
ou

nt
ry

/te
rr

ito
ry

/is
la

nd
na

m
e

X
A

D
A

nd
or

ra
X

E
E

E
st

on
ia

X
L

B
L

eb
an

on
X

R
W

R
w

an
da

X
X

A
E

U
ni

te
d

A
ra

b
E

m
ir

at
es

X
E

G
E

gy
pt

X
L

C
Sa

in
tL

uc
ia

X
X

SA
Sa

ud
iA

ra
bi

a
X

A
F

A
fg

ha
ni

st
an

E
H

W
es

te
rn

Sa
ha

ra
X

L
I

L
ie

ch
te

ns
te

in
X

SB
So

lo
m

on
Is

la
nd

s
X

A
G

A
nt

ig
ua

A
nd

B
ar

bu
da

E
R

E
ri

tr
ea

X
X

L
K

Sr
iL

an
ka

X
SC

Se
yc

he
lle

s
X

A
I

A
ng

ui
lla

X
E

S
Sp

ai
n

X
L

R
L

ib
er

ia
X

X
SD

Su
da

n
X

A
L

A
lb

an
ia

X
X

E
T

E
th

io
pi

a
L

S
L

es
ot

ho
X

SE
Sw

ed
en

X
A

M
A

rm
en

ia
E

U
E

ur
op

ea
n

U
ni

on
X

LT
L

ith
ua

ni
a

X
SG

Si
ng

ap
or

e
A

N
N

et
he

rl
an

ds
A

nt
ill

es
X

FI
Fi

nl
an

d
X

L
U

L
ux

em
bo

ur
g

SH
Sa

in
tH

el
en

a
X

A
O

A
ng

ol
a

X
FJ

Fi
ji

X
LV

L
at

vi
a

X
SI

Sl
ov

en
ia

A
P

A
si

a/
Pa

ci
fic

FK
Fa

lk
la

nd
Is

la
nd

s
(M

al
vi

na
s)

X
X

LY
L

ib
ya

SJ
Sv

al
ba

rd
A

nd
Ja

n
M

ay
en

A
Q

A
nt

ar
ct

ic
a

X
FM

M
ic

ro
ne

si
a

X
M

A
M

or
oc

co
X

SK
Sl

ov
ak

R
ep

ub
lic

X
A

R
A

rg
en

tin
a

X
FO

Fa
ro

e
Is

la
nd

s
M

C
M

on
ac

o
X

SL
Si

er
ra

L
eo

ne
X

A
S

A
m

er
ic

an
Sa

m
oa

X
X

FR
Fr

an
ce

X
M

D
M

ol
do

va
X

SM
Sa

n
M

ar
in

o
X

A
T

A
us

tr
ia

FX
Fr

an
ce

,M
et

ro
po

lit
an

X
M

E
M

on
te

ne
gr

o
X

SN
Se

ne
ga

l
X

X
A

U
A

us
tr

al
ia

X
G

A
G

ab
on

M
F

Sa
in

tM
ar

tin
X

SO
So

m
al

ia
X

A
W

A
ru

ba
X

G
B

G
re

at
B

ri
ta

in
X

M
G

M
ad

ag
as

ca
r

X
SR

Su
ri

na
m

e
X

A
X

A
la

nd
Is

la
nd

s
X

G
D

G
re

na
da

M
H

M
ar

sh
al

lI
sl

an
ds

X
SS

So
ut

h
Su

da
n

X
A

Z
A

ze
rb

ai
ja

n
X

G
E

G
eo

rg
ia

X
M

K
M

ac
ed

on
ia

ST
Sa

o
To

m
e

A
nd

Pr
in

ci
pe

X
B

A
B

os
ni

a
A

nd
H

er
ze

go
vi

na
G

F
Fr

en
ch

G
ui

ne
a

M
L

M
al

i
X

SV
E

lS
al

va
do

r
X

B
B

B
ar

ba
do

s
X

G
G

G
ue

rn
se

y
X

X
M

M
M

ya
nm

ar
(B

ur
m

a)
SX

Si
nt

M
aa

rt
en

X
B

D
B

an
gl

ad
es

h
X

G
H

G
ha

na
X

M
N

M
on

go
lia

X
X

SY
Sy

ri
a

X
B

E
B

el
gi

um
X

G
I

G
ib

ra
lta

r
X

M
O

M
ac

au
X

SZ
Sw

az
ila

nd
X

B
F

B
ur

ki
na

Fa
so

X
G

L
G

re
en

la
nd

M
P

N
or

th
er

n
M

ar
ia

na
Is

la
nd

s
X

T
C

Tu
rk

s
A

nd
C

ai
co

s
Is

la
nd

s
X

B
G

B
ul

ga
ri

a
X

G
M

G
am

bi
a

X
M

Q
M

ar
tin

iq
ue

X
T

D
C

ha
d

X
X

B
H

B
ah

ra
in

X
G

N
G

ui
ne

a
M

R
M

au
ri

ta
ni

a
T

F
Fr

en
ch

So
ut

he
rn

Te
rr

ito
ri

es
X

B
I

B
ur

un
di

G
P

G
ua

de
lo

up
e

M
S

M
on

ts
er

ra
t

X
T

G
To

go
X

B
J

B
en

in
X

G
Q

E
qu

at
or

ia
lG

ui
ne

a
X

M
T

M
al

ta
X

X
T

H
T

ha
ila

nd
X

B
L

Sa
in

tB
ar

th
el

em
y

X
G

R
G

re
ec

e
X

M
U

M
au

ri
tiu

s
X

X
T

J
Ta

jik
is

ta
n

X
B

M
B

er
m

ud
a

G
S

So
ut

h
G

eo
rg

ia
A

nd
So

ut
h

Sa
nd

w
ic

h
Is

la
nd

s
X

M
V

M
al

di
ve

s
T

K
To

ke
la

u
X

B
N

B
ru

ne
i

X
G

T
G

ua
te

m
al

a
M

W
M

al
aw

i
X

T
L

Ti
m

or
-L

es
te

X
B

O
B

ol
iv

ia
X

G
U

G
ua

m
X

M
X

M
ex

ic
o

T
M

Tu
rk

m
en

is
ta

n
B

Q
B

on
ai

re
,S

in
tE

us
ta

tiu
s

an
d

Sa
ba

X
G

W
G

ui
ne

a-
B

is
sa

u
X

X
M

Y
M

al
ay

si
a

X
X

T
N

Tu
ni

si
a

X
B

R
B

ra
zi

l
X

G
Y

G
uy

an
a

X
M

Z
M

oz
am

bi
qu

e
TO

To
ng

a
X

B
S

B
ah

am
as

X
H

K
H

on
g

K
on

g
N

A
N

am
ib

ia
T

P
E

as
tT

im
or

X
B

T
B

hu
ta

n
H

M
H

ea
rd

A
nd

M
cD

on
al

d
Is

la
nd

s
N

C
N

ew
C

al
ed

on
ia

X
X

T
R

Tu
rk

ey
B

V
B

ou
ve

tI
sl

an
d

X
H

N
H

on
du

ra
s

X
N

E
N

ig
er

X
T

T
Tr

in
id

ad
A

nd
To

ba
go

X
B

W
B

ot
sw

an
a

X
H

R
C

ro
at

ia
(H

rv
at

sk
a)

N
F

N
or

fo
lk

Is
la

nd
T

V
Tu

va
lu

X
X

B
Y

B
el

ar
us

X
H

T
H

ai
ti

X
N

G
N

ig
er

ia
X

T
W

Ta
iw

an
X

B
Z

B
el

iz
e

X
H

U
H

un
ga

ry
X

N
I

N
ic

ar
ag

ua
X

T
Z

Ta
nz

an
ia

X
C

A
C

an
ad

a
X

ID
In

do
ne

si
a

X
N

L
N

et
he

rl
an

ds
X

U
A

U
kr

ai
ne

C
C

C
oc

os
(K

ee
lin

g)
Is

la
nd

s
X

IE
Ir

el
an

d
X

N
O

N
or

w
ay

X
U

G
U

ga
nd

a
C

D
D

em
oc

ra
tic

R
ep

ub
lic

O
fC

on
go

(Z
ai

re
)

X
IL

Is
ra

el
X

N
P

N
ep

al
U

K
U

ni
te

d
K

in
gd

om
C

F
C

en
tr

al
A

fr
ic

an
R

ep
ub

lic
X

IM
Is

le
of

M
an

X
N

R
N

au
ru

U
M

U
ni

te
d

St
at

es
M

in
or

O
ut

ly
in

g
Is

la
nd

s
X

C
G

C
on

go
X

X
IN

In
di

a
N

U
N

iu
e

X
X

U
S

U
ni

te
d

St
at

es
X

C
H

Sw
itz

er
la

nd
IO

B
ri

tis
h

In
di

an
O

ce
an

Te
rr

ito
ry

X
N

Z
N

ew
Z

ea
la

nd
X

U
Y

U
ru

gu
ay

X
C

I
C

ot
e

D
’I

vo
ir

e
(I

vo
ry

C
oa

st
)

X
IQ

Ir
aq

X
O

M
O

m
an

X
X

U
Z

U
zb

ek
is

ta
n

X
C

K
C

oo
k

Is
la

nd
s

X
X

IR
Ir

an
X

P A
Pa

na
m

a
V A

V
at

ic
an

C
ity

(H
ol

y
Se

e)
X

C
L

C
hi

le
X

IS
Ic

el
an

d
X

PE
Pe

ru
X

V
C

Sa
in

tV
in

ce
nt

A
nd

T
he

G
re

na
di

ne
s

X
C

M
C

am
er

oo
n

X
IT

It
al

y
X

PF
Fr

en
ch

Po
ly

ne
si

a
X

X
V

E
V

en
ez

ue
la

X
X

C
N

C
hi

na
X

JE
B

ai
liw

ic
k

of
Je

rs
ey

X
PG

Pa
pu

a
N

ew
G

ui
ne

a
X

V
G

V
irg

in
Is

la
nd

s
(B

ri
tis

h)
X

C
O

C
ol

om
bi

a
X

JM
Ja

m
ai

ca
X

PH
Ph

ili
pp

in
es

X
V

I
V

irg
in

Is
la

nd
s

(U
S)

X
C

R
C

os
ta

R
ic

a
X

X
JO

Jo
rd

an
X

X
PK

Pa
ki

st
an

X
X

V
N

V
ie

tn
am

X
X

C
U

C
ub

a
X

JP
Ja

pa
n

X
PL

Po
la

nd
X

V
U

V
an

ua
tu

X
C

V
C

ap
e

V
er

de
X

K
E

K
en

ya
PM

Sa
in

tP
ie

rr
e

A
nd

M
iq

ue
lo

n
W

F
W

al
lis

A
nd

Fu
tu

na
Is

la
nd

s
X

C
W

C
ur

ac
ao

X
K

G
K

yr
gy

zs
ta

n
PN

Pi
tc

ai
rn

W
S

W
es

te
rn

Sa
m

oa
C

X
C

hr
is

tm
as

Is
la

nd
X

K
H

C
am

bo
di

a
X

PR
Pu

er
to

R
ic

o
X

K
K

os
ov

o
X

C
Y

C
yp

ru
s

X
K

I
K

ir
ib

at
i

X
PS

Pa
le

st
in

e
X

X
Y

E
Y

em
en

X
C

Z
C

ze
ch

R
ep

ub
lic

X
K

M
C

om
or

os
X

PT
Po

rt
ug

al
X

Y
T

M
ay

ot
te

X
D

E
G

er
m

an
y

X
K

N
Sa

in
tK

itt
s

A
nd

N
ev

is
X

PW
Pa

la
u

Y
U

Y
ug

os
la

vi
a

X
D

J
D

jib
ou

ti
K

P
N

or
th

K
or

ea
X

PY
Pa

ra
gu

ay
X

Z
A

So
ut

h
A

fr
ic

a
X

D
K

D
en

m
ar

k
X

X
K

R
So

ut
h

K
or

ea
X

Q
A

Q
at

ar
X

Z
M

Z
am

bi
a

X
D

M
D

om
in

ic
a

X
K

W
K

uw
ai

t
R

E
R

eu
ni

on
X

Z
W

Z
im

ba
bw

e
X

D
O

D
om

in
ic

an
R

ep
ub

lic
X

K
Y

C
ay

m
an

Is
la

nd
s

X
R

O
R

om
an

ia
X

D
Z

A
lg

er
ia

X
K

Z
K

az
ak

hs
ta

n
X

R
S

Se
rb

ia
X

E
C

E
cu

ad
or

X
L

A
L

ao
s

X
X

R
U

R
us

si
a

T a
bl

e
D

.1
:L

is
to

fc
ou

nt
ri

es
th

ro
ug

h
w

hi
ch

w
e

co
nd

uc
te

d
sc

an
s

th
ro

ug
h

L
um

in
at

i

228

Appendix E

Certificate fingerprinting rules

avast! (old). issuer_dn = "OU=generated by avast! antivirus for SSL/TLS scanning, O=avast! Web/-
Mail Shield, CN=avast! Web/Mail Shield Root" OR issuer_dn = "OU=generated by avast! antivirus for
self-signed certificates, O=avast! Web/Mail Shield, CN=avast! Web/Mail Shield Self-signed Root" OR is-
suer_dn = "OU=generated by avast! antivirus for untrusted server certificates, O=avast! Web/Mail Shield,
CN=avast! Web/Mail Shield Untrusted Root"
Avast (after acquisition of AVG). issuer_dn = "OU=generated by Avast Antivirus for SSL/TLS
scanning, O=Avast Web/Mail Shield, CN=Avast Web/Mail Shield Root" OR issuer_dn = "OU=generated
by Avast Antivirus for self-signed certificates, O=Avast Web/Mail Shield, CN=Avast Web/Mail Shield Self-
signed Root" OR issuer_dn = "OU=generated by Avast Antivirus for untrusted server certificates, O=Avast
Web/Mail Shield, CN=Avast Web/Mail Shield Untrusted Root"
Avast (Mac). issuer_dn = "C=CZ, ST=Prague, O=AVAST, OU=Software Development, CN=Avast
trusted CA" OR issuer_dn = "C=CZ, ST=Prague, O=AVAST, OU=Software Development, CN=Avast un-
trusted CA"
AVG (old). issuer_dn = "C=CZ, ST=Moravia, L=Brno, O=AVG Technologies cz, OU=Engineering,
CN=AVG Technologies"
AVG (after acquisition by Avast). issuer_dn = "OU=generated by AVG Antivirus for SSL/TLS
scanning, O=AVG Web/Mail Shield, CN=AVG Web/Mail Shield Root" OR issuer_dn = "OU=generated by
AVG Antivirus for self-signed certificates, O=AVG Web/Mail Shield, CN=AVG Web/Mail Shield Self-signed
Root" OR issuer_dn = "OU=generated by AVG Antivirus for untrusted server certificates, O=AVG Web/Mail
Shield, CN=AVG Web/Mail Shield Untrusted Root"
BitDefender. issuer_dn = "CN=Bitdefender Personal CA.Net-Defender, OU=IDS, O=Bitdefender,
C=US" OR issuer_dn = "CN=Untrusted Bitdefender CA, OU=IDS, O=Bitdefender, C=US"
BullGuard. issuer_dn = "C=GB, ST=Hounslow, L=Heathrow, O=BullGuard Ltd., OU=DevelTeam,
CN=BullGuard SSL Proxy CA"
Dr.Web. issuer_dn = "CN=-1 Dr.Web for Windows, O=-1 Dr.Web for Windows, OU=Invalid certifi-
cate for untrusted certificates" OR issuer_dn = "CN=0 Dr.Web for Windows, O=0 Dr.Web for Windows,
OU=Certificate for processing secured protocols via Dr.Web NetFilter"
ESET. issuer_dn = "CN=ESET SSL Filter CA, O=ESET, spol. s r. o., C=SK"
G Data. issuer_dn = "C=DE, ST=NRW, L=Bochum, O=G Data Software AG, OU=Generated by G Data
Security Software for SSL scanning, CN=G Data Mail Scanner Root"
Kaspersky. issuer_dn = "O=Kaspersky Lab ZAO, CN=Kaspersky Anti-Virus Personal Root Certificate"

229

OR issuer_dn = "O=AO Kaspersky Lab, CN=Kaspersky Anti-Virus Personal Root Certificate" OR issuer_dn
= "O=AO Kaspersky Lab, CN=Kaspersky Web Anti-Virus Certification Authority"
PSafe. issuer_dn = "O=PSafe Tecnologia S.A., emailAddress=psafe@psafe.com, L=Rio de janeiro,
ST=Rio de janeiro, C=BR, CN=PSafe Tecnologia S.A."
Covenant Eyes (Komodia). issuer_dn = "O=Covenant Eyes , emailAd-
dress=scott.hammersley@covenanteyes.com, L=Owosso, ST=MI, C=US, CN=Covenant Eyes"
CYBERsitter (NetFilter). issuer_dn = "C=EN, CN=CYBERsitter"
Keep My Family Secure (Komodia). issuer_dn = "O=Parental Control Solutions Ltd., emailAd-
dress=parentalcontrolsolutions@gmail.com, L=Pardesia, ST=Pardesia, C=IL, CN=KeepMyFamilySecure"
KinderGate. issuer_dn = "C=RU, L=Novosibirsk, O=Entensys, CN=kindercontrol.com, emailAd-
dress=sales@kindercontrol.com"
Kurupira (Komodia). issuer_dn = "O=Kurupira.NET, emailAddress=kurupira@kurupira.net,
L=Pedro Leopoldo - MG, ST=MG, C=BR, CN=Kurupira.NET" OR issuer_dn REGEXP "C=BR,
CN=Kurupira \\([0-9]+\\)$"
Net Nanny. issuer_dn = "C=US, O=ContentWatch, Inc., CN=ContentWatch Certificate Authority,
OU=www.contentwatch.com"
NordNet (Komodia). issuer_dn = "O=NordNet, emailAddress=cert-ssl@nordnet.net, L=HEM,
ST=HEM, C=FR, CN=Nordnet.fr" OR issuer_dn REGEXP "ˆC=FR, CN=Nordnet\\.fr \\([0-9]+\\)$"
PC Pandora. issuer_dn = "CN=Pandora Root Certificate Authority"
Qustodio (Komodia). issuer_dn = "O=Qustodio, emailAddress=support@qustodio.com,
L=Barcelona, ST=Barcelona , C=ES, CN=Qustodio" OR issuer_dn = "C=US, ST=Barcelona, L=Barcelona,
O=Qustodio LLC, OU=Qustodio, CN=Qustodio CA" OR issuer_dn REGEXP "ˆC=ES, CN=Qustodio
\\([0-9]+\\)$"
SecureTeen (Komodia). issuer_dn = "O=InfoWeise, emailAddress=admin@infoweise.com,
L=Granville, ST=Granville, C=AU, CN=InfoWeise"
StaffCop (Komodia). issuer_dn = "O=AtomPark Software Inc, emailAddress=peter_x@atompark.com,
L=Alexandria, ST=VA, C=US, CN=AtomPark Software Inc"
Easy Hide IP Classic (Komodia). issuer_dn = "O=EasyTech, emailAddress=support@easy-hide-
ip.com, L=Valencia, ST=State or Providence, C=ES, CN=EasyTech"
Hide-my-IP (Komodia). issuer_dn = "C=IL, ST=NA, L=TLV, O=Komodia, OU=SSL, CN=Barak,
emailAddress=sales@komodia.com"
Adguard (NetFilter). issuer_dn REGEXP "ˆC=EN, CN=Adguard CA[ˆ,]+$" OR issuer_dn = "C=EN,
CN=Adguard Personal CA"
ImpresX - DiscountCow (Komodia). issuer_dn = "O=ImpresX OU, emailAd-
dress=admin@impresx.com, L=Tallinn, ST=Tallinn, C=EE, CN=ImpresX OU"
Lavasoft Ad-Aware Web Companion (Komodia). issuer_dn = "O=Lavasoft Limited, emailAd-
dress=nigel.shaw@lavasoft.com, L=Sliema, ST=Sliema, C=MT, CN=Lavasoft Limited"
Objectify Media WebProtect (Komodia). issuer_dn = "O=Objectify Media Inc , emailAd-
dress=contact@objectify.ca, L=Vancouver, ST=BC, C=CA, CN=Objectify Media Inc"
OtherSearch (NetFilter). issuer_dn = "C=EN, CN=OtherSearch Inc CA 2"
PrivDog (NetFilter). issuer_dn = "C=EN, CN=PrivDog Secure Connection Inspector CA"
Sendori (Komodia). issuer_dn = "O=Sendori, Inc, emailAddress=sendorisiteproduction@sendori.com,
L=Oakland, ST=California, C=US, CN=Sendori, Inc"

230

SuperFish (Komodia). issuer_dn = "O=Superfish, Inc., L=SF, ST=CA, C=US, CN=Superfish, Inc."
Wajam (NetFilter). issuer_dn = "emailAddress=info@wajam.com, OU=Created by
http://www.wajam.com, O=WajamInternetEnhancer, CN=Wajam_root_cer" OR issuer_dn = "emailAd-
dress=info@technologiesainturbain.com, OU=Created by http://www.technologiesainturbain.com,
O=WajamInternetEnhancer, CN=WNetEnhancer_root_cer" OR issuer_dn = "emailAd-
dress=info@technologievanhorne.com, OU=Created by http://www.technologievanhorne.com,
O=WajamInternetEnhancer, CN=WaNetworkEnhancer_root_cer" OR issuer_dn REG-
EXP "ˆemailAddress=info@technologie.+\\.com, C=EN, CN=[0-9a-f]{16}$" OR is-
suer_dn REGEXP "ˆC=EN, CN=[0-9a-f]{16} 2$" OR issuer_dn REGEXP "ˆC=EN,
CN=([YZMNO][WTmj2zGD][FEJINMRQVUZYBAdchglk][h-mw-z0-5]){1,4} 2$" OR is-
suer_dn REGEXP "ˆC=EN, CN=([YZMNO][WTmj2zGD][FEJINMRQVUZYBAdchglk][h-
mw-z0-5])+[YZMNO][WTmj2zGD][FEJINMRQVUZYBAdchglk] 2$" OR issuer_dn
REGEXP "ˆC=EN, CN=([YZMNO][WTmj2zGD][FEJINMRQVUZYBAdchglk][h-
mw-z0-5])+[YZMNO][WTmj2zGD] 2$" OR issuer_dn REGEXP "ˆC=EN,
CN=([YZMNO][WTmj2zGD][FEJINMRQVUZYBAdchglk][h-mw-z0-5])+[YZMNO] 2$" OR issuer_dn
REGEXP "ˆC=EN, CN=[YZMNO][WTmj2zGD][FEJINMRQVUZYBAdchglk] 2$" OR issuer_dn REGEXP
"ˆC=EN, CN=[YZMNO][WTmj2zGD] 2$"
OpenDNS. issuer_dn REGEXP "ˆCN=Cisco Umbrella Secondary SubCA ...-SG, O=Cisco$"
SafeDNS. issuer_dn = "O=SafeDNS, CN=SafeDNS Server CA"
Thunder DNS. issuer_dn = "C=US, ST=California, O=thunderdns, CN=thunderdns.io"
Techloq. issuer_dn REGEXP "ˆC=GB, ST=London, L=London, O=Techloq, OU=Cloud Security,
CN=ProxyRS[0-9]+, emailAddress=support@techloq\.com$"
Cisco IronPort Web Security. issuer_dn REGEXP "ˆC=.., O=Cisco, OU=Cisco, CN=Cisco IronPort
WSA Root CA$" OR issuer_dn = "C=US, O=Cisco IronPort Systems, Inc., ST=California, L=San Bruno,
CN=Untrusted Certificate Warning" OR issuer_dn = "C=US, ST=California, L=San Jose, O=Cisco Systems,
Inc., CN=Untrusted Certificate Warning"
ContentKeeper. issuer_dn REGEXP "ˆC=AU, ST=ACT, L=Canberra, O=ContentKeeper Technolo-
gies, OU=ContentKeeper Web, CN=ContentKeeper Appliance CA \\([0-9]+\\)$" OR issuer_dn = "C=AU,
ST=ACT, L=Canberra, O=ContentKeeper Technologies, OU=ContentKeeper Web, CN=Untrusted by Con-
tentKeeper" OR issuer_dn REGEXP "ˆC=AU, ST=ACT, L=Canberra, O=ContentKeeper Technologies,
OU=ContentKeeper Web, CN=ContentKeeper Appliance CA \\([0-9]+\\), subjectAltName=ContentKeeper
Appliance CA \\([0-9]+\\)$"
Cyberoam / Elitecore. issuer_dn REGEXP "ˆC=IN, ST=Gujarat, L=Ahmedabad, O=Cyberoam,
OU=Cyberoam Appliance, CN=Cyberoam Appliance CA_[ˆ,]+, emailAddress=info@cyberoam.com$" OR
issuer_dn REGEXP "ˆC=IN, ST=Gujarat, L=Ahmedabad, O=Cyberoam, OU=Cyberoam Certificate Au-
thority, CN=Cyberoam SSL CA_[ˆ,]+, emailAddress=support@cyberoam.com$" OR issuer_dn REGEXP
"ˆC=IN, ST=Gujarat, L=Ahmedabad, O=Elitecore, OU=Cyberoam Certificate Authority, CN=Cyberoam
SSL CA(_[ˆ,]+)?, emailAddress=support@elitecore.com$"
DeviceLock. issuer_dn = "C=EN, ST=Some-State, L=Unknown, O=Unknown Ltd, OU=IT,
CN=Untrusted Root CA, emailAddress=unknown@unkonow.unknown" OR issuer_dn = "C=RU, ST=,
O=DeviceLock Inc., CN=Devicelock Inc., emailAddress=support@devicelock.com"
EdgeWave. issuer_dn = "C=US, ST=California, L=SanDiego, O=EdgeWave.com, OU=Security,
CN=EdgeWave.com, emailAddress=support@edgewave.com"

231

Entensys UserGate. issuer_dn REGEXP "ˆ.+, O=Entensys, CN=www\\.entensys\\.com, emailAd-
dress=support@entensys\\.com$"
Fortinet FortiGate. issuer_dn = "C=US, ST=California, L=Sunnyvale, O=Fortinet, OU=Certificate
Authority, CN=Fortinet Untrusted CA, emailAddress=support@fortinet.com" OR issuer_dn = "C=US,
ST=California, L=Sunnyvale, O=Fortinet, OU=Certificate Authority, CN=FortiGate CA, emailAd-
dress=support@fortinet.com" OR issuer_dn = "C=US, ST=California, L=Sunnyvale, O=Fortinet,
OU=Certificate Authority, CN=support, emailAddress=support@fortinet.com" OR issuer_dn REG-
EXP "ˆCN=F(G|W)[0-9A-Zn\-]{6}[0-9]{8}, O=Fortinet Ltd\\.$" OR issuer_dn REGEXP "ˆC=US,
ST=California, L=Sunnyvale, O=Fortinet, OU=Certificate Authority, CN=F[0-9A-Zn\-]{7}[0-9]{8},
emailAddress=support@fortinet\\.com$" OR issuer_dn = "C=CA, ST=British Columbia, L=Burnaby,
O=Fortinet Inc., O=R&D, OU=FortiOS, CN=Fortinet IPS Test RSA"
Juniper EX Series Switches. issuer_dn REGEXP "ˆCN=[0-9A-Z]{12}, CN=system generated,
CN=self-signed$"
Kerio. issuer_dn = "CN=Kerio Local Authority, OU=Kerio Local Authority, O=Kerio Local Authority,
L=Kerio Local Authority, ST=Kerio Local Authority, C=SO"
McAfee Web Gateway. issuer_dn = "C=US, ST=CA, L=Santa Clara, O=McAfee, Inc., OU=NSBU,
CN=McAfee Web Gateway"
Microsoft Forefront TMG. issuer_dn = "CN=Microsoft Forefront TMG HTTPS Inspection Certifica-
tion Authority"
Mimecast. issuer_dn = "C=US, O=Mimecast Services Ltd, CN=Proxy Intermediate Certificate Authority"
OR issuer_dn = "O=Untrusted Signing Authority, CN=Untrusted Root CA"
Netbox Blue / CyberHound. issuer_dn = "C=AU, ST=Queensland, L=Brisbane, O=Netbox
Blue Pty Ltd, CN=Netbox Blue Certification Authority" OR issuer_dn REGEXP "ˆCN=Netbox Blue
\\[.+\\] [0-9]{14}, C=AU, ST=Queensland, L=Brisbane, O=Netbox Blue, OU=Netbox Blue$" OR is-
suer_dn REGEXP "ˆCN=RoamSafe Agent [0-9]{14}, C=AU, ST=Queensland, L=Brisbane, O=CyberHound,
OU=CyberHound$" OR issuer_dn REGEXP "ˆCN=CyberHound \\[.+\\] [0-9]{14}, C=AU, ST=Queensland,
L=Brisbane, O=CyberHound, OU=CyberHound$" OR issuer_dn REGEXP "ˆC=AU, ST=Queensland,
L=Brisbane, O=CyberHound, OU=CyberHound, CN=CyberHound \\[.+\\] [0-9]{14}$"
Netasq. issuer_dn REGEXP "ˆC=US, ST=Default state, O=Netasq, OU=SSL trafic analyzing, CN=[0-9A-
Zn]{15}$"
NetSpark. issuer_dn REGEXP "ˆC=US, ST=New York, L=New York, O=Netspark, OU=Netspark [ˆ,]+,
CN=www\\.netspark\\.com, emailAddress=support@netspark\\.com$"
InfoWatch. issuer_dn = "CN=InfoWatch Transparent Proxy Root, C=RU, O=ZAO InfoWatch,
OU=TechDep, ST=Moscow"
pfSense. issuer_dn REGEXP "ˆ.+, O=pfSense Root CA, emailAddress=.+, CN=pfSense-internal-ca,
OU=pfSense Root CA$"
Smoothwall. issuer_dn REGEXP "ˆCN=Smoothwall-HTTPS-Interception-Certificate-Authority, .+"
Somansa. issuer_dn = "C=KR, ST=Seoul, O=Somansa, OU=NDLP, CN=Somansa Root CA, emailAd-
dress=pat@somansa.com" OR issuer_dn REGEXP "(CN=.+,)?OU=Somansa Dynamic Certification Cen-
ter, O=Somansa Dynamic Certification Center, L=Yeongdeungpo-gu, C=KO"
SonicWall. issuer_dn = "C=US, ST=CA, L=San Jose, O=SonicWALL Inc., CN=SonicWALL Firewall
DPI-SSL" OR issuer_dn = "C=US, ST=CA, O=SonicWALL Inc., CN=SonicWALL Firewall DPI-SSL" OR

232

issuer_dn REGEXP "ˆC=US[A], ST=California, L=Sunnyvale, O=HTTPS Management Certificate for Son-
icWALL \\(self-signed\\), OU=HTTPS Management Certificate for SonicWALL \\(self-signed\\), CN=.+"
Sophos UTM. issuer_dn REGEXP "ˆC=[a-z]{2}, L=.+, O=.+, CN=.+ Proxy CA, emailAddress=[ˆ,]+$"
Sophos XG Firewall. issuer_dn REGEXP "ˆC=GB, ST=Oxfordshire, O=Sophos, OU=NSG,
CN=Sophos SSL CA_[ˆ,]+, emailAddress=support@sophos\\.com$" OR issuer_dn REGEXP
"ˆC=GB, ST=Oxfordshire, L=Abingdon, O=Sophos, OU=NSG, CN=Sophos CA_[ˆ,]+, emailAd-
dress=support@sophos\\.com$" OR issuer_dn REGEXP "ˆC=[ˆ,]+, ST=[ˆ,]+, L=[ˆ,]+, O=[ˆ,]+,
OU=[ˆ,]+, CN=Sophos_CA_[ˆ,]+, emailAddress=[ˆ,]+$"
Sophos Web Appliance. issuer_dn = "C=CA, ST=BC, O=Sophos Plc, CN=Sophos Web Appliance,
emailAddress=support@sophos.com"
Symantec Blue Coat Cloud Web Security Service. issuer_dn REGEXP "ˆC=US, (ST=CA,
)?O=Cloud Services, OU=Operations, CN=.{3,4}-.{3,4}-.{3,4}$"
Symantec Blue Coat ProxySG and Advanced Secure Gateway (ASG). issuer_dn REG-
EXP "ˆC=[]*, O=Blue Coat .+ Series, OU=[0-9]+, CN=[ˆ,]+$" OR issuer_dn REGEXP "ˆC=, ST=Some-
State, O=Blue Coat ASG-.+ Series, OU=[0-9]+, CN=[ˆ,]+$" OR issuer_organization REGEXP "ˆProxySG(:
.+)?$"
TrendMicro InterScan Web Security Virtual Appliance. issuer_dn = "ST=CA, L=CU,
O=TREND, OU=IWSS, CN=IWSS.TREND"
Untangle NG Firewall. issuer_dn = "C=US, ST=California, L=Sunnyvale, O=Untangle,
OU=Security, CN=www.untangle.com"
TitanHQ WebTitan Gateway/Cloud. issuer_dn = "C=IE, ST=Galway, L=Galway, O=TitanHQ,
OU=Engineering Department, CN=WebTitan" OR issuer_dn = "C=IE, ST=Galway, L=Galway,
O=TitanHQ, OU=Engineering Department, CN=WebTitan Cloud" OR issuer_dn = "C=IE, ST=Galway,
L=Galway, O=Web Titan, OU=Web Filtering (generic ssl cert), CN=accounts.webtitancloud.com"
WatchGuard Fireware. issuer_dn REGEXP "ˆO=WatchGuard_Technologies, OU=Fireware,
CN=Fireware HTTPS Proxy \\(SN [ˆ)]+\\) CA$" OR issuer_dn = "O=WatchGuard_Technologies,
OU=Fireware, CN=Fireware HTTPS Proxy: Unrecognized Certificate" OR issuer_dn =
"O=WatchGuard_Technologies, OU=Fireware, CN=Fireware HTTPS Proxy: OCSP Invalid Certifi-
cate" OR issuer_dn = "O=WatchGuard, OU=Fireware, CN=Fireware web CA"
Websense. issuer_dn = "C=US, ST=California, L=San Diego, OU=Websense Engineering, O=Websense,
Inc., CN=Websense Certificate Authority" OR issuer_dn REGEXP "C=US, ST=CA, L=LG, O=Websense,
Inc., OU=Websense Endpoint, emailAddress=support@websense.com, CN=Websense Public Primary Cer-
tificate Authority, description=[0-9A-Z]+@websense.com"
Zscaler. issuer_dn REGEXP "ˆC=US, ST=California, O=Zscaler Inc\\., OU=Zscaler Inc\\., CN=Zscaler
Intermediate Root CA \\(.+\\), emailAddress=support@zscaler.com$" OR issuer_dn REGEXP "ˆC=US,
ST=California, O=Zscaler Inc\\., OU=Zscaler Inc\\., CN=Zscaler Intermediate Root CA \\(.+\\) \\(t\\)
$" OR issuer_dn = "CN=Bad Server Certificate, O=Bad Server Certificate [invalid server certificate],
L=Sunnyvale, ST=California, C=US" OR issuer_dn = "C=US, ST=California, L=Sunnyvale, O=Bad Server
Certificate [invalid server certificate], CN=Bad Server Certificate"

233

Appendix F

Wajam domains

The 332 domains we found that appear to belong or have belonged to Wajam are shown in
Tables F.2 and F.3.

234

4hewl9m5xz.xyz notifications-service.io charlevoixtechnology.com
4rfgtyr5erxz.com X pagerecherche.com X chaumonttechnology.com
94j7afz2nr.xyz premiumsearchhub.com X chavanactechnology.com
9rtrigfijgu.com premiumsearchresults.com cherriertechnology.com
9ruey8ughjffo.xyz premiumsearchtech.com X chestertontechnology.com
im1.xyz result-spark.com X clairavauxtechnology.com
im2.xyz resultsstream.com X colonialetechnology.com
ta14th1arkr1.xyz searchawesome.net cormacktechnology.com
wj1.xyz search-awesome.net cremazietechnology.com
wj2.xyz searchawesome2.com cubleytechnology.com
wj3.xyz searchawesome3.com despinstechnology.com
wj4.xyz searchawesome-apps.com drapeautechnology.com
wj5.xyz searchesandfind.com X emersontechnology.com

X autodownload.net searchfeedtech.com X ferronnerietechnology.com
X autotelechargement.net searchforall.net fullumtechnology.com
X coolappinstaler.com searchforfree.net X fulmartechnology.com

customsearches.net searchnewsroom.com fumiertechnology.com
datawestsoftware.com searchnotifications.com X garfieldtechnology.com
dateandtimesync.com search-ology.com garniertechnology.com
dkbsoftware.com X searchpage.com get-notifications.com
download-flv.com searchpageresults.com X glencoetechnology.com

X download-install.com searchpage-results.com X grendontechnology.com
downloadmngr.com searchpage-results.net henaulttechnology.com
downloadtryfree.com searchsymphony.com X hutchisontechnology.com

X downlowd.com searchtech.net X jarbontechnology.com
downlowd.org securesearch.xyz X jeanlesagetechnology.com

X fastappinstall.com seekoutresultz.com jolicoeurtechnology.com
X fastfreeinstall.com social2search.com X kingswoodtechnology.com

fastnfreedownload.com socialwebsearch.co kingwintechnology.com
X fastnfreeinstall.com X superdownloads.com X labroyetechnology.com

file-extract.com X supertelechargements.com langeliertechnology.com
fileextractor.net vpn-free.mobi X laubeyrietechnology.com
fileopens.com X wajam.com X launtontechnology.com
findresultz.com wajam-download.com laurendeautechnology.com
flvplayer-hd.com youcansearch.net X lauriertechnology.com
freeappdownloader.com X adrienprovenchertechnology.com X mandartechnology.com
freeappinstall.com X armandlamoureuxtechnology.com X manillertechnology.com
freeusip.mobi X barachoistechnology.com X mansactechnology.com
imt-dashboard.tech X beaubourgtechnology.com X mercilletechnology.com

X insta-download.com bellechassetechnology.com meridiertechnology.com
install-apps.com X bernardtechnology.com X mertontechnology.com
installappsfree.com berritechnology.com X monestiertechnology.com

X installateurdappscool.com X boisseleautechnology.com X monroetechnology.com
X installationdappgratuite.com X boissytechnology.com X montorgueiltechnology.com
X installationrapideetgratuite.com X bombarderietechnology.com X montroziertechnology.com
X installationrapidegratuite.com X bouloitechnology.com X mounactechnology.com

installeriffic.com bourassatechnology.com X nouaillactechnology.com
installerus.com X boussactechnology.com nullarbortechnology.com
installsofttech.com brecktechnology.com papineautechnology.com
ios-vpn.com X calmonttechnology.com X payennetechnology.com
main-social2search.netdna-ssl.com X carmenbienvenuetechnology.com peachestechnology.com
media-c9hg3zwqygdshhtrps.stackpathdns.com X cartiertechnology.com pelletiertechnology.com
mileendsoft.com X chabaneltechnology.com X piddingtontechnology.com
notification-results.com chabottechnology.com X pillactechnology.com
notifications-page.com X chamoilletechnology.com X plateau-technologies.com
notifications-service.info champlaintechnology.com X preverttechnology.com

Table F.2: List of 332 domains that appear to belong or have belonged to Wajam. Xmeans
the domain is part of the company’s official records [200].

235

X quaintontechnology.com technologiecharlevoix.com X technologiepiddington.com
X racheltechnology.com X technologiechaumont.com X technologiepillac.com
X rambuteautechnology.com X technologiechavanac.com X technologieprevert.com
X rivolettechnology.com technologiecherrier.com X technologiequainton.com

sagardtechnology.com X technologiechesterton.com X technologierachel.com
X saintdominiquetechnology.com X technologieclairavaux.com X technologierambuteau.com
X saintjosephtechnology.com X technologiecoloniale.com X technologierivolet.com
X sainturbaintechnology.com technologiecormack.com technologieruso.com

search-technology.net technologiecremazie.com X technologierutherford.com
X sentiertechnology.com technologiecubley.com technologiesagard.com
X shermantechnology.com technologiedollard.com X technologiesaintdenis.com
X sirwilfridlauriertechnology.com technologiedrapeau.com X technologiesaintdominique.com

snowdontechnology.com technologieduluth.com X technologiesaintjoseph.com
X sommerytechnology.com X technologieemerson.com X technologiesaintlaurent.com

tazotechnology.com X technologieferronnerie.com X technologiesainturbain.com
X terussetechnology.com X technologieflagstick.com technologiesearchawesome.com
X thoreltechnology.com technologiefullum.com X technologiesentier.com

tofinotechnology.com X technologiefulmar.com X technologiesherman.com
X toletotechnology.com technologiefumier.com X technologiesirwilfridlaurier.com

tourvilletechnology.com X technologiegarfield.com technologiesnowdon.com
X travassactechnology.com technologiegarnier.com X technologiesommery.com
X trudeautechnology.com X technologieglencoe.com X technologiestdenis.com
X turennetechnology.com technologiegoyer.com X technologiestlaurent.com
X vanhornetechnology.com X technologiegrendon.com technologiestuart.com
X vanoisetechnology.com technologiehenault.com technologietazo.com
X vassytechnology.com X technologiehutchison.com X technologieterusse.com

viautechnology.com X technologiejarbon.com X technologiethorel.com
videos-conversion.com X technologiejeanlesage.com technologietofino.com

X vouillontechnology.com technologiejolicoeur.com X technologietoleto.com
X wendleburytechnology.com X technologiekingswood.com technologietourville.com
X woodhamtechnology.com technologiekingwin.com X technologietravassac.com
X wottontechnology.com X technologielabroye.com X technologietreeland.com
X yvonlheureuxtechnology.com technologielangelier.com X technologietrudeau.com
X technologieadrienprovencher.com X technologielaubeyrie.com X technologieturenne.com
X technologiearmandlamoureux.com X technologielaunton.com X technologievanhorne.com
X technologiebarachois.com technologielaurendeau.com X technologievanoise.com
X technologiebeaubourg.com X technologielaurier.com X technologievassy.com

technologiebeaumont.com X technologiemandar.com technologieviau.com
technologiebellechasse.com X technologiemaniller.com technologievimy.com
technologiebeloeil.com X technologiemansac.com X technologievouillon.com

X technologiebernard.com X technologiemercille.com X technologiewendlebury.com
technologieberri.com technologiemeridier.com X technologiewilson.com

X technologieboisseleau.com X technologiemerton.com technologiewiseman.com
X technologieboissy.com X technologiemonestier.com X technologiewoodham.com
X technologiebombarderie.com X technologiemonroe.com X technologiewoodstream.com
X technologiebouloi.com X technologiemontorgueil.com X technologiewotton.com

technologiebourassa.com X technologiemontroyal.com X technologieyvonlheureux.com
X technologieboussac.com X technologiemontrozier.com X technologyflagstick.com

technologiebreck.com X technologiemounac.com X technologyrutherford.com
X technologiecalmont.com X technologienouaillac.com X technologytreeland.com
X technologiecarmenbienvenue.com technologienullarbor.com X technologywilson.com
X technologiecartier.com technologieoutremont.com X technologywoodstream.com
X technologiechabanel.com technologiepapineau.com

technologiechabot.com X technologiepayenne.com
X technologiechamoille.com technologiepeaches.com

technologiechamplain.com technologiepelletier.com

Table F.3: List of 332 domains that appear to belong or have belonged to Wajam (cont’d).
Xmeans the domain is part of the company’s official records [200].

236

Appendix G

Wajam samples

The hash of the 52 samples we collected and analyzed are shown in Table G.4.

ID MD5 SHA1 SHA256
A1 225ccdcfe5625795647043679cb77112 3bd8f8845df04ac40b78da0fb9ecd7205514db62 96fafff2e4076a0a0fe2c9d151f37441507bf3c0dc4b761c66f65cbbc94c823c
A2 20e274902bd0249c68f756694d43e8eb d77aa518dbfb56782ca8efc030e09767a3c39fcd 9a3c8fdc8cd34be72d24b1d3f7f52078469c0f5e26ae373df18a871fd020fb08
A3 5d2b2eb701b38066318dcb254f2400a1 a2853d27c2378b9065deb3c69c5cf608f7c2ee1d 84aaf3531cde8a4ab67ca5d971039a12bc3010d59729f922e816eca5b12c28c1
A4 f314d12cbd75002f6249d2f50cdd2ce2 9876e0dfd6348285c99f2593e9cdaca7b91e3590 c5b2ad40c663f603e10ee53281bdf611704db441efbcec507dd46727bd245c6a
B1 c80db840ac2597b988e1c88b5d7015f2 343f9ab838ed64e862bbf8ff0ce723222ca97f90 ce755f50d228d92aca01a54b81bd534f188a93e74c73160e008e7cc81480bba0
B2 572b59e1225fc16a1478e7ff27919278 1de9bb908915f24730153ef5bbddd1e5467a034b 2673b0bb4d705a8cf29aeb86079485c51bab0aedaae8c960afe0c38efa7b151b
C1 2a791c466a3fe634b642ac636c31ae75 c291d5bae79149a2361daa69a39c29c23c564092 358633ea6e06f81de0af1c8ba2a774439c39073de012a0a50be28823a6d0f951
C2 68079e4133596ab3f4894353b572a476 5ee5373a55c4fdcaa4e1f2d62121da38aea6a8a5 12baaf1dc8d4abd03270d942e7498b7588480dc70305ee9a3e82870b6df4978f
C3 28709615566405e17290e59990850635 019da3fdb927bb47635df65f0d108b29d735eac4 023f680d7475da1fa0d0f2125c88db25d046720986a84e7075eef12734b37b95
B3 97e8f6b46de9e1e3e312de78ed90e17f 86e6c43ce0811930e7ea760546b1b1a933fee637 183d4b92d6b048bbdc871df240bb5de8d3343e50fc93dc363ef6fbfc892f107d
C4 49a6c8adb892e0423e27396ceb4171aa 6964f4c2ded64135728b160b19a1e6491bf8ae6e 4913597301b2f87401e12b33a5be3a8d07c07b0152c3769d327478e3ea89a416
C5 fec0f4a9a37069cd1bd8b32b9b05bd7d 56b6b6b8172ab418cfe1b3316f67bdbc71e25db8 68bcb81fd0bf65694c624224eb33e93c7ac6816469edb91ea61de2218734df39
C6 cb9a30d0aaef0335b4f8b4363bfb68a2 d4081867928b00a4d81d36b33c16185e16030684 b5e0dd43c424eb7e982b3c89e5b191864496464fb15482e3986d2198c0db5910
C7 1bc90276e8686b8ce545b22a1e8b19d3 9e64d510e3b624a1c13586053e9c59b6f66c30f4 45bc45bf74fa39e9f1c5a511a1858c984cec8c2c4b6a83521e918c08c68413cb
B4 45b1d58c23f15c841318abe1a786fbf8 779fdddbaa916eb54dea1ab9e51649f891a00d78 b62ac7510f58751d51a28077b81981c99aee512f4976e04c39f4e7f9efeacd09
B5 775367aad190fdb847f2628a47584c1b 251e2a0530b3eadc1543548ffd829bb38ce2f6b3 11b7ef63d462424ebd04b41258f75df3d936ecfac91cccbb1c930d63ead3573a
C8 c1d044237977df5bb779152a5c7bb941 6182744b23d1900ece5e3ffdfeb2aaeda3451722 78f1888d1d918b1924f02ead3fe00d9546aaf8b4db17892807fbbdd6df80ccbe
C9 ec0b9463a4564c63bab76985aff98f06 c46075248e528ed418b3a595a77bc40298464b08 936f27d444bac46c4012cb4fcf6093b34952e314cb68d780de1cdd510ecac697
C10 21624ae93359e523f6d69f52109e69bb f99e444107a822f22c0fdcd7b3ff0f57fc211507 ac3b6bab836a308dc68584364ef5cca3b747ce46e34de3fb1d235d45761e877f
B6 e4272e1164e458b400e39de26484d5c5 73538adff00910979b3cce6434891e182e36b942 6dd2651f5d62e4787354a0c04fac98d2d2a586439f623ad8b64e4ec6e7c97f82
C11 b67716e043f53e1f4af4cf318b4c5a03 a0d951243aa36511f7327c59d1ce2e098622d814 aeae711f64f921eb7b86864a1c09a00cc93cc1afed0f346150c0ada995cf93bd
C12 c276a93d4faa48ba9305ef43b4724200 7913ae29483a18dd22c451d28901f1fa9401a130 5b2e66ba34b66e12ea4668006bac9a6556b4073b4366747254ce3965627a60bd
C13 f4dc7103bdb0752b8d030b090fdfa475 8fc5553247ff7e47533ebdd73760d2a134fea257 f2f5b2608d1a0a68dd21e67055bc80dd5e214abefdb4c37ec866d12c503b44c4
C14 da4370da224a43456960bcff2c4b44ad d9d0fe82e40cc5528da1d4669325991a65a9c4a1 1013634048a79f181b191995276230a05532a3ea5fba8d638cd265f44c464bd4
D1 f7d2c05eccd522764167632b3a8dc122 0df370fdd35cee653b14418c858dba039a141479 c539963dd900a7771d33844cc48730d47cc510bdf1a7dea429e08c3bf060d393
C15 d31b23e32013385b1554c59cc02bf3d3 626b486c53abebc8fc412ea7af05f7d8bc0e92de c15ed12cc339b736ec73e6b710e8f7b646bc58914f888026558bd763f2feba1f
D2 8aefc1f5ad40155241aa87db4ff8eb6a 086d740ee131afc4c4408dcecbfab29712a9b8e0 7f17ac7ea17f54a1961fb3aabd3ca16a8180815641319d155a649c9c6e8a2128
C16 a1e84cf06ed6b583103120f36b53fcd1 0b6294dba9cfe4e2a79c6117b20d0475fb787d94 f51e192eb397c6df169713f5ec327d92bbfe9436ab169fed0e07f6865049f59f
D3 80e5c2fc7f0637df90f39204eebac932 f071e2f5a25a79d48c8cf8232d7a7775ecf016d6 89760cc89415efcf270090b2469afe0f6cb64bc3476936a1521b5055a4b71400
C17 f472a9dad90df05492a01135307bb2cf 58f14d93aa16f7fd1ee3930323ad39537eb974d5 ce590c460a34f946944228abb2e964505f75eedee8680998aa532ee93044b09a
D4 990ce267cff603a00e081a473b234f2a a1dd7e9d896214da1db85e98b83b1546d4f1c1e7 3c76908cf7dd9a8072724674ddcc64dd81f94e47a3bb38a669ecb26b5f95203a
C18 34fd34fad31242a57fda9284b4cde461 df6f20e89c06e8fd1e2cca3a06ef6da265e104c6 e42b339c4b12abd413ddef0051fb22bdd2ec0a0b6969a35e20c68c7e353d7f94
D5 0bc19d446ab54343afed0f8493cbadf9 e3930757733213461cbbc58e4fc45dc2b87529fa 9cdba6d9dc5cc505425217e0b4990ea60ef80de2c7f774f5dc760b3a4efe504b
D6 9936ddbcdc9828df9dc132508022231a 49f90582088d49f02ea2ae93f40fa12d4396c679 dc9fff7dff59a10a8717188655e7b8e39e05d522363c7d1522be215d2548bf67
D7 759ad7685285f7d6dbf4e29a0f44d6aa 855167f21cdd40af0917385975680f5b7948c6d6 0c2c5a9b31b6ecbae20ccdc89971db3ab9910f165605c5969440a24fe718ea65
D8 f3c774ee3a87b6c1b628b1f28e3e130a e91c12ec77fc2c11369014b9deb8055e7d51a320 b77f48c56903890e73c4348263beb22970978d6106188e6859599249c8dc70e7
D9 855ce542c7fc7da18f2696784ed7a181 0674e654524a7862247ebc75f3c786a17927d6a6 df00d50b957c684da709de2704252ff03c118f6dfe385c4e708a7d95187269b5
C19 9d64162edf85cd58e177aa7c444c297b 728cfab0d37503b1c1156929c2a8106a5b663328 248ecf25fdc624a3bb4eb27aa60d07a541c4e462e94b84ed86d006cd03450f60
D10 8961634b77b478bb85429b86780cfe28 90f536d7631548d980898d2473c5c46b93131022 e637d1c86ec77036d8ca43f69296543e51175e8294bc26ed4acfbec87beb8c76
D11 ad1425976256881e037bd9b26524f1c8 0b8a401e904b310c17315cb9bce49eebc5c69ede 0d0bfecb1d5e72773532398319e8eefc7bc778a88e2806ebb005864f04096aa8
D12 0d3a7053f911d368f80990062e82d20a 6677af3eed2b512d297d973f65d4c8db98c4df1d 97ef8100f215d2d2603d5cb780f37ef715a486e7847613427b7c0b481e9de194
D13 f5c0e283062bbd50799dca72b025d228 63f1af45a4975cf62d0173dd3f0ddaa7103bc471 45bc3bf77b741b508bb480a4fb7c49d4d04e0a5fd8f28c93f27f013a087789f1
D14 7460f80448708135e62afab652076e25 f37d15a89a6ea4d30be52668d50dc76f64a59e6e dfb6ba9cb3a53357e13de282ba2d3f001ed4f0b54ccb582d951afcc33f3fe303
D15 d7238809f6c14e663526fc0a32a14413 c902582e8971edc2f721cbf0b54cfb0c12d19c39 379e3863e863431ff9b51e8f0966416cc18d55c4e54f2fc1a7d885b9fb8dfac6
D16 8240e2fb284d278846c814008ab88546 bf0e5e0feb5db9fd940a6b75ee5cd2e841a67cbc aaf3a711ca3fdd538f51cb970f98d8b8a6414b5c9a1b3806c2a6c6ad43a8268c
D17 019df633f66910063a5ae8db6cb20ce9 e53b2d1742f46467ad45c9aac14d30c98574b57b 1b9975d97c9b4f622362e58acaf11b906a7a13d23f2ca058be0dfa8f464e3dbc
D18 fd9628d2187a886cb2c47348db012a5a b2d8f09d23ef79ac3e390ef493b70d4a7f632dd7 20528bac0f54eb5c6f2ba6cb75401697251fd8624dc36375205d949524f8f77e
D19 6751963e0862ac6bb94d66ff5f501977 074fad99fce9babe7925f144be4885e511eff5bc 8396d0099ce9c6c132ffc924f7cfa5fd29200a383ab46e2ed92d386104de63cd
D20 e4b85ab5cb039fc24d56946728b4213e 11152f9fe3090c54f3a5c223bcb01da02766605c e13363896eef7fae729b3766fcae20354bd9f787227b893ce3a4e7feab83836b
D21 f11b060a7092cedb7251509d4ecf0f14 b88e804aa94139d0aa628c9b141cc72e6128ce6e 787c4b5284c7d55d9510f519a2af6a5f085ff75b75fc273ab6134715a8d2633f
D22 ae3c32975f4ec3d1e2dd0dcd7f4636d4 0a63e46309dbfa2b13d47b488753b7c64b2896e2 c75009997a38afb450d73388cf42782ec4074c64f7acec3b2eb5dff89b265498
D23 aaf7ea90dfe3b22ad42b35727bf8bd20 e4f855747da8352969c8bf217657f7bb78332fe6 c4d96ff7de37715911b165711c034fc1159940fc2d110696bb481cd39d60a2f9

Table G.4: Hashes of the 52 samples we collected

237

	List of Figures
	List of Tables
	Introduction
	Motivation
	Thesis Statement
	Objectives and Contributions
	Related Publications
	Outline

	Background
	SSL/TLS
	Terminology
	Trusted Root CA Stores
	System CA Store
	Third-party CA Stores

	OS-provided APIs for Key Storage
	Insertions in Trusted Stores: Implications
	Client-side TLS Proxies and Appliances

	Literature Review
	Surveys on SSL/TLS and the CA Infrastructure
	Certificate Collection and Analyses
	Internet-wide Active Scans
	Passive Certificate Collection

	TLS Proxy-oriented Analyses and Protocols
	Network Appliances
	Software Proxies
	TLS Proxy Protocols

	Implementation Verification
	Certificate Generation for Testing Purposes
	Source Code Analysis
	TLS Implementation Testing

	Miscellaneous
	Related Technologies
	Mimicking TLS handshakes

	Analyzing Client-end TLS Interception Software
	Methodology
	Analysis Framework
	Root Certificate and Private Key
	Certificate Validation
	Server-end Parameters
	Client-end Transparency

	Threat Model
	Product Selection

	Contributions
	Major Findings
	Private Key Extraction
	Locating Private Keys in Files and Windows Registry
	Application-protected Private Keys
	Identify the Process Responsible for TLS Filtering
	Retrieving Passphrases
	Encrypted Containers

	Security Considerations

	Limitations of Existing TLS Test Suites
	Certificate Verification
	TLS Security Parameters

	Our TLS Proxy Testing Framework
	Test Environment
	Certificate Validation Testing
	Proxy-embedded Trusted Stores
	TLS Versions and Known Attacks

	Results Analysis
	Root Certificates
	Certificate Generation
	Third-party Trusted Stores
	Self-acceptance
	Filtering Conditions
	Expired Product Licenses
	Uninstallation

	Private Key Protections
	Passphrase-protected Private Keys
	Encrypted Containers

	Certificate Validation and Trusted Stores
	Invalid Chain of Trust
	Weak and Deprecated Encryption/signing Algorithms
	Proxy-embedded Trusted Store

	TLS Parameters
	SSL/TLS Versions
	Certificate Security Parameters
	Cipher Suites
	Known Attacks

	Practical Attacks
	Company Notifications and Responses
	Recommendations for Safer TLS Proxying
	Conclusion

	A Client-side View of the HTTPS Ecosystem
	Introduction
	First Data Collection: L17
	Data Collection Methodology
	Luminati
	Domain Datasets
	Country List
	Browser-like TLS Handshake Simulation
	Scanning Methodology
	Verifying Certificates
	Analysis Methodology

	Findings
	Personal Filters & Enterprise Middleboxes Identification
	Middleboxes
	NetFilter-based Interceptions
	New Trends
	Country-wide Censorship and ISP-level Interception
	Likely Malware
	False Positives
	Remaining Unknown Certificates

	Discussion on Network Errors
	Trusted Certificates and CT logs

	Second Data Collection: L19
	Data Collection Methodology
	Domain Datasets
	Country List
	Browser-like TLS Handshake Simulation for TLS 1.3
	Scanning Methodology
	Verifying Certificates

	Findings
	Enterprise Proxies and Home Filters
	ISP-level Injection
	NetFilter-based Interceptions
	False Positives

	Insights
	Interpretation of the Results
	Comparison with Related Work

	Ethical Considerations
	Limitations and Generalization
	Threats to Internal Validity
	Threats to External Validity

	Concluding Remarks

	Privacy and Security Risks of ``Not-a-Virus'' Bundled Adware: The Wajam Case
	Introduction
	Wajam's History
	Related Work
	Sample Collection and Overview
	Sample Collection
	Categories

	Analysis Methodology
	Technical Evolution Summary
	Prevalence
	Domains Popularity
	Worldwide Infections

	Private Information Leaks
	Anti-analysis and Evasion
	Security Threats
	Content Injection
	Targeted Domains
	Injected Content
	Browser Hooking Rules
	Updates and Injections

	Directions for Better Detection
	Root Certificate Fingerprints
	Other Approaches

	Wajam Clones
	Concluding Remarks

	Conclusion and future work
	Bibliography
	Appendix Glossary
	Appendix Recovering private keys from antivirus and parental control applications
	BitDefender
	Net Nanny
	Avast
	ESET

	Appendix Sample email notification sent to AV/PC companies
	Appendix List of Luminati countries
	Appendix Certificate fingerprinting rules
	Appendix Wajam domains
	Appendix Wajam samples

