ELEC 261 - COMPLEX VARIABLES (MID TERM TEST)

DATE: Feb 17, 2006

MARKS: 15

TIME: 60 mins

NAME:

ID No.:

1. Solve the following equation for z:

$$(1+i)z^3 + i - 1 = 0 (3 marks)$$

Express the result in the polar form and sketch it in the complex z-plane.

2. Solve
$$sinh(z + Log i) = 3 cosh(z + Log i)$$

(3 marks)

3. Determine all possible points at which the following function is analytic:

$$f(z) = \left(x + \frac{i}{x}\right)e^{xy}, \ x \neq 0$$

Give reasons for your answers.

(3 marks)

4. Evaluate $\int_{C}^{C} \frac{2z}{z^2 + \pi^2} dz$ along the following paths:

a.
$$C: |z-i| = 3$$
 in the counterclockwise direction

(3 marks)

a.
$$C: |z-i| = 3$$
 in the counterclockwise direction
b. $C: |z-4| = 3$ in the counterclockwise direction.

5. Evaluate $\int |z|^2 dz$ along the upper half of the path C: |z-1|=1. (3 marks)

ELEC 261 – COMPLEX VARIABLES (MID TERM TEST)

DATE: March 17, 2006

MARKS: 15

TIME: 60 mins

NAME:

ID No.:

1. Given

$$f(z) = \frac{z^2 + 3z + 8}{(z - 3i)(z - 1)^2(z + 1 + i)^3},$$

- (a) Determine the different regions for Taylor and Laurent expansions around the point z = 1 and sketch the various regions in the z-plane. Also, state the type of series you get in each of these regions. **DO NOT OBTAIN THE SERIES**.
- (b) Are all the singularities for f(z) poles? If so, determine the order of each pole.

(5 marks)

2. (a) Find the center and radius of convergence of the power series:

$$\sum_{n=0}^{\infty} \frac{n^{\alpha} (z+i)^{3n}}{(2n+3)8^n}$$

Sketch the region of convergence in the z-plane.

(b) Determine if the following series is convergent or divergent:

$$\sum_{n=0}^{\infty} \frac{(n+2)(n+3)}{(n+1)(2n-1)}$$
 (5 marks)

3. Find the Taylor's series for the function $f(z) = e^{z-1} + \frac{1}{2z+1}$ around the point z = -1 and find the region of convergence. (5 marks)

Course		Number	Section
Complex Variables for Electrical and Computer Engineers ELEC 261		U, W	
Examination	Date	Time	# of pages
Final Examination	Winter 2006	3 Hours	3
Instructor(s)			
Dr. M.N.S. Swamy			
Materials allowed: X No	Yes (Please specify)		
<u> </u>	(Flease specify)	-	
Calculators allowed: No X Yes			
110	100		
•			
Students are allowed to use silent, non-programmable calculators without text display.			
Special Instructions:			
			*
CELL PHONES ARE NOT PERMITTED.			
			·
Attempt all questions. Please number and begin each question on a new page.			
Show all steps clearly in neat and legible handwriting.			
<u> </u>			
Students are required to return question paper with exam booklet(s).			

1. (a) Find all the roots of the equation $\sin z = 2$

(3 marks)

(b) Given $f(z) = z^{1/4}$, find all the values of $f(-2+i2\sqrt{3})$ in polar form and sketch them in the complex plane.

(3 marks)

2. (a) Show that $u(x, y) = x^2 - y^2 - x$ is a harmonic function. Also determine its conjugate harmonic function, v(x, y).

(4 marks)

(b) Find the centre and radius of convergence for the power series:

$$\sum_{0}^{\infty} \frac{(2-2i)^{n+3}}{(n+3)^{3}8^{n}} (z+2i)^{3n}$$

(3 marks)

- 3. Integrate $\int_{C} \frac{dz}{\sqrt{z}}$ along the following contours:
 - (a) C: the upper half of the circle |z| = 1 in the counter-clockwise direction.
 - (b) C: the lower half of the circle |z| = 1 in the clockwise direction.
 - (c) Are the resultant solutions in parts (a) and (b) the same? Give reasons to support your answer.

(6 marks)

4. Given the region bounded by |z| = 1, |z| = 2, the line $\theta = \pi/4$ and the line $\theta = \pi/8$ in the z – plane, find the image of this region in the w – plane for the transformation $w = z^2 e^{i(\pi/4)}$. Show clearly the given region in the z-plane and its corresponding image in the w-plane.

(6 marks)

- 5. Evaluate $\int_{C} \frac{e^{z}dz}{z(1+z)^{3}}$, where C is a contour in the counter-clockwise direction and is given by
 - (i) |z| = 2.
 - (ii) a triangle with vertices at i, -1 i, 1 i.

(6 marks)

- 6. Given $f(z) = \frac{1}{z^2 1}$
 - (a) Find the Taylor series around the point z = i. Determine its radius of convergence.

(5 marks)

(b) Expand f(z) in Laurent series valid in the region 0 < |z-1| < 1. Using this series determine the residue of f(z) at z = 1.

(6 marks)

7. (a) Given
$$L\{f(t)\} = F(s)$$
, show that $L\{f''(t)\} = s^2 F(s) - sf(0) - f'(0)$

(4 marks)

(b) Solve the following differential equation using Laplace transforms:

$$y''+4y = 0$$
, $y(0) = 1$, $y'(0) = 6$.

(4 marks)

8. (a) If
$$L\{f(t)\}=F(s)$$
, show that $L\{e^{at} f(t)\}=F(s-a)$

(2 marks)

(b) Using the above result, find the inverse Laplace transform of

$$\frac{3s-1}{(s-2)^2}$$

(4 marks)

(c) Using the convolution theorem, find the inverse Laplace transform of

$$\frac{1}{(s-2)(s+3)}$$

(4 marks)