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Exercise 2:

The likelihood ratio is given by

L(y) =
3

2(y + 1)
, 0 ≤ y ≤ 1.

a. With uniform costs and equal priors, the critical region for minimum Bayes error is
given by {y ∈ [0, 1]|L(y) ≥ 1} = {y ∈ [0, 1]|3 ≥ 2(y + 1)} = [0, 1/2]. Thus the Bayes rule
is given by

δB(y) =

{
1 if 0 ≤ y ≤ 1/2
0 if 1/2 < y ≤ 1

.

The corresponding minimum Bayes risk is

r(δB) =
1

2

∫ 1/2

0

2

3
(y + 1)dy +

∫ 1

1/2
dy =

11

24
.

b. With uniform costs, the least-favorable prior will be interior to (0, 1), so we examine
the conditional risks of Bayes rules for an equalizer condition. The critical region for the
Bayes rule δπ0 is given by

Γ1 =
{
y ∈ [0, 1]

∣∣∣∣L(y) ≥ π0

1 − π0

}
= [0, τ ′],

where

τ ′ =


1 if 0 ≤ π0 ≤ 3

7
1
2

(
3
π0

− 5
)

if 3
7

< π0 < 3
5

0 if 3
7
≤ π0 ≤ 1

.
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Thus, the conditional risks are:

R0(δπ0) =
∫ τ ′

0

2

3
(y + 1)dy =


1 if 0 ≤ π0 ≤ 3

7
2τ ′

3

(
τ ′

2
+ 1

)
if 3

7
< π0 < 3

5

0 if 3
7
≤ π0 ≤ 1

,

and

R1(δπ0) =
∫ 1

τ ′
dy =


0 if 0 ≤ π0 ≤ 3

7

1 − τ ′ if 3
7

< π0 < 3
5

1 if 3
7
≤ π0 ≤ 1

.

By inspection, a minimax threshold τ ′
L is the solution to the equation

2τ ′
L

3

(
τ ′
L

2
+ 1

)
= 1 − τ ′

L,

which yields τ ′
L = (

√
37−5)/2. The minimax risk is the value of the equalized conditional

risk; i.e., V (πL) = 1 − τ ′
L.

c. The Neyman-Pearson test is given by

δNP (y) =


1 if 3

2(y+1)
> η

γ0 if 3
2(y+1)

= η

0 if 3
2(y+1)

< η

,

where η and γ0 are chosen to give false-alarm probability α. Since L(y) is monotone
decreasing in y, the above test is equivalent to

δNP (y) =


1 if y < η′

γ0 if y = η′

0 if y > η′
,

where η′ = 3
2η

− 1. Since Y is a continuous random variable, we can ignore the random-
ization. Thus, the false-alarm probability is:

PF (δNP ) = P0(Y < η′) =
∫ η′

0

2

3
(y + 1)dy =


0 if η′ ≤ 0
2η′

3

(
η′

2
+ 1

)
if 0 < η′ < 1

1 if η′ ≥ 1

.

The threshold for PF (δNP ) = α is the solution to

2η′

3

(
η′

2
+ 1

)
= α,

which is η′ =
√

1 + 3α − 1. So, an α-level Neyman-Pearson test is

δNP (y) =

{
1 if y ≤

√
1 + 3α − 1

0 if y >
√

1 + 3α − 1
.

The detection probability is

PD(δNP ) =
∫ η′

0
dy = η′ =

√
1 + 3α − 1, 0 < α < 1.
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Exercise 4:

Here the likelihood ratio is given by

L(y) =

√
2

π
ey− y2

2 ≡
√

2e

π
e−

(y−1)2

2 , y ≥ 0.

a. Thus, Bayes critical regions are of the form

Γ1 =
{
y ≥ 0

∣∣∣(y − 1)2 ≤ τ ′
}

,

where τ ′ = −
√

π
2e

log
(

π0

1−π0

)
. There are three cases:

Γ1 =


φ if τ ′ < 0[
1 −

√
τ ′, 1 +

√
τ ′

]
if 0 ≤ τ ′ ≤ 1[

0, 1 +
√

τ ′
]

if τ ′ > 1

.

The condition τ ′ < 0 is equivalent to π′
0 < π0 ≤ 1, where π′

0 =

√
2e
π

1+
√

2e
π

; the condition

0 ≤ τ ′ ≤ 1 is equivalent to π′′
0 ≤ π0 ≤ π′

0, where π′′
0 =

√
2
π

1+
√

2
π

; and the condition τ ′ > 1 is

equivalent to 0 ≤ π0 < π′′
0 .

The minimum Bayes risk V (π0) can be calculated for the three regions:

V (π0) = 1 − π0, π′
0 < π0 ≤ 1,

V (π0) = π0

∫ 1+
√

τ ′

1−
√

τ ′
e−ydy+(1−π0)

√
2

π

[∫ 1−
√

τ ′

0
e−

y2

2 dy +
∫ ∞

1+
√

τ ′
e−

y2

2 dy

]
, π′′

0 ≤ π0 ≤ π′
0,

and

V (π0) = π0

∫ 1+
√

τ ′

0
e−ydy + (1 − π0)

√
2

π

∫ ∞

1+
√

τ ′
e−

y2

2 dy, 0 ≤ π0 < π′′
0 .

b. The minimax rule can be found by equating conditional risks. Investigation of the
above shows that this equality occurs in the intermediate region π′′

0 ≤ π0 ≤ π′
0, and thus

corresponds to a threshold τ ′
L ∈ (0, 1) solving

e
√

τ ′
L − e−

√
τ ′
L = 2e(1 + Φ(1 +

√
τ ′
L) − Φ(1 −

√
τ ′
L)).

The minimax risk is then either of the equal conditional risks; e.g.,

V (πL) = e−1+
√

τ ′
L − e−1−

√
τ ′
L .

c. Here, randomization is unnecessary, and the Neyman-Pearson critical regions are
of the form

Γ1 =
{
y ≥ 0

∣∣∣(y − 1)2 ≤ η′
}

,
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where η′ = −
√

π
2e

log(η). There are three cases:

Γ1 =


φ if η′ < 0[
1 −√

η′, 1 +
√

η′
]

if 0 ≤ η′ ≤ 1[
0, 1 +

√
η′

]
if η′ > 1

.

The false-alarm probability is thus:

PF (δNP ) = 0, η′ < 0

PF (δNP ) =
∫ 1+

√
η′

1−
√

η′
e−ydy = e−1+

√
η′ − e−1−

√
η′

=
2

e
sinh

(√
η′

)
, 0 ≤ η′ ≤ 1,

and

PF (δNP ) =
∫ 1+

√
η′

0
e−ydy = 1 − e−1−

√
η′
, η′ > 1.

From this we see that the threshold for α−level NP testing is

η′ =


[
sinh−1

(
αe
2

)]2
if 0 < α ≤ 1 − e−2

[1 + log(1 − α)]2 if 1 − e−2 < α < 1
.

The detection probability is thus

PD(δNP ) = 2
[
Φ

(
1 +

√
η′

)
− Φ

(
1 −

√
η′

)]

= 2
[
Φ

(
1 + sinh−1

(
αe

2

))
− Φ

(
1 − sinh−1

(
αe

2

))]
, 0 < α ≤ 1 − e−2,

and

PD(δNP ) = 2
[
Φ

(
1 +

√
η′

)
− 1

2

]
= 2

[
Φ (2 + log(1 − α)) − 1

2

]
, 1 − e−2 < α ≤ 1.

Exercise 6 a & b:

Here we have p0(y) = pN(y + s) and p1(y) = pN(y − s), which gives

L(y) =
1 + (y + s)2

1 + (y − s)2
.

a. With equal priors and uniform costs, the critical region for Bayes testing is Γ1 =
{L(y) ≥ 1} = {1 + (y + s)2 ≥ 1 + (y − s)2} = {2sy ≥ −2sy} = [0,∞). Thus, the Bayes
test is

δB(y) =

{
1 if y ≥ 0
0 if y < 0
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The minimum Bayes risk is then

r(δB) =
1

2

∫ ∞

0

1

π [1 + (y + s)2]
dy +

1

2

∫ 0

−∞

1

π [1 + (y − s)2]
dy =

1

2
− tan−1(s)

π
.

b. Because of the symmetry of this problem with uniform costs, we can guess that
1/2 is the least-favorable prior. To confirm this, we can check that this answer from Part
a gives an equalizer rule:

R0(δ1/2) =
∫ ∞

0

1

π [1 + (y + s)2]
dy =

1

2

∫ 0

−∞

1

π [1 + (y − s)2]
dy = R1(δ1/2).

Exercise 7:

a. The densities under the two hypotheses are:

p0(y) = p(y) = e−y, y > 0,

and
p1(y) =

∫ ∞

−∞
p(y − s)p(y)ds =

∫ y

0
es−ye−sds = ye−y, y > 0.

Thus, the likelihood ratio is

L(y) =
p1(y)

p0(y)
= y, y > 0.

b. Randomization is irrelevant here, so the false-alrm probability for threshold η is

PF (δNP ) = P0(Y > η) = e−η,

which gives the threshold η = − log α, for α−level Neyman-Pearson testing. The corre-
sponding detection probability is

PD(δNP ) = P1(Y > η) =
∫ ∞

η
ye−ydy = (η + 1)e−η = α(1 − log α), 0 < α < 1.

c. Here the densities under the two hypotheses become:

p0(y) =
n∏

k=1

p(yk) =
n∏

k=1

e−yk , 0 < min{y1, y2, . . . , yn},

and

p1(y) =
∫ ∞

−∞

[
n∏

k=1

p(yk − s)

]
p(s)ds =

∫ min{y1,y2,...,yn}

0

[
n∏

k=1

es−yk

]
e−sds

=
p0(y)

n − 1

[
e(n−1)min{y1,y2,...,yn} − 1

]
, 0 < min{y1, y2, . . . , yn}.
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Thus, the likelihood ratio is

L(y) =
1

n − 1

[
e(n−1)min{y1,y2,...,yn} − 1

]
, 0 < min{y1, y2, . . . , yn}.

d. The false-alarm probability incurred by comparing L(y) from Part c to a threshold
η is

PF (δNP ) = P0(L(Y ) > η) = P0

(
min{Y1, Y2, . . . , Yn} > η′ ≡ log((n − 1)η + 1)

n − 1

)

= P0(
n⋂

k=1

(Yk > η′)) =
n∏

k=1

P0(Yk > η′) =
n∏

k=1

e−η′
= e−nη′

,

from which we have η′ = − 1
n

log α, or, equivalently,

η =
e(n−1)η′ − 1

n − 1
=

α−(n−1)/n − 1

n − 1
.

Exercise 15

a. The LMP test is

δ̃lo(y) =


1 if ∂pθ(y)

∂θ
|θ=0 > ηp0(y)

γ, if ∂pθ(y)
∂θ

|θ=0 = ηp0(y)

0 if ∂pθ(y)
∂θ

|θ=0 < ηp0(y) .

we have
∂pθ(y)

∂θ
|θ=0

p0(y)
= sgn(y) ;

thus

δ̃lo(y) =


1 if sgn(y) > η
γ, if sgn(y) = η
0 if sgn(y) < η .

To set the threshold η, we consider

P0(sgn(Y ) > η) =


0 if η ≥ 1
1/2 if − 1 ≤ η < 1
1 if η < −1 .

This implies that

η =

{
1 if 0 < α < 1/2
−1 if 1/2 ≤ α < 1 .
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The randomization is

γ =
α − P0(sgn(Y ) > η)

P0(sgn(Y ) − η)
=

{
2α if 0 < α < 1/2
2α − 1 if 1/2 ≤ α < 1 .

The LMP test is thus

δlo(y) =

{
2α if y > 0
0 if y ≤ 0

for 0 < α < 1/2 ; and it is

δlo(y) =

{
1 if y ≥ 0
2α − 1 if y < 0

for 1/2 ≤ α < 1.
For fixed θ > 0, the detection probability is

PD(δ̃lo; θ) = Pθ(sgn(Y ) > η) + γPθ(sgn(Y ) = η)

=

{
2α

∫ ∞
0

1
2
e−|y−θ|dy if 0 < α < 1/2∫ ∞

0
1
2
e−|y−θ|dy + (2α − 1)

∫ 0
−∞

1
2
e−|y−θ|dy if 1/2 ≤ α < 1

=

{
α(2 − e−θ) if 0 < α < 1/2
1 + (α − 1)e−θ if 1/2 ≤ α < 1

.

b. For fixed θ, the NP critical region is

Γθ = {|y| − |y − θ| > η′}

=


(−∞,∞) if η′ < −θ

((η′+θ
2

),∞) if − θ ≤ η′ ≤ θ
φ if η′ > θ ,

from which

P0(Γθ) =


1 if η′ < −θ
1
2
e−(η′+θ)/2 if − θ ≤ η′ ≤ θ

0 if η′ > θ .

Clearly, we must know θ to set η′, and thus the NP critical region depends on θ. This
implies that there is no UMP test.

The generalized likelihood ratio test uses this statistic:

sup
θ>0

e|y|−|y−θ| = exp{sup
θ>0

(|y| − |y − θ|)}

=

{
1 if y < 0
ey if y ≥ 0

.
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Exercise 16:

We have M hypotheses H0, H1 . . . , HM−1, where Y has distribution Pi and density pi

under hypothesis Hi. A decision rule δ is a partition of the observation set Γ into regions
Γ0, Γ1, . . . , ΓM−1, where δ chooses hypothesis Hi when we observe y ∈ Γi. Equivalently, a
decision rule can be viewed as a mapping from Γ to the set of decisions {0, 1, . . . , M − 1},
where δ(y) is the index of the hypothesis accepted when we observe Y = y.

On assigning costs Cij to the acceptance of Hi when Hj is true, for 0 ≤ i, j ≤ (M −1),
we can define conditional risks, Rj(δ), j = 0, 1, . . . , M − 1, for a decision rule δ, where
Rj(δ) is the conditional expected cost given that Hj is true. We have

Rj(δ) =
M−1∑
i=0

CijPj(Γi).

Assuming priors πj = P (Hjoccurs), j = 0, 1, . . . , M − 1, we can define an overall average
risk or Bayes risk as

r(δ) =
M−1∑
j=0

πjRj(δ).

A Bayes rule will minimize the Bayes risk.
We can write

r(δ) =
M−1∑
j=0

M−1∑
i=0

πjCijPj(Γi) =
M−1∑
i=0

M−1∑
j=0

πjCijPj(Γi)



=
M−1∑
i=0

M−1∑
j=0

πjCij

∫
Γi

pj(y)µ(dy)

 =
M−1∑
i=0

∫
Γi

M−1∑
j=0

πjCijpj(y)

 µ(dy).

Thus, by inspection, we see that the Bayes rule has decision regions given by

Γi =

y ∈ Γ

∣∣∣∣∣∣
M−1∑
j=0

πjCijpj(y) = min
0≤k≤M−1

M−1∑
j=0

πjCkjpj(y)

 .

Exercise 19:

a. The likelihood ratio is given by

L(y) =

∏n
k=1

1√
2πσ1

e−(yk−µ1)2/2σ2
1∏n

k=1
1√

2πσ0
e−(yk−µ0)2/2σ2

0

=
(

σ0

σ1

)n

e
n
2

(
µ2
0

σ2
0

−µ2
1

σ2
1

)
e

(
1

2σ2
0

− 1

2σ2
1

)∑n

k=1
y2

k
e

(
µ1
σ2
1

−µ0
σ2
0

)∑n

k=1
yk

,
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which shows the structure indicated.
b. If µ1 = µ0 ≡ µ and σ2

1 > σ2
0, then the Neyman-Pearson test operates by comparing

the quantity
∑n

k=1 (yk − µ)2 to a threshold, choosing H1 if the threshold is exceeded and
H0 otherwise. Alternatively, if µ1 > µ0 and σ2

1 = σ2
0, then the NP test compares

∑n
k=1 yk

to a threshold, again choosing H1 when the threshold is exceeded. Note that, in the first
case, the test statistic is quadratic in the observations, and in the second case it is linear.

c. For n = 1, µ1 = µ0 ≡ µ and σ2
1 > σ2

0,, the NP test is of the form

δNP (y) =

{
1 if (y1 − µ)2 ≥ η′

0 if (y1 − µ)2 < η′ ,

where η′ > 0 is an appropriate threshold. We have

PF (δNP ) = P0((Y1 − µ)2 > η′) = 1 − P0(−
√

η′ ≤ Y1 − µ ≤
√

η′)

= 1 − Φ

(√
η′

σ0

)
+ Φ

(
−
√

η′

σ0

)
= 2

[
1 − Φ

(√
η′

σ0

)]
.

Thus, for size α we set

η′ =
[
σ0Φ

−1
(
1 − α

2

)]2

,

and the detection probability is

PD(δNP ) = 1 − P1(−
√

η′ ≤ Y1 − µ ≤
√

η′) = 2

[
1 − Φ

(√
η′

σ1

)]

= 2
[
1 − Φ

(
σ0

σ1

Φ−1
(
1 − α

2

))]
, 0 < α < 1.
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