An Introduction to Signal Detection and Estimation - Second Edition Chapter II: Selected Solutions

H. V. Poor
Princeton University

March 16, 2005

Exercise 2:

The likelihood ratio is given by

$$
L(y)=\frac{3}{2(y+1)}, \quad 0 \leq y \leq 1
$$

a. With uniform costs and equal priors, the critical region for minimum Bayes error is given by $\{y \in[0,1] \mid L(y) \geq 1\}=\{y \in[0,1] \mid 3 \geq 2(y+1)\}=[0,1 / 2]$. Thus the Bayes rule is given by

$$
\delta_{B}(y)= \begin{cases}1 & \text { if } 0 \leq y \leq 1 / 2 \\ 0 & \text { if } 1 / 2<y \leq 1\end{cases}
$$

The corresponding minimum Bayes risk is

$$
r\left(\delta_{B}\right)=\frac{1}{2} \int_{0}^{1 / 2} \frac{2}{3}(y+1) d y+\int_{1 / 2}^{1} d y=\frac{11}{24} .
$$

b. With uniform costs, the least-favorable prior will be interior to $(0,1)$, so we examine the conditional risks of Bayes rules for an equalizer condition. The critical region for the Bayes rule $\delta_{\pi_{0}}$ is given by

$$
\Gamma_{1}=\left\{y \in[0,1] \left\lvert\, L(y) \geq \frac{\pi_{0}}{1-\pi_{0}}\right.\right\}=\left[0, \tau^{\prime}\right]
$$

where

$$
\tau^{\prime}= \begin{cases}1 & \text { if } 0 \leq \pi_{0} \leq \frac{3}{7} \\ \frac{1}{2}\left(\frac{3}{\pi_{0}}-5\right) & \text { if } \frac{3}{7}<\pi_{0}<\frac{3}{5} \\ 0 & \text { if } \frac{3}{7} \leq \pi_{0} \leq 1\end{cases}
$$

Thus, the conditional risks are:

$$
R_{0}\left(\delta_{\pi_{0}}\right)=\int_{0}^{\tau^{\prime}} \frac{2}{3}(y+1) d y= \begin{cases}1 & \text { if } 0 \leq \pi_{0} \leq \frac{3}{7} \\ \frac{2 \tau^{\prime}}{3}\left(\frac{\tau^{\prime}}{2}+1\right) & \text { if } \frac{3}{7}<\pi_{0}<\frac{3}{5} \\ 0 & \text { if } \frac{3}{7} \leq \pi_{0} \leq 1\end{cases}
$$

and

$$
R_{1}\left(\delta_{\pi_{0}}\right)=\int_{\tau^{\prime}}^{1} d y= \begin{cases}0 & \text { if } 0 \leq \pi_{0} \leq \frac{3}{7} \\ 1-\tau^{\prime} & \text { if } \frac{3}{7}<\pi_{0}<\frac{3}{5} \\ 1 & \text { if } \frac{3}{7} \leq \pi_{0} \leq 1\end{cases}
$$

By inspection, a minimax threshold τ_{L}^{\prime} is the solution to the equation

$$
\frac{2 \tau_{L}^{\prime}}{3}\left(\frac{\tau_{L}^{\prime}}{2}+1\right)=1-\tau_{L}^{\prime}
$$

which yields $\tau_{L}^{\prime}=(\sqrt{37}-5) / 2$. The minimax risk is the value of the equalized conditional risk; i.e., $V\left(\pi_{L}\right)=1-\tau_{L}^{\prime}$.
c. The Neyman-Pearson test is given by

$$
\delta_{N P}(y)= \begin{cases}1 & \text { if } \frac{3}{2(y+1)}>\eta \\ \gamma_{0} & \text { if } \frac{3}{2(y+1)}=\eta \\ 0 & \text { if } \frac{3}{2(y+1)}<\eta\end{cases}
$$

where η and γ_{0} are chosen to give false-alarm probability α. Since $L(y)$ is monotone decreasing in y, the above test is equivalent to

$$
\delta_{N P}(y)=\left\{\begin{array}{ll}
1 & \text { if } y<\eta^{\prime} \\
\gamma_{0} & \text { if } y=\eta^{\prime} \\
0 & \text { if } y>\eta^{\prime}
\end{array},\right.
$$

where $\eta^{\prime}=\frac{3}{2 \eta}-1$. Since Y is a continuous random variable, we can ignore the randomization. Thus, the false-alarm probability is:

$$
P_{F}\left(\delta_{N P}\right)=P_{0}\left(Y<\eta^{\prime}\right)=\int_{0}^{\eta^{\prime}} \frac{2}{3}(y+1) d y= \begin{cases}0 & \text { if } \eta^{\prime} \leq 0 \\ \frac{2 \eta^{\prime}}{3}\left(\frac{\eta^{\prime}}{2}+1\right) & \text { if } 0<\eta^{\prime}<1 \\ 1 & \text { if } \eta^{\prime} \geq 1\end{cases}
$$

The threshold for $P_{F}\left(\delta_{N P}\right)=\alpha$ is the solution to

$$
\frac{2 \eta^{\prime}}{3}\left(\frac{\eta^{\prime}}{2}+1\right)=\alpha
$$

which is $\eta^{\prime}=\sqrt{1+3 \alpha}-1$. So, an α-level Neyman-Pearson test is

$$
\delta_{N P}(y)=\left\{\begin{array}{ll}
1 & \text { if } y \leq \sqrt{1+3 \alpha}-1 \\
0 & \text { if } y>\sqrt{1+3 \alpha}-1
\end{array} .\right.
$$

The detection probability is

$$
P_{D}\left(\delta_{N P}\right)=\int_{0}^{\eta^{\prime}} d y=\eta^{\prime}=\sqrt{1+3 \alpha}-1, \quad 0<\alpha<1
$$

Exercise 4:

Here the likelihood ratio is given by

$$
L(y)=\sqrt{\frac{2}{\pi}} e^{y-\frac{y^{2}}{2}} \equiv \sqrt{\frac{2 e}{\pi}} e^{-\frac{(y-1)^{2}}{2}}, \quad y \geq 0
$$

a. Thus, Bayes critical regions are of the form

$$
\Gamma_{1}=\left\{y \geq 0 \mid(y-1)^{2} \leq \tau^{\prime}\right\}
$$

where $\tau^{\prime}=-\sqrt{\frac{\pi}{2 e}} \log \left(\frac{\pi_{0}}{1-\pi_{0}}\right)$. There are three cases:

$$
\Gamma_{1}=\left\{\begin{array}{ll}
\phi & \text { if } \tau^{\prime}<0 \\
{\left[1-\sqrt{\tau^{\prime}}, 1+\sqrt{\tau^{\prime}}\right]} & \text { if } 0 \leq \tau^{\prime} \leq 1 \\
{\left[0,1+\sqrt{\tau^{\prime}}\right]} & \text { if } \tau^{\prime}>1
\end{array} .\right.
$$

The condition $\tau^{\prime}<0$ is equivalent to $\pi_{0}^{\prime}<\pi_{0} \leq 1$, where $\pi_{0}^{\prime}=\frac{\sqrt{\frac{2 e}{\pi}}}{1+\sqrt{\frac{2 e}{\pi}}}$; the condition $0 \leq \tau^{\prime} \leq 1$ is equivalent to $\pi_{0}^{\prime \prime} \leq \pi_{0} \leq \pi_{0}^{\prime}$, where $\pi_{0}^{\prime \prime}=\frac{\sqrt{\frac{2}{\pi}}}{1+\sqrt{\frac{2}{\pi}}}$; and the condition $\tau^{\prime}>1$ is equivalent to $0 \leq \pi_{0}<\pi_{0}^{\prime \prime}$.

The minimum Bayes risk $V\left(\pi_{0}\right)$ can be calculated for the three regions:

$$
\begin{gathered}
V\left(\pi_{0}\right)=1-\pi_{0}, \quad \pi_{0}^{\prime}<\pi_{0} \leq 1 \\
V\left(\pi_{0}\right)=\pi_{0} \int_{1-\sqrt{\tau^{\prime}}}^{1+\sqrt{\tau^{\prime}}} e^{-y} d y+\left(1-\pi_{0}\right) \sqrt{\frac{2}{\pi}}\left[\int_{0}^{1-\sqrt{\tau^{\prime}}} e^{-\frac{y^{2}}{2}} d y+\int_{1+\sqrt{\tau^{\prime}}}^{\infty} e^{-\frac{y^{2}}{2}} d y\right], \quad \pi_{0}^{\prime \prime} \leq \pi_{0} \leq \pi_{0}^{\prime}
\end{gathered}
$$

and

$$
V\left(\pi_{0}\right)=\pi_{0} \int_{0}^{1+\sqrt{\tau^{\prime}}} e^{-y} d y+\left(1-\pi_{0}\right) \sqrt{\frac{2}{\pi}} \int_{1+\sqrt{\tau^{\prime}}}^{\infty} e^{-\frac{y^{2}}{2}} d y, \quad 0 \leq \pi_{0}<\pi_{0}^{\prime \prime}
$$

b. The minimax rule can be found by equating conditional risks. Investigation of the above shows that this equality occurs in the intermediate region $\pi_{0}^{\prime \prime} \leq \pi_{0} \leq \pi_{0}^{\prime}$, and thus corresponds to a threshold $\tau_{L}^{\prime} \in(0,1)$ solving

$$
e^{\sqrt{\tau_{L}^{\prime}}}-e^{-\sqrt{\tau_{L}^{\prime}}}=2 e\left(1+\Phi\left(1+\sqrt{\tau_{L}^{\prime}}\right)-\Phi\left(1-\sqrt{\tau_{L}^{\prime}}\right)\right) .
$$

The minimax risk is then either of the equal conditional risks; e.g.,

$$
V\left(\pi_{L}\right)=e^{-1+\sqrt{\tau_{L}^{\prime}}}-e^{-1-\sqrt{\tau_{L}^{\prime}}} .
$$

c. Here, randomization is unnecessary, and the Neyman-Pearson critical regions are of the form

$$
\Gamma_{1}=\left\{y \geq 0 \mid(y-1)^{2} \leq \eta^{\prime}\right\}
$$

where $\eta^{\prime}=-\sqrt{\frac{\pi}{2 e}} \log (\eta)$. There are three cases:

$$
\Gamma_{1}=\left\{\begin{array}{ll}
\phi & \text { if } \eta^{\prime}<0 \\
{\left[1-\sqrt{\eta^{\prime}}, 1+\sqrt{\eta^{\prime}}\right]} & \text { if } 0 \leq \eta^{\prime} \leq 1 . \\
{\left[0,1+\sqrt{\eta^{\prime}}\right]} & \text { if } \eta^{\prime}>1
\end{array} .\right.
$$

The false-alarm probability is thus:

$$
\begin{gathered}
P_{F}\left(\delta_{N P}\right)=0, \quad \eta^{\prime}<0 \\
P_{F}\left(\delta_{N P}\right)=\int_{1-\sqrt{\eta^{\prime}}}^{1+\sqrt{\eta^{\prime}}} e^{-y} d y=e^{-1+\sqrt{\eta^{\prime}}}-e^{-1-\sqrt{\eta^{\prime}}}=\frac{2}{e} \sinh \left(\sqrt{\eta^{\prime}}\right), \quad 0 \leq \eta^{\prime} \leq 1
\end{gathered}
$$

and

$$
P_{F}\left(\delta_{N P}\right)=\int_{0}^{1+\sqrt{\eta^{\prime}}} e^{-y} d y=1-e^{-1-\sqrt{\eta^{\prime}}}, \quad \eta^{\prime}>1
$$

From this we see that the threshold for α-level NP testing is

$$
\eta^{\prime}=\left\{\begin{array}{ll}
{\left[\sinh ^{-1}\left(\frac{\alpha e}{2}\right)\right]^{2}} & \text { if } 0<\alpha \leq 1-e^{-2} \\
{[1+\log (1-\alpha)]^{2}} & \text { if } 1-e^{-2}<\alpha<1
\end{array} .\right.
$$

The detection probability is thus

$$
\begin{gathered}
P_{D}\left(\delta_{N P}\right)=2\left[\Phi\left(1+\sqrt{\eta^{\prime}}\right)-\Phi\left(1-\sqrt{\eta^{\prime}}\right)\right] \\
=2\left[\Phi\left(1+\sinh ^{-1}\left(\frac{\alpha e}{2}\right)\right)-\Phi\left(1-\sinh ^{-1}\left(\frac{\alpha e}{2}\right)\right)\right], \quad 0<\alpha \leq 1-e^{-2}
\end{gathered}
$$

and

$$
P_{D}\left(\delta_{N P}\right)=2\left[\Phi\left(1+\sqrt{\eta^{\prime}}\right)-\frac{1}{2}\right]=2\left[\Phi(2+\log (1-\alpha))-\frac{1}{2}\right], \quad 1-e^{-2}<\alpha \leq 1
$$

Exercise 6 a \& b:

Here we have $p_{0}(y)=p_{N}(y+s)$ and $p_{1}(y)=p_{N}(y-s)$, which gives

$$
L(y)=\frac{1+(y+s)^{2}}{1+(y-s)^{2}}
$$

a. With equal priors and uniform costs, the critical region for Bayes testing is $\Gamma_{1}=$ $\{L(y) \geq 1\}=\left\{1+(y+s)^{2} \geq 1+(y-s)^{2}\right\}=\{2 s y \geq-2 s y\}=[0, \infty)$. Thus, the Bayes test is

$$
\delta_{B}(y)= \begin{cases}1 & \text { if } y \geq 0 \\ 0 & \text { if } y<0\end{cases}
$$

The minimum Bayes risk is then

$$
r\left(\delta_{B}\right)=\frac{1}{2} \int_{0}^{\infty} \frac{1}{\pi\left[1+(y+s)^{2}\right]} d y+\frac{1}{2} \int_{-\infty}^{0} \frac{1}{\pi\left[1+(y-s)^{2}\right]} d y=\frac{1}{2}-\frac{\tan ^{-1}(s)}{\pi}
$$

b. Because of the symmetry of this problem with uniform costs, we can guess that $1 / 2$ is the least-favorable prior. To confirm this, we can check that this answer from Part a gives an equalizer rule:

$$
R_{0}\left(\delta_{1 / 2}\right)=\int_{0}^{\infty} \frac{1}{\pi\left[1+(y+s)^{2}\right]} d y=\frac{1}{2} \int_{-\infty}^{0} \frac{1}{\pi\left[1+(y-s)^{2}\right]} d y=R_{1}\left(\delta_{1 / 2}\right)
$$

Exercise 7:

a. The densities under the two hypotheses are:

$$
p_{0}(y)=p(y)=e^{-y}, \quad y>0
$$

and

$$
p_{1}(y)=\int_{-\infty}^{\infty} p(y-s) p(y) d s=\int_{0}^{y} e^{s-y} e^{-s} d s=y e^{-y}, \quad y>0 .
$$

Thus, the likelihood ratio is

$$
L(y)=\frac{p_{1}(y)}{p_{0}(y)}=y, \quad y>0 .
$$

b. Randomization is irrelevant here, so the false-alrm probability for threshold η is

$$
P_{F}\left(\delta_{N P}\right)=P_{0}(Y>\eta)=e^{-\eta}
$$

which gives the threshold $\eta=-\log \alpha$, for α-level Neyman-Pearson testing. The corresponding detection probability is

$$
P_{D}\left(\delta_{N P}\right)=P_{1}(Y>\eta)=\int_{\eta}^{\infty} y e^{-y} d y=(\eta+1) e^{-\eta}=\alpha(1-\log \alpha), \quad 0<\alpha<1 .
$$

c. Here the densities under the two hypotheses become:

$$
p_{0}(y)=\prod_{k=1}^{n} p\left(y_{k}\right)=\prod_{k=1}^{n} e^{-y_{k}}, \quad 0<\min \left\{y_{1}, y_{2}, \ldots, y_{n}\right\}
$$

and

$$
\begin{aligned}
p_{1}(y) & =\int_{-\infty}^{\infty}\left[\prod_{k=1}^{n} p\left(y_{k}-s\right)\right] p(s) d s=\int_{0}^{\min \left\{y_{1}, y_{2}, \ldots, y_{n}\right\}}\left[\prod_{k=1}^{n} e^{s-y_{k}}\right] e^{-s} d s \\
& =\frac{p_{0}(y)}{n-1}\left[e^{(n-1) \min \left\{y_{1}, y_{2}, \ldots, y_{n}\right\}}-1\right], \quad 0<\min \left\{y_{1}, y_{2}, \ldots, y_{n}\right\} .
\end{aligned}
$$

Thus, the likelihood ratio is

$$
L(y)=\frac{1}{n-1}\left[e^{(n-1) \min \left\{y_{1}, y_{2}, \ldots, y_{n}\right\}}-1\right], \quad 0<\min \left\{y_{1}, y_{2}, \ldots, y_{n}\right\}
$$

d. The false-alarm probability incurred by comparing $L(y)$ from Part c to a threshold η is

$$
\begin{aligned}
P_{F}\left(\delta_{N P}\right)= & P_{0}(L(Y)>\eta)=P_{0}\left(\min \left\{Y_{1}, Y_{2}, \ldots, Y_{n}\right\}>\eta^{\prime} \equiv \frac{\log ((n-1) \eta+1)}{n-1}\right) \\
& =P_{0}\left(\bigcap_{k=1}^{n}\left(Y_{k}>\eta^{\prime}\right)\right)=\prod_{k=1}^{n} P_{0}\left(Y_{k}>\eta^{\prime}\right)=\prod_{k=1}^{n} e^{-\eta^{\prime}}=e^{-n \eta^{\prime}},
\end{aligned}
$$

from which we have $\eta^{\prime}=-\frac{1}{n} \log \alpha$, or, equivalently,

$$
\eta=\frac{e^{(n-1) \eta^{\prime}}-1}{n-1}=\frac{\alpha^{-(n-1) / n}-1}{n-1} .
$$

Exercise 15

a. The LMP test is

$$
\tilde{\delta}_{l o}(y)= \begin{cases}1 & \text { if }\left.\frac{\partial p_{\theta}(y)}{\partial \theta}\right|_{\theta=0}>\eta p_{0}(y) \\ \gamma, & \text { if }\left.\frac{\partial_{\theta}(y)}{\partial \theta}\right|_{\theta=0}=\eta p_{0}(y) \\ 0 & \text { if }\left.\frac{\partial_{\theta}(y)}{\partial \theta}\right|_{\theta=0}<\eta p_{0}(y) .\end{cases}
$$

we have

$$
\frac{\left.\frac{\partial p_{\theta}(y)}{\partial \theta}\right|_{\theta=0}}{p_{0}(y)}=\operatorname{sgn}(y) ;
$$

thus

$$
\tilde{\delta}_{l o}(y)= \begin{cases}1 & \text { if } \operatorname{sgn}(y)>\eta \\ \gamma, & \text { if } \operatorname{sgn}(y)=\eta \\ 0 & \text { if } \operatorname{sgn}(y)<\eta\end{cases}
$$

To set the threshold η, we consider

$$
P_{0}(\operatorname{sgn}(Y)>\eta)= \begin{cases}0 & \text { if } \eta \geq 1 \\ 1 / 2 & \text { if }-1 \leq \eta<1 \\ 1 & \text { if } \eta<-1\end{cases}
$$

This implies that

$$
\eta= \begin{cases}1 & \text { if } 0<\alpha<1 / 2 \\ -1 & \text { if } 1 / 2 \leq \alpha<1\end{cases}
$$

The randomization is

$$
\gamma=\frac{\alpha-P_{0}(\operatorname{sgn}(Y)>\eta)}{P_{0}(\operatorname{sgn}(Y)-\eta)}= \begin{cases}2 \alpha & \text { if } 0<\alpha<1 / 2 \\ 2 \alpha-1 & \text { if } 1 / 2 \leq \alpha<1\end{cases}
$$

The LMP test is thus

$$
\delta_{l o}(y)= \begin{cases}2 \alpha & \text { if } y>0 \\ 0 & \text { if } y \leq 0\end{cases}
$$

for $0<\alpha<1 / 2$; and it is

$$
\delta_{l o}(y)= \begin{cases}1 & \text { if } y \geq 0 \\ 2 \alpha-1 & \text { if } y<0\end{cases}
$$

for $1 / 2 \leq \alpha<1$.
For fixed $\theta>0$, the detection probability is

$$
\begin{gathered}
P_{D}\left(\tilde{\delta}_{l o} ; \theta\right)=P_{\theta}(\operatorname{sgn}(Y)>\eta)+\gamma P_{\theta}(\operatorname{sgn}(Y)=\eta) \\
= \begin{cases}2 \alpha \int_{0}^{\infty} \frac{1}{2} e^{-|y-\theta|} d y & \text { if } 0<\alpha<1 / 2 \\
\int_{0}^{\infty} \frac{1}{2} e^{-|y-\theta|} d y+(2 \alpha-1) \int_{-\infty}^{0} \frac{1}{2} e^{-|y-\theta|} d y & \text { if } 1 / 2 \leq \alpha<1\end{cases} \\
= \begin{cases}\alpha\left(2-e^{-\theta}\right) & \text { if } 0<\alpha<1 / 2 \\
1+(\alpha-1) e^{-\theta} & \text { if } 1 / 2 \leq \alpha<1\end{cases}
\end{gathered}
$$

b. For fixed θ, the NP critical region is

$$
\begin{gathered}
\Gamma_{\theta}=\left\{|y|-|y-\theta|>\eta^{\prime}\right\} \\
= \begin{cases}(-\infty, \infty) & \text { if } \eta^{\prime}<-\theta \\
\left(\left(\frac{\eta^{\prime}+\theta}{2}\right), \infty\right) & \text { if }-\theta \leq \eta^{\prime} \leq \theta \\
\phi & \text { if } \eta^{\prime}>\theta\end{cases}
\end{gathered}
$$

from which

$$
P_{0}\left(\Gamma_{\theta}\right)= \begin{cases}1 & \text { if } \eta^{\prime}<-\theta \\ \frac{1}{2} e^{-\left(\eta^{\prime}+\theta\right) / 2} & \text { if }-\theta \leq \eta^{\prime} \leq \theta \\ 0 & \text { if } \eta^{\prime}>\theta\end{cases}
$$

Clearly, we must know θ to set η^{\prime}, and thus the NP critical region depends on θ. This implies that there is no UMP test.

The generalized likelihood ratio test uses this statistic:

$$
\begin{aligned}
\sup _{\theta>0} e^{|y|-|y-\theta|} & =\exp \left\{\sup _{\theta>0}(|y|-|y-\theta|)\right\} \\
& = \begin{cases}1 & \text { if } y<0 \\
e^{y} & \text { if } y \geq 0\end{cases}
\end{aligned}
$$

Exercise 16:

We have M hypotheses $H_{0}, H_{1} \ldots, H_{M-1}$, where Y has distribution P_{i} and density p_{i} under hypothesis H_{i}. A decision rule δ is a partition of the observation set Γ into regions $\Gamma_{0}, \Gamma_{1}, \ldots, \Gamma_{M-1}$, where δ chooses hypothesis H_{i} when we observe $y \in \Gamma_{i}$. Equivalently, a decision rule can be viewed as a mapping from Γ to the set of decisions $\{0,1, \ldots, M-1\}$, where $\delta(y)$ is the index of the hypothesis accepted when we observe $Y=y$.

On assigning costs $C_{i j}$ to the acceptance of H_{i} when H_{j} is true, for $0 \leq i, j \leq(M-1)$, we can define conditional risks, $R_{j}(\delta), j=0,1, \ldots, M-1$, for a decision rule δ, where $R_{j}(\delta)$ is the conditional expected cost given that H_{j} is true. We have

$$
R_{j}(\delta)=\sum_{i=0}^{M-1} C_{i j} P_{j}\left(\Gamma_{i}\right)
$$

Assuming priors $\pi_{j}=P\left(H_{j}\right.$ occurs $), j=0,1, \ldots, M-1$, we can define an overall average risk or Bayes risk as

$$
r(\delta)=\sum_{j=0}^{M-1} \pi_{j} R_{j}(\delta)
$$

A Bayes rule will minimize the Bayes risk.
We can write

$$
\begin{gathered}
r(\delta)=\sum_{j=0}^{M-1} \sum_{i=0}^{M-1} \pi_{j} C_{i j} P_{j}\left(\Gamma_{i}\right)=\sum_{i=0}^{M-1}\left[\sum_{j=0}^{M-1} \pi_{j} C_{i j} P_{j}\left(\Gamma_{i}\right)\right] \\
=\sum_{i=0}^{M-1}\left[\sum_{j=0}^{M-1} \pi_{j} C_{i j} \int_{\Gamma_{i}} p_{j}(y) \mu(d y)\right]=\sum_{i=0}^{M-1} \int_{\Gamma_{i}}\left[\sum_{j=0}^{M-1} \pi_{j} C_{i j} p_{j}(y)\right] \mu(d y) .
\end{gathered}
$$

Thus, by inspection, we see that the Bayes rule has decision regions given by

$$
\Gamma_{i}=\left\{y \in \Gamma \mid \sum_{j=0}^{M-1} \pi_{j} C_{i j} p_{j}(y)=\min _{0 \leq k \leq M-1} \sum_{j=0}^{M-1} \pi_{j} C_{k j} p_{j}(y)\right\}
$$

Exercise 19:

a. The likelihood ratio is given by

$$
\begin{gathered}
L(y)=\frac{\prod_{k=1}^{n} \frac{1}{\sqrt{2 \pi} \sigma_{1}} e^{-\left(y_{k}-\mu_{1}\right)^{2} / 2 \sigma_{1}^{2}}}{\prod_{k=1}^{n} \frac{1}{\sqrt{2 \pi} \sigma_{0}} e^{-\left(y_{k}-\mu_{0}\right)^{2} / 2 \sigma_{0}^{2}}} \\
=\left(\frac{\sigma_{0}}{\sigma_{1}}\right)^{n} e^{\frac{n}{2}\left(\frac{\mu_{0}^{2}}{\sigma_{0}^{2}}-\frac{\mu_{1}^{2}}{\sigma_{1}^{2}}\right)} e^{\left(\frac{1}{2 \sigma_{0}^{2}}-\frac{1}{2 \sigma_{1}^{2}}\right) \sum_{k=1}^{n} y_{k}^{2}} e^{\left(\frac{\mu_{1}}{\sigma_{1}^{2}}-\frac{\mu_{0}}{\sigma_{0}^{2}}\right) \sum_{k=1}^{n} y_{k}},
\end{gathered}
$$

which shows the structure indicated.
b. If $\mu_{1}=\mu_{0} \equiv \mu$ and $\sigma_{1}^{2}>\sigma_{0}^{2}$, then the Neyman-Pearson test operates by comparing the quantity $\sum_{k=1}^{n}\left(y_{k}-\mu\right)^{2}$ to a threshold, choosing H_{1} if the threshold is exceeded and H_{0} otherwise. Alternatively, if $\mu_{1}>\mu_{0}$ and $\sigma_{1}^{2}=\sigma_{0}^{2}$, then the NP test compares $\sum_{k=1}^{n} y_{k}$ to a threshold, again choosing H_{1} when the threshold is exceeded. Note that, in the first case, the test statistic is quadratic in the observations, and in the second case it is linear.
c. For $n=1, \mu_{1}=\mu_{0} \equiv \mu$ and $\sigma_{1}^{2}>\sigma_{0}^{2}$, the NP test is of the form

$$
\delta_{N P}(y)= \begin{cases}1 & \text { if }\left(y_{1}-\mu\right)^{2} \geq \eta^{\prime} \\ 0 & \text { if }\left(y_{1}-\mu\right)^{2}<\eta^{\prime}\end{cases}
$$

where $\eta^{\prime}>0$ is an appropriate threshold. We have

$$
\begin{gathered}
P_{F}\left(\delta_{N P}\right)=P_{0}\left(\left(Y_{1}-\mu\right)^{2}>\eta^{\prime}\right)=1-P_{0}\left(-\sqrt{\eta^{\prime}} \leq Y_{1}-\mu \leq \sqrt{\eta^{\prime}}\right) \\
=1-\Phi\left(\frac{\sqrt{\eta^{\prime}}}{\sigma_{0}}\right)+\Phi\left(-\frac{\sqrt{\eta^{\prime}}}{\sigma_{0}}\right)=2\left[1-\Phi\left(\frac{\sqrt{\eta^{\prime}}}{\sigma_{0}}\right)\right]
\end{gathered}
$$

Thus, for size α we set

$$
\eta^{\prime}=\left[\sigma_{0} \Phi^{-1}\left(1-\frac{\alpha}{2}\right)\right]^{2}
$$

and the detection probability is

$$
\begin{aligned}
P_{D}\left(\delta_{N P}\right) & =1-P_{1}\left(-\sqrt{\eta^{\prime}} \leq Y_{1}-\mu \leq \sqrt{\eta^{\prime}}\right)=2\left[1-\Phi\left(\frac{\sqrt{\eta^{\prime}}}{\sigma_{1}}\right)\right] \\
& =2\left[1-\Phi\left(\frac{\sigma_{0}}{\sigma_{1}} \Phi^{-1}\left(1-\frac{\alpha}{2}\right)\right)\right], \quad 0<\alpha<1
\end{aligned}
$$

