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Exercise 1:

Let {hy,} denote the impulse response of a general discrete-time linear filter. The output
at time n due to the input signal is >7;_; hy,;s;, and that due to noise is >7;—; hy, ;N;. Thus
the output SNR at time n is
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where h, = (hn1, hnoy -y hon)t.
Since X > 0, we can write Xy = 2%22%2 when 2%2 is invertible and symmetric.
Thus,
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By the Schwarz Inequality (|z”y
SNR < [|Z)s|

with equality if and only if E}V/th = )\2;,1/ ®s for a constant \. Thus, max SNR occurs
when h,, = AXy's. The constant A is arbitrary (it does not affect SNR), so we can take
A = 1, which gives the desired result.

Exercise 3:

a. From Exercise 15 of Chapter II, the optimum test here has critical regions:

Iw={y € R" pu(y) = max mi(y)}.
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Since p; is the N(s;, 0%I) density, this reduces to

Te={y € B |ly = sell” = _min_lly— s}
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b. We have
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Due to the assumed orthogonality of s, - -, s,,, it is straighforward to show that, under Hy,
sTY,slY .. sTY are independent Gaussian random variable with variances o?||s;]|?,

and with means zero for [ # k and mean ||s;]|? for [ = k. Thus
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Combining the above and setting x = z/0||s1]| yields
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and the desired expression for P, follows.

Exercise 6:

Since Y ~ N(u,X), it follows that Y, is linear in Y1, .-+, Y,_1, and that &%k does not

depend on Y7, ---,Y,_1. Thus, I is a linear transformation of Y and is Gaussian. We need
only show that E{I/} = 0 and cov(l) = 1.
We have




Since Y, = E{Yi|Y1, -, Y1}, E{Yk} is an iterated expectation of Y; hence E{Y;} =
E{Y}} and E{I;} =0,k =1,---,n. To see that cov(l) = I, note first that

E{(Yy —Y.)?} &%
Var (I,) = E{I}} = il 22 g &;”k =1.
Y;, Vi,

Now, for [ < k, we have

cov (Ik,ll> = E{kal}
E{(Y; = Vo) (Y1 - )} _

Oy, 0y,

Noting that
E{(Yx = Vi) (Y1 = Y))} = B{E{(Y, = V) (Y, = YD)V, -, Y1 }}

= B{(B{Yi|Y1, -, Vi 1} = V) (Yi = Y))} = B{(Yi = V) (Y = Y))} =0,

we have cov(Iy, ;) = 0 for [ < k. By symmetry we also have cov(Iy, I;) = 0 for | > k, and
the desired result follows.

Exercise 7:

a. The likelihood ratio is
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which is monotone increasing in the statistic
T(y) = ‘gTE_lg’ .

(Here, as usual, d*> = s"37!s.) Thus, the Neyman-Pearson test is of the form
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To set the threshold 7, we consider

P(T(Y) >n)=1-P(-n<s"S7'N <n) =1-(n/d) + d(-n/d) = 2[1 — ®(n/d)],



where we have used the fact that s’ 27! is Gaussian with zero mean and variance d?.
Thus, the threshold for size « is

n=d® (1 —a/2).

The randomization is unnecessary.
The detection probability is

Po(Bye) = 3 PUT(Y) > 9f€ = +1) +  P(T(Y) > 70 = —1)
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b. Since the likelihood ratio is the average over the distribution of © of the likelihood
ratio conditioned on O, we have
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Exercise 13:

a. In this situation, the problem is that of detecting a Gaussian signal with zero mean
and covariance matrix Xg = diag{As?, As3,..., As?}, in independent i.i.d. Gaussian
noise with unit variance; and thus the Neyman-Pearson test is based on the quadratic

statistic
T(y) =)
= — As? +1
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b. Assuming s; # 0, for all k, a sufficient condition for a UMP test is that s2 is
constant. In this case, an equivalent test statistic is the radiometer S-7_, y2, which can

be given size o without knowledge of A.
c. From Eq. (II1.B.110), we see that an LMP test can be based on the statistic

n

Exercise 15:

Let L, denote the likelihood ratio conditioned on A = a. Then the undonditioned likeli-
hood ratio is

L(y) = /OOO Lo(y)pa(a)da = /OOO e’"“2/4"2fo(a2f/02)pA(a)da,

with 7 = r/A, where r = y/y2 + 32 as in Example II11.B.5. Note that

P = J (I; by cos((k — 1)wcTs)yk>2 + (;; by sin((k — 1)wCTS)yk>2,

which can be computed without knowledge of A. Note further that
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where we have used the fact that I, is monotone increasing in its argument. Thus, L(y)
is monotone increasing in 7, and the Neyman-Pearson test is of the form

) 1 ifr>7
5NP(Q) = v, ifr = T,
0 ifr<7

To get size o we choose 7/ so that Py(R > 7') = a. From (II1.B.72), we have that
Po(R> 7') = e 7V/n”,

from which the size-a desired threshold is 7/ = y/—no? log av.

The detection probability can be found by first conditioning on A and then averaging
the result over the distribution of A. (Note that we have not used the explicit form of
the distribution of A to derive any of the above results.) It follows from (III.B.74) that

P(R>7'|A =a) = Q(b, 1) with b® = na2/202 and 1y = \/2/n7’ /o = /—21log or. Thus,
Pp = /OOO Q(%\/n/lm)pf;(a)da = /OOO /T:o afe(”‘“2”“2/2”2)/2[0(:1:%\/n/Q)Ai%e“Q/QAgd:cda
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where ag = ,/nzjgi‘;;. On making the substitution y = a/ag, this integral becomes
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where b2 = na?/20%. Since Q(b,0) = 1 for any value of b, and since 1 — b2 = a2/A32, the
detection probability becomes
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Exercise 16:

The right-hand side of the given equation is simply the likelihood ratio for detecting a
N (0, Xg) signal in independent N (0, 0°I) noise. From Eq. (II1.B.84), this is given by

1 1
exp(?‘ZQTES(UQI + Es)_lg + 5 log(|a2I|/|021 + Xsl))-

We thus are looking for a solution S to the equation
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where \i, A9, ..., A\, are the eigenvalues of ¥g. On completing the square on the left-hand
side of this equation, it can be rewritten as
& 2 2 T 2 -1 e o’
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= o2 [QT(oﬁI +3g) 7y - an log(g—Z)] :

which is solved by
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for any nonzero vector v.



