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Exercise 1:

a.
Orap(y) = arg lrgggelogQ—@Iyl —logf| = 1.
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Note that the series on the left-hand side is the truncated power series expansion of
exp{fps(y)} so that the O,55(y) is the value at which this truncated series equals half

of its untruncated value when the truncation point is y.

which reduces to
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Exercise 7:

We have »
e ify>6
pe(y)—{o 1fy<6 )
and 0.1)
1 if 6 e (0,1
w(?) _{ 0 if6¢(0,1)
Thus,

efy+9 69

w(fly) = fgnin{lvy} e—y+040 T emin{ly} _ 1’

for 0 < 6 <min{l,y}, and w(f|y) = 0 otherwise. This implies:
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which has the solution

6min{l,y} +1
9 .

Oaps(y) = log l

Exercise 8:

a. We have

e vte=? 1
eV ydo y
and w(fly) = 0 otherwise. That is, given y, © is uniformly distributed on the interval

[0, y]. From this we have immediately that 055 (y) = Oaps(y) = g.
b. We have

w(0|y) = 0<6<y,

MMSE = E{Var(|Y)}.
Since w(@|y) is uniform on [0,y], Var(6|Y) = }1/—22 We have

Yy
py) = e’y/o df = ye ™,y >0,

from which
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c. In this case,

po(y) = [[ e #*,if0 <6 <min{ys,...,yn}-

k=1
from which
éMAp<y) = arg max exp Y yp+ (n—1)0¢| =min{yr,...,y.}.
0<f<min{y1,...,yn} ]

Exercise 13:

a. We have

where

Rewriting this as

po(y) = C(g)e’™V

with ¢ = log(8/(1 — 0)), and C(¢) = €™ we see from the Completeness Theorem for
Exponential Families that T'(y) is a complete sufficient statistic for ¢ and hence for 6.
(Assuming 6 ranges throughout (0, 1).) Thus, any unbiased function of 7" is an MVUE for
6. Since Ep{T(Y)} = n#, such an estimate is given by

n

Oy (y) = Ty _ L 5w

n n k=1

O (y) = g { max 679 (1= )T T(g) n = v ()

0<0<1

Since the MLE equals the MVUE, we have immediately that Eo{fy(Y)} = 6. The
variance of 0,7 (Y) is easily computed to be (1 — ) /n.

c. We have o () 7(
wlogpe(z) R

Y)

2 (1-02

from which
n n no_ n
0 1-6 0(1— 9)'

Iy =

The CRLB is thus )
= Varg(Oy(Y)).

ORLB:%:Q(l_Q
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Exercise 15:

We have 0g
e Y
pe(?/): | 96071,
y!
Thus 9 5
Yy
50 log po(y) = 89( 0+ylogt) =—1+ 1
and o2
Yy
20 logpe(y) = — <0
So

éML(y) =Y.
Since Y is Poisson, we have Eg{éML(Y)} = Varg(éML(Y)) = 6. So, 0,7, is unbiased.
Fisher’s information is given by

o2 Ep{Y} 1
I@ = —E {882 Ing9<Y)} = 02 = 5

So the CRLB is 6, which equals Varg(fy(Y)). (Hence, the MLE is an MVUE in this
case.)

Exercise 20:

a. Note that Y1,Y5,...,Y,, are independent with Y;, having the A(0, 1+ 6s?) distribution.

Thus,
n 2

0 Y
%logpg Z {——log 1+9$k) m}

_ 1L Yk Sk
B 22_:{1+‘95k (1+95k)}

from which the likelihood equation becomes

zn: Si(yi —1- éML(Q)S%)

= =0.
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_ 0? - B} Sk
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So the CRLB is 9

o7
Zk 1 1+08)

c. With s? = 1, the likelihood equation yields the solution

Orir(y ( Zyk>— :

which is seen to yield a maximum of the likelihood function.

d. We have
Fo [ ()} = (zEe{yk})_lze.

Similarly, since the Y}/s are independent,

VCL’I“@ (éML(X> :%zn:va’re (Y}?) — izn: ‘—}-9 M
k=1

n? n

Thus, the bias of the MLE is 0 and the variance of the MLE equals the CRLB. (Hence,
the MLE is an MVUE in this case.)

Exercise 22:

a. Note that

po(y) = eap {z 1ogF<yk>/e} ,

k=1
which impies that the statistic >p_; log F'(yx) is a complete sufficient statistic for  via
the Completeness Theorem for Exponential Families. We have

B {3 g PO | = naflog P00} = § [ 1o FOR) [P ] fn)n,

Noting that dlog F'(y1) = f and that [F(y1)]"? = exp{log F(y1)/6}, we can make
the substitution x = log F' (yl) to yield

n 0
E, {Z log F(Yk)} = %/_ ze®?dr = —nd.

k=1

Thus, we have R
Ey {QMV(K)} =0,

which implies that 0 vy is an MVUE since it is an unbiased function of a complete sufficient
statistic.



b. [Correction: Note that, for the given prior, the prior mean should be E{©} = —= ]
It is straightforward to see that w(f|y) is of the same form as the prior with ¢ replaced

by ¢ — > log F'(yx), and m replaced by n + m. Thus, by inspection

¢ — 3=y log F(Y)

B0} = m+n—1

Y

which was to be shown. [Again, the necessary correction has been made.|

c. In this example, the prior and posterior distributions have the same form. The only
change is that the parameters of that distribution are updated as new data is observed.
A prior with this property is said to be a reproducing prior. The prior parameters , ¢ and
m, can be thought of as coming from an earlier sample of size m. As n becomes large
compared to m, the importance of these prior parameters in the estimate diminishes.
Note that >}_, log F'(Yy) behaves like nE{log F'(Y1)} for large n. Thus, with n > m, the
estimate is appropximately given by the MVUE of Part a. Altenatively, with m > n, the
estimate is approximately the prior mean, ¢/(m — 1). Between these two extremes, there
is a balance between prior and observed information.

Exercise 23:

a. The log-likelihood function is

1 & . (kT > n
log p(y|A, ¢) = o552 > lyk — Asin (7 + (;5)1 —3 log(27a?).
k=1

The likelihood equations are thus:
" p k ~ k ~
> [yk — Asin (—W - qb)] sin (—W + ¢> =0,
= 2 2
and . " L
AZ [yk — Asin <—7T —l—gfgﬂ coS (—W —l—qg) = 0.
= 2 2

These equations are solved by the estimates:

where



and

13 (kr\ 122
Y = — Zyk sin (—) =_ Z(—l) yon_1.
3 2 n

b. Appending the prior to the above problem yields MAP estimates:
darap = durr,

and

Aprap =

)

Apyp + \/(%)2 + 72(12&)02
1+«

_ 202
where o = N

c. Note that, when  — oo (and the prior "diffuses”), the MAP estimate of A does

not approach the MLE of A. However, as n — oo, the MAP estimate does approach the
MLE.



