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Exercise 1:

a.

θ̂MAP (y) = arg
[
max
1≤θ≤e

log θ − θ|y| − log θ
]

= 1.

b.

θ̂MMSE(y) =

∫ e
1 θe−θ|y|dθ∫ e
1 e−θ|y|dθ

=
1

|y| +
e−|y| − e1−e|y|

e−|y| − e−e|y|

Exercise 3:

w(θ|y) =
θye−θe−αθ∫ ∞

0 θye−θe−αθdθ
=

θye−(α+1)θ(1 + α)y+1

y!
.

So:

θ̂MMSE(y) =
1

y!

∫ ∞

0
θy+1e−(α+1)θdθ(1 + α)y+1 =

y + 1

α + 1
;

θ̂MAP (y) = arg
[
max
θ>0

y log θ − (α + 1)θ
]

=
y

α + 1
;

and θ̂ABS(y) solves ∫ θ̂ABS(y)

0
w(θ|y)dθ =

1

2
which reduces to

y∑
k=0

[
θ̂ABS(y)

]k

k!
=

1

2
eθ̂ABS(y).

Note that the series on the left-hand side is the truncated power series expansion of
exp{θ̂ABS(y)} so that the θ̂ABS(y) is the value at which this truncated series equals half
of its untruncated value when the truncation point is y.
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Exercise 7:

We have

pθ(y) =

{
e−y+θ if y ≥ θ
0 if y < θ

;

and

w(θ) =

{
1 if θ ∈ (0, 1)
0 if θ �∈ (0, 1)

.

Thus,

w(θ|y) =
e−y+θ∫ min{1,y}

0 e−y+θdθ
=

eθ

emin{1,y} − 1
,

for 0 ≤ θ ≤ min{1, y}, and w(θ|y) = 0 otherwise. This implies:

θ̂MMSE(y) =

∫ min{1,y}
0 θeθdθ

emin{1,y} − 1
=

[min{1, y} − 1]emin{1,y} + 1

emin{1,y} − 1
;

θ̂MAP (y) = arg

[
max

0≤θ≤min{1,y}
eθ

]
= min{1, y};

and ∫ θ̂ABS(y)

0
eθdθ =

1

2

[
emin{1,y} − 1

]
which has the solution

θ̂ABS(y) = log

[
emin{1,y} + 1

2

]
.

Exercise 8:

a. We have

w(θ|y) =
e−y+θe−θ

e−y
∫ y
0 dθ

=
1

y
, 0 ≤ θ ≤ y,

and w(θ|y) = 0 otherwise. That is, given y, Θ is uniformly distributed on the interval
[0, y]. From this we have immediately that θ̂MMSE(y) = θ̂ABS(y) = y

2
.

b. We have
MMSE = E {V ar(Θ|Y )} .

Since w(θ|y) is uniform on [0, y], V ar(Θ|Y ) = Y 2

12
. We have

p(y) = e−y
∫ y

0
dθ = ye−y, y > 0,

from which

MMSE =
E{Y 2}

12
=

1

12

∫ ∞

0
y3e−y|dy =

3!

12
=

1

2
.
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c. In this case,

pθ(y) =
n∏

k=1

e−yk+θ, if0 < θ < min{y1, . . . , yn}.

from which

θ̂MAP (y) = arg

[
max

0<θ<min{y1,...,yn}
exp

{
n∑

k=1

yk + (n − 1)θ

}]
= min{y1, . . . , yn}.

Exercise 13:

a. We have
pθ(y) = θT (y)(1 − θ)(n−T (y)),

where

T (y) =
n∑

k=1

yk.

Rewriting this as
pθ(y) = C(φ)eφT (y)

with φ = log(θ/(1 − θ)), and C(φ) = enφ we see from the Completeness Theorem for
Exponential Families that T (y) is a complete sufficient statistic for φ and hence for θ.
(Assuming θ ranges throughout (0, 1).) Thus, any unbiased function of T is an MVUE for
θ. Since Eθ{T (Y )} = nθ, such an estimate is given by

θ̂MV (y) =
T (y)

n
=

1

n

n∑
k=1

yk.

b.

θ̂ML(y) = arg
{

max
0<θ<1

θT (y)(1 − θ)(n−T (y))
}

= T (y)/n = θ̂MV (y).

Since the MLE equals the MVUE, we have immediately that Eθ{θ̂ML(Y )} = θ. The
variance of θ̂ML(Y ) is easily computed to be θ(1 − θ)/n.

c. We have
∂2

∂θ2
log pθ(Y ) = −T (Y )

θ2
− n − T (Y )

(1 − θ)2
,

from which
Iθ =

n

θ
+

n

1 − θ
=

n

θ(1 − θ)
.

The CRLB is thus

CRLB =
1

Iθ

=
θ(1 − θ)

n
= V arθ(θ̂ML(Y )).

3



Exercise 15:

We have

pθ(y) =
e−θθy

y!
, y ∈ 0, 1, . . ..

Thus
∂

∂θ
log pθ(y) =

∂

∂θ
(−θ + y log θ) = −1 +

y

θ
,

and
∂2

∂θ2
log pθ(y) = − y

θ2
< 0.

So
θ̂ML(y) = y.

Since Y is Poisson, we have Eθ{θ̂ML(Y )} = V arθ(θ̂ML(Y )) = θ. So, θ̂ML is unbiased.
Fisher’s information is given by

Iθ = −Eθ

{
∂2

∂θ2
log pθ(Y )

}
=

Eθ{Y }
θ2

=
1

θ
.

So the CRLB is θ, which equals V arθ(θ̂ML(Y )). (Hence, the MLE is an MVUE in this
case.)

Exercise 20:

a. Note that Y1, Y2, . . . , Yn, are independent with Yk having the N (0, 1+θs2
k) distribution.

Thus,
∂

∂θ
log pθ(y) =

n∑
k=1

∂

θ

{
−1

2
log(1 + θs2

k) −
y2

k

2(1 + θs2
k)

}

= −1

2

n∑
k=1

{
s2

k

1 + θs2
k

− y2
ks

2
k

(1 + θs2
k)

2

}
,

from which the likelihood equation becomes

n∑
k=1

s2
k(y

2
k − 1 − θ̂ML(y)s2

k)

(1 + θ̂ML(y)s2
k)

2
= 0.

b.

Iθ = −Eθ

{
∂2

∂θ2
log pθ(Y )

}
=

n∑
k=1

{
s4

kEθ{Y 2
k }

(1 + θs2
k)

3
− s4

k

2(1 + θ2
k)

2

}

=
1

2

n∑
k=1

s4
k

(1 + θs2
k)

2
.
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So the CRLB is
2∑n

k=1
s4
k

(1+θs2
k
)2

.

c. With s2
k = 1, the likelihood equation yields the solution

θ̂ML(y) =

(
1

n

n∑
k=1

y2
k

)
− 1,

which is seen to yield a maximum of the likelihood function.
d. We have

Eθ

{
θ̂ML(Y )

}
=

(
1

n

n∑
k=1

Eθ

{
Y 2

k

})
− 1 = θ.

Similarly, since the Y ′
ks are independent,

V arθ

(
θ̂ML(Y

)
=

1

n2

n∑
k=1

V arθ

(
Y 2

k

)
=

1

n2

n∑
k=1

2(! + θ)2 =
2(1 + θ)2

n
.

Thus, the bias of the MLE is 0 and the variance of the MLE equals the CRLB. (Hence,
the MLE is an MVUE in this case.)

Exercise 22:

a. Note that

pθ(y) = exp

{
n∑

k=1

log F (yk)/θ

}
,

which impies that the statistic
∑n

k=1 log F (yk) is a complete sufficient statistic for θ via
the Completeness Theorem for Exponential Families. We have

Eθ

{
n∑

k=1

log F (Yk)

}
= nEθ{log F (Y1)} =

n

θ

∫ ∞

−∞
log F (Y1) [F (y1)]

(1−θ)/θ f(y1)dy1.

Noting that d log F (y1) = f(y1)
F (y1)

dy1, and that [F (y1)]
1/θ = exp{log F (y1)/θ}, we can make

the substitution x = log F (y1) to yield

Eθ

{
n∑

k=1

log F (Yk)

}
=

n

θ

∫ 0

−∞
xex/θdx = −nθ.

Thus, we have
Eθ

{
θ̂MV (Y )

}
= θ,

which implies that θ̂MV is an MVUE since it is an unbiased function of a complete sufficient
statistic.
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b. [Correction: Note that, for the given prior, the prior mean should be E{Θ} = c
m−1

.]
It is straightforward to see that w(θ|y) is of the same form as the prior with c replaced

by c − ∑n
k=1 log F (yk), and m replaced by n + m. Thus, by inspection

E{Θ|Y } =
c − ∑n

k=1 log F (Yk)

m + n − 1
,

which was to be shown. [Again, the necessary correction has been made.]
c. In this example, the prior and posterior distributions have the same form. The only

change is that the parameters of that distribution are updated as new data is observed.
A prior with this property is said to be a reproducing prior. The prior parameters , c and
m, can be thought of as coming from an earlier sample of size m. As n becomes large
compared to m, the importance of these prior parameters in the estimate diminishes.
Note that

∑n
k=1 log F (Yk) behaves like nE{log F (Y1)} for large n. Thus, with n � m, the

estimate is appropximately given by the MVUE of Part a. Altenatively, with m � n, the
estimate is approximately the prior mean, c/(m − 1). Between these two extremes, there
is a balance between prior and observed information.

Exercise 23:

a. The log-likelihood function is

log p(y|A, φ) = − 1

2σ2

n∑
k=1

[
yk − A sin

(
kπ

2
+ φ

)]2

− n

2
log(2πσ2).

The likelihood equations are thus:

n∑
k=1

[
yk − Â sin

(
kπ

2
+ φ̂

)]
sin

(
kπ

2
+ φ̂

)
= 0,

and

Â
n∑

k=1

[
yk − Â sin

(
kπ

2
+ φ̂

)]
cos

(
kπ

2
+ φ̂

)
= 0.

These equations are solved by the estimates:

ÂML =
√

y2
c + y2

s ,

φ̂ML = tan−1

(
yc

ys

)
,

where

yc =
1

n

n∑
k=1

yk cos

(
kπ

2

)
≡ 1

n

n/2∑
k=1

(−1)ky2k,
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and

ys =
1

n

n∑
k=1

yk sin

(
kπ

2

)
≡ 1

n

n/2∑
k=1

(−1)k+1y2k−1.

b. Appending the prior to the above problem yields MAP estimates:

φ̂MAP = φ̂ML,

and

ÂMAP =
ÂML +

√(
r
n

)2
+ 2(1+α)σ2

n

1 + α
,

where α ≡ 2σ2

nβ2 .

c. Note that, when β → ∞ (and the prior ”diffuses”), the MAP estimate of A does
not approach the MLE of A. However, as n → ∞, the MAP estimate does approach the
MLE.
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