PROBLEMS

Consider the Galois field $GF(2^4)$ given by Table 2.8. The element $\beta = \alpha^7$ is also a primitive element. Let $\mathbf{g}_0(X)$ be the lowest-degree polynomial over GF(2) that has

$$\beta$$
, β^2 , β^3 , β^4

as its roots. This polynomial also generates a double-error-correcting primitive BCH code of length 15.

a. Determine $g_0(X)$.

b. Find the parity-check matrix for this code.

c. Show that $g_0(X)$ is the reciprocal polynomial of the polynomial g(X) that generates the (15, 7) double-error-correcting BCH code given in Example 6.1.

Determine the generator polynomials of all the primitive BCH codes of length 31. Use the Galois field $GF(2^5)$ generated by $\mathbf{p}(X) = 1 + X^2 + X^5$.

6.3 Suppose that the double-error-correcting BCH code of length 31 constructed in Problem 6.2 is used for error correction on a BSC. Decode the received polynomials $\mathbf{r}_1(X) = X^7 + X^{30}$ and $\mathbf{r}_2(X) = 1 + X^{17} + X^{28}$.

6.4 Consider a *t*-error-correcting primitive binary BCH code of length $n = 2^m - 1$. If 2t + 1 is a factor of n, prove that the minimum distance of the code is exactly 2t + 1. (Hint: Let n = l(2t + 1). Show that $(X^n + 1)/(X^l + 1)$ is a code polynomial of weight 2t + 1.)

6.5 Is there a binary t-error-correcting BCH code of length $2^m + 1$ for $m \ge 3$ and $t < 2^{m-1}$? If there is such a code, determine its generator polynomial.

Consider the field $GF(2^4)$ generated by $\mathbf{p}(X) = 1 + X + X^4$ (see Table 2.8). Let α be a primitive element in $GF(2^4)$ such that $\mathbf{p}(\alpha) = 0$. Devise a circuit that is capable of multiplying any element in $GF(2^4)$ by α^7 .

Devise a circuit that is capable of multiplying any two elements in $GF(2^5)$. Use $\mathbf{p}(X) = 1 + X^2 + X^5$ to generate $GF(2^5)$.

Devise a syndrome computation circuit for the binary double-error-correcting (31, 21) BCH code.

6.9 Devise a Chien's searching circuit for the binary double-error-correcting (31, 21) BCH code.

6.10 Consider the Galois field $GF(2^6)$ given by Table 6.2. Let $\beta = \alpha^3$, $l_0 = 2$, and d = 5. Determine the generator polynomial of the BCH code that has

$$\beta^2, \beta^3, \beta^4, \beta^5$$

as its roots (the general form presented at the end of Section 6.1). What is the length of this code?

6.11 Let $l_0 = -t$ and d = 2t + 2. Then we obtain a BCH code of designed distance 2t + 2 whose generator polynomial has

$$\beta^{-t}, \cdots, \beta^{-1}, \beta^0, \beta^1, \cdots, \beta^t$$

and their conjugates as all its roots.

a. Show that this code is a reversible cyclic code.

b. Show that if t is odd, the minimum distance of this code is at least 2t + 4. (*Hint:* Show that $\beta^{-(t+1)}$ and β^{t+1} are also roots of the generator polynomial.)