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We see from Table 12.6 that, in general, for a given rate R, and constraint
length v, the minimum distance dmin of the best block (tail-biting convolutional)
code increases, or the number of nearest neighbors decreases, as the information
block length K* increases. Once K* reaches a certain value, though, the minimum
distance dp;n of the best block (tail-biting convolutional) code is limited by the

free distance dfy. of the best terminated convolutional code with constraint length
v, and no further increase in dy;, is possible; however, the number of nearest
neighbors A4, continues to grow linearly with K*. Once this limit is reached, the
generator sequences gl/) (parity-check sequences h'/) in the rate R;, = 2/3 case)
and the minimum distance dy» stay the same, and in Table 12.6 we simply list
the growth rate of A4,,,. In other words, for a given Ry, and v, block (tail-biting
convolutional) codes improve as K* increases up to a point, and then the codes
get worse. Similarly, we can see from Table 12.6 that for a given R;; and K*, block
(tail-biting convolutional) codes improve as v increases up to a point, and then dyin
and Ag4,;, remain the same. Thus, the best block (tail-biting convolutional) codes
are obtained by choosing the length K* or the constraint length v only as large as is
needed to achieve the desired combination of dpin and Ag4,,,. It is worth noting that
many of the best binary block codes can be represented as tail-biting convolutional
codes, and thus they can be decoded using the ML (Viterbi) or MAP (BCJR)
soft-decision decoding algorithms (see Problem 12.39).

PROBLEMS

12.1 Draw the trellis diagram for the (3, 2, 2) code listed in Table 12.1(d) and an
information sequence of length # = 3 blocks. Find the codeword corresponding
to the information sequence u = (11, 01, 10). Compare the result with (11.16) in
Example 11.2.

12.2 Show that the path v that maximizes E,’Sl log P(r;|v;) also maximizes
E,’LBI ca[log P(ri|vr) + c1], where c; is any real number and c; is any positive real
number.

12.3 Find the integer metric table for the DMC of Figure 12.3 when ¢; = 1and c; = 10.
Use the Viterbi algorithm to decode the received sequence r of Example 12.1
with this integer metric table and the trellis diagram of Figure 12.1. Compare your
answer with the result of Example 12.1.

% 12.4 Consider a binary-input, 8-ary output DMC with transition probabilities P (r|v;)

given by the following table:

- ()]
o0 ! 0, 0, 0; 04 1, 13 1; 1,
1
0 0434 0.197 0.167 0.111 0.058 0.023 0.008 0.002
1 0.002 0.008 0.023 0.058 0.111 0.167 0.197 0434

Find the metric table and an integer metric table for this channel.
& 12.5 Consider the (2, 1, 3) encoder of Figure 11.1 with

G(D)=[1+D*+D* 1+ D+ D*+ D3]
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a. Draw the trellis diagram for an information sequence of length h = 4.

b. Assume a codeword is transmitted over the DMC of Problem 12.4. Use the
Viterbi algorithm to decode the received sequence r = (1511, 1,0y, 0305, 0313,
1,02, 0314, 0507).

% 12.6 The DMC of Problem 12.4 is converted to a BSC by combining the soft-decision
outputs 0y, 02, 03, and 04 into a single hard-decision output 0, and the soft-decision
outputs 14, 1, 13, and 14 into a single hard-decision output 1. A codeword from the
code of Problem 12.5 is transmitted over this channel. Use the Viterbi algorithm
to decode the hard-decision version of the received sequence in Problem 12.5 and
compare the result with Problem 12.5.

12.7 A codeword from the code of Problem 12.5 is transmitted over a continuous-
output AWGN channel. Use the Viterbi algorithm to decode the (normalized by
VEs) received sequence r = (+1.72, +0.93, +2.34, —3.42, —0.14, —2.84, ~1.92,
+0.23, +0.78, —0.63, —0.05, +2.95, ~0.11, —0.55).

12.8 Consider a binary-input, continuous-output AWGN channel with signal-to-noise
ratio E; /Ny = 0 dB.

a. Sketch the conditional pdf’s of the (normalized by +/E;) received signal r;
given the transmitted bits v; = 1.

b. Convert this channel into a binary-input, 4-ary output symmetric DMC by
placing quantization thresholds at the values r; = —1, 0, and + 1, and compute
the transition probabilities for the resulting DMC.

¢. Find the metric table and an integer metric table for this DMC.

d. Repeat parts (b) and (c) using quantization thresholds r; = ~2,0, and + 2.

12.9 Show that (12.21) is an upper bound on P; for d even.

12.10 Consider the (2, 1, 3) encoder of Problem 12.5. Evaluate the upper bounds on
event-error probability (12.25) and bit-error probability (12.29) for a BSC with

transition probability
a. p=01,
b. p=0.01.

(Hint: Use the WEFs derived for this encoder in Example 11.12.)

2.1} Repeat Problem 12.10 using the approximate expressions for P(E) and P,(E)
given by (12.26) and (12.30).

i .12 Consider the (3, 1, 2) encoder of (12.1). Plot the approximate expression (12.36)
for bit-error probability P,(E) on a BSC as a function of E,/Np in decibels.
Also plot on the same set of axes the approximate expression (12.37) for
Pyp(E) without coding. The coding gain (in decibels) is defined as the difference
between the E,/Np ratio needed to achieve a given bit-error probability with
coding and without coding. Plot the coding gain as a function of P,(E). Find
the value of E,/Ny for which the coding gain is 0 dB, that is, the coding
threshold.

12.13 Repeat Problem 12.12 for an AWGN channel with unquantized demodulator
outputs, that is, a continuous-output AWGN channel, using the approximate
expression for P,(E) given in (12.46).

12.14 Consider using the (3, 1, 2) encoder of (12.1) on the DMC of Problem 12.4.
Calculate an approximate value for the bit-error probability P,(E) based on the
bound of (12.39b). Now, convert the DMC to a BSC, as described in Problem
12.6; compute an approximate value for P,(E) on this BSC using (12.30); and
compare the two results.

12.15 Prove that the rate R = 1/2 quick-look-in encoders defined by (12.58) are
noncatastrophic.
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12.16 Consider the following two nonsystematic feedforward encoders: (1) the encoder
for the (2, 1, 7) optimum code listed in Table 12.1(c) and (2) the encoder for the
(2, 1, 7) quick-look-in code listed in Table 12.2. For each of these codes find
a. the soft-decision asymptotic coding gain y;
b. the approximate event-error probability on a BSC with p = 10~2;
c. the approximate bit-error probability on a BSC with p = 10~2;
d. the error probability amplification factor A.
12.17 Using trial-and-error methods, construct a (2, 1, 7) systematic feedforward
encoder with maximum dj.. Repeat Problem 12.16 for this code.
12.18 Consider the (15,7) and (31,16) cyclic BCH codes. For each of these codes find
a. the polynomial generator matrix and a lower bound on dfree for the rate
R = 1/2 convolutional code derived from the cyclic code using Construction
12.1;
b. the polynomial generator matrix and a lower bound on dfree for the rate
R = 1/4 convolutional code derived from the cyclic code using Construction
12.2.
(Hint: dy, is at least one more than the maximum number of consecutive powers
of a that are roots of h(X).)
12.19 Consider the (2, 1, 1) systematic feedforward encoder with G(D) =[1 1+ D}.
a. For a continuous-output AWGN channel and a truncated Viterbi decoder with
path memory t = 2, decode the received sequence r = (41.5339, +0.6390,
~0.6747, —3.0183, +1.5096, +0.7664, —0.4019, +0.3185, +2.7121, —0.7304,
+1.4169, —2.0341, +0.8971, —0.3951, +1.6254, ~1.1768, +2.6954, —1.0575)
corresponding to an information sequence of length 4 = 8. Assume that at
each level the survivor with the best metric is selected and that the information
bit 7 time units back on this path is decoded.
b. Repeat (a) for a truncated Viterbi decoder with path memory 7 = 4.
¢. Repeat (a) for a Viterbi decoder without truncation.
d. Are the final decoded paths the same in all cases ? Explain.
12.20 Consider the (3, 1, 2) encoder of Problem 11.19.
a. Find Aj(W, X, L), A2(W, X, L), and A3(W, X, L).
b. Find 5.
¢e. Find d(z) and Agry fort=0,1,2,--- , Tpin.
d. Find an expression for lim,_, o, d(7).
1221 A codeword from the trellis diagram of Figure 12.1 is transmitted over a BSC. To
determine correct symbol synchronization, each of the three 21-bit subsequences
of the sequence

r=01110011001011001000111

must be decoded, where the two extra bits in r are assumed to be part of a

preceding and/or a succeeding codeword. Decode each of these subsequences

and determine which one is most likely to be the correctly synchronized received

sequence.

12.22 Consider the binary-input, continuous-output AWGN channel of Problem 12.8.

a. Using the optimality condition of (12.84), calculate quantization thresholds for
DMCGs with Q = 2, 4, and 8 output symbols. Compare the thresholds obtained
for @ = 4 with the values used in Problem 12.8.

b. Find the value of the Bhattacharyya parameter Dy for each of these channels
and for a continuous-output AWGN channel.

c. Fixing the signal energy vE; = 1and allowing the channel SNR E, /N to vary.
determine the increase in the SNR required for each of the DMCs to achieve
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the same value of Dy as the continuous-output channel. This SNR difference is
called the decibel loss associated with receiver quantization. (Note: Changing
the SNR also changes the quantization thresholds.)
(Hint: You will need to write a computer program to solve this problem.)
1223 Verify that the two expressions given in (12.89) for the modified metric used in
the SOVA algorithm are equivalent.
12.24 Define L(r) = In A(r) as the log-likelihood ratio, or L-value, of a received symbol
r at the output of an unquantized binary input channel. Show that the L-value of
an AWGN channel with binary inputs ++/E, and SNR E, /No is given by

L(r) = (4VEs/Ny)r.

12.25 Verify that the expressions given in (12.98) are correct, and find the constant c.
1226 Consider the encoder, channel, and received sequence of Problem 12.19.
a. Use the SOVA with full path memory to produce a soft output value for each
decoded information bit,
b. Repeat (a) for the SOVA with path memory t = 4.
12.27 Derive the expression for the backward metric given in (12.117).

— _Latn)/.

12.28 Verify the derivation of (12.123) and show that A; = ¢ +e-Lat jg independent
of the actual value of u;.

12.29 Derive the expressions for the max*(x, y) and max*(x, y, z) functions given in
(12.127) and (12.131), respectively.

12.30 Consider the encoder and received sequence of Problem 12.19,

a. For an AWGN channel with E, /No = 1/2 (~3 dB), use the log-MAP version
of the BCJR algorithm to produce a soft output value for each decoded
information bit. Find the decoded information sequence i.

b. Repeat (a) using the Max-log-MAP algorithm.

1231 Repeat Problem 12.5 using the probability-domain version of the BCJR algorithm.

12.32 Show that using the normalized forward and backward metrics A;(s) and Bi(s")
instead of a;(s) and Bi(s), respectively, to evaluate the joint pdf’s in (12.115) has
no effect on the APP L-values computed using (12.111).

12.33 Verify all the computations leading to the determination of the final APP L-values
in Example 12.9,

12.34 Repeat Example 12.9 for the case when the DMC is converted to a BSC,
as described in Problem 12.6, and the received sequence r is replaced by its
hard-decision version. Compare the final APP L-values in the two cases.

1235 Consider an 8-state rate R = 1 /2 mother code with generator matrix

GD)=[1+D+D* 1+D?+ D3

Find puncturing matrices P for the rate R = 2/3 and R = 3/4 punctured codes
that give the best free distances. Compare your results with the free distances

| obtained using the 8-state mother code in Table 12.4.

| 1236 Prove that the subcode corresponding to any nonzero state S;, i # 0, in a tail-

‘ biting convolutional code is a coset of the subcode corresponding to the all-zero
state S.

12.37 For the rate R = 1/2 feedback encoder tail-biting trellis in Figure 12.24(b),
determine the parameters dp,;, and Ag,,;, for information block lengths K* = 7, 8,
and 9. Is it possible to form a tail-biting code in each of these cases?

12.38 Verify that the row space of the tail-biting generator matrix in (12.164) is identical
to the tail-biting code of Table 12.5(a).



