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Linear Block Codes
 In a digital communication system, the sequence of bits to be transmitted are arranged in 

blocks of 𝑘𝑘 bits. So, there are 2𝑘𝑘 possible 𝑘𝑘-tuples to be transmitted. In a block code, the 
encoder assigns 𝑛𝑛 bits to each 𝑘𝑘-tuple where 𝑛𝑛 > 𝑘𝑘. For a block code to be useful we require 
that all of 2𝑘𝑘, 𝑛𝑛-tuples (called codewords) be distinct. That is there should be a 1-to-1 
correspondence between the input 𝑢𝑢 and the output 𝑣𝑣 of the encoder.

 Unless the codewords are structured according to a certain structure, the encoding (and 
obviously decoding) will be prohibitively complex. That is why we are interested in linear
block codes. A code is linear if a linear combination of any two of its codewords is a 
codeword, or equivalently: 

 Definition: a block code of length 𝑛𝑛 and 2𝑘𝑘 codewords is an (𝑛𝑛, 𝑘𝑘) linear code if and only if 
its 2𝑘𝑘 codewords form the 𝑘𝑘-dimensional subspace of the vector space of 𝑛𝑛-tuples over 
𝐺𝐺𝐺𝐺(2). 

Block Encoder
k bits n bits



Linear Block Codes
 A linear (𝑛𝑛, 𝑘𝑘) code 𝐶𝐶 is a 𝑘𝑘-dimensional subspace of all the binary 𝑛𝑛-tuples (𝑉𝑉𝑛𝑛). So,

we can find 𝑘𝑘 linearly independent members of 𝐶𝐶, say 𝑔𝑔0,𝑔𝑔1,⋯ ,𝑔𝑔𝑘𝑘−1 such that any
𝑣𝑣 ∈ 𝑉𝑉 can be written as:

𝑣𝑣 = 𝑢𝑢0𝑔𝑔0 + 𝑢𝑢1𝑔𝑔1 + ⋯+ 𝑢𝑢𝑘𝑘−1𝑔𝑔𝑘𝑘−1.

 Arranging these 𝑘𝑘 linearly independent in a matrix:

𝐺𝐺 =

𝑔𝑔0
𝑔𝑔1
⋮

𝑔𝑔𝑘𝑘−1

=

𝑔𝑔00 𝑔𝑔01 ⋯ 𝑔𝑔0,𝑛𝑛−1
𝑔𝑔10 𝑔𝑔11 ⋯ 𝑔𝑔1,𝑛𝑛−1
⋮

𝑔𝑔𝑘𝑘−1,0

⋮
𝑔𝑔𝑘𝑘−1,1

⋮
⋯ 𝑔𝑔𝑘𝑘−1,𝑛𝑛−1

where 𝐺𝐺 is a 𝑘𝑘 × 𝑛𝑛, binary matrix. 
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Linear Block Codes
 Let 𝑢𝑢 = (𝑢𝑢0, 𝑢𝑢1,⋯ ,𝑢𝑢𝑘𝑘−1) be the message to be sent. Then, the codeword can 

be given as:

𝑣𝑣 = 𝑢𝑢 � 𝐺𝐺 = 𝑢𝑢0,𝑢𝑢1,⋯ ,𝑢𝑢𝑘𝑘−1

𝑔𝑔0
𝑔𝑔1
⋮

𝑔𝑔𝑘𝑘−1

= 𝑢𝑢0𝑔𝑔0 + 𝑢𝑢1𝑔𝑔1 + ⋯+ 𝑢𝑢𝑘𝑘−1𝑔𝑔𝑘𝑘−1.

 That is, rows of 𝐺𝐺, span or generate 𝐶𝐶. That is why 𝐺𝐺 is called the generator 
matrix.

 Example (Hamming code): Consider (7,4) code we saw before:

𝐺𝐺 =

𝑔𝑔0
𝑔𝑔1
𝑔𝑔2
𝑔𝑔3

=

1 1 0 1 0 0 0
0 1 1 0 1 0 0
1
1

1
0

1 0 0 1 0
1 0 0 0 1



Linear Block Codes
 Let’s message be 𝑢𝑢 = (1 1 0 1). Then,

𝑣𝑣 = 1 � 𝑔𝑔0 + 1 � 𝑔𝑔1 + 0 � 𝑔𝑔2 + 1 � 𝑔𝑔3
= 1101000 + 0110100 + 1010001 = (0001101)

(7, 4) Hamming Code

message codeword
0000 0000000
1000 1101000
0100 0110100
1100 1011100
0010 1110010
1010 0011010
0110 1000110
1110 0101110
0001 1010001
1001 0111001
0101 1100101
1101 0001101
0011 0100011
1011 1001011
0111 0010111
1111 1111111



Linear Block Codes
 Definition: a block code is called systematic if its message bits are consecutive and so 

are its parity bits.

 The generator matrix of a systematic linear code consists of a 𝑘𝑘 × 𝑘𝑘 identity matrix (to 
repeat the message bits) and a 𝑘𝑘 × (𝑛𝑛 − 𝑘𝑘) parity matrix to generate parity bits:

𝐺𝐺 =

𝑔𝑔0
𝑔𝑔1
⋮

𝑔𝑔𝑘𝑘−1

=

𝑝𝑝00 𝑝𝑝01 ⋯ 𝑝𝑝0,𝑛𝑛−𝑘𝑘−1 1 0 ⋯ 0
𝑝𝑝10 𝑝𝑝11 ⋯ 𝑝𝑝1,𝑛𝑛−𝑘𝑘−1 0 1 ⋯ 0
⋮

𝑝𝑝𝑘𝑘−1,0

⋮
𝑝𝑝𝑘𝑘−1,1

⋮
⋯ 𝑝𝑝𝑘𝑘−1,𝑛𝑛−𝑘𝑘−1 0 0 ⋯ 1

 So, 𝐺𝐺 = [𝑃𝑃 𝐼𝐼𝑘𝑘], i.e., for an input 𝑢𝑢 = 𝑢𝑢0,𝑢𝑢1,⋯ ,𝑢𝑢𝑘𝑘−1 , the output of the encoder is:
𝑣𝑣 = 𝑣𝑣0,𝑣𝑣1,⋯ , 𝑣𝑣𝑛𝑛−1 = 𝑢𝑢0,𝑢𝑢1,⋯ ,𝑢𝑢𝑘𝑘−1 𝐺𝐺.

 So, 𝑣𝑣𝑖𝑖 = 𝑢𝑢0𝑝𝑝0𝑖𝑖 + 𝑢𝑢1𝑝𝑝1𝑖𝑖 + ⋯+ 𝑢𝑢𝑘𝑘−1𝑝𝑝𝑘𝑘−1,𝑖𝑖 for 0 ≤ 𝑖𝑖 < 𝑛𝑛 − 𝑘𝑘 and 𝑣𝑣𝑛𝑛−𝑘𝑘+𝑖𝑖 = 𝑢𝑢𝑖𝑖 for 0 ≤
𝑖𝑖 < 𝑘𝑘.

Parity Message

k digits n-k digits 



Linear Block Codes
 Going back to our (7,4) example:

𝑣𝑣 = 𝑢𝑢0,𝑢𝑢1,⋯ ,𝑢𝑢𝑘𝑘−1

1 1 0 1 0 0 0
0 1 1 0 1 0 0
1
1

1
0

1 0 0 1 0
1 0 0 0 1

.

 Therefore,

𝑣𝑣0 = 𝑢𝑢0 + 𝑢𝑢2 + 𝑢𝑢3
𝑣𝑣1 = 𝑢𝑢0 + 𝑢𝑢1 + 𝑢𝑢2
𝑣𝑣2 = 𝑢𝑢1 + 𝑢𝑢2 + 𝑢𝑢3

And:

𝑣𝑣3 = 𝑢𝑢0, 𝑣𝑣4 = 𝑢𝑢1, 𝑣𝑣5 = 𝑢𝑢2, 𝑣𝑣6 = 𝑢𝑢3.



Parity Check Matrix
 Let 𝐺𝐺 be the generating matrix of a code 𝐶𝐶. Form an (𝑛𝑛 − 𝑘𝑘) × 𝑛𝑛 matrix 𝐻𝐻

whose rows are orthogonal to all rows of 𝐺𝐺. For a systematic code 𝐺𝐺 = 𝑃𝑃|𝐼𝐼𝑘𝑘
and 𝐻𝐻 = [𝐼𝐼𝑛𝑛−𝑘𝑘|𝑃𝑃𝑇𝑇], where 𝑃𝑃𝑇𝑇 is the transpose of 𝑃𝑃.

𝐻𝐻 𝐼𝐼𝑛𝑛−𝑘𝑘|𝑃𝑃𝑇𝑇 =

1 0 0
0 1 0

⋯ 0 𝑝𝑝00
⋯ 0 𝑝𝑝01

⋮ ⋮ ⋮
0 0 0

⋯ ⋮ ⋮
⋯ 1 𝑝𝑝0,𝑛𝑛−𝑘𝑘−1

⋯
⋯
⋯
⋯

𝑝𝑝𝑘𝑘−1,0
𝑝𝑝𝑘𝑘−1,1
⋮

𝑝𝑝𝑘𝑘−1,𝑛𝑛−𝑘𝑘−1

 Then, we have:

𝐺𝐺 � 𝐻𝐻𝑇𝑇 = 0.

Therefore, for any 𝑣𝑣 ∈ 𝐶𝐶 ⇒ 𝑣𝑣 = 𝑢𝑢 � 𝐺𝐺 � 𝐻𝐻𝑇𝑇 = 0.

 For the (7, 4) Hamming code:

𝐻𝐻 =
1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1

.



Encoding of Linear Block Codes
 Note that a parity check matrix can generate an (𝑛𝑛, 𝑛𝑛 − 𝑘𝑘) code. Each codeword of this

code, 𝐶𝐶𝑑𝑑 is orthogonal to each codeword of 𝐶𝐶. 𝐶𝐶𝑑𝑑 is called the dual code of 𝐶𝐶.
 To encode a linear block code, we use XOR gates to form parities. Following figure

shows how a systematic linear block code is encoded:
 Bits of the message are fed to a shift register and also go to the channel. When they are

in the shift register, they are linearly combined according to:
𝑣𝑣𝑖𝑖 = 𝑢𝑢0𝑝𝑝0𝑖𝑖 + 𝑢𝑢1𝑝𝑝1𝑖𝑖 + ⋯+ 𝑢𝑢𝑘𝑘−1𝑝𝑝𝑘𝑘−1,𝑖𝑖 ,

and placed in an output register and fed to channel.



Encoding of Linear Block Codes
 As an example, for the (7, 4) Hamming code, the decoder structure is:



Syndrome Decoding of Linear Block Codes

Assume that the message 𝑢𝑢 is encoded as 𝑣𝑣 = 𝑢𝑢 � 𝐺𝐺. 
 If there is no error, at the receiver we have 𝑟𝑟 = 𝑣𝑣 and no need for error detection and error 

correction. 
 But if there is an error, we get: 𝑟𝑟 = 𝑣𝑣 + 𝑒𝑒, where 𝑒𝑒 = (𝑒𝑒0, 𝑒𝑒1,⋯ , 𝑒𝑒𝑛𝑛) is an error vector. 

 If we multiply 𝑟𝑟 by 𝐻𝐻𝑇𝑇, we get: 𝑟𝑟 � 𝐻𝐻𝑇𝑇 = 𝑣𝑣 + 𝑒𝑒 � 𝐻𝐻𝑇𝑇 = 𝑣𝑣 � 𝐻𝐻𝑇𝑇 + 𝑒𝑒 � 𝐻𝐻𝑇𝑇 = 𝑒𝑒 � 𝐻𝐻𝑇𝑇

 It is important to note that the result does not depend on the message, but on the error
pattern 𝑒𝑒. We call the vector 𝑠𝑠 = 𝑟𝑟 � 𝐻𝐻𝑇𝑇 the syndrome.

 Since 𝑟𝑟 is an 𝑛𝑛-vector and 𝐻𝐻𝑇𝑇 is 𝑛𝑛 × (𝑛𝑛 − 𝑘𝑘), there are (𝑛𝑛 − 𝑘𝑘) bits in vector 𝑠𝑠. So, 𝑠𝑠
can point to 2𝑛𝑛−𝑘𝑘 patterns (one correct transmission 0, 0,⋯ , 0 and 2𝑛𝑛−𝑘𝑘 − 1 error
patterns).



Syndrome Decoding of Linear Block Codes
 Example: consider the (7, 4) code. Let 𝑟𝑟 = (𝑟𝑟0, 𝑟𝑟1, 𝑟𝑟2, 𝑟𝑟3, 𝑟𝑟4, 𝑟𝑟5, 𝑟𝑟6) be the received 

vector (output of demodulator). Then the syndrome is:

𝑠𝑠 = 𝑠𝑠0, 𝑠𝑠1, 𝑠𝑠2 = (𝑟𝑟0, 𝑟𝑟1, 𝑟𝑟2, 𝑟𝑟3, 𝑟𝑟4, 𝑟𝑟5, 𝑟𝑟6)

1 0 0
0 1 0
0
1
0
1
1

0
1
1
1
0

1
0
1
1
1

or:
𝑠𝑠0 = 𝑟𝑟0 + 𝑟𝑟3 + 𝑟𝑟5 + 𝑟𝑟6
𝑠𝑠1 = 𝑟𝑟1 + 𝑟𝑟3 + 𝑟𝑟4 + 𝑟𝑟5
𝑠𝑠2 = 𝑟𝑟2 + 𝑟𝑟4 + 𝑟𝑟5 + 𝑟𝑟6



Syndrome Decoding of Linear Block Codes
 We saw that:

𝑠𝑠 = 𝑟𝑟 � 𝐻𝐻𝑇𝑇 = 𝑒𝑒 � 𝐻𝐻𝑇𝑇 .
So, we can write 𝑠𝑠𝑖𝑖’s as:

𝑠𝑠𝑖𝑖 = 𝑟𝑟𝑖𝑖 + 𝑟𝑟𝑛𝑛−𝑘𝑘𝑝𝑝0𝑖𝑖 + 𝑟𝑟𝑛𝑛−𝑘𝑘+1𝑝𝑝1𝑖𝑖 + ⋯+ 𝑟𝑟𝑛𝑛−1𝑝𝑝𝑘𝑘−1,𝑖𝑖 , 𝑖𝑖 = 0, 1,⋯ ,𝑛𝑛 − 𝑘𝑘 − 1.
 Since 𝑟𝑟 = 𝑣𝑣 + 𝑒𝑒, we have:

𝑠𝑠𝑖𝑖 = 𝑣𝑣𝑖𝑖 + 𝑒𝑒𝑖𝑖 + 𝑣𝑣𝑛𝑛−𝑘𝑘 + 𝑒𝑒𝑛𝑛−𝑘𝑘 𝑝𝑝0𝑖𝑖 + ⋯+ 𝑣𝑣𝑛𝑛−1 + 𝑒𝑒𝑛𝑛−1 𝑝𝑝𝑘𝑘−1,𝑖𝑖 .

But 𝑣𝑣𝑖𝑖 + 𝑣𝑣𝑛𝑛−𝑘𝑘𝑝𝑝0𝑖𝑖 + ⋯+ 𝑣𝑣𝑛𝑛−1𝑝𝑝𝑘𝑘−1,𝑖𝑖 = 0 and 

𝑠𝑠𝑖𝑖 = 𝑒𝑒𝑖𝑖 + 𝑒𝑒𝑛𝑛−𝑘𝑘𝑝𝑝0𝑖𝑖 + 𝑒𝑒𝑛𝑛−𝑘𝑘+1𝑝𝑝1𝑖𝑖 + ⋯+ 𝑒𝑒𝑛𝑛−1𝑝𝑝𝑘𝑘−1,𝑖𝑖 , 𝑖𝑖 = 0, 1,⋯ ,𝑛𝑛 − 𝑘𝑘 − 1.
 This shows that 𝑛𝑛 − 𝑘𝑘 syndromes provide us with 2𝑛𝑛−𝑘𝑘 equations about error pattern.

There are 2𝑛𝑛 error patterns, but we have 2𝑛𝑛−𝑘𝑘 equations. So, we cannot catch all errors.
 In fact, there are 2𝑘𝑘 error patterns for each syndrome. To put it another way, the code 𝐶𝐶

is a subgroup of the set of 𝑛𝑛-tuples. The set of 𝑛𝑛-tuples is partitioned into 2𝑛𝑛−𝑘𝑘 cosets
of 𝐶𝐶. All 𝑛𝑛-tuples in one coset result in the same syndrome. So, the syndrome only
points us to a coset of 𝐶𝐶 not to a single error pattern. Out of 2𝑘𝑘 patterns (𝑛𝑛-tuples in the
coset), we decide (based on the property of the channel) which error has occurred.



Syndrome Decoding of Linear Block Codes
 Example: take again the (7, 4) code. Assume that we receive 𝑟𝑟 = (1001001). Then,

𝑠𝑠 = 𝑟𝑟 � 𝐻𝐻𝑇𝑇 = 1, 1, 1 .
This means that 

1 = 𝑒𝑒0 + 𝑒𝑒3 + 𝑒𝑒5 + 𝑒𝑒6
1 = 𝑒𝑒1 + 𝑒𝑒3 + 𝑒𝑒4 + 𝑒𝑒5
1 = 𝑒𝑒2 + 𝑒𝑒4 + 𝑒𝑒5 + 𝑒𝑒6

 Any of the following 24 = 16 patterns satisfy these equations:
To decide which error to choose depends on our expectation 
about the channel behaviours. For example, in a BSC channel, 
we know that the probability of a single error is more than multiple errors. 
So, we decide 𝑒𝑒 = (0000010) as the error and therefore, the codeword transmitted must 
have been:

𝑣𝑣 = 𝑟𝑟 + 𝑒𝑒 = 1001001 + 0000010 = 1001011 .



Minimum Distance of Linear Codes
 Hamming distance 𝑑𝑑(𝑣𝑣,𝑤𝑤) between two vectors 𝑣𝑣 and 𝑤𝑤 is the number of places they are

different. In binary case, the distance 𝑑𝑑(𝑣𝑣,𝑤𝑤) is the weight (the number of places a vector is
non-zero) of 𝑣𝑣 + 𝑤𝑤 or

𝑑𝑑 𝑣𝑣,𝑤𝑤 = 𝑤𝑤(𝑣𝑣,𝑤𝑤)

 The minimum distance of a code 𝐶𝐶 is the minimum value of 𝑑𝑑 𝑣𝑣,𝑤𝑤 for all non-identical 𝑣𝑣
and 𝑤𝑤 ∈ 𝐶𝐶

𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑚𝑚 𝑑𝑑 𝑣𝑣,𝑤𝑤 : 𝑣𝑣,𝑤𝑤 ∈ 𝐶𝐶,𝑣𝑣 ≠ 𝑤𝑤 .

 Since for any 𝑣𝑣 and 𝑤𝑤 ∈ 𝐶𝐶, 𝑣𝑣 + 𝑤𝑤 ∈ 𝐶𝐶 then the minimum distance of a linear block code is
equal to minimum weight of its non-zero codewords:

𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑚𝑚 𝑤𝑤 𝑣𝑣 + 𝑤𝑤 : 𝑣𝑣,𝑤𝑤 ∈ 𝐶𝐶, 𝑣𝑣 ≠ 𝑤𝑤

= 𝑚𝑚𝑚𝑚𝑚𝑚 𝑤𝑤 𝑥𝑥 : 𝑥𝑥 ∈ 𝐶𝐶, 𝑥𝑥 ≠ 0 = 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚.
Therefore, we have:

Theorem 1: the minimum distance of a linear block code is equal to the minimum weight of its
non-zero codewords.



Minimum Distance of Linear Codes
 Theorem 2: let 𝐶𝐶 be an (𝑛𝑛, 𝑘𝑘) linear block code with parity check matrix 𝐻𝐻.
• For any codeword 𝑣𝑣 ∈ 𝐶𝐶 of weight 𝑙𝑙, there are 𝑙𝑙 columns of 𝐻𝐻 such that their vector sum is 0.
• If there are 𝑙𝑙 columns of 𝐻𝐻 whose vector sum is 0, then there is a codeword 𝑣𝑣 ∈ 𝐶𝐶 with weight 𝑙𝑙.
 Proof: let 𝑣𝑣 = (𝑣𝑣0, 𝑣𝑣1,⋯ , 𝑣𝑣𝑛𝑛−1) have 𝑙𝑙 non-zero elements at places 𝑖𝑖1, 𝑖𝑖2,⋯ , 𝑖𝑖𝑙𝑙. Then,

𝑣𝑣 � 𝐻𝐻𝑇𝑇 = 0 ⇒ 𝑣𝑣0ℎ0 + 𝑣𝑣1ℎ1 + ⋯+ 𝑣𝑣𝑛𝑛−1ℎ𝑛𝑛−1 = 0
⇒ 𝑣𝑣𝑖𝑖1ℎ𝑖𝑖1 + 𝑣𝑣𝑖𝑖2ℎ𝑖𝑖2 + ⋯+ 𝑣𝑣𝑖𝑖𝑙𝑙ℎ𝑖𝑖𝑙𝑙 = 0

⇒ ℎ𝑖𝑖1 + ℎ𝑖𝑖2 + ℎ𝑖𝑖3 + ⋯+ ℎ𝑖𝑖𝑙𝑙 = 0
So, part 1 is proved.
Now assume that:

ℎ𝑖𝑖1 + ℎ𝑖𝑖2 + ℎ𝑖𝑖3 + ⋯+ ℎ𝑖𝑖𝑙𝑙 = 0.
Take 𝑥𝑥 = (𝑥𝑥0, 𝑥𝑥1,⋯ , 𝑥𝑥𝑛𝑛−1) such that:

�
𝑥𝑥𝑗𝑗 = 1 𝑎𝑎𝑎𝑎 𝑗𝑗 = 𝑖𝑖1, 𝑖𝑖2,⋯ , 𝑖𝑖𝑙𝑙
𝑥𝑥𝑗𝑗 = 0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜.

Then, 
𝑥𝑥 � 𝐻𝐻𝑇𝑇 = 𝑥𝑥0ℎ0 + 𝑥𝑥1ℎ1 + ⋯+ 𝑥𝑥𝑛𝑛−1ℎ𝑛𝑛−1

= 𝑥𝑥𝑖𝑖1ℎ𝑖𝑖1 + 𝑥𝑥𝑖𝑖2ℎ𝑖𝑖2 + ⋯+ 𝑥𝑥𝑖𝑖𝑙𝑙ℎ𝑖𝑖𝑙𝑙
= ℎ𝑖𝑖1 + ℎ𝑖𝑖2 + ⋯+ ℎ𝑖𝑖𝑙𝑙 = 0,

so, 𝑥𝑥 ∈ 𝐶𝐶.



Error Detection Capability of Linear Block Codes
 Corollary 2.1: let 𝐶𝐶 be a linear block code with parity check matrix 𝐻𝐻. If no 𝑑𝑑 − 1 or less columns of 𝐻𝐻

add to 0, then minimum weight of 𝐻𝐻 is at least 𝑑𝑑.
 Corollary 2.2: the minimum distance of a linear block code 𝐶𝐶 is the smallest number of columns of 𝐻𝐻

adding to 0.

 If the minimum distance of a code is 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚, it can detect any error pattern with
𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 − 1 or less errors.

 Definition: assume that 𝐴𝐴0,𝐴𝐴1,𝐴𝐴2,⋯ ,𝐴𝐴𝑛𝑛 are the number of codewords with weight 0, 1, 2,⋯ ,𝑛𝑛 in a
code 𝐶𝐶. 𝐴𝐴0,𝐴𝐴1,𝐴𝐴2,⋯ ,𝐴𝐴𝑛𝑛 are called weight distribution of the code.

 For example, for (7, 4) Hamming code,
𝐴𝐴0 = 𝐴𝐴7 = 1,  𝐴𝐴3 = 7,  𝐴𝐴4 = 7,  and 𝐴𝐴𝑖𝑖 = 0 otherwise.

 If we send a codeword 𝑣𝑣 and we receive 𝑟𝑟 = 𝑣𝑣 + 𝑒𝑒, we can detect errors unless 𝑒𝑒 ∈ 𝐶𝐶. So, 𝑝𝑝𝑢𝑢 𝐸𝐸 =
∑𝑖𝑖=1𝑛𝑛 𝐴𝐴𝑖𝑖(1 − 𝑝𝑝)𝑛𝑛−𝑖𝑖𝑝𝑝𝑖𝑖, where 𝑝𝑝𝑢𝑢 𝐸𝐸 is the probability of undetected error and 𝑝𝑝 is the probability of error
of modulation-demodulation.

For the (7, 4) code, we have:

𝑝𝑝𝑢𝑢 𝐸𝐸 = 7𝑝𝑝3(1 − 𝑝𝑝)4+7𝑝𝑝4(1 − 𝑝𝑝)3+𝑝𝑝7.

 So, if 𝑝𝑝 = 10−2, we get 𝑝𝑝𝑢𝑢 𝐸𝐸 = 7 × 10−6. That is if one million bits are transmitted on the average 7
errors go through undetected.



Error correction capability of Linear Block Codes
 A code 𝐶𝐶 with minimum distance 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 can correct 𝑡𝑡 = 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚−1

2
and less errors. ( 𝑖𝑖 denotes

the floor, i.e., the largest integer less than 𝑖𝑖). 𝑡𝑡 = 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚−1
2

means that 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 = 2𝑡𝑡 + 1 or
𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 = 2𝑡𝑡 + 2 or 2𝑡𝑡 + 1 ≤ 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 2𝑡𝑡 + 2.

Proof: We use the Triangle inequality: 𝑑𝑑 𝑣𝑣, 𝑟𝑟 + 𝑑𝑑(𝑤𝑤, 𝑟𝑟) ≥ 𝑑𝑑(𝑣𝑣,𝑤𝑤)

𝑑𝑑 𝑣𝑣,𝑤𝑤 ≥ 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 ≥ 2𝑡𝑡 + 1.

Let 𝑑𝑑 𝑣𝑣, 𝑟𝑟 = 𝑡𝑡′, then: 𝑑𝑑 𝑤𝑤, 𝑟𝑟 ≥ 2𝑡𝑡 + 1 − 𝑡𝑡′. If 𝑡𝑡′ ≤ 𝑡𝑡, then 𝑑𝑑 𝑤𝑤, 𝑟𝑟 ≥ 𝑡𝑡. This means if the
distance between the received vector and the transmitted codeword is less than or equal to 𝑡𝑡, the
received vector is closer to this codeword, say 𝑣𝑣, than any other codeword 𝑤𝑤.

 A code 𝐶𝐶 with minimum distance 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 can correct 𝑡𝑡 = 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚−1
2

errors. It may correct some
of the error patterns of weight higher than 𝑡𝑡, but it cannot correct all of those with 𝑡𝑡 + 1
errors. Probability of error is upper bounded as

𝑝𝑝 𝐸𝐸 ≤ �
𝑖𝑖=𝑡𝑡+1

𝑛𝑛
𝑛𝑛
𝑖𝑖 𝑝𝑝𝑖𝑖 1 − 𝑝𝑝 𝑛𝑛−𝑖𝑖 .



Erasure Decoding 
 Sometimes instead of deciding 0 or 1 at the output of the demodulator, we decide 0 and

1 for those received values far away zero and 𝑒𝑒 or erasure for those close to zero.

 A linear block code with 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 can correct 𝛾𝛾 errors and 𝑒𝑒 erasures such that:

𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 ≥ 2𝛾𝛾 + 𝑒𝑒 + 1.

Error and Erasure Channel                              Erasure Channel

𝐶𝐶 = 1 − 𝛼𝛼



Standard Arrays
 We said that a code of length 𝑛𝑛 and dimension 𝑘𝑘, i.e., an (𝑛𝑛, 𝑘𝑘) code partitions the set 

𝑉𝑉𝑛𝑛 of 𝑛𝑛-tuples into 2𝑛𝑛−𝑘𝑘 cosets of the code 𝐶𝐶. If we write elements of 𝐶𝐶 in a row and 
then from 2𝑛𝑛 − 2𝑘𝑘 remaining 𝑛𝑛-tuples by taking a vector 𝑒𝑒2, add 𝑒𝑒2 to each element of 
𝐶𝐶 and write in the second row, then taking another unused element of the 𝑛𝑛-tuples say 
𝑒𝑒3, add it to each codeword and write in the second row and continue this until we have 
used all 𝑛𝑛-tuples, we get a standard array. 

 Theorem 3: no two 𝑛𝑛-tuples in the same row are identical. Every 𝑛𝑛-tuple is in one and
only one row.

 Proof: since 𝐶𝐶 is a subgroup of 𝑉𝑉𝑛𝑛 and each row is a coset of 𝐶𝐶.

𝑣𝑣1 = 0 𝑣𝑣2 ⋯ 𝑣𝑣𝑖𝑖 ⋯ 𝑣𝑣2𝑘𝑘

𝑒𝑒2 𝑒𝑒2 + 𝑣𝑣2 ⋯ 𝑒𝑒2 + 𝑣𝑣𝑖𝑖 ⋯ 𝑒𝑒2 + 𝑣𝑣2𝑘𝑘

𝑒𝑒3 𝑒𝑒3 + 𝑣𝑣2 ⋯ 𝑒𝑒3 + 𝑣𝑣𝑖𝑖 ⋯ 𝑒𝑒3 + 𝑣𝑣2𝑘𝑘

⋮ ⋮ ⋮ ⋮

𝑒𝑒𝑙𝑙 𝑒𝑒𝑙𝑙 + 𝑣𝑣2 ⋯ 𝑒𝑒𝑙𝑙 + 𝑣𝑣𝑖𝑖 ⋯ 𝑒𝑒𝑙𝑙 + 𝑣𝑣2𝑘𝑘

⋮ ⋮ ⋮ ⋮

𝑒𝑒2𝑛𝑛−𝑘𝑘 𝑒𝑒2𝑛𝑛−𝑘𝑘 + 𝑣𝑣2 ⋯ 𝑒𝑒2𝑛𝑛−𝑘𝑘 + 𝑣𝑣𝑖𝑖 ⋯ 𝑒𝑒2𝑛𝑛−𝑘𝑘 + 𝑣𝑣2𝑘𝑘



Standard Arrays
 Since a code 𝐶𝐶 with minimum distance 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 can correct up to 𝑡𝑡 = 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚−1

2
errors, we

can use as the first coset leaders (𝑒𝑒𝑖𝑖’s) the patterns with 𝑡𝑡 and less 1’s. this covers for:

𝑛𝑛
0 + 𝑛𝑛

1 + ⋯+ 𝑛𝑛
𝑡𝑡 = �

𝑖𝑖=0

𝑡𝑡
𝑛𝑛
𝑖𝑖

coset leaders, but this sum may not be equal to 2𝑛𝑛−𝑘𝑘. So, we may add some error patterns
with two or more errors.

 Definition: if ∑𝑖𝑖=0𝑡𝑡 𝑛𝑛
𝑖𝑖 = 2𝑛𝑛−𝑘𝑘, we say that the (𝑛𝑛, 𝑘𝑘) code is perfect.

(7, 4) code is perfect since it has 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 = 3 and therefore, 𝑡𝑡 = 1 and

�
𝑖𝑖=0

𝑡𝑡
𝑛𝑛
𝑖𝑖 = 7

0 + 7
1 = 1 + 7 = 8 = 23 = 2𝑛𝑛−𝑘𝑘 .



Standard Arrays
 Note that since the elements on each row of the standard array are the 2𝑘𝑘

codewords each added to a unique 𝑛𝑛-tuple (the coset leader), the syndromes
of all members of a coset are the same. So, by finding the syndrome, we find
out in what row of the standard array the received vector and hopefully the
transmitted codeword is. We can then output the coset leader as the error
pattern. For small codes, a lookup table is feasible. But for longer codes, we
need to calculate the error based on the syndrome
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