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Outline of this lecture

 In this lecture we cover the following:

 Brief discussion of Hamming codes,

 Cyclic Codes.



Hamming Codes

 Code length: 𝑛 = 2𝑚 − 1

 # of information bits: 𝑘 = 2𝑚 − 1 −𝑚 and    # of parity bits: 

𝑛 − 𝑘 = 𝑚

𝑑𝑚𝑖𝑛 = 3 ⇒ 𝑡 = 1

 The parity check matrix of this code 𝐻 contains all 𝑚-tuples

except 00⋯0 as its columns. They are arranged to look like:

𝐻 = 𝐼𝑚: 𝑄 .

For example, for 𝑚 = 3, we have

and  𝐺 = 𝑄𝑇: 𝐼2𝑚−𝑚−1 .



Hamming Codes
 Since 𝐻 consists all the 𝑚-tuples as its columns, adding any two columns, we

get another column, i.e.,

ℎ𝑖 + ℎ𝑗 + ℎ𝑘 = 0.

 So, the minimum distance of the code is not greater than 3. Also, since we do

not have any two columns that add up to 0, the minimum distance of the code

is not less than 3. Therefore, 𝑑𝑚𝑖𝑛 = 3.

 Hamming codes are perfect codes: if we form standard array, it will contain 

2𝑛 = 22
𝑚−1 elements. Each row has 2𝑘 = 22

𝑚−𝑚−1 elements. So, there will 

be 
22

𝑚−1

22
𝑚−𝑚−1 = 2𝑚 cosets. Therefore, in addition to 0 we need 2𝑚 − 1 coset 

leaders. If we take all single error patterns, we have exactly what we need. So, 
a Hamming code only corrects error patterns with one erroneous bit and 
corrects all of these. So, Hamming codes are perfect codes. 

 The only other binary perfect code is (23, 12) Golay code.



Hamming Codes
 Weight distribution: let 𝐴𝑖 be the number of codewords of weight 𝑖. Then, 

𝐴 𝑧 = 𝐴𝑛𝑧
𝑛 + 𝐴𝑛−1𝑧

𝑛−1 +⋯+ 𝐴1𝑧 + 𝐴0 can be formed. It is called weight 

enumerator. For a Hamming code:

𝐴 𝑧 =
1

𝑛 + 1
(1 + 𝑧)𝑛+𝑛(1 − 𝑧)(1 − 𝑧2)

𝑛−1
2 .

 Example: Consider 𝑚 = 3. 

𝑛 = 2𝑚 − 1 = 23 − 1 = 7 ⇒ (7, 4) code

𝐴 𝑧 =
1

8
1 + 𝑧 7 + 7 1 − 𝑧 1 − 𝑧2 3

= 1 + 7𝑧3 + 7𝑧4 + 𝑧7.



Cyclic Codes
 Definition: a linear block code is cyclic if a cyclic shift of any codeword is another

codeword.

The 𝑖th shift of 𝑣 = (𝑣0, 𝑣1, ⋯ , 𝑣𝑛−1) is:

𝑣(𝑖) = 𝑣𝑛−𝑖 , 𝑣𝑛−𝑖+1, ⋯ , 𝑣𝑛−1, 𝑣0, 𝑣1, ⋯ , 𝑣𝑛−𝑖−1 .

 For example, 𝑣(1) = 𝑣𝑛−1, 𝑣0, 𝑣1, ⋯ , 𝑣𝑛−2 and 𝑣(2) = 𝑣𝑛−2, 𝑣𝑛−1, 𝑣0, 𝑣1, ⋯ , 𝑣𝑛−3 .

 Example: (7, 4) Hamming Code (see next slide).



Cyclic Codes



Cyclic Codes

 Let 𝑣 𝑋 = 𝑣0 + 𝑣1𝑋 + 𝑣2𝑋
2 +⋯+ 𝑣𝑛−1𝑋

𝑛−1 be the polynomial representation of 𝑣. 

 Then

𝑣 𝑖 𝑋 = 𝑣𝑛−𝑖 + 𝑣𝑛−𝑖+1𝑋 +⋯+ 𝑣𝑛−1𝑋
𝑖−1 + 𝑣0𝑋

𝑖 + 𝑣1𝑋
𝑖+1 +⋯+ 𝑣𝑛−𝑖−1𝑋

𝑛−1.

Multiply 𝑋𝑖 by 𝑣 𝑋 , i.e., shift 𝑣 𝑖 times (linearly, not cyclically) to get:

𝑋𝑖𝑣 𝑋 = 𝑣0𝑋
𝑖 + 𝑣1𝑋

𝑖+1 +⋯+ 𝑣𝑛−𝑖+1𝑋
𝑛−1 +⋯+ 𝑣𝑛−1𝑋

𝑛+𝑖−1.

Add 𝑋𝑖𝑣 𝑋 and 𝑣 𝑖 𝑋 :

𝑋𝑖𝑣 𝑋 + 𝑣 𝑖 𝑋

= 𝑣𝑛−𝑖 + 𝑣𝑛−𝑖+1𝑋 +⋯+ 𝑣𝑛−1𝑋
𝑖−1 + 𝑣𝑛−𝑖𝑋

𝑛 + 𝑣𝑛−𝑖+1𝑋
𝑛+1 +⋯+ 𝑣𝑛−1𝑋

𝑛+𝑖−1

or:

𝑋𝑖𝑣 𝑋 + 𝑣 𝑖 𝑋 = [𝑣𝑛−𝑖+𝑣𝑛−𝑖+1𝑋 +⋯+ 𝑣𝑛−1𝑋
𝑖−1](𝑋𝑛 + 1).

So:

𝑋𝑖𝑣 𝑋 = 𝑞 𝑋 𝑋𝑛 + 1 + 𝑣 𝑖 𝑋 .

That is, the 𝑖th cyclic shift of 𝑣 𝑋 is generated by dividing 𝑋𝑖𝑣 𝑋 by 𝑋𝑛 + 1.



Cyclic Codes

 Theorem 1: the non-zero code polynomial with minimum degree in a cyclic code 𝐶 is

unique.

Proof: let 𝑔 𝑋 = 𝑔0 + 𝑔1𝑋 +⋯+ 𝑔𝑟−1𝑋
𝑟−1 + 𝑋𝑟 be the minimal degree code

polynomial of 𝐶 . Suppose there is another 𝑔′ 𝑋 = 𝑔0
′ + 𝑔1

′𝑋 +⋯+ 𝑔𝑟−1
′ 𝑋𝑟−1 + 𝑋𝑟 .

Then, 𝑔 𝑋 + 𝑔′ 𝑋 is another codeword in 𝐶 with degree less than 𝑟. ⇒ contradiction.

 Theorem 2: let 𝑔 𝑋 = 𝑔0 + 𝑔1𝑋 +⋯+ 𝑔𝑟−1𝑋
𝑟−1 + 𝑋𝑟 be the minimum degree

polynomial of a cyclic code 𝐶. Then, 𝑔0 ≠ 0.

Proof: if 𝑔0 = 0 then shifting 𝑔(𝑋) once to the left (or 𝑛 − 1 times to right) results in 𝑔1 +
𝑔2𝑋 +⋯+ 𝑔𝑟−1𝑋

𝑟−2 + 𝑋𝑟−1 which has a degree < 𝑟 ⇒ contradiction. So, 𝑔 𝑋 = 1 +
𝑔1𝑋 +⋯+ 𝑔𝑟−1𝑋

𝑟−1 + 𝑋𝑟.

 Let 𝑔(𝑋) be the polynomial of minimum degree of a code 𝐶 . Take

𝑔 𝑋 , 𝑋𝑔 𝑋 , 𝑋2𝑔 𝑋 ,⋯ , 𝑋𝑛−𝑟−1𝑔(𝑋). These are shifts of 𝑔(𝑋) by 0, 1,⋯ , 𝑛 − 𝑟 − 1.

So, they are codewords. Any linear combination of them is also a codeword. Therefore,

𝑣 𝑋 = 𝑢0𝑔 𝑋 + 𝑢1𝑋𝑔 𝑋 +⋯+ 𝑢𝑛−𝑟−1𝑋
𝑛−𝑟−1𝑔 𝑋

= [𝑢0 + 𝑢1𝑋 +⋯+ 𝑢𝑛−𝑟−1𝑋
𝑛−𝑟−1]𝑔(𝑋)

is also a codeword.



Cyclic Codes

 Theorem 3: let 𝑔 𝑋 = 1 + 𝑔1𝑋 +⋯+ 𝑔𝑟−1𝑋
𝑟−1 + 𝑋𝑟 be the non-zero code polynomial

of minimum degree of an (𝑛, 𝑘) cyclic code 𝐶. A binary polynomial of degree 𝑛 − 1 or less
is a code polynomial if and only if it is a multiple of 𝑔(𝑋).

Proof: let 𝑣(𝑋) be a polynomial of degree 𝑛 − 1 or less such that:

𝑣 𝑋 = 𝑎0 + 𝑎1𝑋 +⋯+ 𝑎𝑛−𝑟−1𝑋
𝑛−𝑟−1 𝑔 𝑋 .

Then,

𝑣 𝑋 = 𝑎0𝑔 𝑋 + 𝑎1𝑋𝑔 𝑋 +⋯+ 𝑎𝑛−𝑟−1𝑋
𝑛−𝑟−1𝑔 𝑋 .

Since 𝑔 𝑋 , 𝑋𝑔 𝑋 ,⋯ are each codeword of 𝐶 so is their sum 𝑣(𝑋).

Now assume 𝑣(𝑋) be a code polynomial in 𝐶. Then write:

𝑣 𝑋 = 𝑎 𝑋 𝑔 𝑋 + 𝑏 𝑋
i.e., divide 𝑣(𝑋) by 𝑔(𝑋) and get remainder 𝑏(𝑋) and quotient 𝑎(𝑋).

𝑏 𝑋 = 𝑣 𝑋 + 𝑎 𝑋 𝑔 𝑋 .

𝑣(𝑋) is a codeword and so is 𝑎 𝑋 𝑔 𝑋 . Therefore, 𝑏 𝑋 is also a codeword. But degree of 𝑏(𝑋)
is less than 𝑟 ⇒ contradiction unless if 𝑏 𝑋 = 0.

 The number of polynomials of degree 𝑛 − 1 or less that are multiple of 𝑔(𝑋) is 2𝑛−𝑟. Due to

1-to-1 correspondence between these polynomials and the codewords (Theorem 3), we have

2𝑛−𝑟 = 2𝑘 ⇒ 𝑟 = 𝑛 − 𝑘.



Cyclic Codes

 Theorem 4: in an (𝑛, 𝑘) cyclic code, there is one and only one code polynomial of

degree 𝑛 − 𝑘,

𝑔 𝑋 = 1 + 𝑔1𝑋 + 𝑔2𝑋
2 +⋯+ 𝑔𝑛−𝑘−1𝑋

𝑛−𝑘−1 + 𝑋𝑛−𝑘 .

 Every code polynomial is a multiple of 𝑔(𝑋). Every binary polynomial of degree 𝑛 − 1

or less that is a multiple of 𝑔(𝑋) is a code polynomial. So,

𝑣 𝑋 = 𝑢(𝑋)𝑔(𝑋)

is a code polynomial, however, not in a systematic form.

 To make a cyclic code systematic, multiply the information polynomial 𝑢(𝑋) by 𝑋𝑛−𝑘.

This means placing the 𝑘 information bits at the head of the shift register (in 𝑘 right-

most Flip-Flops). Then,

𝑢 𝑋 = 𝑢0 + 𝑢1𝑋 +⋯+ 𝑢𝑘−1𝑋
𝑘−1

will result in:

𝑋𝑛−𝑘𝑢 𝑋 = 𝑢0𝑋
𝑛−𝑘 + 𝑢1𝑋

𝑛−𝑘+1 +⋯+ 𝑢𝑘−1𝑋
𝑛−1.



Cyclic Codes

 Now divide 𝑋𝑛−𝑘𝑢 𝑋 by 𝑔(𝑋) to get:

𝑋𝑛−𝑘𝑢 𝑋 = 𝑎 𝑋 𝑔 𝑋 + 𝑏 𝑋 ,

where 𝑏(𝑋) is a polynomial of degree 𝑛 − 𝑘 − 1 or less:

𝑏 𝑋 = 𝑏0 + 𝑏1𝑋 +⋯+ 𝑏𝑛−𝑘−1𝑋
𝑛−𝑘−1

𝑏 𝑋 + 𝑋𝑛−𝑘𝑢 𝑋 = 𝑎 𝑋 𝑔 𝑋 .

This means that 𝑏 𝑋 + 𝑋𝑛−𝑘𝑢 𝑋 is the representation of a codeword in systematic form, i.e.,

𝑏 𝑋 + 𝑋𝑛−𝑘𝑢 𝑋 = 𝑏0 + 𝑏1𝑋 +⋯+ 𝑏𝑛−𝑘−1𝑋
𝑛−𝑘−1

+ 𝑢0𝑋
𝑛−𝑘 + 𝑢1𝑋

𝑛−𝑘+1 +⋯+ 𝑢𝑘−1𝑋
𝑛−1

that represents

𝑣 = 𝑏0, 𝑏1, ⋯ , 𝑏𝑛−𝑘−1, 𝑢0, 𝑢1, ⋯ , 𝑢𝑘−1 .



Cyclic Codes

 Example: consider the (7, 4) cyclic code generated by 𝑔 𝑋 = 1 + 𝑋 + 𝑋3. Let 𝑢 𝑋 = 1 + 𝑋3.

Then,

1. 𝑋3𝑢 𝑋 = 𝑋3 + 𝑋6

2. Divide by 𝑔 𝑋 = 1 + 𝑋 + 𝑋3

3. 𝑣 𝑋 = 𝑏 𝑋 + 𝑋3𝑢 𝑋 =

𝑋 + 𝑋2 + 𝑋3 + 𝑋6

or 𝑣 = (0, 1, 1, 1, 0, 0, 1)



Cyclic Codes

 Theorem 5: the generator polynomial of an (𝑛, 𝑘) code is a factor of 𝑋𝑛 + 1.

Proof: divide 𝑋𝑘𝑔(𝑋) by 𝑋𝑛 + 1.

𝑋𝑘𝑔 𝑋 = 𝑋𝑛 + 1 + 𝑔 𝑘 (𝑋) or  𝑋𝑛 + 1 = 𝑋𝑘𝑔 𝑋 + 𝑔 𝑘 (𝑋)

𝑔 𝑘 (𝑋) is a code polynomial. So, 𝑔 𝑘 𝑋 = 𝑎 𝑋 𝑏 𝑋 for some 𝑎 𝑋 . So,

𝑋𝑛 + 1 = 𝑋𝑘 + 𝑎 𝑋 𝑔 𝑋 . 𝑄𝐸𝐷

 Theorem 6: if 𝑔(𝑋) is a polynomial of degree 𝑛 − 𝑘 and is a factor of 𝑋𝑛 + 1. Then 𝑔(𝑋)

generates an (𝑛, 𝑘) cyclic code.

Proof: let 𝑔 𝑋 , 𝑋𝑔 𝑋 ,⋯ , 𝑋𝑘−1𝑔(𝑋). They are all polynomials of degree 𝑛 − 1 or less. A linear

combination of them:

𝑣 𝑋 = 𝑢0𝑔 𝑋 + 𝑢1𝑋𝑔 𝑋 +⋯+ 𝑢𝑘−1𝑋
𝑘−1𝑔 𝑋

= [𝑢0 + 𝑢1𝑋 +⋯+ 𝑢𝑘−1𝑋
𝑘−1]𝑔 𝑋

is a code polynomial since 𝑢𝑖 ∈ {0, 1}. Then 𝑣(𝑋) will have 2𝑘 possibilities. These 2𝑘 polynomials

form the 2𝑘 codewords of the (𝑛, 𝑘) code.



Cyclic Codes

Generator polynomial of a cyclic code:

For example, for (7, 4) code with 𝑔 𝑋 = 1 + 𝑋 + 𝑋3, 𝑔0 = 𝑔1 = 𝑔3 = 1 and 𝑔𝑖 = 0 otherwise.

𝐺 =

1 1 0 1 0 0 0
0 1 1 0 1 0 0
0
0

0
0

1 1 0 1 0
0 1 1 0 1



Cyclic Codes

 This is not always in systematic form. We can make it into systematic form by row and column

operations. For example, for the (7, 4) code:

𝐺′ =

𝑔0
𝑔1

𝑔0 + 𝑔2
𝑔0 + 𝑔1 + 𝑔3

=

1 1 0 1 0 0 0
0 1 1 0 1 0 0
1
1

1
0

1 0 0 1 0
1 0 0 0 1

.

 Parity check matrix of cyclic codes:

We saw that 𝑔(𝑋) divides 𝑋𝑛 + 1. Write

𝑋𝑛 + 1 = 𝑔 𝑋 ℎ 𝑋 ,

where ℎ(𝑋) is a polynomial of degree 𝑘

ℎ 𝑋 = ℎ0 + ℎ1𝑋 +⋯+ ℎ𝑘𝑋
𝑘 .



Cyclic Codes

Consider a code polynomial 𝑣(𝑋)

𝑣 𝑋 ℎ 𝑋 = 𝑢 𝑋 𝑔 𝑋 ℎ 𝑋

= 𝑢 𝑋 𝑋𝑛 + 1

= 𝑢 𝑋 𝑋𝑛 + 𝑢 𝑋 .

 Since 𝑢 𝑋 has degree less than or equal 𝑘 − 1, 𝑢 𝑋 𝑋𝑛 + 𝑢 𝑋 does not have

𝑋𝑘 , 𝑋𝑘+1, ⋯ , 𝑋𝑛−1. That is coefficients of these powers of 𝑋 are zero. So, we get 𝑛 − 𝑘 equalities:

෍

𝑖=0

𝑘

ℎ𝑖𝑣𝑛−𝑖−𝑗 = 0 for 1 ≤ 𝑗 ≤ 𝑛 − 𝑘.

 and we have 𝐻 as:



Cyclic Codes

 Theorem 7: let 𝑔(𝑋) be the generator polynomial of the (𝑛, 𝑘) cyclic code 𝐶.

The dual code of 𝐶 is generated by 𝑋𝑘ℎ(𝑋−1) where ℎ 𝑋 =
𝑋𝑛+1

𝑔(𝑋)
.

 Example: consider (7, 4) code 𝐶 with 𝑔 𝑋 = 1 + 𝑋 + 𝑋3. The generator polynomial

of 𝐶𝑑 is 𝑋4ℎ(𝑋−1) where,

ℎ 𝑋 =
𝑋7 + 1

1 + 𝑋 + 𝑋3 = 1 + 𝑋 + 𝑋2 + 𝑋4.

That is, the generator of 𝐶𝑑 is:

𝑋4ℎ 𝑋−1 = 𝑋4 1 + 𝑋−1 + 𝑋−2 + 𝑋−4

= 1 + 𝑋2 + 𝑋3 + 𝑋4.

 So, 𝐶𝑑 is a (7, 3) code with 𝑑𝑚𝑖𝑛 = 4. Therefore, it can correct any single error

and detect any combination of double errors.



Encoding of Cyclic Codes

 We saw that if we multiply the information polynomial by 𝑋𝑛−𝑘 and divide by 𝑔(𝑋), we get:

𝑋𝑛−1𝑢 𝑋 = 𝑎 𝑋 𝑔 𝑋 + 𝑏 𝑋

and

𝑎 𝑋 𝑔 𝑋 = 𝑏 𝑋 + 𝑋𝑛−1𝑢 𝑋

is a codeword in systematic form. The following circuit encodes 𝑢(𝑋) based on the above discussion.



Encoding of Cyclic Codes

 The coding procedure is as follows:

1) Close the gate and enter information bits in and also send them over channel. This does

multiplication by 𝑋𝑛−𝑘 as well as parity bit generation.

2) Open the gate (break the feedback).

3) Output the 𝑛 − 𝑘 parity bits.

Example: (7, 4) code with 𝑔 𝑋 = 1 + 𝑋 + 𝑋3.



Syndrome

 Assume 𝑟 𝑋 = 𝑟0 + 𝑟1𝑋 + 𝑟2𝑋
2 +⋯+ 𝑟𝑛−1𝑋

𝑛−1 is the polynomial representing

the received bits. Divide 𝑟 𝑋 by 𝑔(𝑋) to get:

𝑟 𝑋 = 𝑎 𝑋 𝑔 𝑋 + 𝑠 𝑋 .

 𝑠(𝑋) is a polynomial of degree 𝑛 − 𝑘 − 1 or less. The 𝑛 − 𝑘 coefficients of 𝑠(𝑋) are the

syndromes.

 Theorem 8: let 𝑠(𝑋) be the syndrome of 𝑟 𝑋 = 𝑟0 + 𝑟1𝑋 +⋯+ 𝑟𝑛−1𝑋
𝑛−1.

Then, 𝑠 𝑖 (𝑋) resulting from dividing 𝑋𝑖𝑠(𝑋) by 𝑔(𝑋) is the syndrome of 𝑟 𝑖 (𝑋).



Syndrome

 Example of (7, 4) code:



Decoding of Cyclic Codes



Decoding of Cyclic Codes

 Example: (7, 4) Hamming Code:



Decoding of Cyclic Codes

 Example: (7, 4) Hamming Code:



Decoding of Cyclic Codes

 General Cyclic Code Decoder:



Decoding of Cyclic Codes

 Syndrome decoding of (7, 4) code using syndrome decoder fed from right:



Decoding of Cyclic Codes

 Syndrome decoding of (7, 4) code using syndrome decoder fed from right:



Cyclic Hamming Codes
 A Hamming code of length 𝑛 = 2𝑚 − 1 with 𝑚 ≥ 3 is generated by a 

primitive polynomial of degree 𝑚. let’s see how we can put the Hamming 

code we discussed earlier in cyclic form:

Divide 𝑋𝑚+𝑖 by 𝑝(𝑋) to get 𝑋𝑚+𝑖 = 𝑎𝑖 𝑋 𝑝 𝑋 + 𝑏𝑖 𝑋 .

Since 𝑝(𝑋) is primitive, 𝑋 is not a factor of 𝑝(𝑋) so 𝑝(𝑋) does not divide 

𝑋𝑚+𝑖 ⇒ 𝑏𝑖 𝑋 ≠ 0.

 𝑏𝑖 𝑋 has at least two terms. If it had one term:

𝑋𝑚+𝑖 = 𝑎𝑖 𝑋 𝑝 𝑋 + 𝑋𝑗

⇒ 𝑋𝑗 𝑋𝑚+𝑖−𝑗 + 1 = 𝑎𝑖 𝑋 𝑝 𝑋

⇒ 𝑝 𝑋 divides 𝑋𝑚+𝑖−𝑗 + 1 but 𝑚 + 𝑖 − 𝑗 < 2𝑚 − 1

⇒ contradiction.

 If 𝑖 ≠ 𝑗, then 𝑏𝑖 𝑋 ≠ 𝑏𝑗 𝑋 . Let 

𝑋𝑚+𝑖 = 𝑏𝑖 𝑋 + 𝑎𝑖 𝑋 𝑝 𝑋
𝑋𝑚+𝑗 = 𝑏𝑗 𝑋 + 𝑎𝑗 𝑋 𝑝 𝑋 .



Cyclic Hamming Codes
 If 𝑏𝑖 𝑋 = 𝑏𝑗 𝑋 , then

𝑋𝑚+𝑖 𝑋𝑗−𝑖 + 1 = 𝑎𝑖 𝑋 + 𝑎𝑗 𝑋 𝑝 𝑋 ,

i.e., 𝑝(𝑋) divides 𝑋𝑗−𝑖 + 1 ⇒ contradiction.

 Let 𝐻 = [𝐼𝑚: 𝑄] be the parity check matrix of this code. 𝐼𝑚 is an 𝑚 ×𝑚
identity matrix with 𝑄 an 𝑚 × (2𝑚 −𝑚 − 1) matrix with 𝑏𝑖 =

(𝑏𝑖0, 𝑏𝑖1, ⋯ , 𝑏𝑖,𝑚−1) as its columns. Since no two columns of 𝑄 are the same 

and each has at least two 1’s, then 𝐻 is indeed a parity-check matrix of a 

Hamming code.



Syndrome Decoding of Hamming Codes
 Assume that error is in location with highest order, i.e.,

𝑒 𝑋 = 𝑋2𝑚−2.

 Then, feeding 𝑟(𝑋) from right to syndrome calculator is equivalent to 

dividing 𝑋𝑚 ∙ 𝑋2𝑚−2 by the generator polynomial 𝑝(𝑋). Since 𝑝(𝑋) divides 

𝑋2𝑚−1 + 1 then

𝑠 𝑋 = 𝑋𝑚−1 or  𝑠 = (0, 0,⋯ , 0, 1).


