ELEC 6131: Error Detecting
and Correcting Codes

Instructor:

Dr. M. R. Soleymani, Office: EV-5.125, Telephone: 848-2424 ext:
4103. Time and Place: Thursday, 17:45 — 20:15.

Office Hours: Thursday, 15:00 — 17:00

LECTURE 5: Cyclic Codes




Outline of this lecture

» In this lecture we cover the following:
» Brief discussion of Hamming codes,

» Cyclic Codes.




Hamming Codes

» Code length:n = 2™ -1
» # of information bits: k = 2™ —1 —m and # of parity bits:
n—k=m

dmin =3 => t=1
» The parity check matrix of this code H contains all m-tuples
except 00 --- 0 as its columns. They are arranged to look like:

H=[L,:0].

For example, for m = 3, we have

|
100:1011
H=|0 1 011 1 1 0
00 1,0 1 1 1

N gt |

and G — [QT:Izm_m_l].




Hamming Codes

» Since H consists all the m-tuples as its columns, adding any two columns, we
get another column, i.e.,

hi+hj+ h = 0.
» So, the minimum distance of the code is not greater than 3. Also, since we do

not have any two columns that add up to 0, the minimum distance of the code
IS not less than 3. Therefore, d,,,i, = 3.

» Hamming codes are perfect codes: if we form standard array, it will contain
2" = 22"-1 elements. Each row has 2% = 22"~™~1 glements. So, there will

2M—q
be zfm_m_l = 2™ cosets. Therefore, in addition to 0 we need 2™ — 1 coset

leaders. If we take all single error patterns, we have exactly what we need. So,
a Hamming code only corrects error patterns with one erroneous bit and
corrects all of these. So, Hamming codes are perfect codes.

» The only other binary perfect code is (23, 12) Golay code.




Hamming Codes

» Weight distribution: let A; be the number of codewords of weight i. Then,
A(z) = Az + A,_1z" 1+ -+ Ajz + A, can be formed. It is called weight
enumerator. For a Hamming code:

n—1

1
- n — — 72y 2
A(z) n+1l(1+z) +n(1—-2)(1 —z°) ]
» Example: Consider m = 3.
n=2M-1=23-1=7 = (7,4)code

A(z) = %[(1 +2)7+7(1 —2)(1 —z2)3]

=1+723+7z%+ 2.




Cyclic Codes

» Definition: a linear block code is cyclic if a cyclic shift of any codeword is another
codeword.

The ith shift of v = (v, vq, -+, vp_1) IS:

2(1) = (vn—ii Un-i+1 """ » Un-1 V0o, V1, """, vn—i—l)-
» For example, v = (v,_1,v0, V4, , Vp_p) and vP = (v,,_5,v,_1, V0, Vq, ) Vp—3).

» Example: (7, 4) Hamming Code (see next slide).




Cyclic Codes

A (7, 4) cyclic code generated by g(X) =1 + X + X3

Messages Code vectors Code polynomials

(0000) 0000000 0=0-gX)

(1000) 1101000 1+X+X3=1 gX)

(0100) 0110100 X4+ X’>+X'=X-gX)

(1100) 1011100 1+ X24 X34+ X' =(1+X)-g(X)

(0010) 0011010 X2+ X34 X5 =Xx2.gX)

(1010) 1110010 14X+ X2+ X =(1+XY-gX)

(0110) 0101110 X+ X} +X'+X°=(X+ X -gX)

(1110) 1000110 14+ X*+X>= 14X+ X?).g(X)

(0001) 0001101 X3+Xx44+x0=X3.g(X)

(1001) 1100101 1+X4+X'+X0=01+X% g

(0101) 0111001 X+X*+X+X=X+X3 gX)

(1101) 1010001 1+ X>4+X5=(@1+X+X3) gX)

(0011) 0010111 X2+ X34+ X3+ X0=(X2+ X3 gX)

(101 1) 1111111 14+ X+ X2+ X3+ X%+ x5 4+ x6
=1+ X2+ X3 gx)

(0111) 0100011 X+X +X0=(X+X2+4+X3 gX)

(1111) 1001011 14 X3+ X3 + X6

=1+ X+ X2+ X% gX)




Cyclic Codes

» Letv(X) =vy+ v, X +v,X% + -+ v,,_, X" ! be the polynomial representation of v.

» Then
vOX) = v+ vy X+ o+ v, X+ v X+ v X ey XL

Multiply Xt by v(X), i.e., shift v i times (linearly, not cyclically) to get:
XiU(X) — UOXi + lei+1 SRS vn—i+1Xn_1 4o 4 Un_1Xn+i_1.

Add Xiv(X) and v® (X):
X)) + v

=Vp_j tVp_jq1 X+ + vn_lXi‘1 + VU, XM+ vy XML+ vn_1Xn+i—1

or:
XwX) + vD(X) = [V 40— X + -+ v, XX + D).

So:
Xw(X) = qX)[X™ + 1] + v ).

That is, the ith cyclic shift of v(X) is generated by dividing X'v(X) by X™ + 1.




Cyclic Codes

» Theorem 1: the non-zero code polynomial with minimum degree in a cyclic code C is
unique.

Proof: let g(X)=go+ g X+ -+ g, X" +X" be the minimal degree code

polynomial of C. Suppose there is another g'(X) = gy + g1 X+ -+ gr_ X" 1+ X".

Then, g(X) + g'(X) is another codeword in C with degree less than . = contradiction.

» Theorem 2: let g(X) = go+ g: X + -+ g_1 X"~ + X" be the minimum degree
polynomial of a cyclic code C. Then, g, # 0.

Proof: if g, = 0 then shifting g(X) once to the left (or n — 1 times to right) results in g, +

g X + -+ g,_1X""? + X"~ 1 which has a degree < r = contradiction. So, g(X) =1 +

g1 X+ -+ g XTTL+ X"

» Let g(X) be the polynomial of minimum degree of a code C . Take
g(X), Xg(X),X%g(X),--, X" " 1g(X). These are shifts of g(X) by 0,1,---,n —r — 1.
So, they are codewords. Any linear combination of them is also a codeword. Therefore,

v(X) = upg(X) + w XgX) + -+ upr 1 X" g (X)
= [up + WX + -+ U X g (X)

Is also a codeword.




Cyclic Codes

» Theorem 3: let g(X) =1+ g, X+ -+ g,_,X""1 + X" be the non-zero code polynomial
of minimum degree of an (n, k) cyclic code C. A binary polynomial of degree n — 1 or less
is a code polynomial if and only if it is a multiple of g(X).

Proof: let v(X) be a polynomial of degree n — 1 or less such that:

v(X) =(ag+ a X+ -+ a1 X" HgX).

Then,
v(X) = apg(X) + a, Xg(X) + -+ ap_r1 X" g (X).

Since g(X), Xg(X), -+ are each codeword of C so is their sum v(X).
Now assume v(X) be a code polynomial in C. Then write:

v(X) = a(X)g(X) + b(X)
I.e., divide v(X) by g(X) and get remainder b(X) and quotient a(X).

b(X) =v(X) + a(X)g(X).
v(X) is a codeword and so is a(X)g(X). Therefore, b(X) is also a codeword. But degree of b(X)
is less than r = contradiction unless if b(X) = 0.

» The number of polynomials of degree n — 1 or less that are multiple of g(X) is 2™*~". Due to
1-to-1 correspondence between these polynomials and the codewords (Theorem 3), we have
2T =2k 5 r =n—k.




Cyclic Codes

» Theorem 4: in an (n, k) cyclic code, there is one and only one code polynomial of
degree n — k,

gX) =1+ g X+ g, X%+ -+ gp_p_ XVETL 4 XK,
» Every code polynomial is a multiple of g(X). Every binary polynomial of degree n — 1
or less that is a multiple of g(X) is a code polynomial. So,
v(X) = u(X)gX)

Is a code polynomial, however, not in a systematic form.

» To make a cyclic code systematic, multiply the information polynomial u(X) by X%,
This means placing the k information bits at the head of the shift register (in k right-
most Flip-Flops). Then,

u(X) = ug + ug X + -+ up_ X6t
will result in:
Xn_RU(X) = uoXn_k + uan_k+1 + -+ uk_an_l.




Cyclic Codes

» Now divide X" *u(X) by g(X) to get:
X" *u(X) = a(X)gX) + b(X),
where b(X) is a polynomial of degree n — k — 1 or less:
b(X) =bg+ b X+ -+ by_p_ X1

b(X) + X" *u(X) = a(X)g(X).

This means that b(X) + X" *u(X) is the representation of a codeword in systematic form, i.e.,
b(X) + Xn—ku(X) — bO + b1X + -+ bn—k—lxn_k_l

+ uOXn_k + ulxn_k+1 + -+ uk_an_l

that represents
v = (bo, by, ) b1, U, U, -+, Ug—1)-




Cyclic Codes

» Example: consider the (7, 4) cyclic code generated by g(X) =1+ X + X3. Let u(X) =1+
Then,

x3+)(
7 X3uX) = X3+ X6 Y3 X+1 )X x3
o 3 x+x"‘+x3
2. Dividebyg(X)=1+X+X ¢ ,
X*e x %X

A (7, 4) cyclic code in systematic form generated by g(X) =

_ 3 1+ X+Xx3
= U(X) b(X) +X u(X) Message  Codeword
(0000) (0000000) 0=0-g(X)
X+ X%+ X3+ X6 (1000) (1101000) 1+X—EX3=g(X)
(0100) (0110100) X4+ X2+ X* = Xg(X)
(1100) (1011100) 1+ X2+ X3+ X* = (1+ X)g(X)
orv=(0,1,1,1,0,0,1) (0010) (1110010) 1+ X +X*+X° =(1+X)gX)
- (1010) (0011010) X2+ X3+ X3 = X2g(X)
(0110) (1000110) 14+ X%+ X5 =1+ X + XHgX)
(1110) (0101110) X+ X3+ X4+ X5 = (X + XH)g(X)
(0001) (1010001) 1+ X2+ X5 =(1+X+ X>gX)
(1001) (0111001) X+ X2+ X> 4+ X% =(X + XHgX)
(0101) (1100101 1+4+X+X*+ X0 =01+ X3eX)
(1101) (0001101) X3 4+ x*+ X® = X3g(X)
(0011) (0100011) X4 X%+ X6 = (X + X2 + XDg(X)
(1011) (1001011 1+ X3+ X5+ X0 = (1 + X + X2+ X3)g(X)
(0111) (0010111) X2+ X*+ X° 4 X6 = (X2 + X¥)g(X)
1111) @Q111111) 14+ X+ X2+ X3+ x4+ x5+ x¢




Cyclic Codes

» Theorem 5: the generator polynomial of an (n, k) code is a factor of X™ + 1.
Proof: divide X*g(X) by X™ + 1.

XkgX) = X"+ 1D +g®&X) or X"+ 1 =Xkg(X)+ g®X)
g™ (X) is a code polynomial. So, ¥ (X) = a(X)b(X) for some a(X). So,
X"+1=[X*+a(X)]gX). QED

» Theorem 6: if g(X) is a polynomial of degree n — k and is a factor of X™ + 1. Then g(X)
generates an (n, k) cyclic code.
Proof: let g(X),Xg(X), -, X* 1g(X). They are all polynomials of degree n — 1 or less. A linear
combination of them:
v(X) = upg(X) + us Xg () + - + w1 X1 g(X)
= [ug + u X + -+ up_1 X 1g(X)

is a code polynomial since u; € {0,1}. Then v(X) will have 2% possibilities. These 2* polynomia
form the 2* codewords of the (n, k) code.




Cyclic Codes

Generator polynomial of a cyclic code:

(20 &1 & - - + - - gk O 0 0 .. 9

0 2 &6 & - - - - gk 0 0 - - 0
o 0 0 2 &8 & - - - . . gn—t O 0

_0 0 * . . 0 80 81 g2 . . . . e gn__k-

For example, for (7,4) code with g(X) =1+ X + X3, go = g1 = g3 = 1 and g; = 0 otherwise.

11010 0 0
c-l01 10100
00110 10
00 01 10 1




Cyclic Codes

» This is not always in systematic form. We can make it into systematic form by row and col
operations. For example, for the (7, 4) code:

Yo 1 1.0 1 0 0 0

o - g1 o110 1 0 0
Jot 92 111 0 0 1 of
got 91+ 93 17 0 1 0 0 0 1]

» Parity check matrix of cyclic codes:

We saw that g(X) divides X™ + 1. Write
X" +1=gX)h(X),

where h(X) is a polynomial of degree k
h(X) = hy + h X + -+ h X%,




Cyclic Codes

Consider a code polynomial v(X)
v(X)h(X) = u(X)gX)h(X)
=uX)X"+1)
= u(X)X" + u(X).
» Since u(X) has degree less than or equal k — 1, u(X)X™ + u(X) does not have
Xk xk+1 ... x"=1 That is coefficients of these powers of X are zero. So, we get n — k equalities:
k

hivn_i_j =0 for 1 S]Sn—k
0

l
» and we have H as:

The by by - o h 0 0]
0 h Mg by - .. - « hp 0O - . . 0
H=|0 0 h kg by - - . C o hy e 0

0 0 . : ©0 By kg Ry - - - o Ry




Cyclic Codes

» Theorem 7: let g(X) be the generator polynomial of the (n, k) cyclic code C.

The dual code of C is generated by X*h(X~1) where h(X) = );:;)1 :

» Example: consider (7, 4) code C with g(X) = 1 + X + X3. The generator polynomial
of C%is X*h(X~1) where,

h(X) = X+ =14+X+X%>+X*
14+ X+X3 '

That is, the generator of C¢ is:
X*hX D =X*A+X"+X*+X%

=1+ X*+ X3+ X%

» So, C%isa(7,3) code with d,,,;,, = 4. Therefore, it can correct any single error

and detect any combination of double errors.




Encoding of Cyclic Codes

» We saw that if we multiply the information polynomial by X™* and divide by g(X), we get:
X" luX) =aX)gX) + b(X)

and
a(X)g(X) = b(X) + X" tu(X)

Is a codeword in systematic form. The following circuit encodes u(X) based on the above discussion.

Gate

X"k x) 5 »o_Codeword
—— e 0
Parity-check
digits

Encoding circuit for an (n, k) cyclic code with generator polynomial
BX) =141 X2+ + gyog X"~1 4 xn—k,




Encoding of Cyclic Codes

» The coding procedure is as follows:

1) Close the gate and enter information bits in and also send them over channel. This do
multiplication by X™~* as well as parity bit generation.

2) Open the gate (break the feedback).
3) Output the n — k parity bits.

Example: (7,4) code with g(X) = 1+ X + X3,

Message X7 Ra(x)

H
Parity-check
digits

Encoder for the (7, 4) cyclic code generated by g(X) = 1+ X + X3.




Syndrome

» Assumer(X) =15+ X + X% + -+ 1,_,X™ 1 is the polynomial representing
the received bits. Divide r(X) by g(X) to get:
r(X) =aX)gX) + s(X).
» s(X) is a polynomial of degree n —k —1 or less. The n — k coefficients of s(X) are th
syndromes.
» Theorem 8: let s(X) be the syndrome of r(X) =15 + 1 X + - + 1, X" L.
Then, s (X) resulting from dividing Xs(X) by g(X) is the syndrome of r® (X).

®  ® @
Y

r(X)
Received ° ° Exa

vector

An (n ~ k)-stage syndrome circuit with input from the left end.




Syndrome

» Example of (7,4) code:

Input ° ‘ -

FIGURE 5.6: Syndrome circuit for the (7, 4) cyclic code generated by gxX) =1+
X + X3

TABLE 5.3: Contents of the syndrome
register shown in Figure 5.6 with r =
(0010110) as input,

Shift Input Register contents
000 (initial state)

1 0 000

2 1 100

3 1 110

4 0 011

5 1 011

6 ] 111

7 0 101 (syndrome s)

8 —_ 100 (syndrome sV)
9 — 010 (syndrome s2)




Decoding of Cyclic Codes

[ Gate |

| Gate |

"(X) Gate Buffer register ————27(+>—'
Received L | ["Corrected
vector vector

A
EaEI Feedback connection
Gate
LN
r 1 1
Syndrome regis

y

Error pattern detection circuit

[ Gate }—1

Syndrome modification

General cyclic code decoder with received polynomial r(X) shifted into
the syndrome register from the left end.




Decoding of Cyclic Codes
» Example: (7, 4) Hamming Code:

Error patterns and their syndromes with the
received polynomial r(X) shifted into the syndrome register

from the left end.
Error pattern Syndrome Syndrome vector
e(X) S(X) (309 51, 32)

eg(X) = X8 s(X)=1+Xx2 (101)
es(X) = X° s(X) =1+ X+ X2 (111)
e(X)=Xx*4 s(X) = X + X*° (011)
ea(X) = X3 s(X)=1+X (110

e (X) = X2 s(X) = X2 (001)

e (X) = X1 s(X) =X (010)

ep(X) = X° s(X)=1 (100)




Decoding of Cyclic Codes

» Example: (7, 4) Hamming Code:

b Buffer register

rX) ; N ()
-3 i - | +
= Multiplexer r Output

Gate
3

Decoding circuit for the (7,4) cyclic code generated by g(X) = 1+ X +X -




Decoding of Cyclic Codes

» General Cyclic Code Decoder:

W o

L = Gate [*

r(X) ,_,i_j_, Buffer regi e e
——————t glster -l +
Received | LoNE %

A T Corrected
vector
t‘ate—l vector
Bt
Feedback connection
Gate +
L N
) Y Y
> Syndrome register +
Syndrome J
modification

€;

Error pattern detection circuit

General cyclic code decoder with received polynomial r(X) shifted into
the syndrome register from the right end.




Decoding of Cyclic Codes
» Syndrome decoding of (7,4) code using syndrome decoder fed from right:

_ Error patterns and their syndromes with the
received polynomial v(X) shifted into the syndrome

register from the right end,
Errer pattern Syndrome Syndrome vector
e(X) s3hx) (50, $1, 52)

eX)=X% s3ux)=x2 (00 1)
e(X)=X" sOx)=x (010)
e(X)=x* s¥X)=1 (100)
eX)=X> s3I =1+x2 (101)
eX)=X? sOX)=1+4+Xx+Xx2 (111
e(X)=X s X)y=x+x2 011)

eX)=X" sPX)=1+% (110)




Decoding of Cyclic Codes

» Syndrome decoding of (7,4) code using syndrome decoder fed from right:

Buffer register

Y
r(X) - r'(X)
o —bl Multiplexer | l I IDOTlp:t
\
> Gate Il

e

iy |
| [one]

! = Decoding circuit for the (7, 4) cyclic code generated by g(X) =
+X+X°




Cyclic Hamming Codes

» A Hamming code of length n = 2™ — 1 with m > 3 is generated by a
primitive polynomial of degree m. let’s see how we can put the Hamming
code we discussed earlier in cyclic form:

Divide X™*! by p(X) to get X™* = q;(X)p(X) + b;(X).

Since p(X) is primitive, X is not a factor of p(X) so p(X) does not divide

X™ = p.(X) # 0.

» b;(X) has at least two terms. If it had one term:

X = a.(X)p(X) + X!
= X/ (X™T + 1) = a;(XDp(X)

= p(X) divides X™'J + 1butm+i—j<2™m-1

= contradiction.
» Ifi#j, then b;(X) # b;j(X). Let

X" = bi(X) + a;(X)p(X)




Cyclic Hamming Codes

» If bl(X) = b](X), then
XX+ 1) = [a; (X)) + ¢ (X)) ]|p(X),

i.e., p(X) divides X/~ + 1 = contradiction.

» Let H = [I,,,: Q] be the parity check matrix of this code. I,,, isan m X m
identity matrix with Q an m x (2™ —m — 1) matrix with b; =
(bjo, bi1,***, bi m—1) as its columns. Since no two columns of @ are the same
and each has at least two 1’s, then H is indeed a parity-check matrix of a
Hamming code.




Syndrome Decoding of Hamming Codes

» Assume that error is in location with highest order, i.e.,
e(X) = x2"2,

» Then, feeding r(X) from right to syndrome calculator is equivalent to
dividing X™ - X2"~2 by the generator polynomial p(X). Since p(X) divides
X2"-1 4+ 1 then

s(X) =x™m1 or s=(0,0,---,0,1).
— Gate '——D' Buffer register r(X) } > C-v-\o mputr
_t: r

4 T < <— Gate +
So eos i +

Decoder for a cyclic Hamming code.



