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BCH Codes
Block Length n=2m-1 for some m≥3

Number of Parity-check bits  𝑛𝑛 − 𝑘𝑘 ≤ 𝑚𝑚𝑚𝑚

Minimum Distance dmin≥2t+1

 The generator polynomial is defined in terms of its roots over GF (2m).

 For a t-error correcting BCH Code, g(x) is the lowest-degree polynomial with
roots 𝛼𝛼, 𝛼𝛼2 … ,𝛼𝛼2𝑡𝑡 .

 Let 𝜑𝜑𝑖𝑖(𝑥𝑥) be the minimal polynomial of 𝛼𝛼𝑖𝑖for 𝑖𝑖 = 1,2, … , 2𝑡𝑡.Then:

𝑔𝑔(𝑥𝑥) = 𝐿𝐿𝐿𝐿𝐿𝐿{𝜑𝜑1 𝑥𝑥 ,𝜑𝜑2 𝑥𝑥 , … ,𝜑𝜑2𝑡𝑡 𝑥𝑥 }

Where LCM stands for least Common Multiple.



BCH Codes
If 𝑖𝑖 is even then we can write 𝑖𝑖 = 𝑖𝑖𝑖. 2𝑙𝑙,

Where 𝑖𝑖𝑖 is odd and 𝑙𝑙 ≥ 1 . Then:

𝛼𝛼𝑖𝑖 = (𝛼𝛼𝑖𝑖′)2𝑙𝑙

So 𝛼𝛼𝑖𝑖 and 𝛼𝛼𝑖𝑖′are conjugate of each other and have the same minimal polynomial and:

𝑔𝑔(𝑥𝑥) = 𝐿𝐿𝐿𝐿𝐿𝐿{𝜑𝜑1 𝑥𝑥 ,𝜑𝜑3 𝑥𝑥 , … ,𝜑𝜑2𝑡𝑡−1 𝑥𝑥 }

 Since the degree of each of 𝛷𝛷𝑖𝑖 (𝑥𝑥) , 𝑖𝑖 = 1,3, … is less than or equal to m, the degree of g(x) is less than or equal
to 𝑚𝑚𝑚𝑚 So,

𝑛𝑛 − 𝑘𝑘 ≤ 𝑚𝑚𝑚𝑚

as the degree of g(x) is 𝑛𝑛 − 𝑘𝑘.

 Table 6.1 lists BCH Codes for lengths 2𝑚𝑚 − 1 , 𝑚𝑚 = 3, . . 10 that is length 7 to 1023.

 Refer to Appendix C for the list of BCH Codes and their generating polynomial.

 These are narrow sense or primitive BCH Codes. In general, α does not need to be primitive and roots can be
non- Consecutive.



BCH Codes



Relationship with Hamming Codes
 Consider a single error correcting BCH Code of length n=2m-1. Then:

g(x)= φ1 (x)

 φ1 (x) is polynomial of degree 𝑚𝑚. So,

𝑛𝑛 − 𝑘𝑘 = 𝑚𝑚 → 𝑘𝑘 = 2𝑚𝑚 − 1 −𝑚𝑚

So, a Hamming Code is just a single error correcting BCH code.



BCH Codes: Example
 Example: Design a triple error correcting BCH Code of length 15.

𝑛𝑛 = 15 = 2𝑚𝑚 − 1 → 𝑚𝑚 = 4

 So, we need to find primitive element α over 𝐺𝐺𝐺𝐺(24) and form:

𝑔𝑔(𝑥𝑥) = 𝐿𝐿𝐿𝐿𝐿𝐿{𝜑𝜑1 𝑥𝑥 ,𝜑𝜑3 𝑥𝑥 ,𝜑𝜑5 𝑥𝑥 }

 From table 2.9, we have:
φ1 (x)= 1+x+x4

φ3 (x)= 1+x+x2 + x3 + x4

φ5 (x)= 1+x+x2

So,
g(x)= (1+x+x4)( 1+x+x2 + x3 + x4)( 1+x+x2)

=1+x+x2 + x4 + x5 + x8 + x10

Therefore, 𝑛𝑛 − 𝑘𝑘 = 10 → (15, 5) BCH Code with 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 = 7 → t=3.

• See Appendix B for minimal polynomials for 𝑚𝑚 = 2, … , 10.



BCH Codes Over 𝑮𝑮𝑮𝑮 𝟐𝟐𝟔𝟔
 Do this derivation of g(x) for all BCH Codes of length 26-1=63 in order to become

familiar with concepts involved.

 First, using the primitive polynomial p(x)= 1+x+x6, generate all elements of 𝐺𝐺𝐺𝐺(26).
They are listed below, but I strongly encourage you to create the table yourself
manually (don’t use a computer program).



BCH Codes Over 𝑮𝑮𝑮𝑮 𝟐𝟐𝟔𝟔



BCH Codes Over 𝑮𝑮𝑮𝑮 𝟐𝟐𝟔𝟔
 From the above table you can find minimal polynomial for all elements of 𝐺𝐺𝐺𝐺(26) :

Finally for any value of t generate
𝑔𝑔(𝑥𝑥) = 𝐿𝐿𝐿𝐿𝐿𝐿{𝜑𝜑1 𝑥𝑥 ,𝜑𝜑3 𝑥𝑥 , … ,𝜑𝜑2𝑡𝑡−1 𝑥𝑥 }



Parity Check Matrix  of BCH Codes
 We know that each code polynomial v(x) is divisible by g(x) and that g(x) is:

𝑔𝑔(𝑥𝑥) = 𝐿𝐿𝐿𝐿𝐿𝐿{𝑔𝑔1 𝑥𝑥 ,𝑔𝑔2 𝑥𝑥 , … ,𝑔𝑔2𝑡𝑡 𝑥𝑥 }

 So, 𝛼𝛼,𝛼𝛼2 , 𝛼𝛼 3 , … ,𝛼𝛼2𝑡𝑡
are the root of v(x), i.e.,

𝑉𝑉(𝛼𝛼𝑖𝑖) = 𝑣𝑣0 + 𝑣𝑣1 𝛼𝛼𝑖𝑖 + 𝑣𝑣2 𝛼𝛼2𝑖𝑖 + … + 𝑣𝑣𝑛𝑛−1 𝛼𝛼(𝑛𝑛−1)𝑖𝑖 = 0
for 𝑖𝑖 = 1,2, … , 2𝑡𝑡
 If we form

𝐻𝐻 =

1 𝛼𝛼
1 𝛼𝛼2

𝛼𝛼2 ⋯ 𝛼𝛼𝑛𝑛−1
𝛼𝛼2 2 ⋯ 𝛼𝛼2 𝑛𝑛−1

⋮ ⋮
1 𝛼𝛼2𝑡𝑡

⋮ ⋯ ⋮
𝛼𝛼2𝑡𝑡 2 ⋯ 𝛼𝛼2𝑡𝑡 𝑛𝑛−1

we have 
𝑣𝑣.𝐻𝐻𝑇𝑇 = 0

for any code vector 𝑣𝑣 = (𝑣𝑣0, 𝑣𝑣1, … , 𝑣𝑣𝑛𝑛−1)



Parity Check Matrix  of BCH Codes
 Since if 𝛼𝛼𝑖𝑖 is conjugate of𝛼𝛼𝑗𝑗 then v ( 𝛼𝛼𝑖𝑖 )=0 implies v ( αj )=0 and vice versa. So, we can drop even 

rows and write:

H=  

1
1
1
⋮
1

𝛼𝛼
𝛼𝛼3
𝛼𝛼5
⋮

𝛼𝛼2𝑡𝑡−1

𝛼𝛼2
(𝛼𝛼3)2

(𝛼𝛼5)2
⋮

(𝛼𝛼2𝑡𝑡−1)2

𝛼𝛼3
(𝛼𝛼3)3

(𝛼𝛼5)3
⋮

(𝛼𝛼2𝑡𝑡−1)3

⋯
⋯
⋯
⋮
⋯

𝛼𝛼𝑛𝑛−1
(𝛼𝛼3)𝑛𝑛−1

(𝛼𝛼5)𝑛𝑛−1
⋮

(𝛼𝛼2𝑡𝑡−1)𝑛𝑛−1

 Example: Consider double- error correcting BCH Code of length 15.

15= 24 -1→ m=4 and from table 2.9:

φ1 (x)= 1+x+ x4, φ3 (x)= 1+x+x2+ x3+ x4 

So, g(x)= φ1 (x) φ3 (x)= 1+x4+ x6+ x7 +x8 and we have 𝑛𝑛 − 𝑘𝑘 = 8 → 𝑘𝑘 = 15 − 8 = 7

 So, this is the BCH Code (15,7) with 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 = 5 , i.e., t=2.

H= 1
1
𝛼𝛼
𝛼𝛼3

𝛼𝛼2
𝛼𝛼6
𝛼𝛼3
𝛼𝛼9

𝛼𝛼4
𝛼𝛼12

𝛼𝛼5
𝛼𝛼15

𝛼𝛼6
𝛼𝛼18

𝛼𝛼7
𝛼𝛼21

𝛼𝛼8
𝛼𝛼24

𝛼𝛼9
𝛼𝛼27

𝛼𝛼10
𝛼𝛼30

𝛼𝛼11
𝛼𝛼33

𝛼𝛼12
𝛼𝛼36

𝛼𝛼13
𝛼𝛼39

𝛼𝛼14
𝛼𝛼42





Non-primitive BCH Codes
 Substituting 𝛼𝛼𝑖𝑖’s, so we get:

H=

1
0
0
0
1
0
0
0

0
1
0
0
0
0
0
1

0
0
1
0
0
0
1
1

0
0
0
1
0
1
0
1

1
1
0
0
1
1
1
1

0
1
1
0
1
0
0
0

0
0
1
1
0
0
0
1

1
1
0
1
0
0
1
1

1
0
1
0
0
1
0
1

0
1
0
1
1
1
1
1

1
1
1
0
1
0
0
0

0
1
1
1
0
0
0
1

1
1
1
1
0
0
1
1

1
0
1
1
0
1
0
1

1
0
0
1
1
1
1
1

 Example of a non-primitive BCH Code:

Consider 𝐺𝐺𝐺𝐺(26) and take β=α3. β has order n=21: β21= (α3)21 =α63 =1

 Let g(x) be the minimal degree polynomial with roots: β, β2, β3, β4

 β, β2and β4 have the same minimal polynomial:

φ1(x)=1+x+x2+x4 +x6



Decoding of BCH Codes
and β3 has: φ3(x)=1+x2+x3. So g(x)= φ1(x) φ3(x)= 1+x+x4+x5 +x7+x8+x9

It can be easily verified that g(x) divides x21+1. The code generated by g(x) is a 
(21,12) non-primitive BCH Code that corrects two errors.

 Decoding of BCH Codes:

 Let codeword 𝑣𝑣 represented by code polynomial 
𝑣𝑣(𝑥𝑥) = 𝑣𝑣0 + 𝑣𝑣1𝑥𝑥 + 𝑣𝑣2𝑥𝑥2 + ⋯+ 𝑣𝑣

𝑛𝑛−1
𝑥𝑥𝑛𝑛−1

be the transmitted codeword.
 The received polynomial is:

𝑟𝑟(𝑥𝑥) = 𝑟𝑟0 + 𝑟𝑟1𝑥𝑥 + 𝑟𝑟2𝑥𝑥2 + ⋯+ 𝑟𝑟
𝑛𝑛−1
𝑥𝑥𝑛𝑛−1

 Denoting the error polynomial by e(x), we have: 

r(x)=v(x)+e(x)
 The syndrome is calculated multiplying 𝑟𝑟 by HT:

𝑠𝑠 = (𝑠𝑠1, 𝑠𝑠2 , … , 𝑠𝑠2𝑡𝑡) = 𝑟𝑟.𝐻𝐻𝑇𝑇



Decoding of BCH Codes
 This means that the 𝑖𝑖 − 𝑡𝑡𝑡 component of s is: 

𝑠𝑠𝑖𝑖 = 𝑟𝑟(𝛼𝛼𝑖𝑖) = 𝑟𝑟0 + 𝑟𝑟1𝛼𝛼𝑖𝑖 + 𝑟𝑟2𝛼𝛼2𝑖𝑖 + ⋯+ 𝑟𝑟𝑛𝑛−1𝛼𝛼(𝑛𝑛−1)𝑖𝑖

for 𝑖𝑖 = 1,2, … , 2𝑡𝑡.

 Let’s divide r(x) by 𝜑𝜑𝑖𝑖(𝑥𝑥), i.e., the minimal polynomial of 𝛼𝛼𝑖𝑖:
𝑟𝑟(𝑥𝑥) = 𝛼𝛼𝑖𝑖(𝑥𝑥)𝜑𝜑𝑖𝑖(𝑥𝑥) + 𝑏𝑏𝑖𝑖(𝑥𝑥)

 𝜑𝜑𝑖𝑖(𝛼𝛼𝑖𝑖) = 0, therefore,
𝑆𝑆𝑖𝑖 = 𝑟𝑟(𝛼𝛼𝑖𝑖) = 𝑏𝑏𝑖𝑖(𝛼𝛼𝑖𝑖)

 Example: Consider (15,7) BCH Code. Let the received vector be (100000001000000). 
So, r(x)=1+x8. Let’s find, S= (𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3, 𝑠𝑠4).The minimal polynomial for 𝛼𝛼,𝛼𝛼2,𝛼𝛼4is the 
same,

𝜑𝜑1(𝑥𝑥) = 𝜑𝜑2(𝑥𝑥) = 𝜑𝜑4(𝑥𝑥) = 1 + 𝑥𝑥 + 𝑥𝑥4

and for 𝛼𝛼3 we have,
𝜑𝜑3(𝑥𝑥) = 1 + 𝑥𝑥 + 𝑥𝑥2 + 𝑥𝑥3 + 𝑥𝑥4



Decoding of BCH Codes
 Dividing r(x)=1+x8 by 𝜑𝜑1(𝑥𝑥) we get,

𝑏𝑏1(𝑥𝑥) = 𝑥𝑥2

 Dividing r(x) by 𝜑𝜑3(𝑥𝑥), we get 

𝑏𝑏3(𝑥𝑥) = 1 + 𝑥𝑥3
So,    

𝑠𝑠1 = 𝑏𝑏1(𝛼𝛼) = 𝛼𝛼2, 𝑠𝑠2 = 𝛼𝛼4, 𝑠𝑠4 = 𝛼𝛼8
and 

𝑠𝑠3 = 𝑏𝑏3(𝛼𝛼3) = 1 + 𝛼𝛼 9 = 1 + 𝛼𝛼 + 𝛼𝛼 3 = 𝛼𝛼7
Therefore,

𝑆𝑆 = (𝛼𝛼2,𝛼𝛼4,𝛼𝛼7,𝛼𝛼8)



Decoding of BCH Codes
 Since 

𝑉𝑉(𝛼𝛼𝑖𝑖) = 0, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1,2, … , 2𝑡𝑡

we have 
𝑆𝑆𝑖𝑖 = 𝑟𝑟(𝛼𝛼𝑖𝑖) = 𝑣𝑣(𝛼𝛼𝑖𝑖) + 𝑒𝑒(𝛼𝛼𝑖𝑖) = 𝑒𝑒(𝛼𝛼𝑖𝑖)

 Now, assume that we have 𝜈𝜈 errors at locations 𝑗𝑗1 ,
𝑗𝑗2 , … ,

𝑗𝑗𝛾𝛾 .
That is, 

𝑒𝑒(𝑥𝑥) = 𝑥𝑥 𝑗𝑗1 + 𝑥𝑥 𝑗𝑗2 + ⋯+ 𝑥𝑥 𝜈𝜈

 Then we have, 

𝑆𝑆1 = 𝛼𝛼𝑗𝑗1 + 𝛼𝛼𝑗𝑗2 + … + 𝛼𝛼𝑗𝑗𝜈𝜈

𝑆𝑆2 = 𝛼𝛼𝑗𝑗1 2 + 𝛼𝛼𝑗𝑗2 2
+ ⋯ +

𝛼𝛼𝑗𝑗𝜈𝜈 2

⁝

𝑆𝑆2𝑡𝑡 = 𝛼𝛼𝑗𝑗1 2𝑡𝑡 + 𝛼𝛼𝑗𝑗2 2𝑡𝑡
+ ⋯ +

𝛼𝛼𝑗𝑗𝜈𝜈 2𝑡𝑡



Decoding of BCH Codes
Let 𝛽𝛽1 = 𝑒𝑒 𝑗𝑗1

,
𝛽𝛽2 = 𝑒𝑒 𝑗𝑗2

,
… ,𝛽𝛽𝛾𝛾 = 𝑒𝑒 𝑗𝑗𝛾𝛾 , β1, β2, …, βγ are called error location numbers.

Then we have:
S1=β1 + β2+ … + 𝛽𝛽𝜈𝜈

S2= β1
2 + β2

2 + … + 𝛽𝛽𝜈𝜈 2

⁝

S2t= β1
2t + β2

2t + … + 𝛽𝛽𝜈𝜈 2t

These 2t equations are symmetric function of β1, β2, …, 𝛽𝛽𝜈𝜈
 Define the following polynomial

𝜎𝜎(𝑥𝑥) = (1 + 𝛽𝛽1𝑥𝑥) (1 + 𝛽𝛽2𝑥𝑥) (1 + 𝛽𝛽3𝑥𝑥) … (1 + 𝛽𝛽𝜈𝜈𝑥𝑥)
This is called the error locator polynomial and has 𝛽𝛽1−1 ,

𝛽𝛽2−1 ,
… 𝛽𝛽𝜈𝜈−1 as its roots. σ(X) can 

also be represented as:
𝜎𝜎(𝑥𝑥) = 𝜎𝜎0 + 𝜎𝜎1𝑥𝑥 + 𝜎𝜎2𝑥𝑥2 + ⋯+ 𝜎𝜎𝜈𝜈𝑥𝑥𝜈𝜈



Decoding of BCH Codes
It is clear that:

σ0 =1
σ1= β1 + β2+ … + 𝛽𝛽𝜈𝜈

σ2= β1 β2 + β2 β3+ … + 𝛽𝛽𝜈𝜈-1 𝛽𝛽𝜈𝜈
⁝

𝜎𝜎𝛾𝛾= β1 β2 … 𝛽𝛽𝜈𝜈
 𝜎𝜎𝑖𝑖’ s can be shown to be related to syndromes as follows:

𝑠𝑠1 + 𝜎𝜎1 = 0
𝑠𝑠2 + 𝜎𝜎1 𝑠𝑠1 + 2𝜎𝜎2 = 0

𝑠𝑠3 + 𝜎𝜎1 𝑠𝑠2 +
𝜎𝜎2 𝑠𝑠1 + 3𝑠𝑠3 = 0
⋮

𝑠𝑠𝜈𝜈 + 𝜎𝜎1 𝑠𝑠𝜈𝜈−1+⋯+𝜎𝜎𝜈𝜈−1 𝑠𝑠1 + 𝜈𝜈𝜎𝜎𝜈𝜈 = 0
𝑠𝑠𝜈𝜈+1 + 𝜎𝜎1 𝑠𝑠𝜈𝜈+⋯+𝜎𝜎𝜈𝜈−1 𝑠𝑠2 + 𝜈𝜈𝑠𝑠1 = 0

⋮
 These are called Newton identities.
 For the binary case

𝑖𝑖𝜎𝜎𝑖𝑖 = � 𝜎𝜎𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓 𝑜𝑜𝑜𝑜𝑜𝑜 𝑖𝑖
0 𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖



Berlekamp Algorithm
 Berlekamp Algorithm is an Iterative Algorithm for finding Error-Location 

Polynomial:
This algorithm tries to generate polynomials of degree 1,2, . . that has β1,β2 … as it roots.
 First we define 𝜎𝜎 (1)(𝑥𝑥) that satisfies the first Newton equality: σ(1)(x)=1+S1x
Since S1+σ1=0→σ1=S1
 Then we check whether 𝜎𝜎 (1)(𝑥𝑥) satisfies the second Newton equality or not. If it

satisfies we let 𝜎𝜎 2 𝑥𝑥 = 𝜎𝜎 (1)(𝑥𝑥) otherwise we add another term to 𝜎𝜎 (1)(𝑥𝑥) to form
𝜎𝜎 (2)(𝑥𝑥) that satisfies the first and second equalities.

 Then for 𝜎𝜎 3 𝑥𝑥 : if 𝜎𝜎 2 𝑥𝑥 satisfies the third equality we let 𝜎𝜎 3 𝑥𝑥 =
𝜎𝜎 2 𝑥𝑥 otherwise add a correction term that makes 𝜎𝜎 3 𝑥𝑥 satisfy the first three 
equalities.

 We continue this iterative approach until we get 𝜎𝜎 2𝑡𝑡 𝑥𝑥 and set 𝜎𝜎(𝑥𝑥) = 𝜎𝜎 2𝑡𝑡 𝑥𝑥 .

 Now let’s see how we can go from one stage say μ to μ+1.



Berlekamp Algorithm
 Assume that at stage μ, the polynomial is 

𝜎𝜎(𝜇𝜇)(𝑥𝑥) = 1 + 𝜎𝜎1
(𝜇𝜇)𝑥𝑥 + 𝜎𝜎2

(𝜇𝜇)𝑥𝑥2 + … + 𝜎𝜎𝐿𝐿𝜇𝜇
(𝜇𝜇)𝑥𝑥𝐿𝐿𝜇𝜇

 If 𝜎𝜎(𝜇𝜇)(𝑥𝑥) satisfies also (𝜇𝜇 + 1)𝑠𝑠𝑠𝑠 equality then, Sμ+1 should be
𝜎𝜎1

(𝜇𝜇)𝑠𝑠𝜇𝜇 + 𝜎𝜎2
(𝜇𝜇)𝑠𝑠𝜇𝜇−1 + … + 𝜎𝜎𝐿𝐿𝜇𝜇

(𝜇𝜇)𝑠𝑠𝜇𝜇+1−𝐿𝐿𝜇𝜇
 We compare this with actual 𝑠𝑠𝜇𝜇+1 .That is why we add this to Sμ+1 and check whether 

we get zero or not. Let the sum be denoted by 𝑑𝑑𝜇𝜇 and call it discrepancy. 

𝑑𝑑𝜇𝜇 = 𝑠𝑠𝜇𝜇+1 +𝜎𝜎1
(𝜇𝜇) 𝑠𝑠𝜇𝜇 + 𝜎𝜎2

(𝜇𝜇) 𝑠𝑠𝜇𝜇−1 + … + 𝜎𝜎𝐿𝐿𝜇𝜇
(𝜇𝜇)𝑠𝑠𝜇𝜇+1−𝐿𝐿𝜇𝜇

 If this is zero, then 𝜎𝜎(𝜇𝜇)(𝑥𝑥) also satisfies the μ+1-st equality and therefore,
𝜎𝜎(𝜇𝜇+1)(𝑥𝑥) = 𝜎𝜎(𝜇𝜇)(𝑥𝑥)

 But if 𝑑𝑑𝜇𝜇 ≠ 0, then 𝜎𝜎(𝜇𝜇)(𝑥𝑥) does not satisfy the μ+1-st equality.



Berlekamp Algorithm
 Note that

𝑑𝑑𝜇𝜇
=  ∑

𝑖𝑖=0
𝐿𝐿𝐿𝐿

𝜎𝜎𝑖𝑖
(𝜇𝜇) 𝑠𝑠𝜇𝜇+1−𝑖𝑖 Now, let’s go to a previous stage say, ρ, where 

𝑑𝑑𝜌𝜌
≠ 0.

𝑑𝑑𝜌𝜌 = ∑
𝑖𝑖=0
𝐿𝐿𝐿𝐿

𝜎𝜎𝑖𝑖
(𝜌𝜌) 𝑠𝑠𝜌𝜌+1−𝑖𝑖and

σ(ρ)(x) = 1 + 𝜎𝜎1
(𝜌𝜌)x+𝜎𝜎2

(𝜌𝜌)x2 + …+𝜎𝜎𝐿𝐿𝐿𝐿
(𝜌𝜌)𝑥𝑥𝐿𝐿𝐿𝐿

 Let’s form 𝜎𝜎(𝜇𝜇+1)(𝑥𝑥) as:
𝜎𝜎(𝜇𝜇+1)(𝑥𝑥) = 𝜎𝜎(𝜇𝜇)(𝑥𝑥) + 𝐴𝐴𝑋𝑋𝜇𝜇−𝜌𝜌𝜎𝜎(𝜌𝜌)(𝑥𝑥)

 Then
𝑑𝑑𝜇𝜇′ = ∑𝑖𝑖=0

𝐿𝐿𝐿𝐿 𝜎𝜎𝑖𝑖
(𝜇𝜇)Sμ+1-i +∑𝑖𝑖=0

𝐿𝐿𝐿𝐿 𝜎𝜎𝑖𝑖
(𝜌𝜌) Sμ-ρ+1-i

or
𝑑𝑑𝜇𝜇′ = 𝑑𝑑𝜇𝜇 + 𝐴𝐴𝑑𝑑𝜌𝜌

 In order for 𝑑𝑑𝜇𝜇′ =0 we need 
𝐴𝐴 = 𝑑𝑑𝜇𝜇/𝑑𝑑𝜌𝜌



Summary of Berlekamp Algorithm
 In summary, Berlekamp algorithm is as follows:

 Initialization: start with first two rows according to the following table:

 Iteration: For each μ form 𝑑𝑑𝜇𝜇 = 𝑠𝑠𝜇𝜇+1 + 𝜎𝜎1
(𝜇𝜇)𝑠𝑠𝜇𝜇 + ⋯+𝜎𝜎𝐿𝐿𝐿𝐿

(𝜇𝜇) 𝑠𝑠𝜇𝜇+1−𝐿𝐿𝜇𝜇

Where 𝐿𝐿𝜇𝜇is the degree of 𝜎𝜎 𝜇𝜇 (𝑥𝑥)



Summary of Berlekamp Algorithm
1) If 𝑑𝑑𝜇𝜇 = 0 then 𝜎𝜎 𝜇𝜇+1 𝑥𝑥 = 𝜎𝜎 𝜇𝜇 (𝑥𝑥)

2) If 𝑑𝑑𝜇𝜇 ≠ 0 then:

𝜎𝜎 𝜇𝜇+1 𝑥𝑥 = 𝜎𝜎 𝜇𝜇 𝑥𝑥 + 𝑑𝑑𝜇𝜇𝑑𝑑𝜌𝜌−1𝑥𝑥𝜇𝜇−𝜌𝜌𝜎𝜎 𝜌𝜌 (𝑥𝑥)

Where ρ is the row (the stage) where 𝑑𝑑𝜌𝜌 ≠ 0 and is closest to μ, i.e. , μ-ρ is the smallest

 Termination:

 Continue until you find 𝜎𝜎 2𝑡𝑡 𝑥𝑥 and let:

𝜎𝜎 𝑥𝑥 = 𝜎𝜎 2𝑡𝑡 𝑥𝑥



Example
 Consider the (15,5) code we saw previously assume that, 

v= (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) is transmitted 
and r= (000101000000100) is received. 

Then  𝑟𝑟 𝑥𝑥 = 𝑥𝑥3 + 𝑥𝑥5 + 𝑥𝑥12.
 The minimal polynomial for 𝛼𝛼,𝛼𝛼 2and 𝛼𝛼 4 is 

𝜑𝜑1 𝑥𝑥 = 𝜑𝜑2 𝑥𝑥 = 𝜑𝜑4 𝑥𝑥 = 1 + 𝑥𝑥 + 𝑥𝑥4
 For 𝛼𝛼 3and 𝛼𝛼 6

𝜑𝜑3 𝑥𝑥 = 𝜑𝜑6 𝑥𝑥 = 1 + 𝑥𝑥 + 𝑥𝑥2 + 𝑥𝑥3 + 𝑥𝑥4
 For 𝛼𝛼 5,

𝜑𝜑5 𝑥𝑥 = 1 + 𝑥𝑥 + 𝑥𝑥2
 Dividing r(x) by 𝜑𝜑1 𝑥𝑥 , we get 

𝑏𝑏1 𝑥𝑥 = 1
 Dividing r(x) by 𝜑𝜑3 𝑥𝑥 , we get 

𝑏𝑏3 𝑥𝑥 = 1 + 𝑥𝑥2 + 𝑥𝑥3
 And dividing by 𝜑𝜑5 𝑥𝑥 ,

𝑏𝑏5 𝑥𝑥 = 𝑥𝑥2



Example
So:

𝑠𝑠1 = 𝑠𝑠2 = 𝑠𝑠4 = 1
𝑠𝑠3 = 1 + 𝛼𝛼6 + 𝛼𝛼9 = 𝛼𝛼10
𝑠𝑠6 = 1 + 𝛼𝛼12 + 𝛼𝛼18 = 𝛼𝛼5

𝑠𝑠5 = 𝛼𝛼10

Using Berlekamp method, we get 𝜎𝜎 𝑥𝑥 = 𝛼𝛼 6 𝑥𝑥 = 1 + 𝑥𝑥 + 𝛼𝛼5𝑥𝑥 .



Example
 We can verify that 𝛼𝛼3, 𝛼𝛼10 and 𝛼𝛼12 are the roots of σ(x).

(𝛼𝛼3)−1= 𝛼𝛼12
(𝛼𝛼10)−1= 𝛼𝛼5

and
(𝛼𝛼12)−1= 𝛼𝛼3

 So:
𝑒𝑒 𝑥𝑥 = 𝑥𝑥3 + 𝑥𝑥5 + 𝑥𝑥12



Error Correction Procedure
1) Calculate syndrome.

2) Form error- location polynomial σ(x)

3) Solve σ(x) to get error locations (Chien Search)

 Chien Search:

1) Load 𝜎𝜎1,𝜎𝜎2,…,𝜎𝜎2𝑡𝑡 in 2t registers.

(If σ(x) has degree less than 2t, i.e., 𝜇𝜇 < 2𝑡𝑡 then 𝜎𝜎𝜇𝜇+1 = 𝜎𝜎𝜇𝜇+2 = ⋯ = 𝜎𝜎2𝑡𝑡 = 0)

1) The multipliers multiply 𝜎𝜎𝑖𝑖 by 𝛼𝛼𝑖𝑖 and the circuit generates

𝜎𝜎1𝛼𝛼 + 𝜎𝜎2𝛼𝛼2 + ⋯+ 𝜎𝜎𝜇𝜇𝛼𝛼𝜇𝜇

 If α is a root of σ(x) then

1 + 𝜎𝜎1𝛼𝛼 + 𝜎𝜎2𝛼𝛼2 + ⋯+ 𝜎𝜎𝜇𝜇𝛼𝛼𝜇𝜇 = 0



Chien Search

Load 𝜎𝜎1,𝜎𝜎2,…,𝜎𝜎2𝑡𝑡 in 2t registers.
(If σ(x) has degree less than 2t, i.e., 𝜇𝜇 < 2𝑡𝑡 then 𝜎𝜎𝜇𝜇+1 = 𝜎𝜎𝜇𝜇+2 = ⋯ = 𝜎𝜎2𝑡𝑡 = 0)
The multipliers multiply 𝜎𝜎𝑖𝑖 by 𝛼𝛼𝑖𝑖 and the circuit generates

𝜎𝜎1𝛼𝛼 + 𝜎𝜎2𝛼𝛼2 + ⋯+ 𝜎𝜎𝜇𝜇𝛼𝛼𝜇𝜇

 If α is a root of σ(x) then
1 + 𝜎𝜎1𝛼𝛼 + 𝜎𝜎2𝛼𝛼2 + ⋯+ 𝜎𝜎𝜇𝜇𝛼𝛼𝜇𝜇 = 0



Error Correction Procedure
 Or the output of A is 1.

 So if output of A is 1 then α is a root and 𝛼𝛼−1 = 𝛼𝛼𝑛𝑛−1 is error location and 𝑟𝑟𝑛𝑛−1 should 
be corrected.

 Multipliers are clocked so we get

𝛼𝛼2, (𝛼𝛼2)2, … , (𝛼𝛼2)𝜇𝜇

Or the output of A is 

𝜎𝜎1𝛼𝛼2 + 𝜎𝜎2(𝛼𝛼2)2+⋯𝜎𝜎𝜇𝜇(𝛼𝛼2)𝜇𝜇

If this is 1, 𝑟𝑟𝑛𝑛−2 should be corrected and so on for 3,..,𝜈𝜈.
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