ELEC 6131: Error Detecting
and Correcting Codes

Instructor:

Dr. M. R. Soleymani, Office: EV-5.125, Telephone: 848-2424 ext: 4103.
Time and Place: Thursday, 17:45 — 20:15.

Office Hours: Thursday, 15:00 — 16:00

LECTURE 8: Convolutional Codes




Convolutional Codes

» In Block Code’s data is encoded using a Combinational circuit. That is, a circuit with
only logic gates and no memory.

» Convolutional Codes on the other hand, have encoders that are Sequential Circuits. A
Convolutional encoder receives k bits as the input and generates n = k output symbols
based on the input at a given time and past inputs (or outputs) still in the memory. A
convolutional code usually has m memory units resulting in 2™ states. m is called the
constraint length, sometimes m+1 1s called the constraint length taking into account the
present input and m bits in the memory as the bits affecting the output. k and n are

: : L 1 -
usually small integers. Codes with k=1 resulting in code rate —are of special interest.

» For example, if k = 1 and n = 2, we have a code of rate S = %




Convolutional Codes

» It is important to note the fact that while k=1 or 2 or some other small number, the
mput and output are streams of bits. Assume that L symbols enter the encode. This
means kL input bits and nL output bits we need also to flush the encoder to make it
ready for next block of data, e.g., by feeding km bits. So, the output will actually be
n(L + m) bits long and the rate is

kL k L k
—. ﬁ_
nL+m

n(L +m)

when m « L.

Since the codewords of a Convolutional code are generated using a Finite State Machine
(FSM), 1.e. a sequential circuit, the decoder can be a scheme that finds the best match for
the received sequence (based on minimum distance), by going through all possible outputs
of the FSM. The scheme used is the travelling salesman algorithm. It is called the Viterbi
Algorithm (VA) in coding literature as it was first used for decoding of convolutional codes
by Andrew Viterbi (the relationship between VA and travelling salesman problem was later
discovered. So, in fact, Viterbi re-invented the algorithm).




Convolutional Codes

>

>

v

VA finds a solution that is optimal over the whole received sequence and not
necessarily having lower probability of error for each symbol.

Another Scheme called BCJR (Bahl, Cocke, Jelinek and Raviv) algorithm is another
decoding technique that works based on the maximum a posteriori (MAP) probability
taking into account the a priori probability of bits. It is very useful in iterative decoding
of Turbo codes.

: : 1
Example: let’s start with a non-systematic feed forward rate p code.

The code is non-systematic as there 1s no direct connection between the input and any
of the outputs. Also, we call the code feed forward as the outputs are not fed back to
the input side.




Convolutional Codes

» Let the input sequence be u=(ug, U4, U,, ...). The output sequences will be
_(.,(0) _(0) _(0)
vO=(vy 7, v; 7,0, 7, )

and v=(v5”, vV, vV, )
» These outputs can be obtained by convolving u with the impulse response of the two

branches.
» To find the impulse response let u=(100...) and observe the outputs. Since the

memory order is m, the impulse response can last at most m+1 time units so,

0 0 0
g0=(g\?,g'?, .., g\

and ¢ =(g5", 9", ., g )
» For this example:
g®=(1011)
and

g=(1111)

» These are also called generator sequences.




Convolutional Codes
» Now,

» Where ® denotes convolution:

vl(j) = Yo Ui gi(j) = Uy g(()j) + u;_4 g((,j) + U, g,(,{) for j=0 and 1.
» For this example,
v = w +u, + U
vl(l) =U; + U1 + Uy +U_3
and V= (v(o),vél),vl(o),vl(l),vz(o),vz(l), )

» Assumeu=(10111),then
vO=(10111)®A01I1)=(10000001)
vO=10111)®A111)=(11011101)

and v=(11, 01, 00, 01, 01, 01, 00 ,11)




Convolutional Codes

» When the number of bits encoded is large, we can view the operation of the
convolutional encoder as a block encoder by defining the generate matrix:

1
58 &"s’ sg" .. 4D 0
©.m O 1
il 888 2gf" . gD gD GO G0
m o _(1) 1 ;
8 & Egllzﬂi,l_g xfl_lgﬂll Eﬁﬂﬁl

» Then v =uG. For input u= (101111) we have:

"11 01 11 11

11 01 11 11

=(10111) 11 01 11 11

11 01 11 11
11/M 11 11 )]

=(11,01,00,01,01,01,00,11),




Convolutional Codes

2
Example: A rate ~ non- systematic feed forward convolutional code:

» Let g(] ) represent the generator sequence corresponding to input i and output j, we
have:
g =01 g’=01 g?=0a1
“’) =01 g’=00 g¥=@0




Convolutional Codes

» Then:
» v =yl @ g§°) +ul® ® g§°)
v =41 @ gil) +u®@ ®g§1)
v@ =yl @ g§2) +u®@ ®g§2)
» So,
vl(o) = ul(l) + +ul(P1 + ul(z)l
v = u® 4y

Ul(z) = ul(l) + ul(l) + ul(i)l

» While rate % codes with k # 1 can be used, it is easier to use a code % rate to

generate codes % This is done using puncturing. Assume that we have a rate %
code, we can feed it two bits at a time and out of 4 bits we get at the output
throw out one to get a rate % code. Or input 3 bits and get 6 bits out and

throw out 2 bits to get Z code .




Convolutional Codes T
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Polynomial Domain Representation

» Similar to block codes, we can transform the time domain representation by
transforming the generating sequences to generating polynomial and similarly input
and output sequences to input and output polynomials:

» For example, for the (2,1,3) code, i.c. rate % memory = 3 code, instead of g@= (101

l)and gM=(1111), we can use:
g @) =1+D?+D3and gP(D) =1+ D + D? + D3

i

= +

o cssinsi b}
i




Polynomial Domain Representation:

» If we denote the input sequence as,

u(D) = uy + u;D + u,D? + -
Then

vOD = u(D)g@ (D) and v VD = u(D)g™ (D)
So,
v(D) = [v9(D), vV (D)] = v©@(D?) + DvV(D?)
Assume thatu=10111—u(D)=1+ D? + D3 + D%, then:
vO((D)=1+D*+D3+DH(1+D?*+D3)=1+D’
vOD)=Q+D2+D3+DH(1+D+D%2+D3=1+D+D3*+D*+D5+D7

and:
V(D) = [1+ D™ +D(1+D?+ D®+ D® + D* 4+ D'4)]

=1+D+D*+D7+D°+ D' +D'* + D'®
As anexercisetrytoget 1 1010001010100 by feeding 101 1 1 to the encoder.




Polynomial Domain Representation:

» Equivalently, we could use g(D) = g (D?) + Dg™ (D?) and find the output using
v(D) = u(D*)g(D)
» For the above example:
g(D)=1+D*+D®+ D[1+ D?+ D*+ D®]

=1+D*+D%+ D+ D3+ D>+ D7
=1+D+D3+D*+ D>+ D®+ D7

and

v(D) =u(D?)g(D) = (1+D*+D®+D®(1+D + D3+ D*+ D>+ D®+ D7)
=1+D+D*+D7 +D°+ D" + D"+ D"
In general, for a code with k inputs and n outputs, we have:
g:(D) = g (™ + DgP(D™) + -+ + D" TgP (D) for 1<i<k

and
k

v(D) = ) u®(DM)g;D

i=1




Graphical representation: Trees, Trellises and FSM

» Consider a code with m memory elements, each bit takes the contents of shift register
from one of the 2™ possible values to another value. For simplicity take the case of feed
forward, k = 1 code. Let’s start from all zero content for m memory elements i.e., start
from 0 0...0. If the bit entering the encoder is zero it moves to the same state.
Otherwise goesto 1 0 0 ... 0. Next bit takesitto010...0or 110 ... 0.

For example: for the 3-bit memory encoder (2,1,3) we will have:
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Graphical representation: Trees, Trellises and FSM

» Note that after entering 3 bits, we get to 8 terminal nodes with all possible
binary values. If we continue, we get trees with 16, 32, 64, ... of terminal
nodes. But node labels will still be one of the eight patterns 000, 001, ...,111.

» So, instead of a tree, we can use a trellis. For the above code, we have the following
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Graphical representation: Trees, Trellises and FSM

» We label the nodes by state values and the arcs by the input and Ouput.

» let’s now draw the state-diagram: Each state is labeled with the content of the memory
elements and each transition is labeled with the input and output. So, an input 1 takes
the system from state 000 to state 100 generating output 11, so, 1/11 is the label of the
transition from 000 to 1000. Since this is a binary (one bit) input code, we can
represent the input by thickness or shape of line, e.g., using solid line for zero and
dashed line for one.




Water Lilies in Monets Garden in Giverny
France




Classification of Convolutional Codes

» A code can be systematic, e.g.,

+ = il
py

A (2,1, 3) binary systematic feedforward convolutional encoder,

» Convolutional encoders can also have feedback.

» Following is an example of (2,1,2) systematic feedback encoder.

> V(D)

O




Classification of Convolutional Codes

» These codes are defined in terms of their feedback and feedforward transfer functions
(or generator functions). The above code has g,(D)=1 and:

1+ D?
1+ D+ D?

91(D) =
Or the generator matrix is
G(D) =[1,(1+D*)/(1+ D + D?)]
» Trellis Diagrams list all possible codewords. For example, for a convolutional code
with binary input, after entering [ bits, i.e., passing through [ stages, we have 2! paths

: K : : :
to consider. Note that for a rate - after entering kl bits, we have an nl bit sequence. So,

the search is for one of the 2% trellis paths among 2™ possibilities.

» We will have an error if the transmitted sequence belongs to one path of trellis and we
decide in favour of another path. That is, if the noise make the path diverge at one node
and coverage at another node. To see this, let’s try a simple example




Classification of Convolutional Codes
» Consider the (2,1,2) feedback code above.

>

>

oo

Assume, for example, that input of the encoder is the all zero sequence. Then the top
line 1s the path taken by the output of the encoder.

Now assume that at some point there is an error and instead of straight (solid line), the
decoder takes the dashed line. Unlike un-coded case, the next output is not un-
constrained since the first divergence has caused 00 to be 11, then the next two bits are
either 01 or 10. This continues until the two paths merge. Any convergence of two
diverged paths is called an error event. The shortest error event defines, the minimum
or free distance of the code. In this case the free distance is 3 and 1s a result of 00,00,00
being changed to 11,01,00. That means decoding 100 instead of 000.




Classification of Convolutional Codes

» Catastrophic Convolutional encoder:
» A convolutional encoder, is one that creates a trellis diagram in which a stream with an

infinite number of errors appears as having a finite distance from the original sequence.
» Example: Take the convolutional code with G(D) = [1 + D, 1 + D?].

» Trellis for this encoder is:




Classification of Convolutional Codes

» Now assume that 0 0...0 be encoded, i.e., 00,00, ... 00 (upper path) be transmitted. The
distance between 11,01,00, ..., 00 (the violet path) and the correct path is 3. But one
decodes to all 0 and the other to all one.

» Let’s analyze the situation. Note that 1+D 1s a common divisor to g,(D)= 1+D and

g1(D) =1+ D?=(1+D)(1+ D) So, the encoder can be conceived as an m=1
encoder [1, 1+D] and a multiplication (say prior to encoding) by 1+D.
» Note that:

— —=1+4+D+D%4+D3+--
T =1+D+D?+D%+

or: (1+D+D*+D3+--)1+D)=1
» So, if we feed the all one sequence to the 1+D, we get a single 1 and all zero. The same
is true for any encoder whose constituent g;(D) have a common divisor other than

unity (or shift of unity say D*). A% code 1s not catastrophic if and only if

GCD[go(D), g1 (D), ..., gn—1(D)] = D' for some integer .




Performance of Convolutional Codes

» The performance of convolutional codes is computed based on their distance profile
(Spectrum) Assume that in the trellis of a code there are A error event paths of distance d,
for all possible d. Then:

AX) = i Ag X4

d=dfree

» Assuming that probability of error event for a path of distance d is P, then:

P(E) < Z AP,

d=d free
» For BSC channel, P(E) can be approximated (upper bound approximated) as:

P(E) < Z Aal2yp(Q = P)]* = AKX, oy 5=
d=dfree

» Forsmall p, i.e., high SNR, we have the path with distance df;.., as dominant so:

P(E) = Auy,, [2/p(1 = p)]%ree = Ag,, 2%mee plyreel?




Performance of Convolutional Codes

>

Instead of A which is the number of error event of weight d, we may use Bywhich i1s
the sum of numbers of non-zero bits on all d paths divided by the number of
information bits k. Then:

PAE)< ) BaPa= ) Bal2/p(1—p)

d=dfree d=dfree
Again, taking dg, .. path as the dominant path:

P(E) = By, [24/p(1 — p)]¥ree

~ Bdfreezdfreepdfree/z
Assuming BPSK:
p 2E, _Es
= >~ — 0
A N, | =2¢




Performance of Convolutional Codes

» Note that £}, = % , SO

dfree _ free
Pe) = B, 2 5 O

» Comparing this with un-coded BPSK, i.e.,

p 0 2E, 1 _g_b
= —_— ~ —e 0
b N, 2

free

» We find that there is power gain of =

» This in decibel is called the asymptotic coding gain:

A Rdfree
Y = 10 l0g10 5 dB.




Soft Decoding of Convolutional Codes

» If we do not do demodulation prior to decoding, we use Euclidean distance. Then:

- 2dRE
PEY< ) 40| [
d=dfree 0
o 2dRE
Or Pp(E) < Xazdjye. Ba € ( ~ b)
0
» We can approximate the Q(.) function so that,
= _dRE)
Pb (E) < Z Bde No
d=dfree
_dfreeR Ep

or: P,(E) = Basee N
» Comparing with un-coded BPSK, i.e.,

» We get coding gain (asymptotic):
y 2 1Ol0g10(Rdfree) dB
which 1s 3 dB better than hard decision decoding.




Convolutional Codes

TABLE 12.2= Optimum rate R = 1,2
quick-look-in coavelutional codes.,
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