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Appendix A: 
Information Theory

• Information Theory : The science that provides us with bounds on the 
performance of transmission strategies. 

• This field was established in 1948 with the ground breaking paper A 
Mathematical Theory of Communication by Claude E. Shannon. 

• Other works by Shannon such as Communication Theory of Secrecy 
Systems is a paper published in 1949 and Coding theorems for a 
discrete source with a fidelity criterion in 1959 paved the road to the 
modern day digital information age. 

• The role of Shannon in Modern Day Digital World.
– Many experts believe that many of the things that we take for granted such 

as Smartphone, High-speed Internet and HDTV would not have happened 
the way they happened and when they happened if it was not for Shannon.

• Watch the Video about Shannon and his contributions:
– https://www.youtube.com/watch?v=z2Whj_nL-x8

Presenter
Presentation Notes
We have almost finished talking about video compression and then next thing to talk about would be coding and modulation and other techniques required for making compressed video ready for transmission. In order to be able to measure the effectiveness of a given transmission strategy, we need to have a set of yardsticks or in more scientific terms some bounds that could be used to gauge the performance of this or that coding and modulation scheme. The science that provides us with bounds on the performance of transmission strategies is Information Theory. This field was established in 1948 with the ground breaking paper A Mathematical Theory of Communication by Claude E. Shannon. Other works by Shannon such as  Communication Theory of Secrecy Systems is a paper published in 1949 and Coding theorems for a discrete source with a fidelity criterion in 1959 paved the road to the modern the digital information age. 
I suggest that you watch the video shown in this slide carefully. You will be tested on the subjects discussed in this video.
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Results developed by Shannon and later refined and/or generalized by 
many researchers in the area of information theory provide limits on not 
only the transmission rates feasible over different physical channels, but 
also the limit on how much a source such voice, audio, video can be 
compressed given the level of distortion that one can tolerate. So, in a 
course like this where we tackle both audio/video compression and data 
transmission a basic understanding of information theory is a must. Of 
course, given the amount of things that we have to cover, we cannot spend 
much on this topic. Therefore, I try first to present an intuitive definition 
of some basic concepts in information theory such as the entropy and 
mutual information and then give some results of information theory 
useful in this course without proof. I will try to clarify these results with 
reference to examples related to our course.

Presenter
Presentation Notes
Results developed by Shannon and later refined and/or generalized by many researchers in the area of information theory provide limits on not only the transmission rates feasible over different physical channels, but also the limit on how much a source such voice, audio, video can be compressed given the level of distortion that one can tolerate. 
So, in a course like this where we tackle both audio/video compression and data transmission a basic understanding of information theory is a must. 
Of course, given the amount of things that we have to cover, we cannot spend much on this topic. 
Therefore, I try first to present an intuitive definition of some basic concepts in information theory such as the entropy and mutual information and then give some results of information theory  useful in this course without proof. 
I will try to clarify these results with reference to examples related to our course.
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An intuitive approach to Information Theory

In a formal information theory course, one first defines some of the 
entities used in information theory such as mutual information and 
entropy using abstract mathematical formulas involving probabilistic 
description of the source and channel and then their physical meaning is 
demonstrated. In this note, I start by stating these entities as symbols and 
then discuss their intuitive meaning, derive certain relationships between 
them based on “common sense” and finally express them in terms of 
probabilistic parameters. The latter being mainly necessary for 
computational purposes.
In most terms entropy is defined first and then the mutual information. I 
find mutual information more intuitively explainable, particularly in 
communications. So, I start with the concept of mutual information.  The 
mutual information quantifies the amount of information an event (a 
process) provides about another event (process). Take a process X with 
events 𝑥𝑥 ∈ 𝑋𝑋. For example X can represent the weather in a specific 
season and 𝑥𝑥 ∈ 𝑋𝑋 can be “cold”, “hot”, “very cold”, “cool”, etc. 

Presenter
Presentation Notes
In a formal information theory course, one first defines some of the entities used in information theory such as mutual information and entropy using abstract mathematical formulas involving probabilistic description of the source and channel and then their physical meaning is demonstrated. In this note, I start by stating these entities as symbols and then discuss their intuitive meaning, derive certain relationships between them based on “common sense” and finally express them in terms of probabilistic parameters. The latter being mainly necessary for computational purposes.
In most terms entropy is defined first and then the mutual information. I find mutual information more intuitively explainable, particularly in communications. So, I start with the concept of mutual information.  The mutual information quantifies the amount of information an event (a process) provides about another event (process). Take a process X with events 𝑥∈𝑋. For example X can represent the weather in a specific season and 𝑥∈𝑋 can be “cold”, “hot”, “very cold”, “cool”, etc. 
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Another process Y can model the trend clothing purchase by people. So 
𝑦𝑦 ∈ 𝑌𝑌 can be “coat”, “jacket”, “pants”, “shorts”, etc. The joint information 
between an outcome 𝑥𝑥 ∈ 𝑋𝑋 and 𝑦𝑦 ∈ 𝑌𝑌 is denoted by I(x; y) and is the 
amount of information the knowledge of y gives about x. For example, 
knowing that the people buy more coats than any other type of apparel 
points to the possibility that the weather is cold and vice versa, i.e., the 
weather is going to be cold , the vendors will stock coats instead of other 
clothing items. The amount of information x gives about y (or y gives 
about x), i.e., I(x; y) should logically depend on how much y depends on x. 
The extreme case is when x and y are independent. In such a case it is 
natural to expect that 𝐼𝐼 𝑥𝑥;𝑦𝑦 = 0.
Just a brief mention of probability here: when two events are independent 
their joint probability mass (or density) function can be written as 
𝑝𝑝 𝑥𝑥,𝑦𝑦 = 𝑝𝑝 𝑥𝑥 𝑝𝑝(𝑦𝑦). But when there are not independent 𝑝𝑝 𝑥𝑥, 𝑦𝑦 =
𝑝𝑝 𝑥𝑥 𝑝𝑝 𝑦𝑦 𝑥𝑥 or 𝑝𝑝(𝑦𝑦)𝑝𝑝 𝑥𝑥 𝑦𝑦 . So, in a sense mutual information is a 
quantification of how much p(x, y) is different from p(x)p(y).

Presenter
Presentation Notes
Another process Y can model the trend clothing purchase by people. So 𝑦∈𝑌 can be “coat”, “jacket”, “pants”, “shorts”, etc. The joint information between an outcome 𝑥∈𝑋 and 𝑦∈𝑌 is denoted by I(x; y) and is the amount of information the knowledge of y gives about x. For example, knowing that the people buy more coats than any other type of apparel points to the possibility that the weather is cold and vice versa, i.e., the weather is going to be cold , the vendors will stock coats instead of other clothing items. The amount of information x gives about y (or y gives about x), i.e., I(x; y) should logically depend on how much y depends on x. The extreme case is when x and y are independent. In such a case it is natural to expect that 𝐼 𝑥;𝑦 =0. 
Just a brief mention of probability here: when two events are independent their joint probability mass (or density) function can be written as 𝑝 𝑥,𝑦 =𝑝 𝑥 𝑝(𝑦). But when there are not independent 𝑝 𝑥,𝑦 =𝑝 𝑥 𝑝 𝑦 𝑥  or 𝑝(𝑦)𝑝 𝑥 𝑦 . So, in a sense mutual information is a quantification of how much p(x, y) is different from p(x)p(y).
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Mutual Information and Entropy

What usually is considered as the mutual information is the average of I(x; 
y) over all possible values of 𝑥𝑥 ∈ 𝑋𝑋 and 𝑦𝑦 ∈ 𝑌𝑌:

𝐼𝐼 𝑋𝑋; 𝑌𝑌 = 𝐸𝐸𝑥𝑥,𝑦𝑦 𝐼𝐼(𝑥𝑥;𝑦𝑦)
And is called the [average] mutual information and is a measure of the 
average amount of information that observing the process X provides 
about Y and vice versa. 

Now let’s consider I(X; X), i.e. the amount of information the 
observation of X gives about X!?

I(X; X) is all you need to know (or like to know or can know) about X. 
Having seen X, there is no uncertainty about X. So, I(X; X) is the 
uncertainty that we have about X prior to observing it or the amount of 
information contained in X. It is give a special symbol H(X) nd is called the 
entropy of X.
In order to be useful, we expect that the mutual information between two 
processes be non-negative 

𝐼𝐼(𝑋𝑋;𝑌𝑌) ≥ 0

Presenter
Presentation Notes
What usually is considered as the mutual information is the average of I(x; y) over all possible values of 𝑥∈𝑋 and 𝑦∈𝑌:
𝐼 𝑋; 𝑌 = 𝐸 𝑥, 𝑦  𝐼(𝑥;𝑦) 
And is called the [average] mutual information and is a measure of the average amount of information that observing the process X provides about Y and vice versa. 
	Now let’s consider I(X; X), i.e. the amount of information the observation of X gives about X!?
	I(X; X) is all you need to know (or like to know or can know) about X. Having seen X, there is no uncertainty about X. So, I(X; X) is the uncertainty that we have about X prior to observing it or the amount of information contained in X. It is give a special symbol H(X) nd is called the entropy of X.
In order to be useful, we expect that the mutual information between two processes be non-negative 
𝐼(𝑋;𝑌)≥0
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Mutual Information and Entropy

This is to say that knowing something at worst can be useless. 

Conditional Mutual Information: 𝐼𝐼 𝑋𝑋;𝑌𝑌 𝑍𝑍 is the mutual information 
between X and given Z, i.e., the average amount of information X provides 
about Y given that we have already observed Z.

Conditional Entropy:𝐻𝐻 𝑋𝑋 𝑌𝑌 is the uncertainty about X given that we have 
observed Y.

I(X; Y) is the information Y gives about X. So, it is natural to expect it to be 
the difference between the uncertainty that we have about X before and 
after observing Y, i.e.,

𝐼𝐼 𝑋𝑋;𝑌𝑌 = 𝐻𝐻 𝑋𝑋 − 𝐻𝐻 𝑋𝑋 𝑌𝑌
and since 𝐼𝐼 𝑋𝑋;𝑌𝑌 = 𝐼𝐼(𝑌𝑌;𝑋𝑋), we can write 

𝐼𝐼 𝑋𝑋;𝑌𝑌 = 𝐻𝐻 𝑌𝑌 − 𝐻𝐻 𝑌𝑌 𝑋𝑋 .

Presenter
Presentation Notes
This is to say that knowing something at worst can be useless. 

Conditional Mutual Information: 𝐼 𝑋;𝑌 𝑍  is the mutual information between X and given Z, i.e., the average amount of information X provides about Y given that we have already observed Z.

Conditional Entropy: 𝐻 𝑋 𝑌  is the uncertainty about X given that we have observed Y.

I(X; Y) is the information Y gives about X. So, it is natural to expect it to be the difference between the uncertainty that we have about X before and after observing Y, i.e.,
𝐼 𝑋;𝑌 =𝐻 𝑋 −𝐻 𝑋 𝑌 
and since 𝐼 𝑋;𝑌 =𝐼(𝑌;𝑋), we can write 
𝐼 𝑋;𝑌 =𝐻 𝑌 −𝐻 𝑌 𝑋 .
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Appendix A: 
Channel Capacity

Entropy cannot increase with conditioning.
𝐼𝐼 𝑋𝑋;𝑌𝑌 = 𝐻𝐻 𝑋𝑋 − 𝐻𝐻 𝑋𝑋 𝑌𝑌 ≥ 0.

So,
𝐻𝐻 𝑋𝑋 𝑌𝑌 ≤ 𝐻𝐻(𝑋𝑋).

Now, let’s consider a channel with input X and output Y,

𝐻𝐻(𝑋𝑋) is the uncertainty that we have about the input a priori and 
𝐻𝐻 𝑋𝑋 𝑌𝑌 is the uncertainty about the input after observing the received 
signal Y. So, the quantity 𝐻𝐻 𝑋𝑋 − 𝐻𝐻 𝑋𝑋 𝑌𝑌 is the amount of information 
carried through the channel bout the input. That is, 𝑅𝑅 = 𝐻𝐻 𝑋𝑋 − 𝐻𝐻 𝑋𝑋 𝑌𝑌 =
𝐼𝐼(𝑋𝑋;𝑌𝑌) is the rate of information through the channel for a given input X.

ChannelX Y

Presenter
Presentation Notes
Entropy cannot increase with conditioning (in other words, knowing something cannot  increase our ignorance about something else).
𝐼 𝑋;𝑌 =𝐻 𝑋 −𝐻 𝑋 𝑌 ≥0.
So,
𝐻 𝑋 𝑌 ≤𝐻(𝑋).
Now, let’s consider a channel with input X and output Y,
𝐻(𝑋) is the uncertainty that we have about the input a priori and 𝐻 𝑋 𝑌  is the uncertainty about the input after observing the received signal Y. So, the quantity 𝐻 𝑋 −𝐻 𝑋 𝑌  is the amount of information carried through the channel bout the input. That is, 𝑅=𝐻 𝑋 −𝐻 𝑋 𝑌 =𝐼(𝑋;𝑌) is the rate of information through the channel for a given input X.
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Channel Capacity

So, if for a given channel, we find the maximum of R=I(X;Y), we have 
found the capacity of the channel, i.e., the highest rate at which 
communications is possible over the channel:

𝐶𝐶 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑝𝑝(𝑥𝑥) 𝐼𝐼 𝑋𝑋;𝑌𝑌 .

Presenter
Presentation Notes
So, if for a given channel, we find the maximum of R=I(X;Y), we have found the capacity of the channel, i.e., the highest rate at which communications is possible over the channel:
𝐶= 𝑚𝑎𝑥 𝑝(𝑥)  𝐼 𝑋;𝑌 .
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Lecture 6: 
Formal Definitions

Entropy for a discrete source:
Assume that a source takes values 𝑥𝑥 ∈ 𝑋𝑋 with probabilities 𝑝𝑝(𝑥𝑥) . Then the 
entropy is defined as 

𝐻𝐻 𝑋𝑋 = ∑𝑥𝑥 𝑝𝑝 𝑥𝑥 𝑙𝑙𝑙𝑙𝑙𝑙 1
𝑝𝑝(𝑥𝑥)

=−∑𝑥𝑥 𝑝𝑝 𝑥𝑥 log(𝑝𝑝 𝑥𝑥 ).
The unit of H(X) depends on the base of the logarithm. For base two logarithm, 
H(X) is in bits. H(X) is maximized when the probabilities of all events are the 
same, i.e., H(X)≤ 𝑙𝑙𝑙𝑙𝑙𝑙2𝑚𝑚 where m is the number of outcomes of X.
The conditional entropy is,

𝐻𝐻 𝑋𝑋 𝑌𝑌 = �
𝑦𝑦

𝑝𝑝 𝑦𝑦 𝐻𝐻 𝑋𝑋 𝑌𝑌 = 𝑦𝑦

= −�
𝑦𝑦

𝑝𝑝(𝑦𝑦)�
𝑥𝑥

𝑝𝑝 𝑥𝑥 𝑦𝑦 𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝 𝑥𝑥 𝑦𝑦

= −�
𝑥𝑥

�
𝑦𝑦

𝑝𝑝 𝑥𝑥,𝑦𝑦 𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝 𝑥𝑥 𝑦𝑦

Presenter
Presentation Notes
Entropy for a discrete source:
Assume that a source takes values 𝑥∈𝑋 with probabilities  𝑝(𝑥) . Then the entropy is defined as 
𝐻 𝑋 = 𝑥  𝑝 𝑥 𝑙𝑜𝑔  1 𝑝(𝑥)   =− 𝑥  𝑝 𝑥 log⁡(𝑝 𝑥 ) .
The unit of H(X) depends on the base of the logarithm. For base two logarithm, H(X) is in bits. H(X) is maximized when the probabilities of all events are the same, i.e., H(X)≤ 𝑙𝑜𝑔 2 𝑚  where m is the number of outcomes of X.
The conditional entropy is,
𝐻 𝑋 𝑌 = 𝑦  𝑝 𝑦 𝐻 𝑋 𝑌=𝑦  
=− 𝑦  𝑝(𝑦) 𝑥  𝑝 𝑥 𝑦 𝑙𝑜𝑔 𝑝 𝑥 𝑦    
=− 𝑥   𝑦  𝑝 𝑥,𝑦 𝑙𝑜𝑔 𝑝 𝑥 𝑦    
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Similarly,
𝐻𝐻 𝑌𝑌 𝑋𝑋 = −∑𝑥𝑥∑𝑦𝑦 𝑝𝑝 𝑥𝑥,𝑦𝑦 𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝 𝑦𝑦 𝑥𝑥 .

Mutual Information is:
𝐼𝐼 𝑋𝑋;𝑌𝑌 = 𝐻𝐻 𝑋𝑋 − 𝐻𝐻 𝑋𝑋 𝑌𝑌

= −�
𝑥𝑥

𝑝𝑝 𝑥𝑥 𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝 𝑥𝑥 + �
𝑥𝑥

�
𝑦𝑦

𝑝𝑝 𝑥𝑥,𝑦𝑦 log 𝑝𝑝 𝑥𝑥 𝑦𝑦

= �
𝑥𝑥

�
𝑦𝑦

𝑝𝑝 𝑥𝑥,𝑦𝑦 𝑙𝑙𝑙𝑙𝑙𝑙
𝑝𝑝(𝑥𝑥|𝑦𝑦)
𝑝𝑝(𝑥𝑥)

= ∑𝑥𝑥∑𝑦𝑦 𝑝𝑝 𝑥𝑥,𝑦𝑦 log 𝑝𝑝(𝑥𝑥,𝑦𝑦)
𝑝𝑝 𝑥𝑥 𝑝𝑝(𝑦𝑦)

.

Presenter
Presentation Notes
Similarly,
𝐻 𝑌 𝑋 =− 𝑥   𝑦  𝑝 𝑥,𝑦 𝑙𝑜𝑔 𝑝 𝑦 𝑥    .
Mutual Information is:
𝐼 𝑋;𝑌 =𝐻 𝑋 −𝐻 𝑋 𝑌 
=− 𝑥  𝑝 𝑥 𝑙𝑜𝑔 𝑝 𝑥   + 𝑥   𝑦  𝑝 𝑥,𝑦 log⁡ 𝑝 𝑥 𝑦    
= 𝑥   𝑦  𝑝 𝑥,𝑦 𝑙𝑜𝑔   𝑝(𝑥|𝑦) 𝑝(𝑥)   
= 𝑥   𝑦  𝑝 𝑥,𝑦 log⁡ 𝑝(𝑥,𝑦) 𝑝 𝑥 𝑝(𝑦)   .
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Entropy and Data Compression

The entropy is the least number of bits required to describe the outcome 
of a process. For a source it means the minimum number of bits required 
to encode the output of the source.
To see this let’s consider a binary source X that generates two outputs, say 
“zero” and “one”. Let the probability of getting a one is p. The probability 
of having zero is, obviously, 1-p. The entropy of this source is:

𝐻𝐻 𝑋𝑋 = −𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙2(p)− 1 − 𝑝𝑝 𝑙𝑙𝑙𝑙𝑙𝑙2 1 − 𝑝𝑝 .
Since, the above quantity depends on the probability and not much on the 
name of the variable, it is usually denoted as H(p).
Now assume that we observe 𝑛𝑛 outputs of the source. If 𝑛𝑛 is large enough, 
we get a sequence with roughly 𝑛𝑛𝑛𝑛 ones and 𝑛𝑛(1 − 𝑝𝑝) zeros. Probability of 
such a sequence is 𝑝𝑝𝑛𝑛𝑛𝑛(1 − 𝑝𝑝)𝑛𝑛(1−𝑝𝑝). Since most of the sequences will be 
of this type (they are called typical sequences), if we can encode only 
these sequences, we get a vanishingly small probability of observing a 
sequence that we cannot encode. Let the number of typical sequences be 
𝑁𝑁𝑇𝑇 .

Presenter
Presentation Notes
The entropy is the least number of bits required to describe the outcome of a process. For a source it means the minimum number of bits required to encode the output of the source.
To see this let’s consider a binary source X that generates two outputs, say “zero” and “one”. Let the probability of getting a one is p. The probability of having zero is, obviously, 1-p. The entropy of this source is:
𝐻 𝑋 =−𝑝 𝑙𝑜𝑔 2 (p)− 1−𝑝  𝑙𝑜𝑔 2  1−𝑝 .
Since, the above quantity depends on the probability and not much on the name of the variable, it is usually denoted as H(p).
Now assume that we observe 𝑛 outputs of the source. If 𝑛 is large enough, we get a sequence with roughly 𝑛𝑝 ones and 𝑛(1−𝑝) zeros. Probability of such a sequence is  𝑝 𝑛𝑝  (1−𝑝) 𝑛(1−𝑝) . Since most of the sequences will be of this type (they are called typical sequences), if we can encode only these sequences, we get a vanishingly small probability of observing a sequence that we cannot encode. Let the number of typical sequences be  𝑁 𝑇 .
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Entropy and Data Compression

It is clear that, 
𝑁𝑁𝑇𝑇𝑝𝑝𝑛𝑛𝑛𝑛(1 − 𝑝𝑝)𝑛𝑛(1−𝑝𝑝)< 1.

or,
𝑁𝑁𝑇𝑇 < 𝑝𝑝−𝑛𝑛𝑛𝑛(1 − 𝑝𝑝)−𝑛𝑛(1−𝑝𝑝).

So, we need,
𝑘𝑘 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑁𝑁𝑇𝑇 < 𝑛𝑛 −𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝 − 1 − 𝑝𝑝 log(1 − 𝑝𝑝) = −𝑛𝑛𝑛𝑛 𝑝𝑝 .

So, the compression rate  is bounded as,
𝑘𝑘
𝑛𝑛

< 𝐻𝐻(𝑝𝑝) .
The Huffman coding technique we discussed in previous lectures is a way 
to attain compression close to entropy. 
Exercise 6.1: Consider a source with letters A, B, …, G with probabilities 
{3/8, 3/16, 3/16, 1/8, 1/16, 1/32, 1/32}. Find the entropy. Compare with 
the mean length of the Huffman code for this source.
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It is clear that, 
 𝑁 𝑇  𝑝 𝑛𝑝  (1−𝑝) 𝑛(1−𝑝) <1.
or,
 𝑁 𝑇 < 𝑝 −𝑛𝑝  (1−𝑝) −𝑛(1−𝑝) .
So, we need,
𝑘=𝑙𝑜𝑔 𝑁 𝑇 <𝑛 −𝑝𝑙𝑜𝑔 𝑝 − 1−𝑝 log⁡(1−𝑝) =−𝑛𝐻 𝑝 .
So, the compression rate  is bounded as,
 𝑘 𝑛 <𝐻(𝑝) .
The Huffman coding technique we discussed in previous lectures is a way to attain compression close to entropy. 
Exercise 6.1: Consider a source with letters A, B, …, G with probabilities {3/8, 3/16, 3/16, 1/8, 1/16, 1/32, 1/32}. Find the entropy. Compare with the mean length of the Huffman code for this source.
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We discussed only about discrete sources and channels. Here, without 
going into details, we present some results about one of the important 
continuous channels. 
An Additive White Gaussian Noise Channel (AWGN) is a channel where 
the input X is corrupted with a noise Z that consists of independent, 
identically distributed samples of a Gaussian process. AWGN models any 
noise source that combines the effects of a large number of events. 
Thermal noise in electronic circuits that is the result of movement of a 
huge number of  particles is an example. 
Capacity of an AWGN channel with signal power P and noise power N and 
bandwidth W is given as,

𝐶𝐶 = 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 1 + 𝑃𝑃
𝑁𝑁

bps.
Most often, the capacity is normalized with frequency and is presented in 
bits/Hz. 
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We discussed only about discrete sources and channels. Here, without going into details, we present some results about one of the important continuous channels. 
An Additive White Gaussian Noise Channel (AWGN) is a channel where the input X is corrupted with a noise Z that consists of independent, identically distributed samples of a Gaussian process. AWGN models any noise source that combines the effects of a large number of events. Thermal noise in electronic circuits that is the result of movement of a huge number of  particles is an example. 
Capacity of an AWGN channel with signal power P and noise power N and bandwidth W is given as,
 𝐶=𝑊𝑙𝑜𝑔 1+ 𝑃 𝑁   bps.
Most often, the capacity is normalized with frequency and is presented in bits/Hz. 
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According to Shannon’s channel coding theorem, we can transmit error 
free as long as our transmission rate is less than C. He showed that 
theoretically, we can get as close as we wish to this limit. Only recently, 
practice has proven him right. On the other hand, he proved that we can 
not exceed this rate and expect low error rate.
Now let’s see how we can relate this result to what we achieve using a 
given transmission strategy (coding and modulation techniques we use)
First note the 𝑃𝑃 is the power, i.e., energy per second. So, if we transmit at 
the rate R=C, our energy per bit is 

𝐸𝐸𝑏𝑏 = 𝑃𝑃
𝐶𝐶

= 𝑃𝑃
𝑅𝑅

.
Also, the noise density will be,

𝑁𝑁0 = 𝑁𝑁
𝑊𝑊

.
So, we can write the capacity as,

𝑅𝑅 = 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 1 + 𝑅𝑅
𝑊𝑊
𝐸𝐸𝑏𝑏
𝑁𝑁0

.
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According to Shannon’s channel coding theorem, we can transmit error free as long as our transmission rate is less than C. He showed that theoretically, we can get as close as we wish to this limit. Only recently, practice has proven him right. On the other hand, he proved that we can not exceed this rate and expect low error rate.
Now let’s see how we can relate this result to what we achieve using a given transmission strategy (coding and modulation techniques we use)
First note the 𝑃 is the power, i.e., energy per second. So, if we transmit at the rate R=C, our energy per bit is 
  𝐸 𝑏 = 𝑃 𝐶 = 𝑃 𝑅 .
Also, the noise density will be,
 𝑁 0 = 𝑁 𝑊 .
So, we can write the capacity as,
𝑅=𝑊𝑙𝑜𝑔 1+ 𝑅 𝑊   𝐸 𝑏   𝑁 0   .
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The ratio 𝜂𝜂 = 𝑅𝑅
𝑊𝑊

is the bandwidth efficiency in bits/second/Hz. 

We can write the above equation as 𝜂𝜂 = log 1 + 𝜂𝜂 𝐸𝐸𝑏𝑏
𝑁𝑁0

or,
𝐸𝐸𝑏𝑏
𝑁𝑁0

= 2𝜂𝜂−1
𝜂𝜂

.
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The ratio 𝜂= 𝑅 𝑊  is the bandwidth efficiency in bits/second/Hz. 
We can write the above equation as 𝜂= log  1+𝜂   𝐸 𝑏   𝑁 0     or,
  𝐸 𝑏   𝑁 0  =  2 𝜂 −1 𝜂 .

For long time, people suspected that we can never get close to Shannon bound (Channel Capacity). The reason being that Shannon’s results assume arbitrarily long codewords. 
However, development of new techniques for coding and modulation and advances in digital electronics allowing high speed processing of signals has brought us very close to channel capacity.
This slide shows the performance of coding and modulation schemes for DVB-T2 and ATS 3.0.
As you see the gap is very small.
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Exercise 6.2: Assume that the bandwidth available to you is 2 MHz. For a 
carrier to noise ratio of 𝑃𝑃

𝑁𝑁
= 15 𝑑𝑑𝑑𝑑 determine the maximum bit rate 

possible? Compare with what you get with M-PSK modulation with roll-off 
factor 0.1. Consider transmission with a bit error rate of 10−5 as error-
free.
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Tests (multiple choice) for taking the next module:
1) Assume that the bandwidth available to you is 2 MHz. For a carrier to noise ratio of  𝑃 𝑁 =15 𝑑𝐵 determine the maximum bit rate possible? Compare with what you get with M-PSK modulation with roll-off factor 0.1. Consider transmission with a bit error rate of  10 −5  as error-free.
The maximum possible bit rate is a) 8 Mbps, b) 10 Mbps, c) 100 Mbps, d) None of the above.
The bit rate achieved with MPSK is: a) 10 Mbps, b) 15 Mbps, c) 3.64 Mbps, d) 128 kbps.
2) Claude Shannon invented: a) the fax machine, b) modems, c) both a and b, d) none of the above.
3) Shannon’s master’s thesis was about a) Digital logic, b) Information theory, c) analog computers, d) digital computers.
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